
Clinical Features and Physiological Signals Fusion
Network for Mechanical Circulatory Support Need
Prediction in Pediatric Cardiac Intensive Care Unit

Antonio Mendoza1, Sebastian Tume2,3, Kriti Puri2,3, Sebastian Acosta2 and Joseph R. Cavallaro1

Abstract—We link the hemodynamic response to inotropic
agents with outcomes related to Mechanical Circulatory Support
(MCS) by analyzing physiological time series and clinical features
using a Machine Learning/Deep Learning ensemble approach for
multi-modal waveforms in the pediatric cardiac intensive care
setting of a quaternary-care hospital. Unlike existing studies that
typically process a single feature type or focus on short-term
diagnoses from physiological signals, our novel system processes
minute-by-minute multi-sensor data to identify the need for
MCS in patients admitted with Acute Decompensated Heart
Failure. The data used includes tabular clinical features, time
series from Intensive Care Unit monitors, and raw waveforms
from electrocardiogram and arterial blood pressure signals. Our
predictions facilitate early identification of high-risk patients
after just two days of admission, with classification and feature
importance results confirming the predictive ability of the early
hemodynamic response to inotropic agent administration, achiev-
ing an AUC of 0.88 in the prediction classification task. This is
particularly significant in cases where clinical decisions are not
straightforward, such as those in the cohort for this study.

Index Terms—Blood pressure, Convolutional neural networks,
Deep Learning, Ensemble learning, Hemodynamics, Heart Fail-
ure, Time series analysis, Intensive Care Unit

I. INTRODUCTION

Heart disease is the leading cause of death in the United
States [1]. As the condition worsens, patients may develop
Acute Decompensated Heart Failure (ADHF), a stage where
immediate medical intervention is necessary. To stabilize these
patients, clinicians often use inotropic medications that help
strengthen the contractions of the heart and improve the blood
flow. However, some patients do not respond sufficiently to
the treatment with inotropic drugs. In those cases, the patients
may need a Mechanical Circulatory Support (MCS) device
implanted, commonly known as a mechanical heart pump.
The implantation of MCS devices carries significant risks and
requires a complex surgical operation [2].

To better understand the underlying mechanics of advanced
heart failure and the need for MCS implantation, we first ex-
amine what makes a patient need a MCS device implantation.
A source of information, which can capture granular trends
and dynamics, with rich multi-modal waveforms and time
series signals, are the data streams from Intensive Care Unit
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(ICU) monitors. The data includes ECG, and hemodynamic
parameters such as arterial blood pressure, central venous
pressure and pulse oximetry. Analyzing this information can
add additional insights about the status of a patient.

Patients admitted to the ICU with ADHF are in poor
health, but there is no unequivocal marker or measurement to
determine whether they will require MCS implantation. Tools
that assess the probability of a patient recovering successfully
or needing MCS implantation serve as clinical aid, enabling
better planning or preparation in case there is a high chance
of MCS need.

In this work we look at physiological waveforms and
time series - rich and continuous information - during the
first 48 hours after admission or inotropic therapy start to
predict the probability of that patient needing a MCS device
implantation. We analyze data of ADHF patients for a pediatric
single-site Cardiac Intensive Care Unit patient cohort. We
build a Machine Learning/Deep Learning system to predict
whether the patient will need MCS device implantation, further
deriving insights about signal and feature importance for this
classification task.

Section II looks at related work. Section III details the study
characteristics, and the dataset used. Section IV describes the
preprocessing, architecture, and training of the models for each
data type used. Section V includes the performance results
and evaluation of the system. Finally, Section VI presents the
conclusions of this study.

II. RELATED WORK

While not specifically working with cardiac patients and
ECG features, an XGBoost implementation of gradient
boosted trees was used to classify diseases from patients
with intracerebral hemorrhage (ICH) from the neurological
ICU at Columbia University Medical Center [3]. That study
processed features related to respiratory rate, end-tidal carbon
dioxide and oxygen saturation, as well as heart rate and
mean arterial pressure. ICU data has also been used in a
Machine Learning scheme for detecting some arrhythmias
from ECG signals. In another study [4], the authors focus
on alarm signals, analyzing ECG waveform slices of up to
15 seconds. Rahman et al. have used ICU clinical, vital signs
and laboratory measurements (point measurements) to predict
whether hemodynamic instability was going to happen one
hour in the future [5], developing a Machine Learning boost



tree based model to this end. In our previous work, ECG
signals have been studied to evaluate potential candidates for
Left Ventricular Assist Devices, a type of MCS device [6]. The
authors only looked at ECG as snapshots in time and not a
progression, and did not analyze ECG streams from the ICU
setting. Yao et al. proposed a Machine Learning system for
candidate identification for advanced heart failure therapies,
based on a retrospective study of two patient registries with
clinical data [7]. ADHF admissions of pediatric patients have
been studied for risk stratification with the goal of enabling
better planning [8]. However, no studies have been found that
tackle specifically MCS need by taking physiological signals
directly as input.

In contrast to previous related studies, which focus on one
modality - often clinical features - or do not try to measure
an outcome in the future, we focus on leveraging the multi-
modal physiological data available from ICU monitors to
make predictions on MCS implantation need by examining
the hemodynamic response to inotropic agent therapy.

III. DATA SELECTION AND PARAMETERS

A. Study Characteristics
The objective is outcome prediction for patients admitted

with ADHF. The competing outcomes included need for
MCS support and successful recovery allowing for hospital
discharge without planned MCS device implantation. We
hypothesize that the hemodynamic response during the first
hours after the start of inotropic agents administration is an
indicator of recovery or worsening that will require subsequent
MCS device implantation.

This is a single-center, retrospective study. The setting
is pediatric Cardiac Intensive Care Unit (CICU) of Texas
Children’s Hospital, Houston, Texas.

Inclusion criteria:
• Patients admitted to the Cardiac Intensive Care Unit

between 2015 and 2018.
• ICU monitor data has been recorded in the system and is

retrievable.
• Blood Pressure waveform was acquired using invasive

blood pressure monitoring.
• Patient was supported with inotropic agents such as

Milrinone or Epinephrine.
Exclusion criteria:
• Patients supported with Extracorporeal Membrane Oxy-

genation (ECMO) therapy in the first three days of
hospital stay.

Table I shows the patient demographic and clinical profile.
There are no meaningful differences between the patients that
needed MCS and the ones who did not. These unhealthy
patients have some underlying condition that required them to
be admitted to the Cardiac ICU. Furthermore, these patients
needed an arterial line placement to capture their blood pres-
sure waveforms. That means that their outcome was not easy
to predict by the clinicians and required close monitoring, as
invasive capture of blood pressure data with an arterial line is
done only done when necessary.

TABLE I
PATIENT DEMOGRAPHICS AND CLINICAL PROFILE. VALUES ARE MEDIAN

(IQR) OR NUMBER (%)

Parameter Patients that
needed MCS (%)

Patients that did
not need MCS (%)

Participants (n) 50 (47.16%) 56 (52.83%)
Sex (F) 25 (50%) 27 (48.21%)
Age, Years 9.14 (12.1) 5.68 (13)
Weight, Kg 40.45 (47.8) 18.95 (45.97)
Height, m 1.28 (0.77) 1.08 (0.91)
BSA, m2 1.13 (1.06) 0.75 (1.15)
SBP1 97.5 (23.5) 97.5 (31.5)
DBP1 58 (17.25) 58 (22.5)
HR1 133 (40) 133 (37.75)
Left ventricular function (LVEF)
Normal 0 (0%) 3 (5.35%)
Mildly depressed 0 (0%) 4 (7.14%)
Moderately depressed 4 (8%) 4 (7.14%)
Severely depressed 46 (92%) 38 (80.35%)
Inotropic agent therapy received
Milrinone 49 (98%) 54 (96.42%)
Dopamine 7 (14%) 9 (16.07%)
Dobutamine 3 (6%) 4 (7.14%)
Epinephrine 42 (84%) 38 (67.85%)

1 Taken at admission to the Unit

B. Dataset

Following the inclusion and exclusion criteria, the final co-
hort is left with 106 patients. The dataset for the study includes
clinical features gathered at admission (tabular data); and time
series of physiological signals, acquired by electrical sen-
sors (Electrocardiogram), pressure transducers (Arterial Blood
Pressure) or Photoplethysmography (PPG, Pulse Oximeter).
The signals used include low-frequency (0.5Hz) time series
and high-frequency (240Hz) waveforms.

The Hemodynamic monitors used in ICU are GE Carescape
B850 Version 2 monitors. Not all patients had the same signals
and channels recorded. We included signals of interest that
are present in all patients of the cohort in the models, for 48
hours following their first inotropic agent administration or
their admission to the CICU unit, whichever is last.

1) ECG: The ECG monitoring was composed of leads I,
II, III and V1 sampled at 240Hz. This raw data is our high-
frequency data, and is also processed by the ICU monitor
to calculate the low-frequency output being saved every 2
seconds. The industry-standard low-frequency time series gen-
erated by the ICU monitor are: Beats per Minute (BPM);
Premature Ventricular Contraction (PVC) event alarm; ST
segment deviation1 of leads aVF, aVL, aVR, I, II, III, and V1.
The signals in this ICU setting often have stronger noise than
typical 12-lead ECG studies. The signals have noise that can
be caused by patient movement, and can have disconnection
periods during which the patient was moved for a laboratory
test or for other procedures.

1ST segment refers to the interval in the ECG waveform between the S and
T fiducial points of the ECG. The magnitude of this interval - the deviation
- is used as a clinical marker.



2) Arterial Blood Pressure (ABP): The arterial blood
pressure was monitored continuously using invasive arterial
catheter, and any disturbance, such as nurses taking measure-
ments or patient movement, as well as line movement, adds
noise to the signal. The signal is preprocessed and filtered
with a high-pass and wavelet filters to avoid distortion. In
addition to the systolic and diastolic pressure values, the
pressure waveform carries information about the vasculature
of the patient. The high-frequency ABP waveform is used,
as well as the low-frequency Systolic Blood Pressure (SBP)
values and Diastolic Blood Pressure (DBP) values. The SBP
and DBP magnitudes are subtracted to get the Pulse Pressure
(PP) signal.

3) Pulse Oximeter: The patients in the cohort have PPG
sensors placed to gather information about the oxygen satura-
tion in their blood. The sensors offer complementary informa-
tion about the patient’s hemodynamics. The oxygen saturation
(SPO2) values reported by the hospital monitors are used in
this work, saved with a frequency of 0.5 Hz.

IV. METHODS

To strive for an accurate prediction of the MCS implan-
tation outcome, all data types explained in Section III-B are
used. Hence, we have modules for clinical features, for low-
frequency data, and for high-frequency data. Fig. 1 depicts a
diagram of the proposed system.

A. Preprocessing

1) Missing Data and Outliers in Monitor Signals: The
workflow included acquiring the signals from the database,
performing file format conversion, exploring signals present,
and evaluating if the signal actually contained a valid wave-
form (and not mostly noise, zero, infinite or Not-a-Number
values).

For this study, missing data and outlier instances are consid-
ered invalid samples. We detect outliers in the low-frequency
data sample-by-sample based on thresholds, and their value
in the time series was imputed according to criteria explained
in this section. Outliers such as a BPM of 500 or SBP of
-20 for a few samples were present, making this detection
and imputation process necessary. The thresholds set for the
signals are shown in Table II.

2) Minimizing age-dependency in the low-frequency fea-
tures: Adjustments to some features were made to minimize
age dependency. First, Pulse Pressure is used, defined as the
difference between the SBP and the DBP measurements, thus
eliminating the pressure absolute values. Second, heart rate
related features that use the absolute value (i.e. mean, max,
min) are post-processed by replacing the absolute values with
the Z-score based in the age range. The values used belong to
a systematic review of observational studies reported in [9].
When estimating, the authors used Pearson’s 2nd coefficient
and Bowley skewness tests and observed no skewness in the
heart rate data, hence assumed a normal distribution at each
age. We will also assume a normal distribution at each age for

TABLE II
THRESHOLDS AND SAMPLE IMPUTATION TECHNIQUES FOR THE

LOW-FREQUENCY (0.5HZ) SIGNALS OF THE PATIENTS IN THE STUDY
COHORT.

Signal Min.
Threshold

Max.
Threshold

Imputation
Technique

Beats per Minute 30 220 Last valid value
PVC alarm 0 30 Replace with 0
ST Segment de-
viation

-4 4 Last valid value

SPO2 60 100 Replace with
100

Pulse Pressure 10 70 Last valid value

this study. The age of each patient to perform the appropriate
adjustment was obtained from the clinical data.

Two assumptions were made when defining the strategy for
imputation: 1) During the missing or invalid sample, assume
there is no new alarm (assume normalcy), and 2) During the
missing or invalid sample, there were no major changes in
the physiological process (assume short-term stability). In our
dataset, most of the invalid samples are short gaps between
valid values, making the two assumptions reasonable. Hence,
when we need to impute a sample, we use the non-alarm values
for the case of PVC and SPO2 signals, or we use the Last-
observation-carried-forward (LOCF) approach for BPM, PP
and ST Segment deviation samples. In the case where the first
sample of a slice is invalid, we impute its value with the mean
of all valid samples in the slice. When more than half of the
samples in a 5-minute segment were marked as invalid, that 5-
minute segment slice is marked as invalid at the segment level.
If a 5-minute segment is marked as invalid, their statistical
values are imputed, replacing them with the statistical values
of the last valid 5-minute segment, following the assumptions
and the LOCF approach. Lastly, when a patient signal abruptly
ends (end of recording) before the full study period (as is the
case in this dataset for some ABP instances), the remaining
5-minute slices are imputed with the average values of the last
12 slices (representing the last hour with valid data).

3) Filtering: High-frequency signals - ECG and ABP wave-
forms - were filtered. To remove the baseline wander, a 4th
order high-pass Butterworth filter, with a cutoff frequency
of 0.5 Hz is used, applying the filter twice to achieve zero
phase distortion, using the scipy.signal Python package. To
minimize other noise, wavelet based filtering using the Symlets
4 (sym4) wavelet with a high level of decomposition is used
after baseline wander removal. Wavelet-based denoising is a
commonly used algorithm for noise removal in ECG signals
[10]. The threshold that defines noise is set experimentally
to 0.04. Coefficients below the threshold are set to zero to
eliminate the noise when doing the reconstruction. Skewness
and kurtosis are calculated and segments with outlier values
are marked as invalid slices.

All models were evaluated by performing K-Fold Cross-
validation, recommended for datasets with limited data, as is
the present study. We are using stratified K-fold, to ensure that



Fig. 1. Proposed architecture for the system for MCS outcome prediction. From left to right: 1) The physiological signals (ECG, PPG and ABP) that are
captured in the hospital system from the ICU monitors. 2) The data (clinical features extracted from the patient records) and the signals, comprised of
low-frequency (0.5Hz) measurements from the ICU monitor and raw high-frequency waveforms. 3) The features used as input for the classifiers and the
methods used for feature extraction. 4) The Deep Learning classifiers that predict the probability, members of the ensemble. Finally, an unweighted average
is done to obtain the final predicted probability.

each fold keeps the same proportion of negative and positive
classes. The value of K chosen was 5, as the cohort is limited,
and 5-fold is generally recommended as a good compromise
between variance and bias [11]. Results presented are obtained
from 5-fold cross-validation. A Repeated Stratified K-Fold
Cross-validation scheme is used, with 10 repeats, as repeating
the K-fold cross-validation can be used to effectively increase
the precision of the estimates while still maintaining a small
bias [12]. Each repeat is performed with a different fold split,
ensuring that each time an observation is part of the test
subset inside a fold, the training subset contains different
training observations. The Scikit-learn Python package and
its implementation in the RepeatedStratifiedKFold class are
used in this work. Following this scheme, each observation
is predicted 10 times, one per repeat of the 5-fold cross-
validation process, when the observation is part of the test
subset.

The final predicted probability is computed with an en-
semble of the models used, as ensembles are known to
provide better performance than any single learner [13]. A
fusion strategy using unweighted model averaging has been
employed, avoiding weighted averaging to prevent bias. In
Section V, all the results of the modules and of the system
are shown. This Section details the modules used, with their
processing steps, input data and architectures.

B. Clinical Features Module

The first module consists of a model that uses only clinical
features as input for the classification task. To this end, we
trained a XGBoost model [14] on the clinical features available
from the dataset, and then performed feature selection, leaving
a XGBoost classifier with 17 features: Age, sex, pre-existing

heart failure, previous admission or not, Body Surface Area
(BSA), Left Ventricular Ejection Fraction (LVEF), shock at
admission or not, heart rate, if the patient had previous
Ventricular Tachycardia episodes, and levels of BNP 2, BUN 3,
sodium, creatinine, total bilirubin, hematocrit, potassium and
hemoglobin.

To select the clinical features, first, a preliminary selec-
tion using feature importance reports from earlier runs of
XGBoost models that started with all features was used.
Secondly, features chosen had to be available at admission
time, excluding other lab tests conducted after admission to
the ICU, or diagnosis-related features. Lastly, features usually
associated with heart function for monitoring for heart failure,
and used for predicting heart failure re-admissions in the
literature, were considered [15]. A grid search method was
used to obtain the best hyperparameters, achieving best results
with γ = 0.2, maxTree = 7, subsampleRatio = 0.8 and
subsampleRatioColumns = 0.8. We are using the default
trees as base predictors [14].

C. Low-frequency module

This module processes the low-frequency signals. We pre-
process these signals as described in Section IV-A, then extract
features as explained below, and feed them to the Deep
Learning model.

2Natriuretic peptide tests measure levels of B-type natriuretic peptide
(BNP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) hormones,
released by the heart. Elevated levels of these peptides are indicative of heart
failure and other cardiac conditions.

3Blood Urea Nitrogen (BUN) tests can evaluate renal function and
metabolic health. Elevated BUN levels may signify impaired renal function,
dehydration, or cardiac-related issues.



To reduce the dimensionality, we extracted statistical fea-
tures from the time series data. The two-day time series signal
is sliced into non-overlapping 5-minute windows. Slices of 5
minutes were chosen, as they are frequently used in the Heart
Rate Variability [16] field, since they capture enough variabil-
ity to be useful in analysis. For our purposes, these 5-minute
segments capture enough data to be useful as representation for
the Deep Learning models. We extract the statistical features
out of every 5-minute window, and these features are the inpuy
of the downstream classification task.

The statistical values obtained include mean, min, max,
standard deviation of the variable values in the slice, as well
as of the difference array (comprised of the results of the
difference between consecutive variable values xi+1 − xi).
The root mean square of successive differences rmssd and the
coefficient of variation cv are also calculated. Not all statistical
features for all signals are used, only the ones shown in Table
III are included in the feature array fed to the Deep Learning
models. The final sets of signals and statistical features used
were chosen after an ablation study that checked the sensitivity
of the models to the different configurations.

TABLE III
ROW INDEX IN THE PYTHON NUMPY FEATURE ARRAY OF EACH

LOW-FREQUENCY SIGNAL AND ITS STATISTICAL FEATURES.
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Heart Rate 0 1 2 3 4-10
PVC Alarma 11
SPO2 12 13 14 15 16-22
ST Segment Dev. AVF 23 24 25 26
ST Segment Dev. AVL 27 28 29 30
ST Segment Dev. AVR 31 32 33 34
ST Segment Dev. SEG1 35 36 37 38
ST Segment Dev. SEG2 39 40 41 42
ST Segment Dev. SEG3 43 44 45 46
ST Segment Dev. V1 47 48 49 50
Pulse Pressure 51 52 53 54 55-61

aFlag set to 1 if >3 PVC alarms trigger in the 5-minute segment.

For this low-frequency module, after evaluation of different
architectures and hyperparameters, three models have been
trained.

a) CNN Residual based model: - The first model is a
convolutional based model. This model was chosen because of
the success in time series classification with 1-D convolutions,
which help learn the temporal dependencies and trends. Skip
connections are used to allow the model to learn both long-
term and short term trends.

The model is based on 1-D CNN layers, with dropout, aver-
age pooling and skip connections. It is a residual architecture,
with a hyperparameter search performed using Keras Tuner,
obtaining the number of filters of the convolutional layers - 32,
32, 48 and 48, respectively, all with filter size 5. The number of
units in the Dense layer is 96, and the dropout rate is 0.25. Fig.

Fig. 2. Architecture of the CNN based model used with the low-frequency
features. The input is 576 elements in the time series (one per 5-minute slice
in the 2-day observation window), each with 62 values (the statistical features
from Table III).

2 depicts the model layers. The model has been trained with
an initial learning rate of 0.0003 using the Adam optimizer,
and using Early Stopping to finish training when the monitored
validation accuracy does not improve anymore after 25 epochs.

b) LSTM based model: - The second model is based on
Long Short-Term Memory (LSTM), chosen due to its capabil-
ity of keeping or discarding temporally separated information
enabling the model to learn different aspects of the time series.
The LSTM model used has three layers, with 192, 112, and
120 units, followed by a fully connected layer and a final
sigmoid activation unit. The hyperparameters were chosen
with Keras Tuner.

c) HIVE-COTE V2 model: - The third model trained is
based on Hierarchical Vote Collective of Transformation-based
Ensembles (HIVE-COTE 2). HIVE-COTE 2 is designed for
time series classification, combining classifiers from different
representations to improve predictive performance. The en-
semble members include algorithms that use bag-of-words,
shapelets and random transforms of convolutional kernels.
This model is implemented and trained using the Python
package Sktime.

Hyperparameters for the CNN and LSTM models were se-
lected using Keras Tuner with two days of low-frequency data.
Training instability and high variability in validation results
found in the first experiments, indicated sensitivity to weight
initialization and demanded additional measures. A Cosine
Annealing learning rate [17] schedule was implemented, which
adjusts the learning rate cyclically to explore different parts of
the weight space, potentially reaching better local minima, and
mitigating validation variability.

D. High-frequency module
High frequency ECG and ABP signals were recorded at 240

Hz as mentioned in Section III-B. To reduce the dimensionality
of the data for time series classification, a β-Variational
Autoencoder (VAE) scheme has been adopted together with
slicing all signals to segments of 10 seconds each. This interval
length is consistent with the window traditionally used for
standard 12-lead ECG tests.

The architecture of this high-frequency module consists of
a VAE followed by a classifier. The VAE is based on residual



Fig. 3. Architecture of the Variational Autoencoder model used for feature
extraction and dimensionality reduction of the high-frequency ECG and ABP
signals.

blocks that use 1D convolutional layers. It follows typical VAE
architecture patterns, with an hourglass shape in the layers.
The number of filters in the encoder, decreases every 4 layers
following the pattern 80, 64, 48, 32 and 16, and filter sizes
are 9 and 19 in the first and second half of convolutional
layers. Dropout rate is 0.1. The second convolutional layer
in each residual block except the last two blocks has strides
equal to 2. The mean and variance vectors have size 60. The
decoder has the same structure as the encoder but without the
skip connections and inverted, having as output of the model
an array of length 2400 (10 s, 240 Hz). Fig. 3 illustrates the
model architecture. Gridsearch was used to select hyperparam-
eters for the layers and dropout rates. Several values of the
regularization parameter β for binary cross-entropy and KL
divergence losses were tested. Lower total loss and a good
reconstruction performance was achieved with β = 0.005.

After training the VAE model, the whole dataset is passed
through the encoder, and we take the mean latent vector to
use for the classification task. We have two days of high-
frequency data available per patient, hence every patient has
17280 slices of 10 seconds each. For the classification task,
we feed the time series to HIVE COTE V2, having as inputs
the time series of 60 feature vectors per high-frequency signal
(300 features in total) and 17280 steps per patient. The model
was trained with batch size 384, using the Adam optimizer
with learning rate 0.0002 and Early Stopping monitoring the
reconstruction loss, ending the training when the loss did
not improve for 8 epochs. As with the other modules, this
module was evaluated using Repeated Stratified K-fold Cross-
Validation [11] [12], with a different split in each of the 10
repeats and getting ensemble predictions for each observation

[13], using unweighted averaging.

V. RESULTS AND DISCUSSION

We have three types of input available: Clinical fea-
tures, low-frequency (0.5Hz) time series, and high-frequency
(240Hz) waveforms. Five models were developed for the three
types of input data, as described in Section IV:

• Input: Tabular clinical features. XGBoost model. (CF)
• Input: Low-frequency statistical features. CNN-based

model (LF-CNN)
• Input: Low-frequency statistical features. LSTM-based

model (LF-LSTM)
• Input: Low-frequency statistical features. HIVE-COTE

V2 based model (LF-HC2)
• Input: High-frequency features, consisting of the latent

space features from the Variational Autoencoder that
received the high-frequency waveforms. HIVE-COTE V2
based model (HF-HC2)

Metrics computed were accuracy, precision, recall, F1
scores, ROC curves and AUC scores. Additionally, the Fβ
score has been calculated. This score is mathematically ex-
pressed as shown in Equation 1.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(1)

This equation represents the Fβ score, which is a weighted
harmonic mean of precision ( true positive predictionsallpositivepredictions ) and recall
( true positive predictionsactual positives ). The β parameter controls the relative
importance of precision and recall, with β > 1 emphasizing
recall over precision and β < 1 emphasizing precision over
recall. After expert consultation and review of the literature,
we have seen that in this context of heart failure patients,
minimizing false positives is preferred [18], hence we adopt
β = 0.2 for this metric.

The predicted probabilities obtained by each type of model,
represented as vectors with a size of 106 (patients in the
cohort), where each element falls within the range of 0
to 1, have been combined with one or more other models
to form ensembles. A straightforward, unweighted averaging
approach has been adopted for the predicted probabilities of
each patient. This approach avoids adding bias during the
ensemble creation process.

We have tried 20 different configurations, summarizing
their performance results in Table IV. While in general the
performance is improved using ensembles (rows 4-19), the
combination of clinical features, low-frequency CNN architec-
ture, and low-frequency LSTM architecture stands out. When
adding to that combination the high-frequency HC-2 classifier,
we get the best faring model in all performance metrics except
the AUC score. Combinations that include clinical features and
at least one of the CNN-based or LSTM-based models get the
best performance, which gets improved further when including
both. Rows 15,16 and 19 exhibit this improvement, achieving
Fβ > 0.85. Those combinations also outperform models that
only use the low- or high-frequency physiological data, sug-
gesting that there is complementary information between the



clinical features and the physiological signals. In addition to
that, models that use both CNN-based and LSTM-based low-
frequency data outperform models that use only one of them,
suggesting that these two architectures extract complementary
information and benefit from the ensemble approach.

TABLE IV
PERFORMANCE RESULTS OF THE MODELS TRIED. CF: CLINICAL

FEATURES, LF-CNN: LOW-FREQUENCY CNN BASED, LF-LSTM:
LOW-FREQUENCY LSTM BASED, LF-HC2: LOW-FREQUENCY HIVE

COTE V2, HF-HC2: HIGH-FREQUENCY HIVE-COTE V2.
FIRST, SECOND, AND THIRD BEST SCORES ARE SHOWN IN BOLD,

UNDERLINED AND ITALICS, RESPECTIVELY. ROWS 0-4 ARE SINGLE
MODELS, 5-19 ARE ENSEMBLES.

# Model Accuracy Precision Recall F1 Fbeta AUC-
score

0 CF 0.736 0.729 0.7 0.714 0.728 0.774
1 LF-CNN 0.736 0.762 0.64 0.696 0.756 0.784
2 LF-LSTM 0.736 0.739 0.68 0.708 0.737 0.797
3 LF-HC2 0.623 0.619 0.52 0.565 0.615 0.689
4 HF-HC2 0.623 0.625 0.5 0.556 0.619 0.682
5 CF, LF-CNN 0.764 0.821 0.64 0.719 0.812 0.864
6 CF, LF-LSTM 0.764 0.766 0.72 0.742 0.764 0.841
7 CF, LF-HC2 0.745 0.767 0.66 0.71 0.763 0.82
8 CF, HF-HC2 0.774 0.783 0.72 0.75 0.78 0.793
9 LF-CNN, LF-

LSTM
0.726 0.769 0.6 0.674 0.761 0.826

10 LF-CNN,
LF-LSTM,
LF-HC2

0.745 0.871 0.54 0.667 0.851 0.826

11 LF-CNN, HF-
HC2

0.717 0.763 0.58 0.659 0.754 0.808

12 LF-LSTM,
HF-HC2

0.689 0.743 0.52 0.612 0.731 0.788

13 LF-HC2, HF-
HC2

0.679 0.735 0.5 0.595 0.722 0.729

14 CF, HF-HC2 0.774 0.783 0.72 0.75 0.78 0.793
15 CF, LF-CNN,

LF-LSTM
0.811 0.857 0.72 0.783 0.851 0.886

16 CF, LF-CNN,
LF-LSTM,
HF-HC2

0.821 0.878 0.72 0.791 0.871 0.885

17 LF-CNN,
LF-LSTM,
HF-HC2

0.764 0.821 0.64 0.719 0.812 0.835

18 LF-CNN,
LF-LSTM,
LF-HC2,
HF-HC2

0.755 0.833 0.6 0.698 0.821 0.834

19 CF, LF-CNN,
LF-LSTM,
LF-HC2,
HF-HC2

0.783 0.865 0.64 0.736 0.853 0.889

Fig. 4 displays the predicted probabilities of the system with
the ensemble with the highest performance in most metrics
(ensemble 16), comprised of the CF, LF-CNN, LF-LSTM and
HF-HC2 models. The image shows the overall accuracy and
the low amount of false positives. Fig. 5 shows the ensemble’s
ROC and AUC scores.

This ensemble approach surpasses the expected results of
AUC>0.8 to be considered as an acceptable tool in the
healthcare context [19]. High precision and Fβ scores show
that the system is very effective at minimizing false positives,
giving confidence that when the system predicts the need for
MCS implantation, clinicians can consider this confidently and
plan for this possibility. This proactive planning increases the
likelihood of a successful surgery and recovery.

These results highlight the potential of the system as a tool

Fig. 4. Predicted probabilities of the ensemble 16 from Table IV. Each of
the 106 dots is a patient prediction for this cohort. The color of the dot is
the ground truth (MCS need or not), and the colored regions delimited by
the vertical threshold line shown the predicted regions. Only 5 false positives
can be seen (green points in the red shaded region), highlighting the high
precision of the system.

Fig. 5. ROC curve and AUC score of ensemble 16, the best performing
ensemble.

to predict the need for MCS implantation, serving as clinical
aid early after admission - requiring only the first 48 hours of
physiological signals. The significant improvement in classifier
performance scores between the clinical features only model
and models that add the time series data from the physiological
signals, validates our hypothesis that hemodynamic response
to inotropic agent initiation helps significantly in the prediction
of successful recovery or worsening of a patient and is a
valuable source of information.

This study’s pediatric cohort posed challenges due to the
diverse age range. Although they were addressed, there are
potentially confounding factors introduced affecting general-
izability. The study was constrained by the availability of a
limited patient cohort and from a single site, which could



potentially affect the robustness and reliability of the results.
The size of the dataset precluded the implementation of more
advanced techniques, such as model stacking. Extending the
dataset with larger and multi-site cohorts would potentially
enhance the robustness of the classifier. In this initial study
we used high-quality ABP waveforms, which are generally
less available due to their invasive nature. We could expand the
cohort by including additional patients with non-invasive cuff
measurements. Tests would be needed to understand the sen-
sitivity of the system and its performance with the transition
from continuous waveforms to less frequent and point-wise
blood pressure measurements. While we used a single-site
pediatric dataset for this study, the proposed methodology is
not unique to our dataset and is applicable to other multimodal
datasets.

VI. CONCLUSION AND FUTURE WORK

We present a novel multimodal framework for predicting
MCS-related outcomes in ICU patients with acute decompen-
sated heart failure by analyzing patient data from only the
first 48 hours after admission. The system uses unsupervised
methods for dimensionality reduction combined with statistical
feature engineering to capture morphological and temporal
features for supervised classification along with clinical feature
input in an ensemble approach.

Our findings suggest that there is a link between the hemo-
dynamic response to inotropic agents and patient recovery or
worsening with the consequent need for MCS implantation
or not. By analyzing that hemodynamic response with deep
learning approaches we achieved an AUC score of 0.88 with
0.91 specificity. The complementary information from clinical
features and physiological signal time series enhances model
performance, as demonstrated by improved predictions when
combining these inputs. To the best of our knowledge this
study is pioneering in establishing this specific link, paving
the way for future research in predicting successful recovery
from acute decompensated heart failure.

Clinical and physiological signals offer complementary in-
formation, with the best-performing ensemble model includ-
ing models from clinical, low-frequency, and high-frequency
derived features. Moreover, complementary neural network
architectures benefit from ensemble approaches. CNN and
LSTM models, despite using the same data, weighted features
differently, further supporting ensemble strategies.

The ICU outcome framework developed in the study was
applied to pediatric patients. In future work, we plan to extend
the study to encompass adult patients. Also, extraction of
more complex features from the low-frequency data that may
highlight other temporal dynamics will be explored, as well as
more advanced imputing methods [20] tailoring them to our
physiological signals of interest.

The current study based outcome prediction on the first two
days after inotropic agent administration, as the hypothesis was
that successful patient response occurs during that window of
time. We can extend our framework to incorporate a sliding
window approach, to have near real-time updating of predicted

probabilities, allowing for dynamic risk assessment and timely
intervention based on evolving patient trajectories.
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