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ABSTRACT

Recent advances in the field of Al and machine learning have revolutionized ap-
plications in material science. The rapid advancement has resulted several large
scale molecular representation models trained on data across various modalities
and domains. Multi-modal learning and fusion approaches attempt to adeptly
capture these representations from different modalities to obtain richer insights
compared to unimodal approaches. However, traditional multi-modal fusion tech-
niques fail to dynamically adjust modality importance and often lead to subopti-
mal performance due to redundancy or missing modalities. In this work, we pro-
pose a Dynamic Multi-Modal Fusion approach, where a learnable gating mech-
anism assigns importance weights to different modalities dynamically, ensuring
that complementary modalities contribute meaningfully. Our preliminary eval-
uations on Moleculenet dataset demonstrate that the proposed method improves
multi-modal fusion efficiency, enhances robustness to missing data, and leads to
superior performance on downstream tasks for property prediction.

1 INTRODUCTION

Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) have significantly
transformed the field of material discovery. These advancements have led to the development of
large-scale representation models trained on diverse data modalities such as SMILES, SELFIES,
molecular graphs, spectra, molecular properties, etc. Such models span multiple domains, such as
polymers, pharmaceuticals, crystalline materials, etc. These representation models are extensively
used for tasks such as molecular property prediction, where their ability to capture and encode
crucial molecular features has demonstrated remarkable efficacy [Shen & Nicolaou| (2019)); [Fang
et al.| (2022); [Wieder et al.| (2020); |[Ahmad et al.| (2022)); [Ross et al.| (2022)); |Soares et al.| (2024b);
Priyadarsini et al.| (2024)); Soares et al.| (2024a)).

Although unimodal models effectively capture domain-specific information from their respective
data modalities, a more holistic understanding of materials can be achieved by integrating informa-
tion from multiple modalities. In various fields such as computer vision, natural language process-
ing, healthcare, and autonomous systems, multimodal models have demonstrated superior perfor-
mance by leveraging complementary information from different data sources (Gong et al.| (2023));
Baltrusaitis et al.| (2018ajb). By integrating and processing information from multiple modalities,
multimodal models offer enhanced robustness and improved feature extraction, leading to deeper
insights compared to unimodal approaches.

Traditional multimodal fusion strategies often rely on simple concatenation techniques that merge
unimodal representations. However, these methods assume paired data availability and fail to ad-
dress challenges such as data scarcity, missing modalities, and the dynamic relevance of different
representations. In this work, we propose a simple dynamic multimodal fusion approach that ef-
ficiently combines unimodal representations while adapting to available information to capture a
more comprehensive molecular representation.
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2 BACKGROUND

Molecular representation learning follows two stages: pretraining and downstream fine-tuning. Dur-
ing pretraining, models learn general representations from large datasets associated with a specific
modality (e.g., SMILES, molecular graphs) or domain (e.g., polymers, crystals). These pretrained
models are then fine-tuned for specific downstream tasks like molecular property prediction. How-
ever, capturing comprehensive molecular representations remains challenging due to data scarcity
and molecular complexity.

To mitigate these issues, multimodal models integrate multiple data sources, capturing richer molec-
ular features than unimodal approaches. Traditional multimodal learning employs early fusion and
late fusion. Early fusion combines modalities during pretraining, enhancing feature learning but
suffering from scalability limitations and requiring large multimodal datasets. Late fusion inde-
pendently trains unimodal representations before combining them using concatenation, CLIP-based
alignment, or attention mechanisms. While more adaptable, late fusion struggles with optimally
weighting modality importance and handling missing data.

Several multimodal fusion techniques have been explored in the past. Concatenation-based fusion
simply stacks modality representations resulting in very high dimensional feature vectors, assum-
ing equal informativeness. It also relies on the availability of paired data for the modalities and
thus struggles with handling missing modality data. More advanced attention mechanisms use self-
attention to highlight key intra-modal features and cross-modal attention to enhance interactions
between modalities. While effective, these methods introduce significant computational overhead
and also overlook handling missing modalities.

Despite advancements in multimodal learning, several challenges persist. Modality redundancy can
lead to inefficiencies, while handling missing modalities remains difficult as real-world datasets of-
ten contain incomplete information. Modality collapse, where the model over-relies on a dominant
modality, can limit insights. Additionally, computational complexity poses scaling challenges, par-
ticularly for attention-based fusion models requiring extensive resources. To advance molecular
representation learning, developing simple and efficient multimodal fusion strategies is thus crucial.

3  PROPOSED DYNAMIC FUSION FRAMEWORK

In this section, we outline the methodological framework of our proposed approach. Fig. [I]illus-
trates the schematic of the proposed dynamic fusion approach. The core objective of our dynamic
multimodal fusion model is to enhance robustness and performance by adaptively tailoring the fu-
sion process to inputs from distinct unimodal models and efficient handling of missing or scarce
paired data. The framework has two key components: an intra-modal gating network, and an inter-

o z
Input Pretrained Latent
modality 1 = Unimodal — Represantatmn—b[
e ntra-modal .
(e SMILES) madel M;) Vector (1) gating :Isg:ilfl:: Reconstruct
Decoder missing
S ©) modality
Input Pretrained Latent W ~ '
modality 2 = Unimodal [— Representation —| © .. Inter ’,“°da'
8 e madel () Vector () Intra-modal [, Gating
gating . and Fused
Fusion Block Representation
- "  Vector
Input Pretrained Latent % NI ENEEER NN
modality 3 —»| Unimodal |— Representation —» ©
g molete model (M;) Vector {5) Intra-modal
gating D°‘:4":;Lelam Predicted
Property
(Eg. Toxicity)
o 3]
Input Pretrained Latent X
modalityn — Unimodal — Representation ——# ©
Shosten)” model () Vector ) Intra-modal
gating

Figure 1: Block diagram of the proposed dynamic fusion model
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modal gated fusion block. Our framework effectively weighs and fuses embeddings from multiple
modalities through a learnable network.

3.1 INTRA-MODAL GATING

Each modality’s representation is derived from its respective unimodal model. Traditionally, these
representations are directly employed as features in downstream models for tasks such as prop-
erty prediction. However, not all dimensions carry equally valuable information. High-dimensional
representations necessitate effective feature selection to identify the most salient features. To ad-
dress this, intra-modal gating employs a soft gating mechanism that dynamically assigns importance
weights to each dimension of the latent representation from the unimodal model:

g = Softmax(W[X1, Xa,..., Xn]), S

where g represents modality selection weights summing to 1, W is a learnable weight matrix that
maps the latent embeddings X of dimension NN to the soft gating space. The softmax function
ensures smooth and differentiable weighting. The intra-modality gated feature representation is
computed as:

Xi=90X; (2)
where © represents element-wise multiplication, ensuring that only the most relevant features within
each modality contribute to the next stage.

3.2 INTER-MODAL GATED FUSION

The second and final stage, inter-modal gated fusion, constructs the fused representation Zgyseq by
dynamically integrating modalities that contain useful information. This is achieved by computing
a weighted sum of the embeddings obtained from the intra-modal gating stage:

N
Ztused = Z 81X1 3)
i=1

where s; denotes the gating weight assigned to modality ¢, ensuring that the fusion process remains
both adaptive and differentiable. This weighting mechanism ensures that all modalities contribute
proportionally, rather than strictly selecting a single modality. Also, if there are any missing modal-
ities, the corresponding gating weight ensures eliminating its selection, thereby handling missing
modality cases as well.

3.3 TRAINING OBJECTIVE

The proposed dynamic fusion model is trained to reconstruct the original representations from the
fused representation. By optimizing a reconstruction loss, the fusion scheme remains self-supervised
and does not require labeled data.

A common challenge in gating mechanisms is modality collapse, where the model disproportion-
ately relies on a single dominant modality while disregarding others. To counteract this, we intro-
duce an entropy regularization term that promotes diversity in modality selection:

N
£entropy = - Z 54 IOg(si + 6); 4)

i=1

where € is a small constant added for numerical stability. This term penalizes extreme weight distri-
butions, encouraging the model to maintain a balanced contribution across multiple modalities.

Thus, the overall training objective is formulated as:

Etotal = Ereconstruct + >\£emropy7 (5

where A is a hyperparameter controlling the strength of the entropy regularization. A higher A
enforces greater modality diversity, while a lower value allows the model to prioritize dominant
modalities when necessary.

By integrating soft gating with entropy regularization, our approach ensures that modality fusion
remains both adaptive and resilient to missing or Eoisy modalities.
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4 RESULTS AND DISCUSSIONS

To evaluate our proposed dynamic multimodal fusion approach, we consider three modalities :
SMILES, SELFIES, and molecular graphs. Each modality’s latent representation is derived using
pretrained open-source models, ensuring a robust and scalable feature extraction process. For the
SMILES modality, we utilize the encoder of the SMI-TED foundation model Soares et al.| (2024b).
This large-scale, open-source encoder-decoder model was pre-trained on a meticulously curated
dataset of 91 million SMILES samples from PubChem, encompassing a total of 4 billion molecular
tokens. For the SELFIES modality, we employ the SELFIES-TED model, an encoder-decoder ar-
chitecture based on BART. This model was trained on molecular representations using the ZINC-22
Tingle et al.|(2023) and PubChem [Kim et al.| (2016)) datasets, ensuring effective encoding of SELF-
IES representations. For the molecular graph modality, we leverage the MHG-GED model |Kishi-
moto et al.| (2023), an autoencoder that integrates Graph Neural Networks (GNNs) with Molecular
Hypergraph Grammar (MHG), originally introduced in MHG-VAE [Kajino| (2019). MHG-GNN en-
codes molecular structures as graphs, employing a Graph Isomorphism Network (GIN) that incorpo-
rates edge information to generate meaningful latent embeddings. To simulate real-world scenarios
with missing data, modality-specific embeddings were randomly omitted during both training and
testing phases.

As a preliminary analysis, we evaluate the performance of our proposed fusion method across five
classification tasks from the MoleculeNet dataset. The evaluation includes comparisons between the
respective unimodal, multimodal by naive concatenation and our proposed dynamic fusion method.
The results are summarized in Table 1. As observed, multimodal by naive concatenation gener-
ally outperforms unimodal approaches. However, its performance varies significantly based on the
combination of modalities, and as the number of modalities increases, so does the computational
overhead associated with identifying optimal modality combinations. Additionally, naive concate-
nation leads to increased feature dimensionality, which can introduce redundancy and inefficiency.
In contrast, our dynamic fusion approach surpasses both unimodal and naive concatenation meth-
ods in 4 out of 5 tasks. By incorporating intra- and inter-modal gating mechanisms, our approach
adaptively selects and fuses the most informative features while effectively handling missing modal-
ities. Furthermore, unlike naive concatenation, which requires paired data for training, our method
remains robust even in scenarios where certain modalities are absent, making it a more flexible and
scalable solution for multimodal molecular representation learning.

Modalities BBBP BACE ClinTox Tox21 Sider
Baseline Morgan Fingerprint 93.0 88.5 82.8 66.8 68.2
SELFIES (SELFIES-TED) 94.4 85.2 88.7 722 63.9
Unimodal Graph (MHG-GED) 92.2 86.9 84.6 75.3 65.2
SMILES (SMI-TED) 91.7 86.5 93.4 69.9 61.1
SELFIES @ Graph 95.9 86.7 92.3 76.8 64.5
. . SELFIES & SMILES 96.6 86.3 88.3 75.1 63.4
Naive concatenation
SMILES & Graph 922 88.4 93.4 75.3 64.1
SELFIES @ SMILES @ Graph 96.2 87.1 89.9 75.0 65.6
Proposed Dynamic Fusion 95.4 91.0 94.8 80.2 65.7

Table 1: Performance comparison across various modalities on different datasets.

5 CONCLUSION

In this work, we introduced a dynamic multimodal fusion model designed to enhance molecular
representation learning by adaptively integrating diverse data modalities. Our approach effectively
addresses challenges such as missing modalities, modality redundancy, and computational ineffi-
ciency by employing intra-modal gating and inter-modal gated fusion mechanisms. Preliminary
analysis demonstrate that our method outperforms both unimodal and naive concatenation-based
fusion methods across multiple molecular property prediction tasks. By leveraging adaptive soft
gating and entropy regularization, our model ensures robust and flexible fusion while mitigating
modality collapse. Our proposed framework provides a scalable and generalizable solution for mul-
timodal learning in molecular representation tasks. Future work will explore expanding the model
to incorporate additional modalities and further optimize computational efficiency.
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