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Abstract

Today, the Al community is obsessed with ‘state-of-the-art’ scores (80% papers
in NeurIPS) as the primarily performance metrics, due to which an important
parameter, i.e., the environmental metric, remains unreported. Computational
capabilities were a limiting factor a decade ago; however, in foreseeable future
circumstances, the challenge will be to develop environment-friendly and power-
efficient algorithms. The human brain, which has been optimizing itself for almost
a million years, consumes the same amount of power as a typical laptop. Therefore,
developing nature-inspired algorithms is one solution to it. In this study, we show
that currently used ANNs are not what we find in nature, and why, although
having lower performance, spiking neural networks, which mirror the mammalian
visual cortex, have attracted much interest. We further highlight the hardware
gaps restricting the researchers from using spike-based computation for developing
neuromorphic energy-efficient microchips on a large scale. Using neuromorphic
processors instead of traditional GPUs might be more environment friendly and
efficient. These processors will turn SNNSs into an ideal solution for the problem.
This paper presents in-depth attention highlighting the current gaps, the lack of
comparative research, while proposing new research directions at the intersection
of two fields- neuroscience and deep learning. Further, we define a new evaluation
metric ‘NATURE’ for reporting the carbon footprint of Al models.

The Environmental perspective that models cannot overlook. Training an NLP model could gen-
erate up to 626, 155 pounds of CO4 emissions—roughly equal to the total lifetime carbon footprint
of 5 cars [1]. It is evident from the recently developed OpenAI’s GPT-3 [2] (with 175 billion parame-
ters) that required several thousand petaflop days (355 years on standard GPU) to train. Moreover,
with such ever-increasing model sizes, model performance diminishes relatively faster. ResNeXt
[3] required 35% higher computational resources compared to ResNet [4] to achieve a mere 0.5%
improvement in accuracy. Such diminishing model returns is also seen in GPT-3 compared to GPT-2
[5]. Currently, more than 80% of papers in NeurIPS and 75% in CVPR target accuracy as the major
improvement, whereas only a very small group of papers (<20% in CVPR) argue for a new efficiency
result [6]. This clearly establishes the Al community’s present obsession with obtaining SOTA scores
on performance benchmarks. This is the key reason why the community prioritizes performance
metrics like accuracy over efficiency metrics like speed and model size.

Why Current Models are not what Hubel & Wiesel studied. Hubel and Wiesel [7] demonstrated
that neurons in a cat’s primary visual cortex are tuned to simple features. However, their studies were
based on unsupervised recognition models, whereas most models designed today are supervision-
based. This is primarily the reason why current ANNSs are not directly inspired by nature, and when
compared to human brain (that consumes just 20W power), require substantial energy resulting in
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high environmental costs. R&D of new model architectures multiply this energy requirement by
1000 % due to retraining of model hyperparameters during experiments. Tweaking network design
and using fewer neurons/layers could hardly solve the computational problem effectively.

A field comparatively less Researched. Neuromorphic computing approaches the problem of low-
power model design quite differently and has two characteristics: (i) developing brain-inspired
nets, (ii) designing efficient hardware for such algorithms. Neurons in SNNs, like those in nature,
interact with each other via isolated, discrete electrical impulses (spikes) rather than continuous
signals, and function in continuous rather than in discrete-time. Instead of modeling the dynamics of
the model on standard von-Neumann computers, neuromorphic hardware is particularly intended
to operate such networks with very little power overhead, using electronic circuits that correctly
recreate the dynamics of the model in real-time. Due to difficulty in communicating weights between
network nodes, current backpropagation based ANNs are challenging to build on non-von-Neumann
neuromorphic architecture. SNNs, on the other hand, are trained without supervision (except output
layer) using spike-timing-dependent plasticity. Here, the biological synapse’s synaptic plasticity has
access to the activity of the two neurons it links, but not to the activity of other neurons to which it is
not physically linked. Due to this, the plasticity of the brain is local.

From Convolutions to Spikes. In a SNN with ‘N’ pre-synaptic neurons, the post synaptic potential

of the i*" neuron is computed as the product of input spike signal s;(t) = 0 or 1 with the synapse
weight w;. At any time ¢, if V(t) i.e., the neuron membrane potential, surpasses the set threshold, the

output neuron spikes with Zil wy, Sk (t). The weights can be updated according to an unsupervised
learning STDP rule that results in output spiking if a fixed pattern St;,¢q is present: (w; < w; +
Aw;, Aw; = —a~w; (1 — w;), if tour — t; < 0 else = +aTw; (1 — w;), if tous — t; > 0). Contrary
to SNNs, CNNs are based on convolution operations with a much more accumulative membrane
potential given by, Vi (u,v,t,1) = S0 _ (23272 S22 g sin(uti, v+ §,T)Weili, 5, 1)). The

first convolutional layer neuron fires at time ‘¢’ if V,(ﬁ)(u, v,t) > vc1. It is evident that CNNs
have far higher computational complexity compared to SNNs. Thus, SNNs are highly energy-
efficient, computationally less intensive; and, designing models based on them are comparatively
more environment friendly. DL-simulated SNNs are recently utilized for image classification tasks.
One of the major advantages of converting CNNs to spiking-CNNss is that it allows to use SNNs’
sparse computing and perform similar computation with less energy. With this, SNNs can achieve
% 38.7 times better energy efficiency than ANNs without any significant loss in accuracy [9].

A Novel Evaluation Metric. We suggest that the community must report the model training duration,
hyper-parameter sensitivity, environmental costs associated as an equally important metric while
proposing new models. We propose a novel evaluation metric ‘NATURE’E]

NATURE = Nemp X [A + T x (udatacenter utility + RR@gional grid + 5hardware>>< GPOChS]

Neuromorphic Computing- A tale of Hardware. Implementing SNNs on neuromorphic hardware
instead of traditional GPUs is found to be more environmental friendly since it runs asynchronously
using spikes. The conventional von Neumann computing architecture separates processing from
the memory unit. CMOS-based chips (by IBM and Intel) for SNN computations are limited to
large-scale modular computing units with increasing neurons and synapses. The current study
reiterates that significant advances are required to increase onboard neurons and synapses to mimic
complex operations of the brain like cognitive processing, sophisticated motor control, learning,
and abstraction. Moreover, CMOS-based systems are limited by their room-scale size. Thus, we
need to look into Memristor-based alternatives due to their synaptic-like behavior. Memristor, i.e.,
‘Resistor+memory, is a building block of synaptic devices that requires high integration density, low
latency, low power, and nonvolatile memory capable of mimicking brain. These are imperative for
implementation of synaptic learning used in neuromorphic computing. These observations support
Memristors as promising candidates for future synaptic learning applications [8].

The Hardware Gap and Proposed Opportunities. New synaptic memory devices exhibit issues
that make older design principles obsolete. The resistance variation of ReRAM (Resistive RAM)
and PRAM (Phase Change Memory RAM) introduces errors over time, thus a trade-off between
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energy consumption and induced error has to be maintained. A high error rate may be suitable in
some hardware systems as long as the system’s core functionality is met, in our case, lesser energy
consumption to protect environment. Hybrid systems of memristor layers embedded on CMOS
substrate is solution to neuromorphic hardware engineering [8]. This will enable computing and
learning processes by combining memristors on spiking processors to fire neurons in silicon chips
after attaining a specific threshold value [10]. PCB design techniques [11] can assemble chips with
memristors, substantially scaling up number of neurons and synapses in a neural system. However,
there would be limitations relating to memristor layers density and their onboard program-ability.

Conclusion and Future Research Directions. Along with developing new SOTA approaches, em-
phasis should be placed on building more energy-efficient algorithm. The current study emphasizes
and draws the community’s attention to this endeavor. The study further highlights the lack of compar-
ative research in using SNN-based approaches for more computation-efficient algorithms. Moreover,
the existing gaps between accessible RAM (Hybrid-CMOS-Memristor Architecture) choices and
the optimum hardware required for Neuromorphic engineering were explored in this article. We
support the view that hybrid Memristor-CMOS-based PCB designs may significantly increase the
number of neurons and synapses, and more accurately simulate the brain. Moreover, we suggest
that the community must report environmental costs associated as an equally important metric while
proposing new models. For the same, we proposed a novel evaluation metric (NATURE’). Further,
focus must be on hardware and methods that are computationally efficient. More efficient computing
will facilitate a shift from data centres to edge devices, allowing Al to reach a larger audience while
minimising data leakage, lowering transmission costs, and boosting privacy and inference speeds.
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