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Abstract

Extreme multi-label text classification001
(XMTC) is the task of tagging each document002
with the relevant labels in a very large set003
of predefined category labels. The most004
challenging part of the problem is due to a005
highly skewed label distribution where the006
majority of the categories (namely the tail la-007
bels) have very few training instances. Recent008
benchmark evaluations have focused on micro-009
averaging metrics, where the performance on010
tail labels can be easily overshadowed by that011
on the high-frequency labels (namely the head012
labels). This paper presents a re-evaluation013
of state-of-the-art (SOTA) methods based014
on the binned macro-averaging F1 instead,015
revealing new insights into the strengths016
and weaknesses of representative methods,017
especially in tail label prediction.018

1 Introduction019

Extreme multi-label text classification (XMTC) is020

the task of tagging each document with the relevant021

labels in a very large set of predefined categories,022

in which the number of labels can be from a few023

thousands to more than a million. In the target024

space of XMTC problems, the label frequency of-025

ten follows a power law. That is, a small portion026

of the labels have a dominating number of training027

instances, whereas the majority of the labels have028

very few training instances. The former is referred029

as the head labels and the latter is referred as the030

tail labels. The severe data sparse issue with the tail031

labels makes XMTC more challenging than other032

classification tasks where the number of categories033

are much smaller and the label distributions are not034

as skewed.035

As an example, in the Wiki-31K benchmark036

dataset shown in figure 1, only 1% of labels has037

more than 100 training instances, but they cover038

more than 40% of all the training instances. On the039

other hand, 89% of labels only cover less than 30%040

Figure 1: The percentage of labels vs. training in-
stances in Wiki10-31K dataset that shows the label
sparse issue in the skewed distribution.

of training instances. Other benchmark datasets 041

show similar distribution (Appendix A). 042

It is worth pointing out that the performance of 043

current SOTA models has been evaluated using the 044

micro-averaging precision scores as the dominating 045

metric (Liu et al., 2017; You et al., 2018; Ye et al., 046

2020; Chang et al., 2020; Jiang et al., 2021). This 047

metric gives an equal weight to the score of each 048

instance when computing the average performance 049

on a test set. As a result, the global average is 050

dominated by the system’s performance on head 051

labels. In other words, such a metric is not suf- 052

ficiently sensitive for evaluating the performance 053

of methods in tail label prediction, and possibly 054

misleading in method comparison. Furthermore, 055

metrics with a single score prohibit a fine-grained 056

analysis of model performance with respect to the 057

different label frequencies. 058

In order to assess the true success of the cur- 059

rent SOTA methods in XMTC on tail label pre- 060

diction, we present a re-examination of them by 061

our proposed binned macro-averaging F1 metric. 062

Specifically, the labels are binned according to their 063

training frequencies and the performance score of 064

each label is given an equal weight when calcu- 065

lating the average over all labels in the bin. By 066
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comparing a set of SOTA neural models with a bi-067

nary Support Vector Machines (SVM) as a baseline068

on several benchmark datasets, we reveal that the069

deep-layered pre-trained Transformer models (Ye070

et al., 2020; Jiang et al., 2021; Chang et al., 2020)071

perform worse than the simple SVM baseline in tail072

label prediction, while a label-word attention-based073

RNN model (You et al., 2018) outperformed the074

SVM baseline on two of those benchmark datasets.075

2 Metrics for Re-examination076

2.1 Preliminary077

Let D = {(xi,yi)
Ntrain
i=1 } be the training data where078

xi is the input text and yi ∈ {−1,+1}L is the079

ground truth label list. The XMTC method can be080

formulated as learning a scoring function f(x, l) ∈081

R defined on an input and candidate label pair082

(x, l). The score should be larger for relevant labels083

than irrelevant labels. The objective function of a084

classification model is defined as:085

min
f

1

NtrainL

Ntrain∑
i=1

L∑
l=1

L(yil, f(xi, l))086

where L(·, ·) is an instance-wise loss, such as a087

hinge loss in a Linear SVM or a sigmoid loss in the088

final layer of a neural network.089

2.2 Issues in Recent Evaluations090

In recent years, SOTA methods have been compet-091

ing on the metrics of micro-averaging precision at092

k (P@k) (Liu et al., 2017; You et al., 2018; Prabhu093

et al., 2018; Khandagale et al., 2019; Ye et al.,094

2020; Chang et al., 2020; Jiang et al., 2021), micro-095

averaging recall at k (R@k), the Normalized Dis-096

counted Cumulative Gain at k (NDCG@k) (Prabhu097

and Varma, 2014), and/or Propensity-scored Per-098

formance at k (PSP@k) (Jain et al., 2016), where099

k is the threshold on a ranked list. All of those100

metrics give an equal weight to the performance101

score on each test instance when computing the av-102

erage performance, and thus are dominated by the103

system’s performance on head labels and may not104

be sufficiently informative to evaluate the tail la-105

bel prediction in highly skewed label distributions.106

Although macro-averaging metrics have been well107

understood for a long time, which can compensate108

the limitations of micro-averaged metrics (Yang109

and Liu, 1999; Gopal and Yang, 2010), a thorough110

evaluation on SOTA neural XMTC models is miss-111

ing. As a result, the current understanding of the112

strengths and weaknesses of SOTA methods may 113

not reflect their true performance in tail label pre- 114

diction. 115

2.3 Proposed Metrics 116

We propose to re-examine a set of representa- 117

tive XMTC methods with both micro and macro- 118

averaging metrics. Specifically, we focus on the 119

F1@k (k omitted for simplicity), which combines 120

precision (P) and recall (R) via a harmonic average: 121

122

F1 = 2
P ·R
P + R

(1) 123

The precision and recall for a predicted ranked list 124

p are computed by P = TP
TP+FP ,R = TP

TP+FN 125

according to the confusion matrix in table 1.

l in yi l not in yi

l in pi True Positive(TPi
l) False Positive(FPi

l)
l not in pi False Negative(FNi

l) True Negative(TNi
l)

Table 1: Confusion Matrix for instance i and label l
given the ranked list pi.

126
The micro and macro-average combines the 127

statistics in the confusion matrix in different ways. 128

Specifically, given Ntest instances and L labels, 129

the micro-average aggregates the statistics in the 130

Ntest × L confusion matrices globally, while the 131

macro-average computes the scores on individual 132

category first (F1l), and then take an average over 133

all the categories (F1 = 1
|L|

∑
i∈L F1l). 134

Binned Macro-averaging: Let Lb be a set of la- 135

bels with similar training frequencies grouped in 136

bin b, then the binned macro F1 is calculated by: 137

1

|Lb|
∑
l∈Lb

F1l (2) 138

As a designed choice, we set F1l = 0 if a label l is 139

never predicted in any top k ranked list. 140

Relative Improvement over SVM Baseline: To 141

have a clear view of model performance on head 142

and tail labels, we report the relative improvement 143

of the SOTA models over the SVM baseline by the 144

macro-averaging F1 score on each bin of labels. 145

3 Methods for Comparison 146

We introduce the 4 SOTA deep learning models, 147

which are compared with a tf-idf+SVM baseline: 148

X-Transformer (Chang et al., 2020) was proposed 149

to tame large Transformer models to the XMTC 150

task by a two stage training procedure: 1) a cluster- 151

level classification with large Transformer models 152
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such as BERT-large (Devlin et al., 2018), Roberta-153

large (Liu et al., 2019) and XLNet-large (Yang154

et al., 2019), and 2) a within cluster ranker imple-155

mented with one-vs-all SVM with both tf-idf and156

Transformer features as input.157

APLC-XLNet (Ye et al., 2020) achieves an end-to-158

end training with the XLNet-base model (12 layers159

transformer) by decreasing sizes of document em-160

bedding to solve the scalability issue. Specifically,161

a pooler function was applied on top of the XLNet162

special [CLS] token to the decrease embedding size,163

whose scale is determined by the label frequency.164

LightXML (Jiang et al., 2021) extracts the [CLS]165

embeddings from different layers of a pre-trained166

model to form a document embedding with richer167

semantic information. The same embedding is used168

for the cluster-level classifier and the within cluster169

ranker, which are trained alternatively.170

AttentionXML (You et al., 2018) uses a label-171

word attention mechanism on top of a bi-directional172

LSTM to create label specific document embed-173

dings, which are passed to a MLP to obtain the174

relevance scores of the labels.175

Tf-idf+SVM (Cortes and Vapnik, 1995) is a simple176

baseline for XMTC. Although more complicated177

kernels such as the RBF kernel can be used, (Chang178

and Lin, 2011) shows that a Linear SVM achieves a179

similar performance with a RBF kernel SVM when180

the feature space is large (refer to Table 2 for the181

number of features in the benchmark datasets).182

It is worth mentioning that the deep Transformer-183

based models encodes input text into a fixed docu-184

ment embedding, while the AttentionXML learns185

label specific document embeddings via label-word186

attention.187

4 Datasets188

We use three benchmark datasets: EURLex-189

4K (Loza Mencía and Fürnkranz, 2008),190

Wiki10-31K (Zubiaga, 2012) and AmazonCat-191

13K (McAuley and Leskovec, 2013). The statistics192

of the datasets are shown in Table 2.193

We partition the bins according to the absolute194

training label frequency, which reflects the diffi-195

culty of optimization across datasets. For the bins196

with 1 ∼ 9 training instances, the 3 datasets cover197

63.48%, 88.65% and 30% of training labels respec-198

tively. If a model cannot perform well on those bins,199

it means that a large portion of labels are not being200

predicted accurately.201

The details of the experiment settings, descrip-202

tions of SOTA models and the training hyperparam- 203

eters are discussed in Appendix C. 204

5 Evaluation Results 205

We present the evaluation results with both the 206

micro and macro-averaging F1@k metrics. As a 207

design choice, We pick k = 19 for Wiki10-31K 208

dataset whose average number of labels are 18.64, 209

and k = 5 for the rest of the datasets. More results 210

are shown in Appendix D.

Figure 2: The result of micro and macro-averaging
F1@k metrics. The two metrics gives different conclu-
sion on the best performing model.

211

5.1 Performance in Micro-averaging Metrics 212

At the top of figure 2, we report the micro- 213

averaging F1@k for the SOTA models on the 214

benchmark datasets. In the micro-based evaluation, 215

all the SOTA neural models outperform the SVM 216

baseline on all 3 benchmark datasets. We found 217

that the deep Transformer model achieves the best 218

performs across the datasets. Specifically, APLC- 219

XLNet is the best on the EUR-Lex and Wiki10-31K 220

datasets, and the X-Transformer is the best on the 221

AmazonCat-13K dataset. 222

5.2 Performance in Macro-averaging Metrics 223

At the bottom of figure 2, the macro-averaging 224

F1@k is reported. Specifically, the SVM baseline 225

performs the best in the Wiki10-31K, where the la- 226

bel space is both large and skewed. It also achieves 227

competitive results on the other two datasets. Es- 228

pecially on the AmazonCat-13K dataset, the SVM 229

beats all the deep Transformer-based models which 230

perform better on the micro-averaging metric. 231
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Dataset Ntrain Ntest F L̄d L |L1| |L2| |L3| |L4|

EURLex-4K 15,539 3,809 186,104 5.30 3,956 2,413 1,205 182 1
Wiki10-31K 14,146 6,616 101,938 18.64 30,938 26,545 3,084 300 16
AmazonCat-13K 1,186,239 306,782 203,882 5.04 13,330 3,936 5,813 2,862 719

Table 2: Ntrain and Ntest are the number of training and testing instances respectively. F is the tf-idf feature size.
L̄d is the average number of labels per document. L is the number of labels. |Lk| refers to the number of labels
in bin k. The labels in bin [1, 2, 3, 4] have [1 ∼ 9, 10 ∼ 99, 100 ∼ 999, 1000 ∼] instances respectively. The bin
partition is used in our binned macro-averaging F1 metric.

Figure 3: The relative improvement of SOTA deep
learning models over tf-idf+SVM baseline on the
binned macro-averaging F1@5 metrics. The labels are
partitioned to bins whose labels have [1 ∼ 9, 10 ∼
99, 100 ∼ 999,≥ 1000] training instances respectively.
∗ indicates the macro t-test is significant (p < 0.01).

We also observe that the AttentionXML model232

is the best on both the EURLex-4K and the233

AmazonCat-13K datasets, though it is not the best234

in any datasets when evaluated with the micro-235

averaging metric.236

Binned Macro-averaging F1 Metric The rela-237

tive improvement of the binned macro-averaging238

F1@k over the tf-idf+SVM baseline is reported in239

figure 3, which gives a fine-grained comparison of240

the model performance on the tail (or head) labels.241

We conduct the macro t-test to justify the signif-242

icance of the results (p < 0.01) (Yang and Liu,243

1999) on the bins with more than 10 labels. We244

have the following observations: 1) the deep learn- 245

ing models tend to perform better than SVM on 246

middle and head labels. 3) all the deep Transformer- 247

based models underperform the SVM baseline on 248

the tail labels. 2) The AttentionXML model tends 249

to outperform the SVM baseline on the tail labels 250

on 2 datasets. 251

5.3 Analysis 252

Although the tf-idf+SVM model underperforms 253

deep learning models on the micro-averaging met- 254

rics, it has an advantage over the deep Transformer- 255

based models on tail labels. Our explanation is 256

that since the tf-idf feature is computed unsuper- 257

visedly, it is irrelevant to the number of training 258

examples. Therefore, the feature maintains sepa- 259

rable in the low resource cases. To the contrary, 260

the Transformer-based models rely on supervised 261

learning to encode semantics into a fixed feature 262

vector, which is more sensitive to the scarceness of 263

training signals in the tail label. 264

The AttentionXML learns label specific word 265

embeddings via the label-word attention, which 266

avoids the information of head labels to over- 267

shadow that of tail labels in a fixed embedding. 268

Additionally, the local label to word matching cap- 269

tures the semantic similarity between the two which 270

can not be achieved by the tf-idf term frequency. 271

Therefore, it has additional gains over SVM base- 272

line on two datasets. Still, it underperforms SVM 273

when label is extremely sparse in Wiki10-31K. 274

6 Conclusion 275

In this paper, we propose the binned macro- 276

averaging F1 metric to re-evaluate the SOTA 277

XMTC model performance especially on the tail 278

labels. Our evaluation reveals that although the 279

tf-idf+SVM model underperforms the SOTA deep 280

learning models on the micro-averaging metrics, it 281

has an advantage on the tail label prediction where 282

the training data is scarce, shedding insights on 283

model strength and weakness in feature learning. 284
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A Data Distribution 379

In Figure 4, we show the percentage of label 380

vs. training instance in each bin in the bench- 381

mark datasets: EURLex-4K, Wiki10-31K and 382

AmazonCat-13K dataset. In all the datasets, a small 383

percentage of head labels cover most of the of train- 384

ing instances, while a large percentage of tail labels 385

only cover a few training instances. 386

B Evaluation Metrics 387

We include more discussion and reference for the 388

micro-averaging metrics and our proposed binned 389

macro-averaging F1 metric. 390
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Figure 4: The percentage of label vs. training in-
stance in EURLex-4K, Wiki10-31K and AmazonCat-
13K dataset. A small percentage of head labels cover
most of the of training instances, while a large percent-
age of tail labels only cover a few training instances.

B.1 Micro-averaging Metrics391

In XMTC, there are multiple true labels for each392

instance, so it is important to present a ranked393

list of predicted labels for evaluation. The micro-394

averaging metrics calculate a score for each of the395

ranked list and then take an average over all the test396

instances.397

Micro@k =
1

N

N∑
i=1

Metric(pi,yi) (3)398

where N is the number of test instances and pi,yi 399

are the predicted top k ranked list and ground truth 400

labels list. Metric is a function to score the quality 401

of the ranked list based on the ground truth labels 402

list. In the following, we omit the index of instance 403

i for clarity. 404

In most of the previous work, the Metric func- 405

tion is chosen to be the micro-averaging Precision 406

at k (P@k) (Liu et al., 2017; You et al., 2018; Ye 407

et al., 2020; Chang et al., 2020; Jiang et al., 2021). 408

Specifically, this metric evaluates the quality of the 409

top k of the prediction ranked list for a given test 410

instance: 411

P@k =
1

k

k∑
l=1

1y(pl) (4) 412

where pl is the l-th label in the predicted ranked 413

list p and 1y is the indicator function. 414

Other choices of the Metric function include 415

N@k (normalized Discounted Cumulative Gain at 416

k) or PSP@K (Propensity-scored Performance at 417

k) (Jain et al., 2016). The N@k is defined as: 418

DCG@k =

k∑
l=1

1y(pl)

log(l + 1)
419

iDCG@k =

min(k,‖y‖)∑
l=1

1

log(l + 1)
420

N@k =
DCG@k

iDCG@k
421

Although N@k and P@k are calculated differently, 422

You et al. shows that they are the same metrics 423

when measuring the quality of ranked lists. 424

The PSP @ k is defined as: 425

PSP@k =
1

k

k∑
l=1

1y(pl)

prop(pl)
426

where prop(pl) is the propensity score (Jain et al., 427

2016) of label pl, which gives higher weight for tail 428

labels. Although PSP@k were used as evaluation 429

metric for the long tail problem, it is still not infor- 430

mative enough to compare the performance of head 431

labels vs. tail labels due to following: 1) It is still a 432

micro-averaging metric that can be influenced by 433

label with more instances. 2) Since it summarizes 434

the performance into one number, we are not sure 435

if the gain comes from the improvement of head 436

labels or tail labels. Actually, an improvement in 437

either type of labels will give an increment in the 438

final score. 439
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B.2 Macro-averaging Metrics440

As we discussed above, the micro-averaging met-441

rics are not informative enough to measure the per-442

formance of different types of labels, because they443

assign equal weights to each instance when taking444

the averaging. As a remedy, a label level evaluation445

should assign equal weights to each label when446

taking the average. Therefore, macro-averaging447

metrics should be applied for evaluating the label448

level performance, especially for the tail labels. To449

create groups for large label size, we split the labels450

in the scale of exponential of 10 as a design choice,451

e.g. {1 ∼ 9, 10 ∼ 99, 100 ∼ 999, . . . }.452

We used the F1 metric to balance the precision453

and recall. The tail labels tend to be under predicted454

due to the more frequent negative gradient penalty.455

As a result, tail labels tend to be predicted less456

often than the head labels, and thus the recall is457

low. If a model hardly predicts any tail labels, it458

should receive a low score for the corresponding459

bin. Therefore, we apply the F1 metric to balance460

the number of predictions (recall) and the accuracy461

of the predictions (prediction).462

C Experiment Settings463

C.1 Re-evaluation Experiment Settings464

We choose the non-neural SVM as our baseline465

and investigate 4 SOTA deep learning models466

for XMTC: AttentionXML (You et al., 2018), X-467

Transformer (Chang et al., 2020), APLC (Ye et al.,468

2020) and LightXML (Jiang et al., 2021).469

In the original papers, the experiments are con-470

ducted in different settings, e.g. (Chang et al., 2020;471

Jiang et al., 2021) reports the ensemble of multiple472

models and different works have their own data pro-473

cessing method. For fair comparison, we run our474

experiments with single model with the following475

training and testing data. We obtain the datasets476

from the Extreme classification Repository1. How-477

ever, the repository only contains the stemmed ver-478

sion of EURLex-4K, which hurts the performance479

of pretrained Transformer models whose tokenizers480

are applied to unstem natural text. Therefore, we481

obtain the unstemmed version of the EURLex-4K482

from the APLC-XLNet github2.483

1http://manikvarma.org/downloads/XC/
XMLRepository.html

2https://github.com/huiyegit/APLC_
XLNet.git

C.2 Training Settings and Hyperparameters 484

For the AttentionXML model, we use the same 485

hyperparameter as in their code 3. For the X- 486

Transformer mode, the reuse the released pre- 487

trained model 4 for evaluation. 488

For the end-to-end Transformer-based models 489

including APLC-XLNet and LightXML, we train 490

the model using the same framework as APLC, 491

including discriminative fine-tuning and slanted 492

triangular learning rates (Ye et al., 2020). The 493

discriminative fine-tuning decouples the learning 494

rate of model into 3 parts: The base Transformer 495

module, the pooler module and the linear classifier 496

module, such that the Transformer module receives 497

smallest learning rate and the linear module re- 498

ceives largest learning rate. The slanted triangular 499

learning rates allows the model to warm up with a 500

slowly increasing learning rate first, and then de- 501

crease the learning rate to let the model converge 502

stably. 503

D More Experimental Results 504

In Table 3, we report the micro P@k, micro F1@k 505

and the macro F1@k (k=1, 3, 5) for the SOTA mod- 506

els on the benchmark datasets. We observe that the 507

micro P@5 and the F1@5 shows similar conclu- 508

sions on which models perform the best, but the 509

macro F1@5 gives different conclusions. 510

In Table 4, we report the N@k and PSP@k 511

(k=1, 3, 5) for the SOTA models on the benchmark 512

datasets. For N@k, it shows the same conclusions 513

with P@k on which model performs the best (they 514

are mathematically equivalent). Although the PSP 515

metric were used to measure the performance of 516

tail label prediction, we found that it gives higher 517

score for the some of deep Transformer-base mod- 518

els than the SVM baseline, e.g. X-Transformer, 519

XLNet-APLC on EURLex-4K, XLNet-APLC on 520

Wiki10-31K and X-Transformer on AmazonCat- 521

13K. However, those models actually underper- 522

form the SVM baseline on tail labels in our binned 523

macro-averaging F1 metric designed for tail label 524

evaluation. This shows that the PSP metric still 525

scarifies from the micro-averaging when applied to 526

evaluate the tail label performance. 527

3https://github.com/yourh/AttentionXML
4https://github.com/OctoberChang/

X-Transformer
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EURLex-4K

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

SVM 83.44 70.62 59.08 26.50 51.06 57.37 5.64 13.28 17.89
X-Transformer 85.46 72.87 60.79 27.14 52.69 59.03 5.12 12.86 17.56
XLNet-APLC 86.83 74.34 61.94 27.43 53.55 59.96 6.66 14.51 18.19

LightXML 86.98 73.38 61.07 27.48 52.86 59.12 5.68 12.85 16.31
AttentionXML 85.12 72.80 61.01 27.03 52.64 59.25 7.69 15.80 19.41

Wiki10-31K

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

SVM 84.61 74.64 65.89 8.45 20.33 27.42 0.18 0.97 1.99
X-Transformer 87.12 76.51 66.69 8.70 20.84 27.76 0.14 0.51 1.02
XLNet-APLC 88.59 78.30 68.87 8.85 21.33 28.67 0.31 0.93 1.59

LightXML 88.59 78.51 68.84 8.85 21.39 28.65 0.25 0.69 1.10
AttentionXML 86.46 77.22 67.98 8.63 21.03 28.30 0.39 1.05 1.67

AmazonCat-13K

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

SVM 93.20 78.89 64.14 30.54 58.42 63.49 3.86 16.29 28.36
X-Transformer 95.75 82.46 67.22 31.38 61.06 66.54 1.90 12.50 27.55
XLNet-APLC 94.56 79.78 64.59 30.99 59.07 63.93 3.95 13.32 21.38

LightXML 94.61 79.83 64.45 31.00 59.11 63.79 1.60 8.38 18.36
AttentionXML 95.53 82.03 67.00 31.31 60.74 66.31 7.12 21.94 31.98

Table 3: SVM and SOTA Deep Transformer Models evaluated on benchmark datasets: EURLex-4K, Wiki10-31K
and AmazonCat-13K. The metrics are micro P@k, micro F1@k and macro F1@k for k=1, 3, 5.
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EURLex-4K

Methods N@1 N@3 N@5 PSP@1 PSP@3 PSP@5

SVM 83.44 73.58 65.70 38.76 46.71 51.17
X-Transformer 85.46 75.84 67.62 37.85 47.05 51.81
XLNet-APLC 86.83 77.29 68.79 42.21 49.83 52.88

LightXML 86.98 76.53 68.05 40.54 47.56 50.50
AttentionXML 85.12 75.74 67.71 44.20 50.85 53.87

Wiki10-31K

Methods N@1 N@3 N@5 PSP@1 PSP@3 PSP@5

SVM 84.61 76.99 70.34 11.89 14.23 15.96
X-Transformer 87.12 79.00 71.56 12.52 13.62 14.63
XLNet-APLC 88.59 80.72 73.58 14.43 15.38 16.47

LightXML 88.59 80.87 73.58 14.09 14.87 15.52
AttentionXML 86.46 79.41 72.47 14.49 15.65 16.54

AmazonCat-13K

Methods N@1 N@3 N@5 PSP@1 PSP@3 PSP@5

SVM 93.20 82.87 76.47 51.26 64.69 72.34
X-Transformer 95.75 86.26 79.80 51.42 66.14 75.57
XLNet-APLC 94.56 83.89 77.29 52.55 65.11 71.36

LightXML 94.61 83.95 77.21 50.70 63.14 70.13
AttentionXML 95.53 85.87 79.54 54.94 69.48 76.45

Table 4: SVM and SOTA Deep Transformer Models evaluated on benchmark datasets: EUR-Lex (4K), Wiki10-
31K and AmazonCat-13K. The metrics are N@k and PSP@k for k=1, 3, 5.
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