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Abstract

Extreme multi-label text classification
(XMTC) is the task of tagging each document
with the relevant labels in a very large set
of predefined category labels. The most
challenging part of the problem is due to a
highly skewed label distribution where the
majority of the categories (namely the tail la-
bels) have very few training instances. Recent
benchmark evaluations have focused on micro-
averaging metrics, where the performance on
tail labels can be easily overshadowed by that
on the high-frequency labels (namely the head
labels). This paper presents a re-evaluation
of state-of-the-art (SOTA) methods based
on the binned macro-averaging FI instead,
revealing new insights into the strengths
and weaknesses of representative methods,
especially in tail label prediction.

1 Introduction

Extreme multi-label text classification (XMTC) is
the task of tagging each document with the relevant
labels in a very large set of predefined categories,
in which the number of labels can be from a few
thousands to more than a million. In the target
space of XMTC problems, the label frequency of-
ten follows a power law. That is, a small portion
of the labels have a dominating number of training
instances, whereas the majority of the labels have
very few training instances. The former is referred
as the head labels and the latter is referred as the
tail labels. The severe data sparse issue with the tail
labels makes XMTC more challenging than other
classification tasks where the number of categories
are much smaller and the label distributions are not
as skewed.

As an example, in the Wiki-31K benchmark
dataset shown in figure 1, only 1% of labels has
more than 100 training instances, but they cover
more than 40% of all the training instances. On the
other hand, 89% of labels only cover less than 30%
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Figure 1: The percentage of labels vs. training in-
stances in Wikil0-31K dataset that shows the label
sparse issue in the skewed distribution.

of training instances. Other benchmark datasets
show similar distribution (Appendix A).

It is worth pointing out that the performance of
current SOTA models has been evaluated using the
micro-averaging precision scores as the dominating
metric (Liu et al., 2017; You et al., 2018; Ye et al.,
2020; Chang et al., 2020; Jiang et al., 2021). This
metric gives an equal weight to the score of each
instance when computing the average performance
on a test set. As a result, the global average is
dominated by the system’s performance on head
labels. In other words, such a metric is not suf-
ficiently sensitive for evaluating the performance
of methods in tail label prediction, and possibly
misleading in method comparison. Furthermore,
metrics with a single score prohibit a fine-grained
analysis of model performance with respect to the
different label frequencies.

In order to assess the true success of the cur-
rent SOTA methods in XMTC on tail label pre-
diction, we present a re-examination of them by
our proposed binned macro-averaging F1 metric.
Specifically, the labels are binned according to their
training frequencies and the performance score of
each label is given an equal weight when calcu-
lating the average over all labels in the bin. By



comparing a set of SOTA neural models with a bi-
nary Support Vector Machines (SVM) as a baseline
on several benchmark datasets, we reveal that the
deep-layered pre-trained Transformer models (Ye
et al., 2020; Jiang et al., 2021; Chang et al., 2020)
perform worse than the simple SVM baseline in tail
label prediction, while a label-word attention-based
RNN model (You et al., 2018) outperformed the
SVM baseline on two of those benchmark datasets.

2 Metrics for Re-examination

2.1 Preliminary

Let D = {(xi,¥i) ﬁ‘f“} be the training data where
x; is the input text and y; € {—1,+1}" is the
ground truth label list. The XMTC method can be
formulated as learning a scoring function f(x,1) €
R defined on an input and candidate label pair
(z,1). The score should be larger for relevant labels
than irrelevant labels. The objective function of a
classification model is defined as:

Ntrain L
1
min E E Ly, f(x4,1
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where L(-,-) is an instance-wise loss, such as a
hinge loss in a Linear SVM or a sigmoid loss in the
final layer of a neural network.

2.2 Issues in Recent Evaluations

In recent years, SOTA methods have been compet-
ing on the metrics of micro-averaging precision at
k (P@k) (Liu et al., 2017; You et al., 2018; Prabhu
et al., 2018; Khandagale et al., 2019; Ye et al.,
2020; Chang et al., 2020; Jiang et al., 2021), micro-
averaging recall at k (R@k), the Normalized Dis-
counted Cumulative Gain at k (NDCG@k) (Prabhu
and Varma, 2014), and/or Propensity-scored Per-
formance at k (PSP@Xk) (Jain et al., 2016), where
k is the threshold on a ranked list. All of those
metrics give an equal weight to the performance
score on each test instance when computing the av-
erage performance, and thus are dominated by the
system’s performance on head labels and may not
be sufficiently informative to evaluate the tail la-
bel prediction in highly skewed label distributions.
Although macro-averaging metrics have been well
understood for a long time, which can compensate
the limitations of micro-averaged metrics (Yang
and Liu, 1999; Gopal and Yang, 2010), a thorough
evaluation on SOTA neural XMTC models is miss-
ing. As a result, the current understanding of the

strengths and weaknesses of SOTA methods may
not reflect their true performance in tail label pre-
diction.

2.3 Proposed Metrics

We propose to re-examine a set of representa-
tive XMTC methods with both micro and macro-
averaging metrics. Specifically, we focus on the
F1@k (k omitted for simplicity), which combines
precision (P) and recall (R) via a harmonic average:

_o P-R
P+ R

The precision and recall for a predicted ranked list

p are computed by P = - R = F

) = TP+FP’ TP+FN
according to the confusion matrix in table 1.

F1 (D

liny; I notin y;
lin p; True Positive(TP;)  False Positive(FP})
I not in p; | False Negative(FN;) True Negative(TN;)

Table 1: Confusion Matrix for instance 7 and label [
given the ranked list p;.

The micro and macro-average combines the
statistics in the confusion matrix in different ways.
Specifically, given N instances and L labels,
the micro-average aggregates the statistics in the
Neest X L confusion matrices globally, while the
macro-average computes the scores on individual
category first (F'1;), and then take an average over
all the categories (F1 = ﬁ Y il F1p).

Binned Macro-averaging: Let L; be a set of la-
bels with similar training frequencies grouped in
bin b, then the binned macro F1 is calculated by:

1
TP 6)

lely

As a designed choice, we set F'1; = 0 if a label [ is
never predicted in any top k ranked list.

Relative Improvement over SVM Baseline: To
have a clear view of model performance on head
and tail labels, we report the relative improvement
of the SOTA models over the SVM baseline by the
macro-averaging F1 score on each bin of labels.

3 Methods for Comparison

We introduce the 4 SOTA deep learning models,
which are compared with a tf-idf+SVM baseline:

X-Transformer (Chang et al., 2020) was proposed
to tame large Transformer models to the XMTC
task by a two stage training procedure: 1) a cluster-
level classification with large Transformer models



such as BERT-large (Devlin et al., 2018), Roberta-
large (Liu et al., 2019) and XLNet-large (Yang
et al., 2019), and 2) a within cluster ranker imple-
mented with one-vs-all SVM with both tf-idf and
Transformer features as input.

APLC-XLNet (Ye et al., 2020) achieves an end-to-
end training with the XLNet-base model (12 layers
transformer) by decreasing sizes of document em-
bedding to solve the scalability issue. Specifically,
a pooler function was applied on top of the XLNet
special [CLS] token to the decrease embedding size,
whose scale is determined by the label frequency.
LightXML (Jiang et al., 2021) extracts the [CLS]
embeddings from different layers of a pre-trained
model to form a document embedding with richer
semantic information. The same embedding is used
for the cluster-level classifier and the within cluster
ranker, which are trained alternatively.
AttentionXML (You et al., 2018) uses a label-
word attention mechanism on top of a bi-directional
LSTM to create label specific document embed-
dings, which are passed to a MLP to obtain the
relevance scores of the labels.

Tf-idf+SVM (Cortes and Vapnik, 1995) is a simple
baseline for XMTC. Although more complicated
kernels such as the RBF kernel can be used, (Chang
and Lin, 2011) shows that a Linear SVM achieves a
similar performance with a RBF kernel SVM when
the feature space is large (refer to Table 2 for the
number of features in the benchmark datasets).

It is worth mentioning that the deep Transformer-
based models encodes input text into a fixed docu-
ment embedding, while the AttentionXML learns
label specific document embeddings via label-word
attention.

4 Datasets

We use three benchmark datasets: EURLex-
4K (Loza Mencia and Fiirnkranz, 2008),
Wikil0-31K (Zubiaga, 2012) and AmazonCat-
13K (McAuley and Leskovec, 2013). The statistics
of the datasets are shown in Table 2.

We partition the bins according to the absolute
training label frequency, which reflects the diffi-
culty of optimization across datasets. For the bins
with 1 ~ 9 training instances, the 3 datasets cover
63.48%, 88.65% and 30% of training labels respec-
tively. If a model cannot perform well on those bins,
it means that a large portion of labels are not being
predicted accurately.

The details of the experiment settings, descrip-

tions of SOTA models and the training hyperparam-
eters are discussed in Appendix C.

5 [Evaluation Results

We present the evaluation results with both the
micro and macro-averaging F1 @k metrics. As a
design choice, We pick £ = 19 for Wikil0-31K
dataset whose average number of labels are 18.64,
and k£ = 5 for the rest of the datasets. More results
are shown in Appendix D.
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Figure 2: The result of micro and macro-averaging
F1@k metrics. The two metrics gives different conclu-
sion on the best performing model.

5.1 Performance in Micro-averaging Metrics

At the top of figure 2, we report the micro-
averaging F1@k for the SOTA models on the
benchmark datasets. In the micro-based evaluation,
all the SOTA neural models outperform the SVM
baseline on all 3 benchmark datasets. We found
that the deep Transformer model achieves the best
performs across the datasets. Specifically, APLC-
XLNet is the best on the EUR-Lex and Wikil0-31K
datasets, and the X-Transformer is the best on the
AmazonCat-13K dataset.

5.2 Performance in Macro-averaging Metrics

At the bottom of figure 2, the macro-averaging
F1@k is reported. Specifically, the SVM baseline
performs the best in the Wikil0-31K, where the la-
bel space is both large and skewed. It also achieves
competitive results on the other two datasets. Es-
pecially on the AmazonCat-13K dataset, the SVM
beats all the deep Transformer-based models which
perform better on the micro-averaging metric.



Dataset | Nerain Niest F La L [L1] ILa|  |Ls|  |L4]
EURLex-4K 15,539 3,809 186,104 530 3,956 2413 1205 182 1

Wikil0-31K 14,146 6,616 101,938 18.64 30,938 26,545 3,084 300 16
AmazonCat-13K | 1,186,239 306,782 203,882 5.04 13,330 3,936 5813 2862 719

Table 2: Niain and Neg are the number of training and testing instances respectively. F' is the tf-idf feature size.
Ly is the average number of labels per document. L is the number of labels. |L| refers to the number of labels
in bin k. The labels in bin [1,2,3,4] have [1 ~ 9,10 ~ 99,100 ~ 999, 1000 ~] instances respectively. The bin
partition is used in our binned macro-averaging F1 metric.

EURLex-4K Macro F1@5 relative to SVM

40% M X-Transformer [l XLNet-APLC LightXxML [l AttentionXML

*
21.6
2% . * * x *ox ox 14.215.9
10% 4.0 5437 325838 4.0
_—1'2 0*1— p— 2 J —
% -10 50 -4.6
205 10
-35% 338
-50% *
1-9 10-99 100-999 >=1000

Wiki10-31K Macro F1@19 relative to SVM

40% M X-Transformer [ XLNet-APLC LightxML [ AttentionXML

25%
* * * *
10% 6,6 1 74 74 %

e
5% r
20% 151 K
-35%

-50% 484587346613

10-99 100-999
AmazonCat-13K Macro F1@5 relative to SVM

40% M X-Transformer M XLNet-APLC LightxML Il AttentionXML

>=1000

25% 20 0 *s

10% * o' ¥ *
T8 02  mma w2 0332

-5%
7.8
-20% *
-35%
-50%

830981

10-99 100-999 >=1000

Figure 3: The relative improvement of SOTA deep
learning models over tf-idf+SVM baseline on the
binned macro-averaging F1@5 metrics. The labels are
partitioned to bins whose labels have [1 ~ 9,10 ~
99,100 ~ 999, > 1000] training instances respectively.
* indicates the macro t-test is significant (p < 0.01).

We also observe that the AttentionXML model
is the best on both the EURLex-4K and the
AmazonCat-13K datasets, though it is not the best
in any datasets when evaluated with the micro-
averaging metric.

Binned Macro-averaging F1 Metric The rela-
tive improvement of the binned macro-averaging
F1@k over the tf-idf+SVM baseline is reported in
figure 3, which gives a fine-grained comparison of
the model performance on the tail (or head) labels.
We conduct the macro t-test to justify the signif-
icance of the results (p < 0.01) (Yang and Liu,
1999) on the bins with more than 10 labels. We

have the following observations: 1) the deep learn-
ing models tend to perform better than SVM on
middle and head labels. 3) all the deep Transformer-
based models underperform the SVM baseline on
the tail labels. 2) The AttentionXML model tends
to outperform the SVM baseline on the tail labels
on 2 datasets.

5.3 Analysis

Although the tf-idf+SVM model underperforms
deep learning models on the micro-averaging met-
rics, it has an advantage over the deep Transformer-
based models on tail labels. Our explanation is
that since the tf-idf feature is computed unsuper-
visedly, it is irrelevant to the number of training
examples. Therefore, the feature maintains sepa-
rable in the low resource cases. To the contrary,
the Transformer-based models rely on supervised
learning to encode semantics into a fixed feature
vector, which is more sensitive to the scarceness of
training signals in the tail label.

The AttentionXML learns label specific word
embeddings via the label-word attention, which
avoids the information of head labels to over-
shadow that of tail labels in a fixed embedding.
Additionally, the local label to word matching cap-
tures the semantic similarity between the two which
can not be achieved by the tf-idf term frequency.
Therefore, it has additional gains over SVM base-
line on two datasets. Still, it underperforms SVM
when label is extremely sparse in Wikil0-31K.

6 Conclusion

In this paper, we propose the binned macro-
averaging F1 metric to re-evaluate the SOTA
XMTC model performance especially on the tail
labels. Our evaluation reveals that although the
tf-idf+SVM model underperforms the SOTA deep
learning models on the micro-averaging metrics, it
has an advantage on the tail label prediction where
the training data is scarce, shedding insights on
model strength and weakness in feature learning.
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A Data Distribution

In Figure 4, we show the percentage of label
vs. training instance in each bin in the bench-
mark datasets: EURLex-4K, Wikil0-31K and
AmazonCat-13K dataset. In all the datasets, a small
percentage of head labels cover most of the of train-
ing instances, while a large percentage of tail labels
only cover a few training instances.

B Evaluation Metrics

We include more discussion and reference for the
micro-averaging metrics and our proposed binned
macro-averaging F1 metric.
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Figure 4: The percentage of label vs. training in-
stance in EURLex-4K, Wikil0-31K and AmazonCat-
13K dataset. A small percentage of head labels cover
most of the of training instances, while a large percent-
age of tail labels only cover a few training instances.

B.1 Micro-averaging Metrics

In XMTC, there are multiple true labels for each
instance, so it is important to present a ranked
list of predicted labels for evaluation. The micro-
averaging metrics calculate a score for each of the
ranked list and then take an average over all the test
instances.

N
. 1 .
Micro@k = N E Metric(p;, y:) 3)

i=1

where N is the number of test instances and p;, y;
are the predicted top k ranked list and ground truth
labels list. Metric is a function to score the quality
of the ranked list based on the ground truth labels
list. In the following, we omit the index of instance
1 for clarity.

In most of the previous work, the Metric func-
tion is chosen to be the micro-averaging Precision
at k (P@k) (Liu et al., 2017; You et al., 2018; Ye
et al., 2020; Chang et al., 2020; Jiang et al., 2021).
Specifically, this metric evaluates the quality of the
top k of the prediction ranked list for a given test
instance:

k
1
Pak =+ IZ; Ly (p1) 4)

where p; is the [-th label in the predicted ranked
list p and 1y is the indicator function.

Other choices of the Metric function include
N @k (normalized Discounted Cumulative Gain at
k) or PSP@K (Propensity-scored Performance at
k) (Jain et al., 2016). The N@k is defined as:

DCGQk = Z lg)

(I+1)
mm(hllYll) 1
D _ o
iDCGak lz:; log(l +1)
DCGQE
Nak DCGQE

Although N@k and P@k are calculated differently,
You et al. shows that they are the same metrics

when measuring the quality of ranked lists.
The PSP @ k is defined as:

p1)
PSPQk = —_—
k Z prOP(Pz)

where prop(p;) is the propensity score (Jain et al.,
2016) of label p;, which gives higher weight for tail
labels. Although PSP@k were used as evaluation
metric for the long tail problem, it is still not infor-
mative enough to compare the performance of head
labels vs. tail labels due to following: 1) It is still a
micro-averaging metric that can be influenced by
label with more instances. 2) Since it summarizes
the performance into one number, we are not sure
if the gain comes from the improvement of head
labels or tail labels. Actually, an improvement in
either type of labels will give an increment in the
final score.



B.2 Macro-averaging Metrics

As we discussed above, the micro-averaging met-
rics are not informative enough to measure the per-
formance of different types of labels, because they
assign equal weights to each instance when taking
the averaging. As a remedy, a label level evaluation
should assign equal weights to each label when
taking the average. Therefore, macro-averaging
metrics should be applied for evaluating the label
level performance, especially for the tail labels. To
create groups for large label size, we split the labels
in the scale of exponential of 10 as a design choice,
e.g. {1 ~9,10 ~ 99,100 ~ 999, ... }.

We used the F1 metric to balance the precision
and recall. The tail labels tend to be under predicted
due to the more frequent negative gradient penalty.
As a result, tail labels tend to be predicted less
often than the head labels, and thus the recall is
low. If a model hardly predicts any tail labels, it
should receive a low score for the corresponding
bin. Therefore, we apply the F1 metric to balance
the number of predictions (recall) and the accuracy
of the predictions (prediction).

C Experiment Settings

C.1 Re-evaluation Experiment Settings

We choose the non-neural SVM as our baseline
and investigate 4 SOTA deep learning models
for XMTC: AttentionXML (You et al., 2018), X-
Transformer (Chang et al., 2020), APLC (Ye et al.,
2020) and LightXML (Jiang et al., 2021).

In the original papers, the experiments are con-
ducted in different settings, e.g. (Chang et al., 2020;
Jiang et al., 2021) reports the ensemble of multiple
models and different works have their own data pro-
cessing method. For fair comparison, we run our
experiments with single model with the following
training and testing data. We obtain the datasets
from the Extreme classification Repository'. How-
ever, the repository only contains the stemmed ver-
sion of EURLex-4K, which hurts the performance
of pretrained Transformer models whose tokenizers
are applied to unstem natural text. Therefore, we
obtain the unstemmed version of the EURLex-4K
from the APLC-XLNet github?.

"http://manikvarma.org/downloads/XC/
XMLRepository.html

https://github.com/huiyegit/APLC_
XLNet.git

C.2 Training Settings and Hyperparameters

For the AttentionXML model, we use the same
hyperparameter as in their code 3. For the X-
Transformer mode, the reuse the released pre-
trained model * for evaluation.

For the end-to-end Transformer-based models
including APLC-XLNet and LightXML, we train
the model using the same framework as APLC,
including discriminative fine-tuning and slanted
triangular learning rates (Ye et al., 2020). The
discriminative fine-tuning decouples the learning
rate of model into 3 parts: The base Transformer
module, the pooler module and the linear classifier
module, such that the Transformer module receives
smallest learning rate and the linear module re-
ceives largest learning rate. The slanted triangular
learning rates allows the model to warm up with a
slowly increasing learning rate first, and then de-
crease the learning rate to let the model converge
stably.

D More Experimental Results

In Table 3, we report the micro P@k, micro F1 @k
and the macro F1 @k (k=1, 3, 5) for the SOTA mod-
els on the benchmark datasets. We observe that the
micro P@5 and the F1@5 shows similar conclu-
sions on which models perform the best, but the
macro F1@5 gives different conclusions.

In Table 4, we report the N@k and PSP@k
(k=1, 3, 5) for the SOTA models on the benchmark
datasets. For N@Xk, it shows the same conclusions
with P@k on which model performs the best (they
are mathematically equivalent). Although the PSP
metric were used to measure the performance of
tail label prediction, we found that it gives higher
score for the some of deep Transformer-base mod-
els than the SVM baseline, e.g. X-Transformer,
XLNet-APLC on EURLex-4K, XLNet-APLC on
Wikil0-31K and X-Transformer on AmazonCat-
13K. However, those models actually underper-
form the SVM baseline on tail labels in our binned
macro-averaging F1 metric designed for tail label
evaluation. This shows that the PSP metric still
scarifies from the micro-averaging when applied to
evaluate the tail label performance.

Shttps://github.com/yourh/AttentionXML
*https://github.com/OctoberChang/
X-Transformer
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http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/huiyegit/APLC_XLNet.git
https://github.com/huiyegit/APLC_XLNet.git
https://github.com/yourh/AttentionXML
https://github.com/OctoberChang/X-Transformer
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EURLex-4K

Method Micro Micro Macro
ethods P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l F1@3 Fl@5
SVM 8344 7062 59.08 2650 5106 5737 564 1328 17.89

X-Transformer 85.46 72.87 60.79 27.14 52.69 59.03 512 1286 17.56
XLNet-APLC 86.83 7434 61.94 2743 5355 5996 6.66 1451 18.19

LightXML 86.98 7338 61.07 2748 5286 59.12 5.68 12.85 16.31
AttentionXML 85.12 72.80 61.01 27.03 52.64 5925 7.69 1580 1941

Wikil0-31K
Method Micro Micro Macro
ethods P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l Fl@3 Fl1@5
SVM 84.61 7464 6589 845 2033 2742 018 097  1.99

X-Transformer 87.12 76.51 66.69 8.70 20.84 27.76 0.14 0.51 1.02
XLNet-APLC 88.59 7830 68.87 8.85 21.33 28.67 0.1 0.93 1.59

LightXML 88.59 7851 6884 885 21.39 28.65 0.25 0.69 1.10
AttentionXML 86.46 77.22 6798 8.63 21.03 28.30 0.39 1.05 1.67

AmazonCat-13K

Method Micro Micro Macro
cthods P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l Fl@3 FIl@5
SVM 9320 7889 64.14 3054 5842 6349 386 1629 2836

X-Transformer 95.75 8246 67.22 3138 61.06 6654 190 1250 27.55
XLNet-APLC 9456 79.78 64.59 3099 59.07 6393 395 1332 21.38

LightXML 94.61 79.83 6445 31.00 59.11 63.79 1.60 8.38 18.36
AttentionXML 95.53 82.03 67.00 31.31 60.74 6631 7.12 2194 3198

Table 3: SVM and SOTA Deep Transformer Models evaluated on benchmark datasets: EURLex-4K, Wikil10-31K
and AmazonCat-13K. The metrics are micro P@k, micro F1 @k and macro F1 @k for k=1, 3, 5.



EURLex-4K
Methods N@l N@3 N@5 PSP@l PSP@3 PSP@5

SVM 83.44 73.58 65.70 38.76 46.71 51.17
X-Transformer 85.46 7584 67.62 37.85 47.05 51.81
XLNet-APLC 86.83 77.29 68.79 4221 49.83 52.88

LightXML 86.98 76.53 68.05 40.54 47.56 50.50
AttentionXML 85.12 75.74 67.71 44.20 50.85 53.87

Wikil0-31K
Methods N@l N@3 N@5 PSP@l PSP@3 PSP@5
SVM 84.61 7699 7034 11.89 14.23 15.96

X-Transformer 87.12 79.00 71.56 12.52 13.62 14.63
XLNet-APLC 88.59 80.72 73.58 1443 15.38 16.47

LightXML 88.59 80.87 73.58 14.09 14.87 15.52
AttentionXML 86.46 79.41 7247 14.49 15.65 16.54

AmazonCat-13K
Methods N@l N@3 N@5 PSP@l PSP@3 PSP@5

SVM 93.20 82.87 7647 51.26 64.69 72.34
X-Transformer 95.75 86.26 79.80 51.42 66.14 75.57
XLNet-APLC 94.56 83.89 77.29 52.55 65.11 71.36

LightXML 94.61 8395 7721 50.70 63.14 70.13
AttentionXML 95.53 85.87 79.54 54.94 69.48 76.45

Table 4: SVM and SOTA Deep Transformer Models evaluated on benchmark datasets: EUR-Lex (4K), Wikil0-
31K and AmazonCat-13K. The metrics are N@k and PSP@k for k=1, 3, 5.



