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DAFT-GAN: Dual Affine Transformation Generative Adversarial
Network for Text-Guided Image Inpainting

Anonymous Authors

Text (top): "a room filled with furniture and accessories in a room.", Text (bottom left): "the bird is colorful and has black eyerings a spiky tan crown and gray
wings.", Text (bottom right):"this is an orange flower with green stamen and black stripes near the ovary."

Figure 1: Results of proposed DAFT-GAN. Masked (left), generated (middle), and ground-truth (right) images are presented on
three datasets (MS-COCO, CUB, and Oxford).

ABSTRACT
In recent years, there has been a significant focus on research re-
lated to text-guided image inpainting, which holds a pivotal role in
the domain of multimedia processing. This has resulted in notable
enhancements in the quality and performance of the generated
images. However, the task remains challenging due to several con-
straints, such as ensuring alignment between the generated images
and the accompanying text, and maintaining consistency in distri-
bution between corrupted and uncorrupted regions, for achieving
natural and fine-grained image generation. To address these chal-
lenges, previous studies developed novel architectures, inpainting
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techniques, or objective functions but they still lack semantic con-
sistency between the text and generated images. In this paper, thus,
we propose a dual affine transformation generative adversarial
network (DAFT-GAN) to maintain the semantic consistency for
text-guided inpainting. DAFT-GAN integrates two affine transfor-
mation networks to combine text and image features gradually for
each decoding block. The first affine transformation network lever-
ages global features of the text to generate coarse results, while the
second affine network utilizes attention mechanisms and spatial
of the text to refine the coarse results. By connecting the features
generated from these dual paths through residual connections in
the subsequent block, the model retains information at each scale
while enhancing the quality of the generated image. Moreover,
we minimize information leakage of uncorrupted features for fine-
grained image generation by encoding corrupted and uncorrupted
regions of the masked image separately. Through extensive ex-
periments, we observe that our proposed model outperforms the
existing models in both qualitative and quantitative assessments
with three benchmark datasets (MS-COCO, CUB, and Oxford) for
text-guided image inpainting.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Computer
vision; Computer vision problems; Reconstruction.

KEYWORDS
Text-guided image inpainting, dual affine transformation, separated
mask convolution, semantic consistency

1 INTRODUCTION
Image inpainting [1–9] is a process that involves realistically fill-
ing in missing or corrupted areas within an image, serving a vital
role in practical image processing applications such as image re-
construction, photo editing, and completing obscured regions. The
core strategy in image inpainting involves predicting missing pix-
els by leveraging features or patterns from uncorrupted areas of
the image. While these models can produce high-quality results,
they face challenges in complex scenarios that demand intricate
details, especially when multiple objects are involved or when the
corrupted region covers a substantial portion of the image. Relying
solely on surrounding pixels for generation in such cases can lead to
distorted content or artifacts, prompting further research to address
these limitations.

The pipeline typically follows a generative adversarial network
(GAN) inpainting architecture, initially proposed in [10] and later
refined by [11] to incorporate global and local aspects in the dis-
criminator. However, addressing irregular mask holes has remained
a challenge, prompting the introduction of a coarse-to-fine network
[7] that includes a refinement process to enhance the generation
quality. Additionally, previous studies [12, 13] proposed improved
convolution techniques for feature encoding, while recent studies
[14, 15] have demonstrated the benefits of utilizing fast Fourier
convolutional (FFC) blocks to extract global and spatial features
separately and modulate them individually for improved appear-
ance quality. Nevertheless, accurately generating corrupted areas
in complex images lacking specific patterns remains a significant
challenge, as relying solely on surrounding pixels may yield se-
mantically diverse solutions, necessitating time-consuming and
resource-intensive processes to select the desired output. In specific
advanced inpainting tasks, therefore, incorporating external guid-
ance to inpainting models is necessary to control the solution space
and efficiently generate desired outcomes. Since external guidance,
such as lines [12], edges [16], sketches [17], or exemplars [18, 19],
may offer weak visual directionality and also lack semantic context,
text guidance is considered the most effective form of guidance in
inpainting tasks to ensure semantic consistency. Thus, text guid-
ance is widely used in other tasks such as text-to-image synthesis
and text-guided manipulation. Text-to-image synthesis aims to gen-
erate complete images that accurately reflect the text description,
while text-guided image manipulation involves modifying existing
image content to align better with the text description. Inpainting
tasks involve much stricter constraints compared to tasks such as
text-to-image synthesis and image manipulation, as they require
generating local regions of images. It is crucial to consider whether
the text is accurately reflected in the generated image, if the remain-
ing uncorrupted regions are coherent with the generated pixels,
and other relevant factors.

The task of text-guided inpainting is advancing towards generat-
ing high-quality images even in more complex cases such as filling
in large masked regions in an image by utilizing text descriptions
as external guidance. To do this, it is crucial to effectively utilize
features from the uncorrupted regions of the image. Additionally,
combining the features of the image with the text features used as
guidance is also vital. The attention mechanism is the most com-
monly used when combining features frommultimodal data. In text-
to-image synthesis, the attention mechanism was first proposed in
AttnGAN [20], demonstrating the effectiveness of combining text
features with image features. Also, a deep attentional multimodal
similarity model (DAMSM) [20] was proposed for extraction of
sentence and word embeddings, which are crucial features when
utilizing the attention mechanism. Similarly, in this study, we uti-
lized the pre-trained DAMSM [20] to extract sentence and word
embeddings. A recurrent affine network [21] was utilized when
combining sentence embeddings with images, and a network with
attention added to the existing affine network was employed for
refinement at the word level when combining word embeddings
with images. By gradually stacking this two-path decoder block,
fine-grained images that effectively reflect text were generated.
While most existing studies encode features of corrupted images
through a single convolution, we propose separated mask convo-
lution blocks to distinguish between corrupted and uncorrupted
regions, minimizing the information leakage of uncorrupted image
features. As shown in Fig. 1, Our proposed model successfully gen-
erates corrupted regions on three benchmark datasets.

The main contributions of this paper are listed as follows.
• We propose a novel text-guided inpainting model (DAFT-
GAN) for generating fine-grained images with text descrip-
tions.

• A dual affine transformation block is proposed to incorporate
visual and text features effectively in the decoder stage from
a global and spatial perspective.

• A separated mask convolution block is proposed to minimize
the information leakage of uncorrupted image features.

• State-of-the-art performances are achieved on three bench-
mark datasets (MS-COCO, CUB-200-2011, and Oxford-102).

2 RELATEDWORK
2.1 Text-to-Image Synthesis
Text-to-image synthesis is a task aimed at generating complete
images using text descriptions. The most crucial aspects in text-to-
image synthesis are the authenticity of the generated images and
the semantic consistency between the provided text description
and the generated images.

The foundation of text-to-image synthesis models, such as Stack-
GAN [22], utilizes amulti-stage approach to generate high-resolution
images reflecting the input text. This architecture not only gradually
generates high-resolution images through stages but also proposes
a stacked structure to address the unstable nature of GAN models.
Subsequent research [20] focused on combining text and image fea-
tures, with attention mechanisms being proven effective through
such studies. However, attention mechanisms also have drawbacks
when generating high-resolution images since they require atten-
tion at every scale, which incurs substantial computational costs.
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This computational burden can make it challenging to fully utilize
text information at certain scales. To address these issues, DF-GAN
[23] proposes an efficient fusion network that utilizes affine trans-
formation networks. By combining contextual information without
attention in every block, it offers significant cost advantages. While
this simple and efficient network can produce images with better
quality, some limitations still exist. Some regions of the images may
not be recognizable or consistent with the text description at the
word level. To enhance this, SSA-GAN [24] introduces weakly super-
vised mask predictors to guide spatial transformations. RAT-GAN
[21] adds recurrent networks when connecting affine transforma-
tion blocks to address the long-term dependency problem. Through
research that effectively combines text and images, the quality of
image generation has been improved.

2.2 Image Inpainting
Image inpainting involves the reconstruction of specific uncor-
rupted regions within an image, serving as a critical component in
various image processing applications such as photo manipulation
and filling in occluded areas. Despite its importance, image inpaint-
ing remains a challenging task, with the level of difficulty being
heavily influenced by the extent of the damaged regions in the
image. When a significant portion of the image is corrupted, there
is a higher probability of entire objects being lost from the visual
context. Moreover, the absence of usable features from uncorrupted
areas further complicates the restoration process. Recent advance-
ments in deep learning models have significantly enhanced the
ability to extract and leverage high-level semantic features, result-
ing in notable improvements in terms of the quality of generated
images. Recent studies investigated different model architectures,
including transformer-based [25–28], GAN-based [15, 29–32], or
FFC-based [14, 15] models. In addition to model architecture, perfor-
mance improvements have been achieved through the application
of various inpainting techniques such as convolution [12, 13] and
attention mechanisms [20].

2.3 Text-Guided Image Inpainting
The goal of the text-guided image inpainting task is to reconstruct
corrupted images using textual and visual information to generate
realistic images. MMFL [33] proposes a multimodal fusion learn-
ing approach that focuses on text descriptions corresponding to
objects of interest in each image through the word demand mod-
ule. Additionally, they construct it as a two-stage coarse-to-refine
process to generate high-quality images. TDA [34] proposes a dual
multimodal attention module that aims to achieve deeper integra-
tion by applying attention to feature maps of two inverted regions.
However, all these methods attempted multimodal fusion at the
encoding stage and did not utilize the provided text information
during the decoding stage. This leads to an incomplete fusion of
spatial details, text, and visual information. Furthermore, previ-
ous studies [33–36] utilize structures with two or multiple stages
for image refinement, resulting in significant time and space con-
sumption due to repeated encoder-decoder pairs. Therefore, we
designed a network that injects text description information at the
decoding stage to generate images. This strategy not only mitigates
resource inefficiencies but also improves image quality through the
utilization of a one-stage-dual-path architecture.

3 METHODS
Given a masked image 𝐼𝑀 = 𝐼 ⊙𝑀 (where 𝐼 is the original image,
𝑀 is given mask metric), text-guided image inpainting is the task
of generating an image that aligns with the text description 𝑡 and
maintains semantic consistency with the image. We propose DAFT-
GAN, which generates images by appropriately processing text and
visual features in the decoder stage.

3.1 Overall Architecture
As shown in Fig. 2, the proposed model consists of an encoder com-
posed of separated mask convolution (SMC) blocks and a decoder
composed of dual affine transformation (DAFT) blocks forming
the Conv-U-Net structure. More specifically, the process of feature
extraction involves seven SMC blocks, while text features are inte-
grated at various resolutions through the incorporation of seven
DAFT blocks to produce the final image. A comprehensive break-
down of all elements of the approach is provided as follows.

3.2 Separated Mask Convolution
SeperatedMask Convolution. SMC block performs two roles. As
shown in Fig. 3, one is to distinguish the masked and the unmasked
regions and conduct convolution and normalization separately on
them. Another is to update the mask in a way that minimizes in-
formation leakage. SMC block takes as input a pair of the image
feature 𝐹𝑒

𝑖
∈ R𝐶𝑖×𝑊𝑖×𝐻𝑖 extracted from the previous block and a

mask metric 𝑀𝑖 ∈ {0, 1}𝑊𝑖×𝐻𝑖 of the same size. The mask metric
represents the mask status, where the unmasked (valid) regions
are marked as 0, and the masked (invalid) regions are marked as 1.
The mask metric is used to differentiate between the two regions
during the encoding process. The initial 256 × 256 masked image
and mask metric are downscaled by a factor of 2 in 6 out of the 7
blocks, excluding the first block, resulting in a final output size of
4 × 4.

First, from the previous block, we passed the input feature 𝐹𝑒
𝑖

through two different convolution layers to obtain a valid feature
𝐹 𝑣𝑎𝑙
𝑖+1 ∈ R𝐶𝑖+1×𝑊𝑖

2 × 𝐻𝑖
2 and an invalid feature 𝐹 𝑖𝑛𝑣𝑎𝑙

𝑖+1 ∈ R𝐶𝑖+1×𝑊𝑖
2 × 𝐻𝑖

2 .
If we use only one convolutional layer to extract features, the con-
volutional weights could be updated by being influenced not only
by the valid region but also by the invalid region during training.
Therefore, we used two convolution layers.

𝐹 𝑣𝑎𝑙𝑖+1 = 𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣𝑣𝑎𝑙 (𝐹𝑒𝑖 ⊙ (1 −𝑀𝑖 ))), (1)

𝐹 𝑖𝑛𝑣𝑎𝑙𝑖+1 = 𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣𝑖𝑛𝑣𝑎𝑙 (𝐹𝑒𝑖 ⊙ 𝑀𝑖 )). (2)

Then, we generated 𝐹𝑒
𝑖+1 ∈ R𝐶𝑖+1×𝑊𝑖

2 × 𝐻𝑖
2 composed of 𝐹 𝑣𝑎𝑙

𝑖+1 and

𝐹 𝑖𝑛𝑣𝑎𝑙
𝑖+1 . At this point, using𝑀𝑖+1 ∈ {0, 1}

𝑊𝑖
2 × 𝐻𝑖

2 obtained by updat-
ing 𝑀𝑖 , we assigned 𝐹 𝑣𝑎𝑙

𝑖+1 to the valid region of 𝐹𝑖+1 and 𝐹 𝑖𝑛𝑣𝑎𝑙𝑖+1 to
the invalid region. The mask metric update process is explained in
detail as follows.

𝐹𝑒𝑖+1 = 𝐹
𝑣𝑎𝑙
𝑖+1 ⊙ (1 −𝑀𝑖+1) + 𝐹 𝑖𝑛𝑣𝑎𝑙𝑖+1 ⊙ 𝑀𝑖+1 (3)

In 𝐹𝑒
𝑖+1, the valid and invalid regions have distinctly different

distributions. To prevent the loss of information in the valid region,
we applied MaskNormalize, the normalization method used in [37].
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Figure 2: Architecture of DAFT-GAN consisting of an encoder-decoder generator and a one-way discriminator. The generator
extracts image features and combines them with noise and text embeddings to generate the reconstructed images.

Figure 3: Visualization of processing of the SMC block. En-
coding includes convolution and normalization, generating
higher-dimensional features that are downscaled by a factor
of 2.

MaskUpdate. When performing convolution operations on image
features, both the valid and invalid regions are inevitably considered
at the boundary of the mask due to the receptive field. In response
to this situation, we applied a mask update method that treats as a
valid feature if any part of the valid region is included to minimize
the loss of valid information. We used a pooling layer with the same
kernel size, stride, and padding as the convolution layer to extract
the image features. By doing so, when performing convolution
operations on a specific region of the image feature, we can also
perform pooling operations on the exact corresponding region for
the mask metric. If any part of the valid region is included in the
receptive field, i.e., the region in the mask metric contains both 0
and 1, we need the pooling result for that region to be 0 in order
to consider the convolution result as a valid feature. Therefore,
we implemented a min-pooling operation to update the mask as
follows.

𝑀𝑖+1 = −𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (−𝑀𝑖 ) (4)

3.3 Dual Affine Transformation
Global Fusion Path. As depicted in Fig. 2, the generator generates
masked parts by combining the encoded feature with the U-Net
structure [38]. A noise vector 𝑧 is sampled from a standard Gaussian

distribution, passed through a fully connected layer, and then added
to the encoded feature of the same dimension at the beginning of
the generator. For each upsampling block, the encoded feature of
the same scale was combined with the feature of the previous block
through element-wise addition.

𝐹
𝑔𝑖𝑛
0 = 𝑀𝐿𝑃1 (𝑧) ⊕ 𝐹𝑒𝐿, (5)

𝐹
𝑔𝑖𝑛
𝑖

= 𝐹𝑒𝐿−𝑖 ⊕ 𝐹
𝑔

𝑖
, (6)

where 1 ≤ 𝑖 ≤ 𝐿 (𝐿 is the highest level with the smallest spatial size)
Unlike the basic U-Net [38], this model combined features using

residual connections instead of channel-wise concatenation. This
was done to encourage the network output to closely resemble
the input during the early stages of training, which stabilizes the
learning process. Additionally, residual learning generally helps
the model preserve previous information at each scale and learn
high-frequency contents more effectively. The input 𝐹𝑔𝑖𝑛

𝑖
passes

through each recurrent affine transformation (RAT) module [21],
performing the transformation for upsampling. It sequentially goes
through the initial generator block and 6 upsampling blocks (the
first generator block does not upsample), ultimately generating a
feature map as a size of 256 × 256.

Multimodal Cross Affine Transformation. As shown in Fig.
4, multimodal cross affine transformation (MCAT) takes the RAT
output image feature maps 𝐹𝑔𝑜𝑢𝑡

𝑖
and word features𝑤 , hidden fea-

tures ℎ𝑡 within the same DAFT block as input, and outputs same
scale image feature maps 𝐹𝑠𝑜𝑢𝑡

𝑖
. The core of the MCAT module is

the CrossAffine layer shown in Fig. 5. The CrossAffine layer per-
forms cross-attention between image feature maps and word fea-
tures, and obtains attention feature maps 𝐹spatial ∈ R(2×𝑑𝑤 )×𝐻×𝑊

through channel-wise concatenation with hidden features ℎ𝑡 , and
then extracts modulation parameters 𝛾𝑐 and 𝛽𝑐 through channel-
wise multi-layer perception (MLP) for affine transformation. By
applying channel-wiseMLP to predict modulation parameters while
maintaining spatial structure and identifying where text infor-
mation needs to be complemented in the current image features,
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Figure 4: Structure of the DAFT block. The block is composed
of RAT and MCAT modules, which respectively handle the
global path and the spatial path, thereby forming a dual path
architecture.

Figure 5: Diagram of CrossAffinemodule. Themodulemanip-
ulates input image features using recurrent hidden features
and word features by channel wise affine transformation.
spatially refined image feature maps can be obtained. Specifically,
given input image feature maps 𝑥𝑐ℎ𝑤 ∈ R𝐶×𝐻×𝑊 , word features
𝑤 ∈ R𝐿×𝑑𝑤 , and hidden feature ℎ𝑡 ∈ R𝑑𝑤 , the image feature
maps were transformed into the same semantic space as word
features by a new perceptron layer 𝑊𝑄 ∈ R𝑑𝑤×𝐶 . The query
𝑄𝐹 = 𝑊𝑄𝑥𝑐ℎ𝑤 ∈ R𝑑𝑤×𝐻×𝑊 , and key 𝐾𝐹 , value 𝑉𝐹 are word fea-
tures𝑤 . Then, it performs cross-attention to obtain image feature
maps 𝐹spatial for predicting modulation parameters as follows:

𝐹attn = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐹𝐾
𝑇
𝐹 )𝑉𝐹 , (7)

𝐹spatial = [𝐹attn; 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(ℎ𝑡 )], (8)

where SpatialReplication expands the dimensions by 𝐻 ×𝑊 .
By combining the sentence hidden feature ℎ𝑡 from the long

short-term memory with channel-wise concatenation with 𝐹attn,
necessary global semantic information at current stage was injected,
at the same time, global-spatial connection was implemented. Addi-
tionally, modulation parameters 𝛾𝑐 and 𝛽𝑐 were predicted through
a channel-wise MLP, and channel-wise affine transformation and
residual connection are applied to input feature maps 𝑥𝑐ℎ𝑤 to gener-
ate final output feature maps 𝑥𝑐ℎ𝑤 . This process can be represented
by the following equation:

𝐶𝑟𝑜𝑠𝑠𝐴𝑓 𝑓 𝑖𝑛𝑒 (𝑥𝑐ℎ𝑤 | ℎ𝑡 ,𝑤) = 𝛾𝑐𝑥𝑐ℎ𝑤 + 𝛽𝑐 , (9)

where𝛾𝑐 and 𝛽𝑐 are obtained through two channel-wise MLP layers.

𝛾𝑐 = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑤𝑖𝑠𝑒𝑀𝐿𝑃1 (𝐹spatial), (10)

𝛽𝑐 = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑤𝑖𝑠𝑒𝑀𝐿𝑃2 (𝐹spatial), (11)

𝑥𝑐ℎ𝑤 = 𝑥𝑐ℎ𝑤 ⊕ 𝐶𝑟𝑜𝑠𝑠𝐴𝑓 𝑓 𝑖𝑛𝑒 (𝑥𝑐ℎ𝑤 | ℎ𝑡 ,𝑤). (12)
In order to learn a wider range of expressions, as described in Fig.

4, CrossAffine layer and convolution layer were stacked to form a
single MCAT module.

One-Stage-Dual-Path. Inspired by recent research on image in-
painting [15], we proposed a one-stage-dual-path approach that
utilizes global text features to manipulate images, focusing on a
global path for manipulating global structure and a spatial path for
concentrating on spatial details. As shown in Fig. 4, the global path
generates a semantic-consistent global structure through the RAT
module, while the spatial path leverages more semantic-consistent
and fine-grained visual details through word-level and pixel-level
control using the MCAT module for each scale of the output from
the global path. Additionally, by upsampling the previous spatial
path output and connecting it to the current output through a resid-
ual connection, the model is guided to transform only the necessary
parts gradually at each step, enabling initial learning stabilization
and finer control over details.

This structure resolves the time and space waste issues derived
from the two-stage or multi-stage structure of the existing text-
guided image inpainting [33, 35, 36], and has the advantage of
generating natural images from a human evaluation perspective
through organic integration and detailed role differentiation be-
tween the two paths.

3.4 Objective Functions
3.4.1 Discriminator Objective.

Adversarial Loss with MA-GP. To ensure semantic consistency
between the inferred image and the given text description,matching-
aware zero-centered gradient penalty (MA-GP) was used [23].

𝐿𝑎𝑑𝑣𝐷 = 𝐸𝑥∼P𝑑𝑎𝑡𝑎 [𝑚𝑎𝑥 (0, 1 − 𝐷 (𝑥, 𝑠))]

+1
2
𝐸𝑥∼P𝐺 [𝑚𝑎𝑥 (0, 1 + 𝐷 (𝑥, 𝑠))]

+1
2
𝐸𝑥∼P𝑑𝑎𝑡𝑎 [𝑚𝑎𝑥 (0, 1 + 𝐷 (𝑥, 𝑠))]

+𝑘𝐸𝑥∼P𝑟 [(∥▽𝑥𝐷 (𝑥, 𝑒)∥ + ∥▽𝑒𝐷 (𝑥, 𝑒)∥)𝑝 ],

(13)

where 𝑠 is the given text description, 𝑠 is the mismatched text
description, 𝑥 is the actual image corresponding to 𝑠 , and 𝑥 is the
generated image. 𝐷 (.) is the output of the discriminator, providing
matching information between the image and the sentence. The 𝑘
and 𝑝 are hyperparameters of the MA-GP.

3.4.2 Generator Objective.

Reconstruction Loss. The ℓ1 loss is typically optimized for an
average blurry result. Despite being a non-saturating function, we
incorporated perceptual loss to improve the naturalness and quality
of the final image.

𝐿𝑟𝑒𝑐 = 𝜎𝑖 ∥𝜙𝑖 (𝑥) − 𝜙𝑖 (𝑥)∥2, (14)
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Table 1: Performance comparison of GAN-based inpainting
models regarding FID, KID, PSNR, and SSIM. The evaluation
was conducted on the test dataset in CUB-200-2011, Oxford-
102, and MS-COCO.

Model CUB-200-2011 Oxford-102 MS-COCO
FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

RFR [8] 26.09 1.206 23.11 1.127 22.59 1.101
PDGAN [9] 45.69 2.619 31.08 1.424 34.86 1.509
MMFL [33] 25.68 1.266 35.69 1.560 19.77 0.803
TDA [34] 13.07 0.394 19.65 0.681 11.20 0.586
Ours 11.33 0.259 15.75 0.318 6.59 0.357

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
RFR [8] 21.28 0.811 20.76 0.808 20.82 0.781

PDGAN [9] 19.27 0.754 18.94 0.732 18.23 0.655
MMFL [33] 20.34 0.799 20.61 0.811 20.48 0.769
TDA [34] 20.23 0.797 19.02 0.753 19.56 0.652
Ours 20.46 0.808 20.25 0.766 19.64 0.783

where 𝜙𝑖 (.) refers to the layer activation of the pre-trained VGG-19
network.

Adversarial Loss. Adversarial loss is defined as follows.

𝐿𝐺 = −𝐸𝑥 [𝑙𝑜𝑔(𝐷 (𝑥))], (15)

where 𝑥 is generated images.

Text-Guided Attention Loss. To enhance text guidance, we im-
plemented the text-guided attention loss [33]. This method involves
multiplying the attentionmap and the generated image 𝑥 at the final
scale of 256 × 256 with the ground-truth image 𝑥 , and minimizing
the ℓ1 loss of the two terms.

𝐿𝑎𝑡𝑡𝑛 = ∥𝐴(𝑤, 𝑥)𝑥 −𝐴(𝑤, 𝑥)𝑥 ∥1, (16)

where 𝐴(.) performs attention and 𝑤 is the word features of the
text corresponding to 𝑥 .

DAMSM Loss. For fine-grained image-text matching that consid-
ers both sentence-level and word-level information, we adopted
the DAMSM loss (𝐿𝐷𝐴𝑀𝑆𝑀 ). Details are described in [33].

Overall Loss. The total loss of the generator is defined as below.

𝐿𝑎𝑑𝑣𝐺 = 𝜆𝑟𝑒𝑐 × 𝐿𝑟𝑒𝑐 + 𝐿𝐺 + 𝐿𝑎𝑡𝑡𝑛 + 𝜆𝐷𝐴𝑀𝑆𝑀 × 𝐿𝐷𝐴𝑀𝑆𝑀 (17)

4 EXPERIMENTS
4.1 Datasets
We used the Caltech-UCSD Birds-200-2011 (CUB-200-2011), Oxford-
102 Category Flower (Oxford-102), and MS-COCO datasets to train
our proposed model and methods, focusing on multimodal inpaint-
ing that incorporates both text and images. While all three datasets
were used to assess the performance of text-guided inpainting,
the MS-COCO dataset was specifically used as a more challenging
dataset for evaluating the performance of image inpainting. This
is because the MS-COCO dataset contains multiple objects and
relatively complex scenes compared to the other two datasets.

Table 2: Numerical ranking scores for semantic consistency
and naturalness. Semantic consistency and naturalness indi-
cate the alignment between text and image, and the quality
of the image, respectively.

Model Semantic consistency Naturalness
RFR [8] 2.852 3.347

PDGAN [9] 3.648 4.213
MMFL [33] 4.008 4.787
TDA [34] 2.765 3.465
Ours 2.146 2.625

Ground-truth 1.134 1.145

4.2 Implementation Details
When training or testing our proposed model, we used randomly
generated masks in irregular shapes. By doing so, we can construct
a more robust model for inference and demonstrate the ability to
generate realistic images even when large corrupted regions are
present in the image. Subsequently, we evaluated the performance
of the proposed model through several experiments. We confirmed
the effectiveness and competitiveness of our proposed model by
conduncting quantitative in Table 1 and qualitative evaluations in
Table 2 with the other models proposed in previous studies. After
that, to validate the effectiveness and performance improvement of
each method in the final model we selected, we sequentially evalu-
ated the application of methods from the baseline model as shown
in Table 3. We utilized a training approach with diverse irregular
masks. We conducted the experiment on an NVIDIA RTX3090 Ti
GPU. The parameters of the generator in the model were optimized
with a learning rate of 10−4, while the parameters of the discrimi-
nator were optimized with a learning rate of 4 × 10−4, both using
the Adam optimizer. The sentence embedding and word embed-
ding utilized in this study were extracted using a pre-trained text
encoder from the DAMSM proposed in AttnGAN [20]. The final
objective function weights were set as 𝜆𝑟𝑒𝑐 = 0.2 and 𝜆𝐷𝐴𝑀𝑆𝑀 =
0.01

4.3 Quantitative Results
The image inpainting task allows for evaluating the quality of
generated images by comparing how well the corrupted parts are
reconstructed to the ground truth. To assess the quality of gen-
erated images, the Fréchet inception distance (FID) [39] and the
kernel inception distance (KID) [40] were used to measure the
distribution between ground-truth and generated images. When
evaluating reconstruction, the peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM) [41] were used to mea-
sure the difference between generated images and ground-truth at
the pixel level. Lower values for FID and KID, and higher values for
PSNR and SSIM indicate better performance. As shown in Table 1,
we observed that our proposed model has a significant impact on
integrating text and achieving high scores compared to the existing
models on all three datasets, with a particularly significant improve-
ment seen on the MS-COCO dataset. Despite being relatively chal-
lenging due to its inclusion of multiple objects and complex scenes,
the significant improvement on the MS-COCO dataset indicates
effective semantic matching between text and images. Despite the
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Figure 6: Qualitative comparison of ours with other models
on the CUB-200-2011 dataset.

Table 3: Performance comparison of each component added.
To compare three different affine transformation methods,
the baseline (DF-GAN) was compared against methods that
applied the SSA and RAT affine transformations. DAFT em-
ployed the RAT affine transformation.

Methods FID↓ KID↓ PSNR↑ SSIM↑
Our Baseline (DF-GAN) 19.31 0.759 18.15 0.790
Our Baseline + SSA 18.79 0.730 19.80 0.796
Our Baseline + RAT 17.25 0.593 19.87 0.806
Our Baseline + MCAT 17.84 0.641 20.13 0.814
Our Baseline + DAFT (MCAT + RAT) 14.23 0.418 18.95 0.757
Our Baseline + DAFT + SMC 12.57 0.293 19.06 0.742
Our Final (Diverse Mask + SMC + DAFT) 11.33 0.259 20.46 0.808

significant improvements in FID and KID scores across all datasets,
the improvements in PSNR and SSIM are relatively modest. This
phenomenon may be explained by the distinction that PSNR and
SSIM metrics evaluate distances at the pixel level, while our model
operates on feature-level distances to produce images that exhibit
a more realistic appearance. Consequently, the improvement in re-
construction metrics compared to previous models that rely solely
on pixel-level distances might be lower. Nonetheless, it is evident
that in some cases, other models achieve similar or even higher
reconstruction scores.

4.4 Qualitative Results
In the context of generative models, qualitative evaluation from
a human perspective is also important. In the text-guided image
inpainting task, the most commonly used metrics for qualitative
evaluation are semantic consistency and naturalness. Semantic con-
sistency measures how well the generated image matches the given
text, while naturalness measures how natural the generated image
appears. We conducted a human evaluation with 15 volunteers with
100 randomly generated images, ranging from rank 1 (high quality)
to rank 5 (low quality), to obtain scores for semantic consistency
and naturalness. As scored in Table 2, we observed that our model

Table 4: Evaluations of different Mask Ratios on CUB-200-
2011 datasets with diverse irregular masks.

Model 20%-50% 20%-30% 30%-40% 40%-50%
FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

RFR [8] 26.09 1.206 16.13 0.624 28.79 1.404 42.32 2.416
PDGAN [9] 45.69 2.619 29.31 1.439 46.52 2.722 66.09 4.416
MMFL [33] 25.68 1.266 15.92 0.682 27.51 1.424 41.60 2.470
TDA [34] 13.07 0.394 10.20 0.259 13.30 0.399 16.67 0.598
Ours 11.33 0.259 8.815 0.159 12.01 0.271 15.28 0.432

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
RFR [8] 21.28 0.811 22.72 0.856 20.80 0.801 19.42 0.745
PDGAN [9] 19.27 0.754 20.86 0.795 18.91 0.747 17.52 0.700
MMFL [33] 20.44 0.807 22.83 0.859 21.19 0.795 19.24 0.738
TDA [34] 20.23 0.797 21.52 0.845 19.83 0.787 18.61 0.732
Ours 20.46 0.808 22.33 0.861 20.08 0.802 18.51 0.742

not only outperforms the other models [8, 9, 33, 34] in quantitative
evaluation but also achieves the best scores in qualitative evaluation.
As evident from the metrics in Fig. 6, while other models generated
awkward images with blurriness or artifacts, our model generated
natural-looking images without any anomalies compared to the
ground truth. To ensure high-quality image generation across all
datasets, we conducted experiments with various text descriptions
using our proposed model. In Fig. 7, we confirmed the generation of
photorealistic images on the CUB and the Oxford datasets. Particu-
larly in Fig. 8, despite the diverse object types and more complex
scenes, our model effectively incorporated the text descriptions
to generate remarkably natural images, even for the challenging
MS-COCO dataset.

4.5 Effectiveness of Each Proposed Method
In Table 3, we conducted an ablation study on the CUB-200-2011
dataset to assess the performance changes resulting from sequen-
tially applying our proposed methods to the baseline model. The
baseline model utilizes a basic convolutional block to encode the
features of the masked image and employs only one affine trans-
formation network [23] along with sentence features. From this
baseline, we measured the performance changes when adding the
weakly supervised mask predictor proposed in [24], and when
adding the recurrent affine network proposed in [21]. Then, we
evaluated the performance when adding cross refinement, which
involves using two affine transformation networks to refine by inte-
grating word features. Additionally, we evaluated the performance
by incorporating the DAFT Block, which connects the features of
each encoder to the decoder using residual connections. Then, we
examined the impact of replacing the basic block with the SMC
block in our final model. Finally, to build a robust inpainting model
that is independent of the shape of corrupted masks, we trained
our model using various irregular masks. By sequentially applying
our proposed methods, we confirmed significant improvements in
performance based on the evaluation metrics.

4.6 Text Controllability for Image Manipulation
Through text guidance, we can manipulate specific parts to create
desired images or generate diverse images that are semantically
consistent with various text descriptions. In other words, it is pos-
sible to extend text-guided image manipulation using our trained
model. We confirmed it through the following process. First, mask
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Figure 7: Results of our proposed model on CUB-200-2011
(first and second rows) and Oxford-102 (third and fourth
rows) datasets. Corrupted (left), generated (middle), and
ground-truth (right) images are presented.

Figure 8: Results of our proposedmodel onMS-COCODataset.
Corrupted (left), generated (middle), and ground-truth (right)
images are presented.

the part of the image we want to manipulate. Second, provide a tex-
tual description of the anticipated image post-manipulation. Third,
feed the masked image and text into the model.

We presented two different results when two different sentences
were inserted into each image. As shown in Fig. 9, the first and
second examples utilize different images and masks to show color
and size variations, as well as the inclusion of relevant semantic
information in generated images. The results show the ability to

Text (a): "A thin bird with blue and red breast."
Text (b): "A fat bird with green breast."

Text (a): "A tiny bird with blue heads and short blue tail."
Text (b): "A tiny bird with yellow heads and long black tail."

Figure 9: Generatated images with different text guidance.

accurately locate and generate modifications based on the pro-
vided text description. This experiment shows that it is possible to
generate natural images that are semantically consistent with any
arbitrary mask, and it indicates the potential for expansion into
image manipulation.

4.7 Analysis of Performance across Varied Mask
Ratios

Our goal is to develop a robust model capable of effectively recon-
structing images corrupted by various sizes and shapes encountered
in real-world scenarios. Therefore, we evaluated the performance
of irregular random masks across different ratio ranges 20%-30%,
30%-40%, 40%-50%, and 20%-50%. As shown in Table 4, the FID and
KID metrics steadily worsen as the mask ratio increases from 20%
to 50%. This is an unavoidable result, as the available clues for
predicting the corrupted regions diminish as the mask size grows
larger. However, TDA and our model demonstrated relatively ro-
bust performance and ours achieved the best performance across
all mask ratio ranges on the FID and KID metrics.

5 CONCLUSIONS
In this study, we propose a novel model (DAFT-GAN) to address the
current challenges for text-guided image inpainting. Our approach
involves the integration of two affine transformation networks to
progressively incorporate text and image features, thereby enhanc-
ing the semantic consistency between the generated images and
associated text descriptions. Using global text features, our model
initially generates coarse results, which are subsequently refined
using spatial details, leading to an overall improvement in the qual-
ity of the generated images. Additionally, we propose SMC blocks
to reduce information leakage of uncorrupted features by encoding
corrupted and uncorrupted regions of the masked image separately.
Strikingly, we demonstrate that our proposed method outperforms
existing methods in terms of both qualitative and quantitative eval-
uations. Our contributions represent significant advancements in
text-guided image inpainting and pave the way for further research
in the field of text-guided image inpainting.
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