
Under review as a conference paper at ICLR 2024

REWARD ADAPTATION VIA Q-MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce reward adaptation (RA), the problem where the learning
agent adapts to a target reward function based on one or multiple existing behaviors
learned a priori based on their corresponding source reward functions, providing
a new perspective of modular reinforcement learning. Reward adaptation has
many applications, such as adapting an autonomous driving agent that can already
operate either fast or safe to operating both fast and safe. Learning the target
behavior from scratch is possible but inefficient given the source behaviors available.
Assuming that the target reward function is a polynomial function of the source
reward functions, we propose an approach to reward adaptation by manipulating
variants of the Q function for the source behaviors, which are assumed to be
accessible and obtained when learning the source behaviors prior to learning the
target behavior. It results in a novel method named “Q-Manipulation” that enables
action pruning before learning the target. We formally prove that our pruning
strategy for improving sample complexity does not affect the optimality of the
returned policy. Comparison with baselines is performed in a variety of synthetic
and simulation domains to demonstrate its effectiveness and generalizability.

1 INTRODUCTION

Reinforcement Learning (RL) Watkins (1989); Sutton & Barto (2018) represents a class of learning
methods that allow agents to learn from interacting with the environment. RL has demonstrated great
successes in simulation domains such as Atari games Mnih et al. (2015), MuJoCo, board games
(chess Campbell et al. (2002), Go Silver et al. (2016)), etc. However, applying RL to real-world
problems is still challenging since the agents are often required to interact with the physical world to
learn, which can be expensive.

The key to address such a problem is to reduce (online) sample complexity, which can often be
achieved in one of the following ways in RL: 1) learning optimization, 2) transfer learning (including
domain adaptation), 3) model reuse, and, more recently, 4) offline RL. In this paper, we introduce
Reward Adaptation (RA), the problem where the learning agent adapts to a target reward function
given one or multiple existing behaviors learned a priori with their corresponding source reward
functions. RA has many useful applications, such as adapting an autonomous driving agent to drive
fast and safe when it already knows how to operate either fast or safe. The core idea of our approach
to RA is to leverage “knowledge” about the existing behaviors to learn the target behavior. From
this aspect, our approach bears similarities with model reuse, and contributes a unique perspective to
modular RL. As a result, our approach can benefit from a repository of source behaviors to create new
and potentially more complex target behaviors. In this work, we restrict to behaviors with the same
discrete state and action spaces but different reward functions. RA may also be viewed a special form
of transfer learning where the knowledge from the source domains is used to expedite learning in the
target domain, although not so directly as in transfer learning. Furthermore, in contrast to domain
adaptation Peng et al. (2018); Eysenbach et al. (2020) in transfer learning, we assume access to the
target domain during learning and are given only learned behaviors in the source domains (i.e., no
access to the source domains while learning the target).

To better conceptualize the RA problem, consider a grid-world as shown in Fig. 1, which is an
expansion of the Dollar-Euro domain described in Russell & Zimdars (2003). In this domain,
the agent can move to any of its adjacent locations at any step. The agent’s initial location is
colored in yellow and the terminal locations are colored pink or green, which correspond to the
two different reward functions (i.e., collecting dollars or euros), respectively. The terminal lo-

1

Under review as a conference paper at ICLR 2024

cations with a single color return a reward of 1.0 in their reward functions, respectively, and
the terminal location with split colors returns a reward of 0.6 under both reward functions. In
RA, we assume that the optimal behavior under each such reward function is given, referred to
as a source behavior. An example of a target domain is characterized by a target reward func-
tion that considers both dollars and euros. Although the problem setting resembles that of Q-
Decomposition Russell & Zimdars (2003), the focus of Q-Decomposition is to learn under each
source reward function independently while constructing the target behavior. In contrast, RA is
focused on how to leverage the source behaviors that are available while learning the target behavior.

Figure 1: The Dollar-Euro domain.

Learning the target behavior from scratch is possible but in-
efficient. Instead, we propose an approach to reward adapta-
tion named “Q-Manipulation”. We assume that the learning
agent maintains two variants of the Q function (referred to as
Q and Q-min) for each source behavior: they are computed
a priori when the source behavior is learned. We note that
all RL methods using value function estimates in learning
have access to Q and, with minor modifications, to Q-min as
well (more details later). We further assume that the target
reward function is a polynomial function of the source re-
ward functions. The Q and Q-min’s under the source reward
functions are used to compute an upper and lower bounds
of the expected return under the target reward function. We then tighten the bounds using reward
shaping to maximize pruning opportunities. Such a process enables us to prune a substantial number
of actions before learning the target without affecting the optimality of the returned policy, leading
to guaranteed improvements in sample complexity. We remark that even though computing and
maintaining the Q and Q-min for each source behavior requires additional resources, its benefits
largely outweigh the costs for practical applications, especially in situations where accessing the
target domain is expensive (e.g., when the rewards in the target domain are provided by users).

Our core contributions are: We introduce the problem of reward adaptation. To the best of our
knowledge, other than approaches that compose complex behaviors from existing behaviors, such
as in hierarchical and composable RL Simpkins & Isbell (2019); Doroodgar & Nejat (2010) (see
related work), little effort has been invested to exploit these available behaviors. Thus, our work
contributes a unique perspective to modular RL. Reward adaptation may also be viewed as a special
form of transfer learning with a focus on adapting the reward function. We propose Q-Manipulation
for reward adaptation to expedite learning the target behavior given the source behaviors. It reuses
knowledge from the source behaviors in an indirect way during learning. We prove that our approach
does not affect the optimality of the returned policy and thus guarantees improvements in sample
complexity. Our evaluations provide further insights into the effectiveness of Q-Manipulation with
respect to several baselines and its ability to generalize to various reward adaptation settings.

2 METHODOLOGY
First, we briefly introduce the problem setting of reinforcement learning (RL) before defining reward
adaptation (RA). In this work, we assume discrete state and action spaces. Extension to continuous
state and action spaces is discussed in Sec. 5 and will be addressed in our future work. In RL, the task
environment is modeled as an MDP M = (S,A, T,R, γ), where S is the state space, A is the action
space, T : S ×A× S → [0, 1] is the transition function, R : S ×A→ R is the reward function, and
γ is the discount factor. At every step t, the RL agent observes state st and takes an action at ∈ A.
As a result, the agent progresses to state st+1 with probability T (st, at, st+1), and receives a reward
rt. The goal is to search for a policy that maximizes the expected cumulative reward. We use π to
denote a policy as a mapping from S to A. The Q function of the optimal policy π∗ is defined by:

Q∗
R(s, a) = max

π

[
E

[∞∑
t=0

γtrt|s0 = s, a0 = a, π

]]
(1)

Our solution to RA is related to a variant of the Q function, which we refer to as Q-min (note the min
operator below), denoted by Qµ

R:

Qµ
R(s, a) = min

π

[
E

[∞∑
t=0

γtrt|s0 = s, a0 = a, π

]]
(2)

2

Under review as a conference paper at ICLR 2024

Intuitively, Qµ
R above represents the Q function of the policy that leads to the minimum expected

return, in contrast to Q∗
R that corresponds to the maximum expected return. Furthermore, the

following lemma establishes a connection between Qµ
R and a max form of Q. Throughout the paper,

proofs, if omitted, are included in the appendix.

Lemma 1.
Qµ

R(s, a) = −Q
∗
−R(s, a) (3)

where Q∗
−R(s, a) denotes the Q function of the optimal policy in Eq. 1 under −R.

2.1 REWARD ADAPTATION

Definition 1 (Reward Adaptation (RA)). Given a set of source behaviors trained under an MDP
M \ R = (S,A, T, ·, γ) with different source reward functions, compute the optimal policy for a
target reward function under M \R.

In Def. 1 above, note that we assume the same state and action spaces for the source and target
behaviors. To derive a solution to RA while utilizing the information encoded in the source behaviors,
we propose Q-Manipulation, an action pruning strategy that ensures that only unnecessary actions
are pruned. To achieve this, we aim to compute an upper and lower bounds of the expected return
under the target reward function based solely on information from the source behaviors. Intuitively, if
the lower bound of an action a is higher than the upper bound of action â under a state s, â can be
pruned. In Q-Manipulation, we derive these bounds based on manipulating variants of the Q function
for the source behaviors to maximize pruning opportunities.

In particular, we assume that the agent obtains both Q and Q-min (or equivalently Q∗
R and Q∗

−R)
when learning the corresponding source behavior and maintains them for future use. Next, we will
show how to derive an upper and lower bound of the expected return in the target domain using these
Q’s from the source domains given a general relationship known between the reward functions.

Definition 2 (Reward Adaptation with Q Variants). Given a reward adaptation problem where Q∗
Ri

and Q∗
−Ri

are accessible for each source domain indexed by i, compute the optimal policy under a
target reward function that is a polynomial function of the source reward functions:

R =
∑

i1+i2+i3+...in≤m

ai1i2...inR
i1
1 Ri2

2 · · ·Rin
n (4)

where Ri is the source reward function for the ith domain.

We facilitate a formal treatment of RA by focusing on cases when the relationship in Eq. 4 is exact.
In our evaluation, however, we analyze the more general case when the available source reward
functions can only be used to approximate the target reward function.

2.2 DERIVING UPPER AND LOWER BOUNDS UNDER R

To derive bounds under R, we start with simpler forms of Eq. 4 and then combine the results. In
the following, we denote the upper bound as Q∗

R and the lower bound as Qµ
R. We refer to a reward

function as positive when all rewards are non-negative. We also assume in the following that the
influence of discounting can be safely ignored, e.g., when MDPs with absorbing states are considered.

Lemma 2. When R = Rm and R is positive, an upper and lower bounds of the expected return
underR are given, respectively, by:

Q∗
R = Q∗

R
m ≥ Q∗

Rm = Q∗
R (5)

Qµ
R = −|Q∗

−R|m ≤ −Q∗
−Rm = Qµ

R (6)

Lemma 3. WhenR = Ri ×Rj , and both Ri and Rj are positive, an upper and lower bounds of the
expected return underR is given, respectively, by:

Q∗
R = Q∗

Ri
×Q∗

Rj
≥ Q∗

RiRj
= Q∗

R (7)

Qµ
R = −|Q∗

−Ri
| × |Q∗

−Rj
| ≤ −Q∗

−RiRj
= Qµ

R (8)

3

Under review as a conference paper at ICLR 2024

Lemma 4. WhenR = aRi + bRj (a > 0, b > 0), an upper and lower bounds of the expected return
underR are given, respectively, by:

Q∗
R = aQ∗

Ri
+ bQ∗

Rj
≥ Q∗

aRi+bRj
= Q∗

R (9)

Qµ
R = −(aQ∗

−Ri
+ bQ∗

−Rj
) ≤ −Q∗

−(aRi+bRj)
= Qµ

R (10)

Theorem 1. Given R in the form of Eq. 4 where every ai1i2...in > 0 and every source reward
function is positive, an upper and lower bounds of the expected return underR are given, respectively,
by:

Q∗
R =

∑
i1+i2+i3+...in≤m

ai1i2...in |Q∗
R1
|i1 × |Q∗

R2
|i2 × . . .× |Q∗

Rn
|in ≥ Q∗

R (11)

Qµ
R = −

 ∑
i1+i2+i3+...in≤m

ai1i2...in |Q∗
−R1
|i1 × |Q∗

−R2
|i2 × . . .× |Q∗

−Rn
|in

 ≤ Qµ
R (12)

The upper and lower bounds above are tight in the sense that the equalities may hold. Note that every
source reward function is assumed to be positive in Theorem 1. We evaluated the robustness of our
approach in the appendix when such an assumption does not hold. It is worth noting that, when
R is simply a linearly weighted sum of the source reward functions, this assumption is no longer
required and all the absolute operators in Theorem 1 may be removed (see Lemma 4). This allows
our approach to apply to any source reward functions whenR assumes a linear form.

2.3 REWARD SHAPING FOR “TIGHTENING” THE BOUNDS

Intuitively, the smaller the distance between the bounds is, the more pruning opportunities there may
be. Even though we cannot tighten the bounds without additional information, in the following, we
show that we can “effectively” achieve the same effect by reward shaping Ng et al. (1999). Reward
shaping has been widely used to support more informative reward functions to guide learning. In our
case, however, we apply it with the objective to reduce the distance between the computed bounds.

A shaping function of a reward function R has the form of F = γ ∗ Φ(s′)− Φ(s) following Ng et al.
(1999), where Φ is referred to as a potential function. The shaped reward function, denoted by RF ,
satisfies RF = R+ F . Applying reward shaping this way does not affect the optimal policy, i.e., the
optimal policy remains invariant. Next, we first establish the effects of applying reward shaping to
the target reward functionR on Q∗

R and Qµ
R below.

Lemma 5. Q∗
R and Qµ

R after applying reward shaping toR with the shaping function F are given,
respectively, by:

Q∗
RF

(s, a) = Q∗
R(s, a)− Φ(s) (13)

Qµ
RF

(s, a) = Qµ
R(s, a) + Φ(s) (14)

Proof:
Q∗

RF
(s, a) = Q∗

R(s, a)− Φ(s) [Ng et al. (1999)]

Qµ
RF

(s, a) = −
[
Q∗

−RF
(s, a)

]
[Lemma 1]

= −
[
Q∗

−R(s, a)− Φ(s)
]

= −Q∗
−R(s, a) + Φ(s)

= Qµ
R(s, a) + Φ(s)

It is crucial to observe that reward shaping updates Q∗
R and Qµ

R in the opposite directions. Since
the upper and lower bounds in Theorem 1 will be influenced in the same way by reward shaping, it
can be used to reduce the distance between the bounds, effectively tightening them for more pruning
opportunities.

To compute the shaping function, we apply a linear programming formulation. More specifically, we
minimize the sum of distances between the bounds after shaping, subject to the constraint that the

4

Under review as a conference paper at ICLR 2024

shaped upper bound remains greater than or equal to the shaped lower bound. This constraint ensures
that the distances between the bounds are always positive. More formally,

min
Φ(s)

∑
s,a

Q∗
R(s, a)−Qµ

R(s, a)− 2 ∗ Φ(s)

s.t. ∀s ∈ S,∀a ∈ A

Q∗
R(s, a)− Φ(s) ≥ Qµ

R(s, a) + Φ(s)

(15)

Note that the optimization above does not directly maximize the pruning opportunities (which is
more difficult). In Q-Manipulation, we use the shaped bounds for action pruning and only use the
remaining set of actions under each state when learning the target.
Theorem 2 (optimality). Given a problem of reward adaptation with Q variants (Def. 2), the optimal
policies underR remain invariant under Q-Manipulation.

Proof. Let

Ap(s) = {â| ∃a Qµ
RF

(s, a) > Q∗
RF

(s, â); a ̸= â}

Ã(s) = A(s) \Ap(s)

where Ap(s) represents the set of pruned actions under set s and Ã represents the remaining set of
actions. To retain all optimal policies, it must be satisfied that none of the optimal actions under each
state are pruned. Assuming that a pruned action â under s is an optimal action, we must have

∀a Q∗
RF

(s, a) ≤ Q∗
RF

(s, â)

Given that Q-Manipulation only prunes an action â under s when ∃a Qµ
RF

(s, a) > Q∗
RF

(s, â), we
can derive that

Qµ
RF

(s, a) ≥ Qµ
RF

(s, a) > Q∗
RF

(s, â) ≥ Q∗
RF

(s, â) ≥ Q∗
RF

(s, a),

resulting in a contradiction that
Qµ

RF
(s, a) > Q∗

RF
(s, a)

As a result, we know that all optimal actions and hence policies are retained.

3 EVALUATION

In this section, the primary objectives include analyzing the performance of Q-Manipulation (Q-M)
and substantiating the claimed benefits of Q-M for learning the target behavior. Since the focus here
is on sample complexity, we compare Q-M with several baselines under a simple learning framework,
the basic temporal difference learning in discrete domains Sutton & Barto (2018). The baselines
chosen are those that share certain characteristics with our Q-M implementation (running Q-learning).
In particular, we compare Q-M with the traditional Q-learning (Q), Q-Decomposition (Q-D) that
leverages reward decomposition during learning Russell & Zimdars (2003), and Q-learning with
automatic reward shaping Marthi (2007) (R-S). For R-S, the shaping function is given by the value
function of an abstract MDP that is either automatically (for synthetic domains) or manually crafted
(for simulation domains) from the original MDP. K-means clustering was used to auto-generate
abstract MDPs with k = |S|/1.4 based on their adjacency matrices.

We evaluated with various simulation and synthetic domains to validate the effectiveness and general-
izability of Q-M. Additional results are reported in the appendix. For all evaluations, we averaged
over 20 runs. The learning rate was set at 0.1 with ϵ-greedy exploration where ϵ was decayed over
time. For Q-M, we pre-train the source behaviors to obtain both Q∗

R and Q∗
−R. Even though Q-M has

access to additional information, we do not consider the extra costs (for learning Q∗
−R or equivalently

Q-min) since they are assumed to be incurred before considering the task in hand (i.e., learning the
target behavior) and inexpensive to obtain when learning the source behaviors. See Sec. 5 for more
discussion. Note also that since Q-D only works in domains where the target reward function is a
linear sum of the source reward functions, it is missing in some of our evaluations and comparisons.
Next, we briefly describe the domains.

5

Under review as a conference paper at ICLR 2024

3.1 DOMAIN DESCRIPTION

Dollar-Euro: A 45 states and 4 actions grid-world domain as illustrated in Fig. 1. Source Domain 1
with R1 (collecting dollars): The agent obtains a reward of 1.0 for reaching the location labeled
with “$”, and 0.6 for reaching the location labeled with both $ and C. Source Domain 2 with R2

(collecting euros): The agent obtains a reward of 1.0 for reaching the location labeled with C, and
0.6 for reaching the location labeled with both $ and C. Target Domain with R: In the original
domain,R = R1 +R2. We also study a case whenR = R4

1 +R3
2. The living reward is 0.

Frozen Lake: A standard toy-text gym environment with 16 states and 4 actions. An episode
terminates when the agent falls into the frozen lake or reaches the goal. Source Domain 1 with R1

(seeking goal): The agent is rewarded 10 for reaching the goal. Source Domain 2 with R2 (avoiding
falling): The agent is penalized by −1 for falling into the lake. Target Domain withR: Avoid the
frozen lake and reach the goal location,R = R1 +R2. The living reward is 0.

Race Track: A 49 states and 9 actions grid-world domain. The 9 actions correspond to adding
−1, 0, or +1 to the current velocity while going forward, turning left, or turning right. An initial
location, a goal location, and obstacles make up the race track. An episode ends when the agent
reaches the goal position, crashes, or exhausts the total number of steps. Source Domain 1 with
R1 (avoiding obstacles): The agent obtains a negative reward of −10 for collision and otherwise
0. Source Domain 2 with R2 (seeking goal): The agent obtains a reward of 100 for reaching the
goal and otherwise 0. Source Domain 3 with R3 (minimizing running steps): The agent obtains a
negative reward of −1 for each step. Target Domain withR: Reach the goal in the least number of
steps while avoiding all obstacles: R = R1 +R2 +R3.

Auto-Generated Domains: To analyze how Q-M scales with increasing state and action spaces,
these domains are constructed by randomly generating MDPs. Each MDP has an action space size
between 4 and 20, a state space size between |A| and 100, a transition matrix, and a terminal state.
The reward functions of the source behaviors are also randomly generated. For each source domain,
we randomly select a set of states of size between [0, |S|], each state with a negative reward randomly
generated between [-20, 0]; the remaining states have a reward of 0. WhenR is a non-linear function
of the source reward functions, we generate positive rewards randomly between [0, 20]. Reaching the
terminal state gives a positive reward randomly generated from [0, 100]. We generated 6 domains
under these settings and studied various relationships between the target and source reward functions.
Larger domains were generated similarly for additional results reported in the appendix.

3.2 RESULTS

Results summarizing all the domains presented here, actions pruned by Q-M, and time performances
for the different methods are presented in Tab. 1. We can see that Q-M pruned out a substantial
number of actions under all domains evaluated, ranging from 7.8% to 42.7% of the original set of
actions. The pruning efficiency does not seem to be directly correlated with the form of R or the
size of the domain, which we will investigate more in future work. Q-M is comparable with the
baselines in terms of time performance even with the computation time for the linear programming
incorporated. These results validated Q-M as an effective methodology for pruning unnecessary
actions before learning.

To analyze the effects of action pruning, we compared the convergence of the different methods. The
results for whenR is a linear function of the source functions are presented in Figs. 2 (simulation)
and 3 (synthetic). We can see that action pruning expedited convergence such that Q-M outperformed
the baselines significantly in almost all domains evaluated. We also note that the convergence rate
was observed to be directly related to the pruning efficiency, which aligns with our intuition. For
example, only 7.8% of actions were pruned in Frozen Lake, resulting in the smallest improvement
among all domains. To better see this, we also visualized the percentages of actions pruned under
each state for the three simulation domains (see Fig. 2). Intuitively, actions pruned from different
states may have different significance for convergence. For Q-M, the heat maps reveals that action
pruning occurred more around the initial and goal states. We will further analyze this in future work.

Convergence comparisons for domains where R assumes a non-linear form are presented in Fig.
4, with an action pruning heat map for the only simulation domain evaluated with a non-linear R.
Similar results were observed.

6

Under review as a conference paper at ICLR 2024

Environment R |S| |A|
Actions Time (s)

Pruned Q Q-D Q-M R-S

Dollar Euro R1 +R2 45 4 32 0.1 0.1 0.23 0.1

Dollar Euro R4
1 +R3

2 45 4 28 28.3 - 30.0 28.29

Frozen Lake R1 +R2 16 4 5 3.8 3.89 3.7 4.1

Race track R1 +R2 +R3 49 9 51 75.58 41.64 77.13 53.34

Auto-gen 1 R1 +R2 26 4 35 0.92 1.11 0.88 0.97

Auto-gen 2 R1 +R2 57 12 167 1.97 3.5 2.27 2.15

Auto-gen 3 R1 +R2 56 14 242 1.66 3.7 1.73 1.92

Auto-gen 4 R1 +R2 +R3 +R4 99 18 247 1.5 5.6 1.6 3.09

Auto-gen 5 R3
1 +R3

2 70 4 34 1.45 - 2.7 1.79

Auto-gen 6 R1 ×R2 +R3 +R4 80 17 581 1.49 - 1.41 2.04

Table 1: Summary of domains, actions pruned by Q-M, and time performance comparisons. For Q-M,
the reported times include that for computing the shaping reward function using linear programming.

Figure 2: Convergence comparisons (top row) and action-pruning heat maps (bottom row) for the
simulation domains whereR has a linear form. In the heat maps, the lighter blue the location is, the
smaller the set of actions is left. The flag symbols represent goal locations, agent symbols represent
the initial locations, and locations blocked by obstacles are colored black.

We also evaluated the performance of Q-M when the target reward function can only be approximated
by the source reward functions. The domain is an auto-generated MDP. In the base case,R = R1+R2.
We then add different levels of Gaussian noise to R to create new target domains where Q-M is
only allowed to approximate the new target reward function using R1 and R2 via linear regression.
The level of noise as the standard deviation is set in proportion to the original R’s mean range for
generation (i.e., 10). It is important to note that the theoretical guarantee of optimality is lost in such
an evaluation setting. We compared Q-M (given the approximate target function), shown as solid
lines, with Q learning (given the true target function), shown as dashed lines, in each case in Fig. 5.
Q-M started to deviate from the optimal solution substantially at 4% noise level. One of the problems
here is the limitation of linear regression. We will study the robustness of Q-M in future.

4 RELATED WORK

Reward and Q-Decomposition: Reward structure can significantly influence the effectiveness of
an RL agent Silver et al. (2021). While reward engineering and decomposition is a difficult task,

7

Under review as a conference paper at ICLR 2024

Figure 3: Convergence comparisons for the synthetic domains whereR has a linear form.

Figure 4: Convergence comparisons and a heat map (Dollar-Euro) for domains where R has a
non-linear form. Q-D is not applicable here due to the requirement of a linear form.

there are prior approaches Lin et al. (2019), Marthi (2007), Ciardo & Trivedi (1993) suggesting novel
ways to exploit reward structure and decompose the reward function to better learn. For example,
Q-Decomposition Russell & Zimdars (2003) studied a similar problem as ours. It aims to learn
a behavior under a reward function that is the linear sum of multiple sub-reward functions. Each
sub-agent for such a sub-reward function undergoes its own learning process and supplies its Q values
to an aggregator. Q-Decomposition works only with linear sums. The idea has also been extended
to work with Deep Q Networks (DQN) Van Seijen et al. (2017). There, it is argued that reward
decomposition enables faster learning as separate value functions only depend on a subset of input
features, resulting in simpler domains. Similar ideas have been developed in Sutton et al. (2011),
Sprague & Ballard (2003), etc. While these ideas are inspirational to our work, they are akin to
learning from scratch. Model reuse and modular design are not the focus there.

Figure 5: Convergence with different noise levels
in target reward function.

Multi-Objective Reinforcement Learning:
Multi-Objective Reinforcement Learning
(MORL) Liu et al. (2014), Sprague & Ballard
(2003), Roijers et al. (2013), Vamplew et al.
(2011) is a branch of RL that deals with learning
trade-offs between multiple objectives. A
common approach to MORL is to search for the
Pareto frontier. A simple way to combine the
objectives uses linear scalarization (Van Moffaert
et al. (2013)). Often, the domain expert decides
the weights for the objectives. Limitations (Vamplew et al. (2008)) have been reported and solutions
to counter them include using the Chebyshev function. Our approach can be considered as a special
case of MORL where the different objectives can be combined in complex ways. Furthermore,
our approach focuses at improving sample complexity via action pruning by utilizing the existing
behaviors learned a priori for the individual objectives.

Hierarchical Reinforcement Learning: Hierarchical RL (HRL) Dietterich (1998), Vezhnevets
et al. (2017), Barreto et al. (2020), Bacon et al. (2017), Barto & Mahadevan (2003), Xiaoqin et al.
(2009), Cai et al. (2013), Doroodgar & Nejat (2010) is the process of learning based on a hierarchy of

8

Under review as a conference paper at ICLR 2024

behaviors, which is often assumed to be known or learned. A hierarchical structure makes it possible
to divide a learning problem into sub-problems, sometimes in a recursive manner. At any point in
time, a hierarchy of behaviors may be activated and the behavior at the lowest level determines the
output behavior. In HRL, the interaction between the behaviors is often assumed to be simple, i.e.,
sequential execution. In contrast, the interaction between the target behavior and source behaviors in
our work can be arbitrarily complex through the correlations between their reward functions. In this
aspect, our work contributes a novel perspective to model reuse.

Transfer Learning and Multi-Task Deep Reinforcement Learning: Transfer learning is the
process of learning a target task by leveraging experiences from source tasks. For example, AlphaGo
Silver et al. (2016) uses this technique to learn playing Go from other games. Transfer learning is
also applied to natural language processing Andreas et al. (2016); Bahdanau et al. (2016); Chang
et al. (2015). As a transfer learning method for reinforcement learning, multi-task reinforcement
learning (Vithayathil Varghese & Mahmoud (2020)) deals with learning from multiple related tasks
simultaneously to expedite learning. At regular intervals, individual learning agents learn from a
related task and share (D’Eramo et al. (2019)) their weights with the global network. The global
network also periodically shares its parameters with individual learning agents. Multi-task learning
focuses on the combination of network parameters to share the knowledge learned. Our approach also
deals with knowledge transfer from the source to the target domains: Q values in the source domains
are used to prune actions in the target domain to guarantee better sample complexity. In this regard, it
represents the class of indirect transfer methods since the agent must “infer useful knowledge” from
the source behaviors before using it.

Offline Reinforcement Learning: In contrast to traditional RL methods, offline RL Levine et al.
(2020) aims to learn decision-making strategies from offline data without any online interaction. As a
result, offline RL can leverage the large amount of training data collected offline. In comparison with
Q-M, offline RL is based on the similar ideology of information reuse with a focus on data instead of
the previously trained models. One of the challenges that offline RL must deal with is distribution
shift. Results from there may be leveraged by Q-M when learning the Q functions (to be maintained
for future uses) for the source domains to achieve sample reuse.

5 LIMITATIONS & CONCLUSIONS
Our proposed approach to reward adaptation (Q-Manipulation) is limited in many aspects and opens
up numerous future opportunities. First, linear programming formulation is a bottleneck. As the
numbers of states and actions increase, the number of linear constraints also increases and the
approach would quickly become infeasible. We will need to consider approximation methods (such
as using abstractions) that still guarantee optimality. In a similar vein, extending Q-Manipulation to
continuous domains poses a significant challenge.

Our approach requires both Q∗ and Qµ to be maintained for the source behaviors. Learning Qµ

would increase the learning cost even though source domains are assumed to be less expensive while
accessible. It would be interesting to see how sample reuse can be achieved to reduce the cost. This
is especially useful for including the learned target behavior into the repository of source behaviors
for learning other target behaviors. For further improvement, we can consider whether action pruning
can be achieved given only Q∗ and π∗. Our work assumes that the target reward function is an exact
polynomial function of the source reward functions. In the case this information is unknown or we
would only be able to use the available source functions to “approximate” the target function, it would
be interesting to study the effectiveness of such approximations (see Sec. 3 for an initial study). A
more ambitious direction would be to relax the assumption of the shared state and action spaces to
allow arbitrary different source behaviors to be leveraged when learning a target behavior.

In this paper, we introduced reward adaptation, the problem where the learning agent adapted to a
target reward function based on the existing source behaviors. Under a few assumptions, we proposed
an approach to reward adaptation, referred as Q-Manipulation. The key was to maintain two different
Q functions for each of the source behaviors and use them with reward shaping for action pruning
before learning the target behavior. We formally proved that our approach retained optimality and thus
guaranteed better sample complexity. Empirically, we showed that Q-Manipulation was substantially
more efficient than the baselines, generalizable to a variety of domains with different forms of the
target reward function. As such, our approach to reward adaptation represents a valuable contribution
to advancing reinforcement learning.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose neural
networks for question answering. arXiv preprint arXiv:1601.01705, 2016.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement
learning with generalized policy updates. Proceedings of the National Academy of Sciences, 117
(48):30079–30087, 2020.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1):41–77, 2003.

Yifan Cai, Simon X Yang, and Xin Xu. A combined hierarchical reinforcement learning based
approach for multi-robot cooperative target searching in complex unknown environments. In 2013
IEEE symposium on adaptive dynamic programming and reinforcement learning (ADPRL), pp.
52–59. IEEE, 2013.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence, 134
(1-2):57–83, 2002.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume, and John Langford. Learning to
search better than your teacher. In International Conference on Machine Learning, pp. 2058–2066.
PMLR, 2015.

Gianfranco Ciardo and Kishor S Trivedi. A decomposition approach for stochastic reward net models,
1993.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowledge
in multi-task deep reinforcement learning. In International Conference on Learning Representa-
tions, 2019.

Thomas G Dietterich. The maxq method for hierarchical reinforcement learning. In ICML, volume 98,
pp. 118–126. Citeseer, 1998.

Barzin Doroodgar and Goldie Nejat. A hierarchical reinforcement learning based control architec-
ture for semi-autonomous rescue robots in cluttered environments. In 2010 IEEE International
Conference on Automation Science and Engineering, pp. 948–953. IEEE, 2010.

Benjamin Eysenbach, Swapnil Asawa, Shreyas Chaudhari, Sergey Levine, and Ruslan Salakhutdinov.
Off-dynamics reinforcement learning: Training for transfer with domain classifiers. arXiv preprint
arXiv:2006.13916, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Zichuan Lin, Li Zhao, Derek Yang, Tao Qin, Tie-Yan Liu, and Guangwen Yang. Distributional reward
decomposition for reinforcement learning. Advances in neural information processing systems, 32,
2019.

Chunming Liu, Xin Xu, and Dewen Hu. Multiobjective reinforcement learning: A comprehensive
overview. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(3):385–398, 2014.

Bhaskara Marthi. Automatic shaping and decomposition of reward functions. In Proceedings of the
24th International Conference on Machine learning, pp. 601–608, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

10

Under review as a conference paper at ICLR 2024

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287. Citeseer, 1999.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Stuart J Russell and Andrew Zimdars. Q-decomposition for reinforcement learning agents. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 656–663,
2003.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

Christopher Simpkins and Charles Isbell. Composable modular reinforcement learning. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 33, pp. 4975–4982, 2019.

Nathan Sprague and Dana Ballard. Multiple-goal reinforcement learning with modular sarsa (0).
2003.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pp. 761–768, 2011.

Peter Vamplew, John Yearwood, Richard Dazeley, and Adam Berry. On the limitations of scalarisation
for multi-objective reinforcement learning of pareto fronts. In Australasian joint conference on
artificial intelligence, pp. 372–378. Springer, 2008.

Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan Dekker. Empirical
evaluation methods for multiobjective reinforcement learning algorithms. Machine learning, 84
(1):51–80, 2011.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforcement
learning: Novel design techniques. In 2013 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), pp. 191–199. IEEE, 2013.

Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey Tsang.
Hybrid reward architecture for reinforcement learning. Advances in Neural Information Processing
Systems, 30, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pp. 3540–3549. PMLR, 2017.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 9(9):1363, 2020.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Du Xiaoqin, Li Qinghua, and Han Jianjun. Applying hierarchical reinforcement learning to computer
games. In 2009 IEEE International Conference on Automation and Logistics, pp. 929–932. IEEE,
2009.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 LEMMA 1:

Qµ
R(s, a) = min

π

[
E

[∞∑
t=0

γtrt|s0 = s, a0 = a, π

]]

=−max
π

[
E

[∞∑
t=0

−γtrt|s0 = s, a0 = a, π

]]
= −Q∗

−R(s, a)

(16)

A.2 DERIVATION FOR BOUNDS OF DIFFERENT FORMS OF R

Lemma 2: When R = Rm and R is positive, an upper and lower bounds of the expected return
underR are given, respectively, by:

Q∗
R = Q∗

R
m ≥ Q∗

Rm = Q∗
R (17)

Qµ
R = −|Q∗

−R|m ≤ −Q∗
−Rm = Qµ

R (18)

Proof. Ignoring discounting, Q∗
R is specified as:

Q∗
R = max

π
[E [r0 + r1 + . . .+ rn|s0 = s, a0 = a, π]] (19)

and
Q∗

Rm = max
π

[E [rm0 + rm1 + . . .+ rmn |s0 = s, a0 = a, π]] (20)

Denote the optimal policy that corresponds to Q∗
Rm as π∗

m. We know that Q∗
R ≥ QR(π

∗
m) (i.e., the Q

function under reward R and policy π∗
m). Given that R is positive, we have that

(r0 + r1 + . . .+ rn)
m ≥ rm0 + rm1 + . . .+ rmn (21)

Given that QR(π
∗
m) and Q∗

Rm follow the same policy under the same domain, we know that

QR(π
∗
m)m ≥ Q∗

Rm (22)
As a result, we have that

(Q∗
R)

m ≥ Q∗
Rm (23)

For the lower bound, given that R is positive, we know that |Q∗
−R|m ≥ 0 and Q∗

−Rm ≤ 0. Hence,
|Q∗

−R|m ≥ Q∗
−Rm .

Lemma 3: WhenR = Ri ×Rj , and both Ri and Rj are positive, an upper and lower bounds of the
expected return underR is given, respectively, by:

Q∗
R = Q∗

Ri
×Q∗

Rj
≥ Q∗

RiRj
= Q∗

R (24)

Qµ
R = −|Q∗

−Ri
| × |Q∗

−Rj
| ≤ −Q∗

−RiRj
= Qµ

R (25)

Proof. We know the following holds with positive rewards:∑
ri ×

∑
rj ≥

∑
rirj (26)

Denote the optimal policy that corresponds to Q∗
RiRj

as π∗
ij . We know that Q∗

Ri
≥ QRi

(π∗
ij) and

Q∗
Ri
≥ QRj

(π∗
ij). Hence, ignoring discounting, we know that

Q∗
Ri
×Q∗

Rj
≥ QRi

(π∗
ij)×QRj

(π∗
ij) ≥ Q∗

RiRj
(27)

For the lower bound, given that R is positive, we know that |Q∗
−Ri
| × |Q∗

−Rj
| ≥ 0 and Q∗

−RiRj
≤ 0.

Hence, |Q∗
−Ri
| × |Q∗

−Rj
| ≥ Q∗

−RiRj
.

12

Under review as a conference paper at ICLR 2024

Lemma 4: WhenR = aRi + bRj (a > 0, b > 0), an upper and lower bounds of the expected return
underR are given, respectively, by:

Q∗
R = aQ∗

Ri
+ bQ∗

Rj
≥ Q∗

aRi+bRj
= Q∗

R (28)

Qµ
R = −(aQ∗

−Ri
+ bQ∗

−Rj
) ≤ −Q∗

−(aRi+bRj)
= Qµ

R (29)

Proof. Q∗
R is specified as:

Q∗
R = max

π
[E [r0 + γr1 + . . .+ γnrn|s0 = s, a0 = a, π]] (30)

From this, we can derive that
Q∗

aR = max
π

[E [ar0 + γar1 + . . .+ γnarn|s0 = s, a0 = a, π]]

= aQ∗
R

(31)

Denote the optimal policy for Q∗
aRi+bRj

as π∗
ij , given a > 0 and b > 0, we can derive that

aQ∗
Ri

+ bQ∗
Rj
≥ aQRi(π

∗
ij) + bQRj (π

∗
ij) = Q∗

aRi+bRj
(32)

Since we do not require positive reward above, to derive a lower bound we simply replace R with
−R above, and we have

(aQ∗
−Ri

+ bQ∗
−Rj

) ≥ Q∗
−(aRi+bRj) (33)

which can then be used to derive the lower bound by multiplying both sides by −1.

Theorem 1: Given R in the form of Eq. 4 where every ai1i2...in > 0 and every source reward
function is positive, Q∗

R and Qµ
R can be derived.

Proof: We start with deriving the upper bound for ai1i2...inR
i1
1 ×Ri2

2 . . . Rin
n . Let Rik

k = R̄k , using
Lemma 3 we can obtain the following:

Q∗
ai1i2...in R̄1×R̄2...R̄n

≤ ai1i2...in |Q∗
R̄1
| × |Q∗

R̄2
| × . . .× |Q∗

R̄n
| [Lemma 3] (34)

Substituting Rik
k = R̄k in Eq. 34, we obtain

Q∗
ai1i2...inR

i1
1 ×R

i2
2 ...Rin

n
≤ ai1i2...in |Q∗

R1
|i1 × |Q∗

R2
|i2 × . . .× |Q∗

Rn
|in [Lemma 2] (35)

Now we can derive the following forR =
∑

i1+i2+i3+...in≤m ai1i2...inR
i1
1 Ri2

2 · · ·Rin
n :

Q∗
R ≤

∑
i1+i2+i3+...in≤m

ai1i2...in |Q∗
R1
|i1 × |Q∗

R2
|i2 × . . .× |Q∗

Rn
|in [Lemma 4] (36)

Similarly we can derive the lower bound:

Qµ
R = −

 ∑
i1+i2+i3+...in≤m

ai1i2...in |Q∗
−R1
|i1 × |Q∗

−R2
|i2 × . . .× |Q∗

−Rn
|in

 ≤ Qµ
R (37)

A.3 ALGORITHM

Algorithm 1 Reward Adaptation Via Q-Manipulation

1: Retrieve Q∗
Ri

and Q∗
−Ri

from each source behavior index by i

2: Compute Q∗
R and Qµ

R based on the Q and Q-min’s (Q∗
Ri

and Q∗
−Ri

’s) of the source behaviors
3: Tighten the bounds using linear programming:

min
Φ(s)

∑
s,a

Q∗
R(s, a)−Qµ

R(s, a)− 2 ∗ Φ(s)

s.t. ∀s ∈ S,∀a ∈ A

Q∗
R(s, a)− Φ(s) ≥ Qµ

R(s, a) + Φ(s)

4: Prune action: if Qµ
RF

(s, a) ≥ Q∗
RF

(s, â) under a state s, â can be pruned.
5: Perform Q-learning on target reward functionR with the remaining set of actions

13

Under review as a conference paper at ICLR 2024

A.4 ADDITIONAL RESULTS

In this section, we present additional results with synthetic domains where MDPs are auto-generated.
In Tab. 2, we present results for domains generated with larger state and action space sizes with
linearR. In Tab. 3, results for domains with non-linearR are presented where we allow the source
rewards to be both positive and negative. Note that this conflicts with the theoretical results and hence
may lead to the loss of optimality. In practice, for the domains we tested, Q-M still produced the
optimal solutions. Convergence comparisons between Q-M and the baselines under these domains are
presented in Figs. 6 and 7, respectively. Similar observations were made. These results demonstrated
that Q-M can scale to larger domains and that it is somewhat robust to the assumption concerning
positive source reward functions in the non-linear target reward function setting. We will study these
further in future work.

Figure 6: Convergence for larger synthetic domains with linear target reward function

Environment R |S| |A|
Actions Time (s)

Pruned Q Q-D Q-M R-S

Auto-gen 7 R1 +R2 92 15 288 1.43 2.71 1.19 2.04

Auto-gen 8 R1 +R2 239 22 1201 24.86 51.99 19.80 27.71

Table 2: Summary of additional domains of larger state and action space sizes, actions pruned, and
time performance comparisons. R is linear.

Environment R |S| |A|
Actions Time (s)

Pruned Q Q-D Q-M R-S

Auto-gen 9 R1 ×R2 +R3 +R4 64 18 15 5.54 - 2.18 5.19

Auto-gen 10 R3
1 +R3

2 239 22 5018 21.98 - 52.22 28.08

Auto-gen 11 R3
1 +R3

2 19 5 13 1.08 - 1.23 1.24

Auto-gen 12 R1 ×R2 +R3 +R4 58 6 247 1.27 - 1.63 1.67

Table 3: Summary of additional domains (including domains of larger state and action space sizes),
actions pruned, and time performance comparisons. R is non-linear. Source reward functions can
have both positive and negative rewards.

14

Under review as a conference paper at ICLR 2024

Figure 7: Convergence for synthetic domains with non-linear target reward function with both positive
and negative rewards

A.5 RELATIONSHIP BETWEEN Q-DECOMPOSITION AND SARSA

It is necessary to note that when the individual behaviors use the same training episodes Q-
decomposition becomes equivalent to SARSA:

n∑
j=1

Qj (st, at)←
n∑

j=1

(
1− α

(t)
j

)
Qj (st, at) +

n∑
j=1

α
(t)
j [Rj (st, at, st+1) + γQj (st+1, π(st+1))]

Q (st, at)←
(
1− α(t)

)
Q (st, at) + α(t) [R (st, at, st+1) + γQ (st+1, π(st+1))]

Here, Q-decomposition and SARSA both follow the global behavior’s policy π(st+1) after taking
action at in state st. D-Decomposition does not have any guarantees for performance improvement
over traditional approaches in terms of sample complexity but has been demonstrated to have limited
positive effects. Also, its application is restricted to linear decomposition of the reward function.

15

	Introduction
	Methodology
	Reward Adaptation
	Deriving Upper and Lower Bounds under R
	Reward Shaping for ``Tightening'' the Bounds

	Evaluation
	Domain Description
	Results

	Related work
	Limitations & Conclusions
	Appendix
	Lemma 1:
	Derivation for Bounds of Different Forms of R
	Algorithm
	Additional Results
	Relationship between Q-Decomposition and SARSA

