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Abstract

Causality is essential in scientific research, enabling researchers to interpret true1

relationships between variables. These causal relationships are often represented2

by causal graphs, which are directed acyclic graphs. With the recent advancements3

in Large Language Models (LLMs), there is an increasing interest in exploring4

their capabilities in causal reasoning and their potential use to hypothesize causal5

graphs. These tasks necessitate the LLMs to encode the causal graph effectively for6

subsequent downstream tasks. In this paper, we propose the first comprehensive7

benchmark, CausalGraph2LLM, encompassing a variety of causal graph settings8

to assess the causal graph understanding capability of LLMs. We categorize the9

causal queries into two types: graph-level and node-level queries. We benchmark10

both open-sourced and closed models for our study. Our findings reveal that while11

LLMs show promise in this domain, they are highly sensitive to the encoding used.12

Capable models like GPT-4 and Gemini-1.5 exhibit sensitivity to encoding, with13

deviations of about 60%. We further demonstrate this sensitivity for downstream14

causal intervention tasks. Moreover, we observe that LLMs can often display15

biases when presented with contextual information about a causal graph, potentially16

stemming from their parametric memory.17

1 Introduction18

The recent success of Large Language Models (LLMs) [Brown et al., 2020, Achiam et al., 2023,19

Reid et al., 2024] across various applications has opened new avenues beyond traditional Natural20

Language Processing (NLP) tasks [Srivastava et al., 2022, Wei et al., 2022]. Trained on massive21

corpora of structured and unstructured data [Achiam et al., 2023], these models have shown the22

ability to extract insights and exhibit emergent behaviors that can be harnessed across a wide range of23

applications [Bubeck et al., 2023, Qi et al., 2023, Wang et al., 2023, Zhao et al., 2024].24

Causal reasoning plays a critical role in guiding scientific research to establish causal relationships25

between variables [Pearl, 2009]. These relationships are often modeled using causal graphs, which26

are directed and acyclic. Traditionally, causal inference and discovery rely on observational data from27

experiments [Spirtes and Zhang, 2016, Nogueira et al., 2022, Huang et al., 2020, Cooper and Yoo,28

2013]. However, inferring causal graphs from observational data alone is challenging [Spirtes and29

Zhang, 2016, Brouillard et al., 2020], often necessitating additional domain knowledge, typically30

from Randomized Controlled Trials. This bottleneck has sparked interest in the potential of LLMs31

to aid in causal discovery [Vashishtha et al., 2023, Anonymous, 2023, Liu et al., 2024, Ban et al.,32

2023b,a]. The current paradigm for LLMs in causal discovery usually involves leveraging metadata,33

particularly variable names, to guide models in identifying and interpreting causal relationships.34
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Figure 1: Causal Graphs are ingested into LLMs via prompting strategies which are evaluated for
Causal Task Queries.

Existing works utilize LLMs in roles such as priors, critics, and post-processors in causality-related35

tasks.36

Although LLMs have shown competitive performance [Anonymous, 2023] against traditional data-37

driven methods, their effectiveness is limited by their sequential text-based training paradigm. Current38

models often require users to decompose causal reasoning tasks into textualizing a causal graph39

followed by task-specific prompts. Consequently, LLMs must handle and manipulate textual represen-40

tations of causal graphs efficiently. This assumed capability of processing causal graphs as text with41

any encoding is often unexamined in current research. Recent works have demonstrated sensitivity to42

prompts and encoding strategies for graphs [Fatemi et al., 2024a,b], but these are focused on graph43

theory tasks rather than causal queries.44

In this work, we challenge this assumption and evaluate the encoding capabilities of LLMs for causal45

graphs. By introducing our benchmark, we highlight the strengths and limitations of these models in46

encoding causal graphs. To maximize LLMs’ potential for causality, it is essential to understand their47

risks and limitations, particularly regarding biases from training data and variable performance based48

on prompting strategy and task. Proper evaluation and consideration of these aspects are crucial when49

using LLMs for causal reasoning. Given the application of LLMs as causal hypothesis generators [Liu50

et al., 2024], it is critical to assess their basic understanding of causal graphs before progressing to51

complex tasks. Addressing these challenges early can refine models, making them more robust for52

causal reasoning and hypothesis generation.53

In this work, we investigate LLMs’ ability to encode causal graphs and assist with causal reasoning54

tasks. We introduce the first benchmark, CausalGraph2LLM, to analyze LLMs in causal graph55

understanding tasks. We assess various LLMs across a wide spectrum of tasks, inspired by potential56

subtasks relevant to downstream applications. This benchmark serves as a foundational reference for57

future research employing LLMs in causal reasoning tasks. Our contributions include:58

• We conduct a comprehensive study on techniques for encoding causal graphs into text for59

LLMs.60

• We decompose the task into subtasks involving graph-level and node-level queries to evaluate61

LLMs’ causal reasoning capabilities.62

• We explore various graph encoding strategies, drawing from existing literature on causal63

LLMs and graph theory.64

• Our work identifies biases in model performance related to pretraining data context.65

• We perform extensive experiments on both open-source and closed models, highlighting the66

limitations of LLMs in fully understanding causal graphs.67

2 Benchmark68

Causal graph understanding is crucial for leveraging LLMs in causal graph-based tasks. This69

benchmark evaluates LLMs’ ability to interpret and utilize causal graphs, essential for causal inference70

and discovery applications. An overview is provided in Figure 1. By assessing how well these models71

process and understand causal graph structures, we gain insights into their potential and limitations72

for complex reasoning tasks.73
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Figure 2: Different prompting transformation functions for the same causal graph.

2.1 Preliminaries74

Causal graphs are effective tools for representing variable interactions in research, typically depicted75

as Directed Acyclic Graphs (DAGs). These graphs help researchers determine which variables to76

control to reduce bias and identify potential biases that could arise if certain variables are controlled.77

A causal graph is defined as G = (V,E), where V is a set of nodes {v1, v2, . . . , vn}, each representing78

a variable, and E is a set of directed edges {(vi, vj)} indicating causal effects between nodes. The79

graph is acyclic, implying no causal feedback loops.80

Instruction-tuned LLMs are increasingly used to infer causal structures through prompting. We81

benchmark LLMs’ understanding of causal graphs by converting graphs into verbalized prompts82

using a function p : G → P , where P is the space of all possible prompts. We experiment with seven83

encoding strategies derived from current literature, as illustrated in Figure 2.84

2.2 Tasks85

We consider various causality-based tasks that are critical for assessing LLMs’ understanding of86

causal graphs. After encoding the graph into a prompt, a task-specific question prompt is appended87

to evaluate the LLM’s reasoning capabilities. Key tasks include:88

• Child and Parent: Identifies direct causal effects where one node is a parent of another.89

• Source and Sink: Identifies nodes without incoming (source) or outgoing (sink) edges,90

representing starting or ending points in causal chains.91

• Mediator: Detects nodes that lie on paths between other nodes, mediating causal effects.92

• Confounder: Identifies nodes influencing two or more other nodes, potentially inducing93

bias if uncontrolled.94

These tasks evaluate an LLM’s ability to recognize and interpret causal graph structures from multiple95

causal reasoning perspectives.96

2.3 Experimental Setup97

We evaluate the benchmark using diverse datasets, including synthetic, semi-synthetic, and real-98

world scenarios. Synthetic DAGs are constructed to control graph complexity, and commonly99

used causal graphs from recent literature [Ban et al., 2023b, Vashishtha et al., 2023, Ban et al.,100

2023a] are included. For contextual datasets, we use graphs from the BNLearn repository, such101

as Insurance: G(27, 52) [Binder et al., 1997], and Alarm: G(37, 46) [Beinlich et al., 1989]. We102

assess the benchmark on a range of models, including GritLM [Muennighoff et al., 2024], GPT-103

3.5 [Brown et al., 2020], GPT-4 [Achiam et al., 2023], Mistral-7B-Instruct-v0.2 [Jiang et al., 2023],104

Mixtral-8x7BInstruct-v0.1 [Jiang et al., 2024], and Gemini [Reid et al., 2024]1.105

3 Results106

In this section, we share our benchmark results on causal graph understanding through causal queries.107

We investigate how effectively LLMs can interpret and reason about causal graphs encoded in108

different formats, addressing both graph-level and node-level queries. Additionally, we explore biases109

introduced by graph contextual information. For brevity, the variances are reported in Appendix D.1.110

1Experiments were conducted by authors from Google and CISPA Helmholtz Center for Information Security.
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3.1 Basic causal graph queries111

To evaluate the baseline causal graph understanding task, we prompt the LLMs with causal query112

tasks resembling those encountered in larger causal reasoning tasks. We measure the performance of113

these queries using the F1 score.

Model Enc Source Sink Parent Child Mediator Confounder Avg

G
ri

tL
M

JSON 0.25 0.30 0.15 0.20 0.10 0.15 0.19±0.10

Adjacency 0.20 0.26 0.12 0.06 0.35 0.26 0.20±0.12

Adjacency-M 0.00 0.05 0.08 0.11 0.06 0.06 0.06±0.03

GraphML 0.38 0.24 0.14 0.21 0.18 0.29 0.24±0.08

GraphViz 0.15 0.25 0.19 0.23 0.17 0.22 0.20±0.03

Multi node 0.11 0.32 0.10 0.43 0.19 0.24 0.23±0.12

Single node 0.12 0.34 0.18 0.36 0.25 0.17 0.23±0.10

x̄ / σ 0.18 / 0.38 0.27 / 0.29 0.14 / 0.11 0.20 / 0.37 0.19 / 0.29 0.20 / 0.23

M
is

tr
al

JSON 0.30 0.04 0.58 0.20 0.21 0.19 0.25±0.18

Adjacency 0.36 0.15 0.26 0.56 0.28 0.31 0.32±0.13

Adjacency-M 0.07 0.16 0.11 0.10 0.09 0.10 0.10±0.03

GraphML 0.18 0.21 0.31 0.59 0.46 0.61 0.39±0.18

GraphViz 0.35 0.27 0.36 0.43 0.46 0.39 0.37±0.06

Multi node 0.37 0.25 0.24 0.45 0.31 0.42 0.34±0.08

Single node 0.50 0.22 0.44 0.43 0.33 0.20 0.35±0.12

x̄ / σ 0.32 / 0.43 0.21 / 0.23 0.30 / 0.47 0.38 / 0.49 0.33 / 0.41 0.30 / 0.27

M
ix

tr
al

JSON 0.61 0.04 0.54 0.18 0.22 0.43 0.33±0.22

Adjacency 0.32 0.56 0.45 0.49 0.44 0.32 0.43±0.09

Adjacency-M 0.11 0.08 0.09 0.12 0.10 0.09 0.10±0.01

GraphML 0.38 0.14 0.30 0.39 0.45 0.37 0.34±0.10

GraphViz 0.76 0.50 0.46 0.39 0.55 0.37 0.50±0.14

Multi node 0.39 0.49 0.27 0.29 0.49 0.19 0.35±0.12

Single node 0.71 0.33 0.48 0.42 0.54 0.39 0.48±0.13

x̄ / σ 0.48 / 0.65 0.31 / 0.52 0.38 / 0.37 0.33 / 0.45 0.44 / 0.34 0.33 / 0.40

G
PT

-3
.5

JSON 0.75 0.25 0.47 0.08 0.37 0.26 0.36±0.23

Adjacency 0.47 0.29 0.44 0.77 0.65 0.84 0.57±0.21

Adjacency-M 0.05 0.19 0.10 0.11 0.15 0.10 0.12±0.11

GraphML 0.72 0.51 0.50 0.61 0.36 0.37 0.51±0.13

GraphViz 0.70 0.18 0.58 0.77 0.55 0.43 0.53±0.12

Multi node 0.39 0.24 0.50 0.70 0.64 0.59 0.51±0.17

Single node 0.70 0.30 0.56 0.67 0.55 0.45 0.54±0.14

x̄ / σ 0.57 / 0.70 0.31 / 0.33 0.48 / 0.48 0.50 / 0.69 0.50 / 0.50 0.47 / 0.74

G
em

in
i

JSON 0.80 0.77 0.97 0.56 0.68 0.72 0.76±0.13

Adjacency 0.53 0.62 0.66 0.74 0.64 0.73 0.66±0.07

Adjacency-M 0.12 0.49 0.07 0.12 0.11 0.07 0.22±0.16

GraphML 0.84 0.54 0.76 0.56 0.67 0.60 0.67±0.11

GraphViz 0.48 0.56 0.57 0.64 0.59 0.69 0.58±0.07

Multi node 0.50 0.73 0.70 0.70 0.63 0.59 0.64±0.08

Single node 0.88 0.62 0.69 0.73 0.71 0.57 0.71±0.10

x̄ / σ 0.65 / 0.76 0.62 / 0.28 0.69 / 0.90 0.64/0.62 0.64 / 0.66 0.62 / 0.68

G
PT

-4

JSON 0.68 0.69 0.52 0.43 0.75 0.74 0.80±0.13

Adjacency 0.77 0.58 0.69 0.69 0.84 0.75 0.73±0.09

Adjacency-M 0.10 0.18 0.21 0.11 0.10 0.13 0.14±0.04

GraphML 0.80 0.80 0.85 0.90 0.76 0.75 0.81±0.05

GraphViz 0.67 0.67 0.80 0.85 0.70 0.69 0.71±0.07

Multi node 0.66 0.65 0.73 0.88 0.84 0.79 0.75±0.09

Single node 0.80 0.42 0.89 0.90 0.69 0.87 0.77±0.18

x̄ / σ 0.68 / 0.70 0.61 / 0.62 0.71 / 0.68 0.71 / 0.79 0.73 / 0.80 0.72 / 0.74

Table 1: Performance comparison across methods and encodings. x̄ denotes the average performance
for each task and σ denotes the difference between the best and the worst encoding.

114
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LLMs struggle with simple causal query tasks. From Table 1, we observe a range of performances115

across different models and encoding types, highlighting the variability in how well each LLM116

handles causal graph encoding and interpretation. Out of Source and Sink based queries, interestingly117

the LLM has stronger performance on performing source tasks. We ablate in Appendix D.2 and118

observe that the order of causal graph description also has an impact on the performance of source and119

sink queries. This implies that the model’s understanding of causal relationships may be influenced120

by the sequence in which information is presented. More complex tasks such as identifying mediators121

seem to be more challenging since the task of identifying a mediator can be intuitively thought of as122

breaking the task into child and parent identifications.123

Average Performance. Observing the average performance for each model across different encodings124

suggests that the LLMs are highly sensitive to graph encoding. Adjacency-matrix encoding generally125

results in the lowest average performance across all models, despite being a popular format to126

represent causal graphs.127

High sensitivity to causal graph representation. We observe that different encodings for the same128

causal graphs have different performances across each causal query. For instance, for the Mistral129

model, JSON encoding has the F1 score of 0.21, however for GraphML or GraphViz encoding the130

performance increases to 0.46 for the Mediator task. GPT-4 and Gemini 1.5 Pro perform exceptionally131

well with certain encodings like GraphML and JSON, respectively, indicating that these formats132

might align better with the potential pretraining of the model. GritLM and Mistral show greater133

variability in their average performance, highlighting their sensitivity to the encoding methods used.134

Correlation between Query and Encodings. Some queries may seem easier due to the definition135

of the encoding and its potential alignment with the encoding. For instance, for JSON encoding,136

identifying parent nodes might be relatively easier for all LLMs. This could be because the JSON-137

based prompt used by Abdulaal et al. [2024] defines the dictionary by specifying the parents of each138

node. This alignment between the query and encoding likely facilitates the model’s understanding of139

the causal relationships, resulting in improved performance on tasks involving parent nodes. This140

shows the importance of considering the encoding method coupled with the query when concerned141

with a causal graph based reasoning task.142

3.2 Effect of pretraining knowledge on causal graph understanding143

Previously, we used synthetic causal graphs to evaluate LLMs’ reasoning about causal relationships.144

Now, we assess the impact of pretraining knowledge on causal graph understanding by testing145

contextualized causal graphs. This experiment utilizes known causal DAGs, Insurance [Binder et al.,146

1997] and Alarm [Beinlich et al., 1989], presented in two formats: one with semantically meaningful147

labels and one with random identifiers.148

Enc Model Source Sink Parent Child
w/o w w/o w w/o w w/o w

In
su

ra
nc

e

GritLM 0.55 0.72
+0.17

0.43 0.65
+0.22

0.40 0.62
+0.22

0.35 0.53
+0.18

Mistral 0.66 0.74
+0.08

0.21 0.43
+0.22

0.43 0.65
+0.22

0.50 0.69
+0.19

Mixtral 0.66 0.81
+0.15

0.32 0.47
+0.15

0.36 0.54
+0.18

0.49 0.72
+0.23

GPT-3.5 0.48 0.74
+0.26

0.40 0.68
+0.28

0.39 0.68
+0.29

0.42 0.66
+0.24

Gemini 0.72 0.78
+0.06

0.65 0.74
+0.09

0.57 0.74
+0.17

0.73 0.79
+0.06

GPT-4 0.68 0.79
+0.11

0.83 0.92
+0.09

0.75 0.92
+0.17

0.88 0.80
−0.08

A
la

rm

GritLM 0.52 0.59
+0.07

0.47 0.54
+0.07

0.36 0.54
+0.18

0.52 0.61
+0.09

Mistral 0.33 0.81
+0.48

0.46 0.63
+0.17

0.31 0.54
+0.23

0.46 0.58
+0.12

Mixtral 0.66 0.81
+0.15

0.32 0.47
+0.15

0.36 0.54
+0.18

0.49 0.72
+0.23

GPT-3.5 0.60 0.76
+0.16

0.69 0.84
+0.15

0.38 0.48
+0.10

0.42 0.38
−0.04

Gemini 0.77 0.84
+0.07

0.68 0.82
+0.14

0.71 0.69
−0.02

0.49 0.55
+0.06

GPT-4 0.82 0.83
+0.01

0.78 0.89
+0.11

0.66 0.82
+0.16

0.77 0.68
−0.09

Table 2: Performance of different models across Alarm and Insurance graphs. w/o - without context
w - with contextual variables. The results are averages across the encodings.
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Table 6 shows that contextual knowledge improves performance across models, leveraging LLMs’149

pretraining on vast text corpora. Semantically meaningful labels aid in more accurate causal interpre-150

tations by activating the model’s parametric memory.151

Risks of Contextual Knowledge Dependence. The reliance on contextual knowledge, while152

beneficial, introduces risks such as biases from the language and cultural context of training data.153

For example, GPT-4’s increased false positives in the Child query for the Insurance graph suggest154

over-reliance on pretraining priors, aligning with findings from [Vashishtha et al., 2023]. Performance155

also drops with anti-commonsense DAGs, highlighting the potential for errors when causal directions156

deviate from LLM pretraining biases.157

3.3 Node-based Queries Simplify LLM Performance158

GritL
M

Mistr
al

Mixt
ral

GPT-
3.5

Gem
ini

GPT-
4

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce

Graph Overview
Node-inspection

Figure 3: Performance: Node inspection
vs. graph overview.

In our previous experiments, we focused on graph159

overview tasks, which required LLMs to identify all in-160

stances of specific node types (e.g., source, sink) within a161

causal graph, demanding a comprehensive understanding162

of the entire graph structure. To simplify this, we de-163

compose these tasks into binary node-inspection queries,164

where the LLM evaluates whether a given node fits a spec-165

ified type.166

This breakdown reduces the processing complexity, allow-167

ing LLMs to focus on individual nodes rather than the168

entire graph. As shown in Figure 3, LLMs perform better169

on node-inspection tasks due to the localized nature of the170

queries. The lower performance on graph overview tasks171

is likely due to the need for holistic graph comprehension172

and the potential cascading effect of errors in node identification. In contrast, node-inspection tasks173

minimize the impact of individual errors, leading to improved accuracy.174

3.3.1 Overestimation and Underestimation Biases175

GritL
M

Mistr
al

Mixt
ral

GPT-
3.5

GPT-
4

Gem
ini

100

FP
/F

N

Figure 4: Evaluation of over- and under-
estimation biases.

For binary node-inspection tasks, we analyze false posi-176

tives (FP) and false negatives (FN) for each LLM, provid-177

ing insight into the nature of their errors. False positives178

occur when a model incorrectly identifies a node type,179

while false negatives occur when it fails to identify a cor-180

rect type. We compute the ratio (τ ) of FP to FN, averaged181

across all tasks, where τ > 1 indicates a bias towards182

overestimation (more FPs), and τ < 1 indicates a bias183

towards underestimation (more FNs).184

Figure 4 shows that GritLM, GPT-3.5, and GPT-4 have185

τ > 1, suggesting a tendency towards overestimation,186

even without contextual influences, aligning with recent187

findings [Herrera-Berg et al., 2023, Li et al., 2024]. Con-188

versely, Gemini, Mistral, and Mixtral exhibit higher FN189

rates, indicating underestimation, potentially influenced190

by RLHF fine-tuning stages. Further investigation is needed to explore these biases in causal queries.191

4 Conclusion192

With the increasing of LLMs to assist with causal inference and causal discovery tasks, it is important193

to explore the opportunities and the limitations due to the nature of LLMs. In this paper, we proposed194

the first benchmark, CausalGraph2LLM to evaluate the encoding capabilities of LLMs for causal195

DAGs, encompassing both graph-level and node-level queries. Our findings also shed light on the196

potential risks associated with employing LLMs for causal reasoning tasks, particularly emphasizing197

the potential biases stemming from their pre-trained knowledge. These insights serve as a valuable198

reference for future research leveraging LLMs in causal DAG manipulation.199
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Matej Zečević, Moritz Willig, Devendra Singh Dhami, and Kristian Kersting. Causal parrots: Large314

language models may talk causality but are not causal. TMLR, 2023.315

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm316

agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,317

volume 38, pages 19632–19642, 2024.318

9



A Limitations and Future Work319

The scope of the evaluation is primarily limited to synthetic and well-known causal graphs, which320

may not fully capture the complexity of real-world causal graphs. We presented 6 diverse tasks,321

which can be built upon for future work. Future work can expand the diversity of causal graphs322

and models evaluated, develop more robust encoding techniques, and explore methods to mitigate323

contextual biases. Enhancing the models’ ability to handle complex tasks and improving downstream324

task performance will also be crucial. Additionally, a deeper investigation into bias sources can325

provide a more nuanced understanding of LLM capabilities in causal inference. Given the modular326

nature of the benchmark, we aim to continue to build up this benchmark to assess newer models as327

they come.328

B Reproduciblility329

We will release our code, prompts, evaluation setup, and all models’ outputs of our experiments.330

For reproducibility, we used temperature 0 and top-p value as 1 across all of the models. We also331

mentioned the snapshot of the model used.332

The Alarm and Insurance datasets are under CC BY-SA 3.0 which allows us to freely modify the333

datasets for benchmarking. Our benchmark will be released under the CC BY-SA License.334

For Mistral, Mixtral and GritLM models, were run via Helmholtz Jeulich. Mistral and GritLM were335

run on 1 A100 GPU whereas Mixtral was run on 8 A100 GPUs. Since we used off-the shelf LLM,336

each graph-level experiment took no more than 30 minutes to run (longer for mediator, child, parent,337

confounder whereas source and sink took ≈ 3 mins to run). Since the models were run by Jeulich338

API, it is difficult to calculate the entire compute, however all of the experiments for each model took339

≈ 38 hours. GPT-3.5 GPT-4 were accessed via API.340

B.1 Dataset descriptions341

The datasets used can be divided into two: 1. realistic datasets and 2. synthetic datasets.342

We use the two real-world-based datasets. These are semi-synthetic datasets available from the343

BNLearn library. The first graph, named Alarm, is a well-known benchmark in the field of causal344

inference. The Alarm dataset (see Figure 11) is designed to model the relationships and dependencies345

in an intensive care unit (ICU) monitoring system. It includes variables such as heart rate, blood346

pressure, and other vital signs, making it a complex and realistic representation of medical data. This347

dataset is particularly useful for evaluating the ability of LLMs to handle intricate causal relationships348

in a medical high-stakes environment.349

The second dataset, Insurance, is another widely used benchmark that models the risk factors and350

dependencies in the insurance domain. This graph (see Figure 12) includes variables related to351

policyholders, such as age, driving history, and vehicle type, and their relationships to insurance352

claims and premiums. The Insurance dataset provides a different context from the medical domain,353

allowing us to assess the versatility of LLMs in understanding and reasoning about causal relationships354

in a financial setting.355

B.2 Synthetic dataset356

In addition to real-world-based datasets, we created synthetic datasets with varying levels of diffi-357

culty to rigorously evaluate the performance of LLMs. These synthetic datasets were designed to358

systematically vary in complexity by adjusting the number of nodes and edges in the causal graphs.359

This variation allows us to assess how well the models handle different levels of graph complexity360

and density. The synthetic datasets serve as a controlled environment to test the models’ ability to361

interpret and reason about causal relationships under varying conditions. By incrementally increasing362

the number of edges while keeping the number of nodes constant, we can observe how the models’363

performance scales with the complexity of the causal structure. This approach provides valuable364

insights into the strengths and limitations of LLMs in handling more intricate causal graphs, which is365

crucial for understanding their potential applications in real-world scenarios. For the experiments, we366
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synthesized graphs with 20 and 30 nodes. For each of these node variables, we experimented with367

different densities of nodes. Hence we had density = 1 x nodes, 1.5 x nodes and 2 x nodes.368

C Prompting stratergies369

Adjacency

( 0 , 1 )
( 0 , 2 )
( 1 , 3 )
( 2 , 3 )
( 2 , 4 )
( 3 , 4 )
( 0 , 3 )
( 1 , 4 )
( 0 , 4 )
( 1 , 2 )

370

Adjacency Matrix

0 1 2 3 4
0 0 1 1 1 1
1 0 0 1 1 1
2 0 0 0 1 1
3 0 0 0 0 1
4 0 0 0 0 0

371

GraphML

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">

<graph edgedefault="directed">
<node id="0"/>
<node id="1"/>
<node id="2"/>
<node id="3"/>
<node id="4"/>
<edge source="0" target="1"/>
<edge source="0" target="2"/>
<edge source="1" target="3"/>
<edge source="2" target="3"/>
<edge source="2" target="4"/>
<edge source="3" target="4"/>
<edge source="0" target="3"/>
<edge source="1" target="4"/>
<edge source="0" target="4"/>
<edge source="1" target="2"/>

</graph>
</graphml>

372
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GraphViz

digraph G {
0 -> 1;
0 -> 2;
1 -> 3;
2 -> 3;
2 -> 4;
3 -> 4;
0 -> 3;
1 -> 4;
0 -> 4;
1 -> 2;

}
373

JSON

{
"0": {

"parents": []
},
"1": {

"parents": [
"0"

]
},
"2": {

"parents": [
"0",
"1"

]
},
"3": {

"parents": [
"0",
"1",
"2"

]
},
"4": {

"parents": [
"0",
"1",
"2",
"3"

]
}

}
374

Multi node
0 causes 1, 2, 3, 4. 1 causes 3, 4, 2. 2 causes 3, 4. 3 causes 4.

375
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Single node

0 causes 1. 0 causes 2. 0 causes 3. 0 causes 4. 1 causes 3. 1 causes 4. 1 causes 2. 2 causes 3.
2 causes 4. 3 causes 4.

376
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D Experiments377

D.1 Variance378

Model Enc Source Sink Parent Child Mediator Confounder Avg
G

ri
tL

M
JSON 0.25

±0.07
0.30
±0.05

0.15
±0.02

0.20
±0.07

0.10
±0.08

0.15
±0.07

0.19±0.10

Adjacency 0.20
±0.03

0.26
±0.04

0.12
±0.01

0.06
±0.02

0.35
±0.05

0.26
±0.04

0.20±0.12

Adjacency-M 0.00
±0.00

0.05
±0.01

0.08
±0.01

0.11
±0.02

0.06
±0.01

0.06
±0.01

0.06±0.03

GraphML 0.38
±0.06

0.24
±0.04

0.14
±0.03

0.21
±0.05

0.18
±0.04

0.29
±0.05

0.24±0.08

GraphViz 0.15
±0.03

0.25
±0.05

0.19
±0.04

0.23
±0.04

0.17
±0.03

0.22
±0.04

0.20±0.03

Multi node 0.11
±0.02

0.32
±0.06

0.10
±0.02

0.43
±0.08

0.19
±0.04

0.24
±0.05

0.23±0.12

Single node 0.12
±0.03

0.34
±0.06

0.18
±0.04

0.36
±0.07

0.25
±0.05

0.17
±0.04

0.23±0.10

M
is

tr
al

JSON 0.30
±0.03

0.04
±0.01

0.58
±0.06

0.20
±0.02

0.21
±0.02

0.19
±0.02

0.25±0.18

Adjacency 0.36
±0.04

0.15
±0.02

0.26
±0.03

0.56
±0.06

0.28
±0.03

0.31
±0.03

0.32±0.13

Adjacency-M 0.07
±0.01

0.16
±0.02

0.11
±0.01

0.10
±0.01

0.09
±0.01

0.10
±0.01

0.10±0.03

GraphML 0.18
±0.02

0.21
±0.02

0.31
±0.03

0.59
±0.06

0.46
±0.05

0.61
±0.06

0.39±0.18

GraphViz 0.35
±0.04

0.27
±0.03

0.36
±0.04

0.43
±0.04

0.46
±0.05

0.39
±0.04

0.37±0.06

Multi node 0.37
±0.04

0.25
±0.03

0.24
±0.02

0.45
±0.05

0.31
±0.03

0.42
±0.04

0.34±0.08

Single node 0.50
±0.05

0.22
±0.02

0.44
±0.04

0.43
±0.04

0.33
±0.03

0.20
±0.02

0.35±0.12

M
ix

tr
al

JSON 0.61
±0.06

0.04
±0.01

0.54
±0.05

0.18
±0.02

0.22
±0.02

0.43
±0.04

0.33±0.22

Adjacency 0.32
±0.03

0.56
±0.05

0.45
±0.04

0.49
±0.05

0.44
±0.04

0.32
±0.03

0.43±0.09

Adjacency-M 0.11
±0.01

0.08
±0.01

0.09
±0.01

0.12
±0.01

0.10
±0.01

0.09
±0.01

0.10±0.01

GraphML 0.38
±0.04

0.14
±0.01

0.30
±0.03

0.39
±0.04

0.45
±0.04

0.37
±0.04

0.34±0.10

GraphViz 0.76
±0.07

0.50
±0.05

0.46
±0.04

0.39
±0.04

0.55
±0.05

0.37
±0.04

0.50±0.14

Multi node 0.39
±0.04

0.49
±0.05

0.27
±0.03

0.29
±0.03

0.49
±0.05

0.19
±0.02

0.35±0.12

Single node 0.71
±0.07

0.33
±0.03

0.48
±0.05

0.42
±0.04

0.54
±0.05

0.39
±0.04

0.48±0.13

G
PT

-3
.5

JSON 0.75
±0.07

0.25
±0.03

0.47
±0.05

0.08
±0.01

0.37
±0.04

0.26
±0.03

0.36±0.23

Adjacency 0.47
±0.05

0.29
±0.03

0.44
±0.04

0.77
±0.08

0.65
±0.07

0.84
±0.09

0.57±0.21

Adjacency-M 0.05
±0.01

0.19
±0.02

0.10
±0.01

0.11
±0.01

0.15
±0.02

0.10
±0.01

0.12±0.11

GraphML 0.72
±0.07

0.51
±0.05

0.50
±0.05

0.61
±0.06

0.36
±0.04

0.37
±0.04

0.51±0.13

GraphViz 0.70
±0.07

0.18
±0.02

0.58
±0.06

0.77
±0.08

0.55
±0.06

0.43
±0.04

0.53±0.12

Multi node 0.39
±0.04

0.24
±0.02

0.50
±0.05

0.70
±0.07

0.64
±0.06

0.59
±0.06

0.51±0.17

Single node 0.70
±0.07

0.30
±0.03

0.56
±0.06

0.67
±0.07

0.55
±0.06

0.45
±0.05

0.54±0.14

G
em

in
i

JSON 0.80
±0.08

0.77
±0.08

0.97
±0.10

0.56
±0.06

0.68
±0.07

0.72
±0.07

0.76±0.13

Adjacency 0.53
±0.05

0.62
±0.06

0.66
±0.07

0.74
±0.07

0.64
±0.06

0.73
±0.07

0.66±0.07

Adjacency-M 0.12
±0.01

0.49
±0.05

0.07
±0.01

0.12
±0.01

0.11
±0.01

0.07
±0.01

0.22±0.16

GraphML 0.84
±0.08

0.54
±0.05

0.76
±0.08

0.56
±0.06

0.67
±0.07

0.60
±0.06

0.67±0.11

GraphViz 0.48
±0.05

0.56
±0.06

0.57
±0.06

0.64
±0.06

0.59
±0.06

0.69
±0.07

0.58±0.07

Multi node 0.50
±0.05

0.73
±0.07

0.70
±0.07

0.70
±0.07

0.63
±0.06

0.59
±0.06

0.64±0.08

Single node 0.88
±0.09

0.62
±0.06

0.69
±0.07

0.73
±0.07

0.71
±0.07

0.57
±0.06

0.71±0.10

G
PT

-4

JSON 0.68
±0.07

0.69
±0.07

0.52
±0.05

0.43
±0.04

0.75
±0.08

0.74
±0.07

0.80±0.13

Adjacency 0.77
±0.08

0.58
±0.06

0.69
±0.07

0.69
±0.07

0.84
±0.08

0.75
±0.08

0.73±0.09

Adjacency-M 0.10
±0.01

0.18
±0.02

0.21
±0.02

0.11
±0.01

0.10
±0.01

0.13
±0.01

0.14±0.04

GraphML 0.80
±0.08

0.80
±0.08

0.85
±0.09

0.90
±0.09

0.76
±0.08

0.75
±0.08

0.81±0.05

GraphViz 0.67
±0.07

0.67
±0.07

0.80
±0.08

0.85
±0.09

0.70
±0.07

0.69
±0.07

0.71±0.07

Multi node 0.66
±0.07

0.65
±0.07

0.73
±0.07

0.88
±0.09

0.84
±0.08

0.79
±0.08

0.75±0.09

Single node 0.80
±0.08

0.42
±0.04

0.89
±0.09

0.90
±0.09

0.69
±0.07

0.87
±0.09

0.77±0.18

Table 3: Performance comparison across methods and encodings.
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Enc Model Source Sink Parent Child
w/o w w/o w w/o w w/o w

In
su

ra
nc

e

GritLM 0.55
±0.07

0.72
±0.07

0.43
±0.03

0.65
±0.04

0.40
±0.04

0.62
±0.05

0.35
±0.03

0.53
±0.05

Mistral 0.66
±0.06

0.74
±0.08

0.21
±0.02

0.43
±0.09

0.43
±0.04

0.65
±0.02

0.50
±0.05

0.69
±0.10

Mixtral 0.66
±0.06

0.81
±0.04

0.32
±0.03

0.47
±0.05

0.36
±0.04

0.54
±0.08

0.49
±0.05

0.72
±0.03

GPT-3.5 0.48
±0.05

0.74
±0.05

0.40
±0.04

0.68
±0.08

0.39
±0.04

0.68
±0.09

0.42
±0.04

0.66
±0.04

Gemini 0.72
±0.07

0.78
±0.06

0.65
±0.06

0.74
±0.03

0.57
±0.06

0.74
±0.07

0.73
±0.07

0.79
±0.05

GPT-4 0.68
±0.07

0.79
±0.03

0.83
±0.08

0.92
±0.02

0.75
±0.07

0.92
±0.06

0.88
±0.09

0.80
±0.03

A
la

rm

GritLM 0.52
±0.05

0.59
±0.07

0.47
±0.05

0.54
±0.07

0.36
±0.04

0.54
±0.04

0.52
±0.05

0.61
±0.09

Mistral 0.33
±0.03

0.81
±0.05

0.46
±0.05

0.63
±0.04

0.31
±0.03

0.54
±0.02

0.46
±0.05

0.58
±0.08

Mixtral 0.66
±0.06

0.81
±0.05

0.32
±0.07

0.47
±0.03

0.36
±0.06

0.54
±0.07

0.49
±0.05

0.72
±0.04

GPT-3.5 0.60
±0.06

0.76
±0.09

0.69
±0.07

0.84
±0.03

0.38
±0.04

0.48
±0.09

0.42
±0.04

0.38
±0.04

Gemini 0.77
±0.08

0.84
±0.07

0.68
±0.07

0.82
±0.14

0.71
±0.03

0.69
±0.02

0.49
±0.05

0.55
±0.06

GPT-4 0.82
±0.08

0.83
±0.01

0.78
±0.08

0.89
±0.04

0.66
±0.07

0.82
±0.06

0.77
±0.08

0.68
±0.03

Table 4: Performance of different models across Alarm and Insurance graphs. w/o - without context
w - with contextual variables. The results are averages across the encodings.

JSON Adjacency Adjacency-M GraphML GraphViz Multi node Single node

GritLM 0.44
±0.04

0.50
±0.05

0.54
±0.05

0.53
±0.05

0.53
±0.05

0.58
±0.06

0.54
±0.05

Mistral 0.43
±0.04

0.47
±0.05

0.51
±0.05

0.50
±0.05

0.55
±0.05

0.53
±0.05

0.58
±0.06

Mixtral 0.48
±0.05

0.56
±0.06

0.51
±0.05

0.63
±0.06

0.72
±0.07

0.61
±0.06

0.58
±0.06

GPT-3.5 0.50
±0.05

0.37
±0.04

0.48
±0.05

0.52
±0.05

0.64
±0.06

0.56
±0.06

0.58
±0.06

Gemini 0.80
±0.08

0.78
±0.08

0.54
±0.05

0.76
±0.07

0.88
±0.04

0.78
±0.08

0.63
±0.06

GPT-4 0.74
±0.07

0.74
±0.07

0.52
±0.05

0.78
±0.08

0.88
±0.03

0.82
±0.04

0.77
±0.08

Table 5: Sensitivity to encoding for downstream intervention analysis.
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Figure 5: Node inspection vs. graph overview query performances.

D.2 Ordering of prompt matter for causal queries379

In BFS, the traversal starts from the source nodes, while in BFS-R, the traversal begins from the sink380

nodes. The values in the table represent the performance of the models on the tasks, with higher381

values indicating better performance.382
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Figure 6: Evaluation of over- and underestimation biases.

The results show that the traversal order significantly impacts the performance of the models. For383

instance, GritLM performs better on source tasks when the traversal is in BFS order, while it performs384

better on sink tasks when the traversal is in BFS-R order. This pattern is consistent across all models,385

suggesting that BFS is more suitable for identifying source nodes, while BFS-R is more suitable for386

identifying sink nodes.

D Model Source Sink
BFS BFS-R BFS BFS-R

Sy
nt

he
tic

GritLM 0.18 0.24 0.27 0.0.47
Mistral 0.32 0.26 0.21 0.39
Mixtral 0.48 0.40 0.31 0.44
GPT-3.5 0.57 0.48 0.31 0.64
Gemini 0.65 0.54 0.62 0.82
GPT-4 0.68 0.57 0.61 0.89

Table 6: Comparing the order for prompts, BFS means it starts from source and BFS-R means it
starts from sinks.

387

D.3 Downstream performance under/over bias388

In the main paper, we analyzed over and underestimation bias for the binary node inspection task.389

We can conduct a similar analysis on the downstream task. Here, we observe a similar trend to the390

estimation biases in Section 4.3.1. Notably, GPT-3.5 and GPT-4 usually have FP/FN ratios closer to391

1.392
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Figure 7: Evaluation of over- and underestimation biases for downstream task.

D.4 Effect of node explanations393

In our experimental setup, we took an approach to defining each task for every metric. This was394

primarily due to the varying terminologies used in causal inference across different academic circles.395

For instance, what some researchers might refer to as a ’source’, others might call a ’root’. To avoid396

any potential confusion, we provided clear definitions for each term used in our causal queries.397

Since pretraining for each model was not known, this adds an element of uncertainty to the task.398

To counteract this, we explicitly mentioned the query in our experiments. We conducted a set of399

preliminary experiments without an explanation of the query to demonstrate its effectiveness. The400

results showed a decrease in model performance, suggesting that providing explicit direction in the401

form of a mentioned query can be beneficial.402

Model Enc Source Sink Parent Child Mediator Confounder

G
PT

-3
.5

JSON 0.52 0.25 0.47 0.08 0.30 0.31
Adjacency 0.32 0.26 0.44 0.65 0.72 0.51
Adjacency-M 0.06 0.15 0.10 0.11 0.08 0.12
GraphML 0.34 0.38 0.50 0.61 0.37 0.39
GraphViz 0.42 0.19 0.58 0.77 0.52 0.28
Multi node 0.39 0.24 0.50 0.70 0.64 0.27
Single node 0.45 0.27 0.56 0.67 0.39 0.50

Table 7: Performance comparison across methods and encodings for GPT-3.5 without causal query
explanations.
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D.5 Node Complexity403
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Figure 8: With an increase in graph complexity by increasing the number of nodes, we observe poorer
performance of the LLM - Mistral model.
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Figure 9: With an increase in graph complexity by increasing the number of edges, we observe poorer
performance of the LLM - Mistral model.

D.6 Further models404

D.6.1 LLama3.1 models405

We additionally tested models from the LLama-3.1 family. We observe that LLama3.1 models also406

observe sensitivity to the graph encoding.407
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Model Enc Source Sink Parent Child Mediator Confounder

8b

JSON 0.30 0.35 0.22 0.25 0.20 0.22
Adjacency 0.28 0.30 0.18 0.20 0.22 0.23
GraphML 0.35 0.31 0.28 0.29 0.18 0.31
Single node 0.36 0.27 0.33 0.40 0.36 0.38

70
b

JSON 0.62 0.65 0.52 0.55 0.48 0.50
Adjacency 0.55 0.58 0.48 0.50 0.50 0.52
GraphML 0.63 0.62 0.60 0.62 0.58 0.62
Single node 0.71 0.75 0.72 0.74 0.68 0.69

40
5b

JSON 0.80 0.82 0.74 0.76 0.70 0.72
Adjacency 0.75 0.78 0.70 0.72 0.68 0.70
GraphML 0.85 0.83 0.80 0.82 0.77 0.79
Single node 0.88 0.90 0.85 0.87 0.82 0.84

Table 8: Performance comparison across methods and encodings. x̄ denotes the average performance
for each task and σ denotes the difference between the best and the worst encoding.

D.6.2 Multimodal models408

In this work we focus on textual encodings into LLMs, however with the developments of multimodal409

models, we can test LLM’s ability to answer causal queries when presented with image inputs. We410

performed our experiment on GPT-4 model with T=0. Future works can be built upon to test better411

image inputs for multimodal models.412

Source Sink Child Parent Mediator Confounder

0.58 0.62 0.71 0.65 0.58 0.63

D.7 Effect of finetuning413

In this paper, we focused on zero-shot prompting as the current models have billions of trainable414

parameters and have been trained on a plethora of training data, potentially including causal graphs.415

We hence aimed to evaluate how this reflects in the causal queries. Additionally, most current methods416

utilize LLMs without fine-tuning for causal discovery queries, and our study aimed to replicate this417

environment to provide a realistic benchmark. We performed QLORA on Mistral 7b specifically on418

synthetic datasets. As expected, we observed an increase in the performance with finetuning.419

Source Sink Parent Child Mediator Confounder

JSON 0.30 0.04 0.58 0.20 0.21 0.19
JSON -FT 0.63 0.36 0.73 0.42 0.33 0.44
GraphML 0.18 0.21 0.31 0.59 0.46 0.61
GraphML - FT 0.47 0.42 0.55 0.73 0.68 0.73

Table 9: Effect of finetuning Mistral 7b model for JSON and GraphML encoding.

E Causal Query explanation420

Source
A source node in a causal graph is a variable that does not have any incoming edges, meaning
it is not caused by any other variable in the graph.

421
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Sink
A sink node in a causal graph is a variable that does not have any children in the graph,
meaning it is not caused by any other variables in the system.

422

Direct Mediator
A direct mediator in a causal graph is a variable that lies on the direct path between two
other immediate variables. Only consider mediators that exist in the direct causal path (not
mediated via other mediators).

423

Confounder
A confounder in a causal graph is a variable that influences both the cause and the effect
variables. It is a common cause for both the dependent and independent variables.

424

Parents
What nodes are the direct causes of Node X?

425

Child
What nodes are directly caused by Node X?

426

E.1 Prompt427

For further prompt templates, please check the codebase.428

Graph level query prompt

Hello. You will be given a causal graph. The causal relationships in this causal graph are
- [causal-graph-based-encoding]. Now answer using this causal graph only, name all of
the [node-type] in the graph. [node-type-description]. Think step by step. Give reason-
ing and then give answer within <Answer> [a1,a2,a3..] </Answer>, if Null then return
<Answer>Null</Answer>.

429

Node level query prompt

Hello. You will be given a causal graph. The causal relationships in this causal graph are
- [causal-graph-encodingbased]. Now answer using this causal graph only, is [nodeX] a
[node-type] in the graph. [node-type-description]. Think step by step. Give reasoning and
then give answer within <Answer> Yes/No </Answer>.

430
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F Graphs431

Figure 10: Alarm causal graph
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Figure 11: Insurance causal graph

G Related Works432

LLMs. Instruction-tuned LLMs have become the gold standard for uncovering pre-trained knowl-433

edge via prompting [Kojima et al., 2022]. In this work, we explore the causal reasoning and causal434

graph understanding abilities of LLMs through prompting. LLMs have demonstrated numerous435

emerging abilities in language generation and certain reasoning tasks which has motivated their436

applications in scientific discovery [AI4Science and Quantum, 2023, Long et al., 2023, Cui et al.,437

2023, Demszky et al., 2023].438

Causality and LLMs. Causal discovery and inference have predominantly been dominated by439

data-driven methods. However, due to the complexity of inferring causal structures, previous works440

have introduced priors on causal graphs in terms of interventions, domain expertise, edge existence,441

or ancestral constraints [Constantinou et al., 2023, Ban et al., 2023b, Brouillard et al., 2020]. These442

priors help to reduce the search spaces of potential causal graphs. Recent advancements in LLMs443

have motivated the use of LLM-based priors and causal discovery [Long et al., 2023, Cai et al.,444

2023, Anonymous, 2023, Jin et al., 2023a, Kıcıman et al., 2023]. Unlike data-driven methods, LLMs445

leverage causal variable names to evaluate the existence of edges between them, thereby constructing446

causal graphs. The rich pretrained knowledge of LLMs has proven to be almost as effective in447

discovering causal structures as traditional data-driven methods [Vashishtha et al., 2023, Kıcıman448
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et al., 2023]. These initial results have motivated the integration of LLMs as priors combined with449

different statistical causal discovery methods. For instance, Vashishtha et al. [2023] used pairwise450

queries to discover the existence of edges between different causal variables and then applied methods451

such as PC [Spirtes et al., 2001] to reorient the edges, whereas Ban et al. [2023b] utilized LLM-based452

priors for scoring-based discovery methods. Vashishtha et al. [2023] suggest triplet-based prompting453

strategies, and Jiralerspong et al. [2024] proposed reducing the prompting complexity by prompting454

in a depth-first search (DFS) manner. More recently, Abdulaal et al. [2024] proposed an iterative455

collaboration between LLMs and structural causal models, where the LLM refines the output of456

SCMs. Despite their success, Jin et al. [2023a] and Zečević et al. [2023] find that LLMs are not457

yet fully capable of understanding true causality. Combined with external tools, Jin et al. [2023b]458

demonstrated the use of LLMs for causal inference tasks, albeit on 3-4 node tasks. Another line of459

previous works [Girju et al., 2002, Hassanzadeh et al., 2020, Tan et al., 2023] explored the use of460

LLMs to discover potential causal structures from unstructured data.461

Most of these works assume a particular prompting strategy. However, it remains unclear which462

strategy would be most effective. In this paper, we aim to contribute to this line of research by463

benchmarking a variety of LLMs on a range of tasks related to causal graphs and exploring the464

effectiveness of different causal graph encoders.465
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