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Abstract

Causality is essential in scientific research, enabling researchers to interpret true
relationships between variables. These causal relationships are often represented
by causal graphs, which are directed acyclic graphs. With the recent advancements
in Large Language Models (LLMs), there is an increasing interest in exploring
their capabilities in causal reasoning and their potential use to hypothesize causal
graphs. These tasks necessitate the LLMs to encode the causal graph effectively for
subsequent downstream tasks. In this paper, we propose the first comprehensive
benchmark, CausalGraph2LLM, encompassing a variety of causal graph settings
to assess the causal graph understanding capability of LLMs. We categorize the
causal queries into two types: graph-level and node-level queries. We benchmark
both open-sourced and closed models for our study. Our findings reveal that while
LLMs show promise in this domain, they are highly sensitive to the encoding used.
Capable models like GPT-4 and Gemini-1.5 exhibit sensitivity to encoding, with
deviations of about 60%. We further demonstrate this sensitivity for downstream
causal intervention tasks. Moreover, we observe that LLMs can often display
biases when presented with contextual information about a causal graph, potentially
stemming from their parametric memory.

1 Introduction

The recent success of Large Language Models (LLMs) [10, 2, 37] across various applications has
opened new avenues beyond traditional Natural Language Processing (NLP) tasks [40, 44]. Trained
on massive corpora of structured and unstructured data [2], these models have shown the ability
to extract insights and exhibit emergent behaviors that can be harnessed across a wide range of
applications [11, 36, 43, 46].

Causal reasoning plays a critical role in guiding scientific research to establish causal relationships
between variables [35]. These relationships are often modeled using causal graphs, which are
directed and acyclic. Traditionally, causal inference and discovery rely on observational data from
experiments [38, 34, 22, 14]. However, inferring causal graphs from observational data alone is
challenging [38, 9], often necessitating additional domain knowledge, typically from Randomized
Controlled Trials. This bottleneck has sparked interest in the potential of LLMs to aid in causal
discovery [42, 4, 31, 6, 5]. The current paradigm for LLMs in causal discovery usually involves
leveraging metadata, particularly variable names, to guide models in identifying and interpreting
causal relationships. Existing works utilize LLMs in roles such as priors, critics, and post-processors
in causality-related tasks.

Although LLMs have shown competitive performance [4] against traditional data-driven methods,
their effectiveness is limited by their sequential text-based training paradigm. Current models often
require users to decompose causal reasoning tasks into textualizing a causal graph followed by
task-specific prompts. Consequently, LLMs must handle and manipulate textual representations
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Figure 1: Causal Graphs are ingested into LLMs via prompting strategies which are evaluated for
Causal Task Queries.

of causal graphs efficiently. This assumed capability of processing causal graphs as text with any
encoding is often unexamined in current research. Recent works have demonstrated sensitivity to
prompts and encoding strategies for graphs [17, 18], but these are focused on graph theory tasks
rather than causal queries.

In this work, we challenge this assumption and evaluate the encoding capabilities of LLMs for causal
graphs. By introducing our benchmark, we highlight the strengths and limitations of these models
in encoding causal graphs. To maximize LLMs’ potential for causality, it is essential to understand
their risks and limitations, particularly regarding biases from training data and variable performance
based on prompting strategy and task. Proper evaluation and consideration of these aspects are
crucial when using LLMs for causal reasoning. Given the application of LLMs as causal hypothesis
generators [31], it is critical to assess their basic understanding of causal graphs before progressing to
complex tasks. Addressing these challenges early can refine models, making them more robust for
causal reasoning and hypothesis generation.

In this work, we investigate LLMs’ ability to encode causal graphs and assist with causal reasoning
tasks. We introduce the first benchmark, CausalGraph2LLM, to analyze LLMs in causal graph
understanding tasks. We assess various LLMs across a wide spectrum of tasks, inspired by potential
subtasks relevant to downstream applications. This benchmark serves as a foundational reference for
future research employing LLMs in causal reasoning tasks. Our contributions include:

• We conduct a comprehensive study on techniques for encoding causal graphs into text for
LLMs.

• We decompose the task into subtasks involving graph-level and node-level queries to evaluate
LLMs’ causal reasoning capabilities.

• We explore various graph encoding strategies, drawing from existing literature on causal
LLMs and graph theory.

• Our work identifies biases in model performance related to pretraining data context.

• We perform extensive experiments on both open-source and closed models, highlighting the
limitations of LLMs in fully understanding causal graphs.

2 Benchmark

Causal graph understanding is crucial for leveraging LLMs in causal graph-based tasks. This
benchmark evaluates LLMs’ ability to interpret and utilize causal graphs, essential for causal inference
and discovery applications. An overview is provided in Figure 1. By assessing how well these models
process and understand causal graph structures, we gain insights into their potential and limitations
for complex reasoning tasks.

2.1 Preliminaries

Causal graphs are effective tools for representing variable interactions in research, typically depicted
as Directed Acyclic Graphs (DAGs). These graphs help researchers determine which variables to
control to reduce bias and identify potential biases that could arise if certain variables are controlled.
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{"0": {"parents":
[]},
"1": {"parents":
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digraph G {
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Figure 2: Different prompting transformation functions for the same causal graph.

A causal graph is defined as G = (V,E), where V is a set of nodes {v1, v2, . . . , vn}, each representing
a variable, and E is a set of directed edges {(vi, vj)} indicating causal effects between nodes. The
graph is acyclic, implying no causal feedback loops.

Instruction-tuned LLMs are increasingly used to infer causal structures through prompting. We
benchmark LLMs’ understanding of causal graphs by converting graphs into verbalized prompts
using a function p : G → P , where P is the space of all possible prompts. We experiment with seven
encoding strategies derived from current literature, as illustrated in Figure 2.

2.2 Tasks

We consider various causality-based tasks that are critical for assessing LLMs’ understanding of
causal graphs. After encoding the graph into a prompt, a task-specific question prompt is appended
to evaluate the LLM’s reasoning capabilities. Key tasks include:

• Child and Parent: Identifies direct causal effects where one node is a parent of another.
• Source and Sink: Identifies nodes without incoming (source) or outgoing (sink) edges,

representing starting or ending points in causal chains.
• Mediator: Detects nodes that lie on paths between other nodes, mediating causal effects.
• Confounder: Identifies nodes influencing two or more other nodes, potentially inducing

bias if uncontrolled.

These tasks evaluate an LLM’s ability to recognize and interpret causal graph structures from multiple
causal reasoning perspectives.

2.3 Experimental Setup

We evaluate the benchmark using diverse datasets, including synthetic, semi-synthetic, and real-
world scenarios. Synthetic DAGs are constructed to control graph complexity, and commonly
used causal graphs from recent literature [6, 42, 5] are included. For contextual datasets, we use
graphs from the BNLearn repository, such as Insurance: G(27, 52) [8], and Alarm: G(37, 46) [7].
We assess the benchmark on a range of models, including GritLM [33], GPT-3.5 [10], GPT-4 [2],
Mistral-7B-Instruct-v0.2 [23], Mixtral-8x7BInstruct-v0.1 [24], and Gemini [37]1.

3 Results
In this section, we share our benchmark results on causal graph understanding through causal queries.
We investigate how effectively LLMs can interpret and reason about causal graphs encoded in
different formats, addressing both graph-level and node-level queries. Additionally, we explore biases
introduced by graph contextual information. For brevity, the variances are reported in Appendix D.1.

3.1 Basic causal graph queries

To evaluate the baseline causal graph understanding task, we prompt the LLMs with causal query
tasks resembling those encountered in larger causal reasoning tasks. We measure the performance of
these queries using the F1 score.

LLMs struggle with simple causal query tasks. From Table 1, we observe a range of performances
across different models and encoding types, highlighting the variability in how well each LLM
handles causal graph encoding and interpretation. Out of Source and Sink based queries, interestingly
the LLM has stronger performance on performing source tasks. We ablate in Appendix D.2 and
observe that the order of causal graph description also has an impact on the performance of source and

1Experiments were conducted by authors from Google and CISPA Helmholtz Center for Information Security.
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Model Enc Source Sink Parent Child Mediator Confounder Avg

G
ri

tL
M

JSON 0.25 0.30 0.15 0.20 0.10 0.15 0.19±0.10

Adjacency 0.20 0.26 0.12 0.06 0.35 0.26 0.20±0.12

Adjacency-M 0.00 0.05 0.08 0.11 0.06 0.06 0.06±0.03

GraphML 0.38 0.24 0.14 0.21 0.18 0.29 0.24±0.08

GraphViz 0.15 0.25 0.19 0.23 0.17 0.22 0.20±0.03

Multi node 0.11 0.32 0.10 0.43 0.19 0.24 0.23±0.12

Single node 0.12 0.34 0.18 0.36 0.25 0.17 0.23±0.10

x̄ / σ 0.18 / 0.38 0.27 / 0.29 0.14 / 0.11 0.20 / 0.37 0.19 / 0.29 0.20 / 0.23

M
is

tr
al

JSON 0.30 0.04 0.58 0.20 0.21 0.19 0.25±0.18

Adjacency 0.36 0.15 0.26 0.56 0.28 0.31 0.32±0.13

Adjacency-M 0.07 0.16 0.11 0.10 0.09 0.10 0.10±0.03

GraphML 0.18 0.21 0.31 0.59 0.46 0.61 0.39±0.18

GraphViz 0.35 0.27 0.36 0.43 0.46 0.39 0.37±0.06

Multi node 0.37 0.25 0.24 0.45 0.31 0.42 0.34±0.08

Single node 0.50 0.22 0.44 0.43 0.33 0.20 0.35±0.12

x̄ / σ 0.32 / 0.43 0.21 / 0.23 0.30 / 0.47 0.38 / 0.49 0.33 / 0.41 0.30 / 0.27

M
ix

tr
al

JSON 0.61 0.04 0.54 0.18 0.22 0.43 0.33±0.22

Adjacency 0.32 0.56 0.45 0.49 0.44 0.32 0.43±0.09

Adjacency-M 0.11 0.08 0.09 0.12 0.10 0.09 0.10±0.01

GraphML 0.38 0.14 0.30 0.39 0.45 0.37 0.34±0.10

GraphViz 0.76 0.50 0.46 0.39 0.55 0.37 0.50±0.14

Multi node 0.39 0.49 0.27 0.29 0.49 0.19 0.35±0.12

Single node 0.71 0.33 0.48 0.42 0.54 0.39 0.48±0.13

x̄ / σ 0.48 / 0.65 0.31 / 0.52 0.38 / 0.37 0.33 / 0.45 0.44 / 0.34 0.33 / 0.40

G
PT

-3
.5

JSON 0.75 0.25 0.47 0.08 0.37 0.26 0.36±0.23

Adjacency 0.47 0.29 0.44 0.77 0.65 0.84 0.57±0.21

Adjacency-M 0.05 0.19 0.10 0.11 0.15 0.10 0.12±0.11

GraphML 0.72 0.51 0.50 0.61 0.36 0.37 0.51±0.13

GraphViz 0.70 0.18 0.58 0.77 0.55 0.43 0.53±0.12

Multi node 0.39 0.24 0.50 0.70 0.64 0.59 0.51±0.17

Single node 0.70 0.30 0.56 0.67 0.55 0.45 0.54±0.14

x̄ / σ 0.57 / 0.70 0.31 / 0.33 0.48 / 0.48 0.50 / 0.69 0.50 / 0.50 0.47 / 0.74

G
em

in
i

JSON 0.80 0.77 0.97 0.56 0.68 0.72 0.76±0.13

Adjacency 0.53 0.62 0.66 0.74 0.64 0.73 0.66±0.07

Adjacency-M 0.12 0.49 0.07 0.12 0.11 0.07 0.22±0.16

GraphML 0.84 0.54 0.76 0.56 0.67 0.60 0.67±0.11

GraphViz 0.48 0.56 0.57 0.64 0.59 0.69 0.58±0.07

Multi node 0.50 0.73 0.70 0.70 0.63 0.59 0.64±0.08

Single node 0.88 0.62 0.69 0.73 0.71 0.57 0.71±0.10

x̄ / σ 0.65 / 0.76 0.62 / 0.28 0.69 / 0.90 0.64/0.62 0.64 / 0.66 0.62 / 0.68

G
PT

-4

JSON 0.68 0.69 0.52 0.43 0.75 0.74 0.80±0.13

Adjacency 0.77 0.58 0.69 0.69 0.84 0.75 0.73±0.09

Adjacency-M 0.10 0.18 0.21 0.11 0.10 0.13 0.14±0.04

GraphML 0.80 0.80 0.85 0.90 0.76 0.75 0.81±0.05

GraphViz 0.67 0.67 0.80 0.85 0.70 0.69 0.71±0.07

Multi node 0.66 0.65 0.73 0.88 0.84 0.79 0.75±0.09

Single node 0.80 0.42 0.89 0.90 0.69 0.87 0.77±0.18

x̄ / σ 0.68 / 0.70 0.61 / 0.62 0.71 / 0.68 0.71 / 0.79 0.73 / 0.80 0.72 / 0.74

Table 1: Performance comparison across methods and encodings. x̄ denotes the average performance
for each task and σ denotes the difference between the best and the worst encoding.

sink queries. This implies that the model’s understanding of causal relationships may be influenced
by the sequence in which information is presented. More complex tasks such as identifying mediators
seem to be more challenging since the task of identifying a mediator can be intuitively thought of as
breaking the task into child and parent identifications.
Average Performance. Observing the average performance for each model across different encodings
suggests that the LLMs are highly sensitive to graph encoding. Adjacency-matrix encoding generally
results in the lowest average performance across all models, despite being a popular format to
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represent causal graphs.
High sensitivity to causal graph representation. We observe that different encodings for the same
causal graphs have different performances across each causal query. For instance, for the Mistral
model, JSON encoding has the F1 score of 0.21, however for GraphML or GraphViz encoding the
performance increases to 0.46 for the Mediator task. GPT-4 and Gemini 1.5 Pro perform exceptionally
well with certain encodings like GraphML and JSON, respectively, indicating that these formats
might align better with the potential pretraining of the model. GritLM and Mistral show greater
variability in their average performance, highlighting their sensitivity to the encoding methods used.
Correlation between Query and Encodings. Some queries may seem easier due to the definition
of the encoding and its potential alignment with the encoding. For instance, for JSON encoding,
identifying parent nodes might be relatively easier for all LLMs. This could be because the JSON-
based prompt used by [1] defines the dictionary by specifying the parents of each node. This
alignment between the query and encoding likely facilitates the model’s understanding of the causal
relationships, resulting in improved performance on tasks involving parent nodes. This shows the
importance of considering the encoding method coupled with the query when concerned with a causal
graph based reasoning task.

3.2 Effect of pretraining knowledge on causal graph understanding
Previously, we used synthetic causal graphs to evaluate LLMs’ reasoning about causal relationships.
Now, we assess the impact of pretraining knowledge on causal graph understanding by testing
contextualized causal graphs. This experiment utilizes known causal DAGs, Insurance [8] and
Alarm [7], presented in two formats: one with semantically meaningful labels and one with random
identifiers.

Enc Model Source Sink Parent Child
w/o w w/o w w/o w w/o w

In
su

ra
nc

e

GritLM 0.55 0.72
+0.17

0.43 0.65
+0.22

0.40 0.62
+0.22

0.35 0.53
+0.18

Mistral 0.66 0.74
+0.08

0.21 0.43
+0.22

0.43 0.65
+0.22

0.50 0.69
+0.19

Mixtral 0.66 0.81
+0.15

0.32 0.47
+0.15

0.36 0.54
+0.18

0.49 0.72
+0.23

GPT-3.5 0.48 0.74
+0.26

0.40 0.68
+0.28

0.39 0.68
+0.29

0.42 0.66
+0.24

Gemini 0.72 0.78
+0.06

0.65 0.74
+0.09

0.57 0.74
+0.17

0.73 0.79
+0.06

GPT-4 0.68 0.79
+0.11

0.83 0.92
+0.09

0.75 0.92
+0.17

0.88 0.80
−0.08

A
la

rm

GritLM 0.52 0.59
+0.07

0.47 0.54
+0.07

0.36 0.54
+0.18

0.52 0.61
+0.09

Mistral 0.33 0.81
+0.48

0.46 0.63
+0.17

0.31 0.54
+0.23

0.46 0.58
+0.12

Mixtral 0.66 0.81
+0.15

0.32 0.47
+0.15

0.36 0.54
+0.18

0.49 0.72
+0.23

GPT-3.5 0.60 0.76
+0.16

0.69 0.84
+0.15

0.38 0.48
+0.10

0.42 0.38
−0.04

Gemini 0.77 0.84
+0.07

0.68 0.82
+0.14

0.71 0.69
−0.02

0.49 0.55
+0.06

GPT-4 0.82 0.83
+0.01

0.78 0.89
+0.11

0.66 0.82
+0.16

0.77 0.68
−0.09

Table 2: Performance of different models across Alarm and Insurance graphs. w/o - without context
w - with contextual variables. The results are averages across the encodings.

Table 6 shows that contextual knowledge improves performance across models, leveraging LLMs’
pretraining on vast text corpora. Semantically meaningful labels aid in more accurate causal interpre-
tations by activating the model’s parametric memory.

Risks of Contextual Knowledge Dependence. The reliance on contextual knowledge, while
beneficial, introduces risks such as biases from the language and cultural context of training data.
For example, GPT-4’s increased false positives in the Child query for the Insurance graph suggest
over-reliance on pretraining priors, aligning with findings from [42]. Performance also drops with
anti-commonsense DAGs, highlighting the potential for errors when causal directions deviate from
LLM pretraining biases.

3.3 Node-based Queries Simplify LLM Performance
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Figure 3: Performance: Node inspection
vs. graph overview.

In our previous experiments, we focused on graph
overview tasks, which required LLMs to identify all in-
stances of specific node types (e.g., source, sink) within a
causal graph, demanding a comprehensive understanding
of the entire graph structure. To simplify this, we de-
compose these tasks into binary node-inspection queries,
where the LLM evaluates whether a given node fits a spec-
ified type.

This breakdown reduces the processing complexity, allow-
ing LLMs to focus on individual nodes rather than the
entire graph. As shown in Figure 3, LLMs perform better
on node-inspection tasks due to the localized nature of the
queries. The lower performance on graph overview tasks
is likely due to the need for holistic graph comprehension and the potential cascading effect of errors
in node identification. In contrast, node-inspection tasks minimize the impact of individual errors,
leading to improved accuracy.

3.3.1 Overestimation and Underestimation Biases

GritL
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4

Gem
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100
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N

Figure 4: Evaluation of over- and under-
estimation biases.

For binary node-inspection tasks, we analyze false posi-
tives (FP) and false negatives (FN) for each LLM, provid-
ing insight into the nature of their errors. False positives
occur when a model incorrectly identifies a node type,
while false negatives occur when it fails to identify a cor-
rect type. We compute the ratio (τ ) of FP to FN, averaged
across all tasks, where τ > 1 indicates a bias towards
overestimation (more FPs), and τ < 1 indicates a bias
towards underestimation (more FNs).

Figure 4 shows that GritLM, GPT-3.5, and GPT-4 have
τ > 1, suggesting a tendency towards overestimation,
even without contextual influences, aligning with recent
findings [21, 30]. Conversely, Gemini, Mistral, and Mix-
tral exhibit higher FN rates, indicating underestimation,
potentially influenced by RLHF fine-tuning stages. Further
investigation is needed to explore these biases in causal queries.

4 Conclusion
With the increasing of LLMs to assist with causal inference and causal discovery tasks, it is important
to explore the opportunities and the limitations due to the nature of LLMs. In this paper, we proposed
the first benchmark, CausalGraph2LLM to evaluate the encoding capabilities of LLMs for causal
DAGs, encompassing both graph-level and node-level queries. Our findings also shed light on the
potential risks associated with employing LLMs for causal reasoning tasks, particularly emphasizing
the potential biases stemming from their pre-trained knowledge. These insights serve as a valuable
reference for future research leveraging LLMs in causal DAG manipulation.
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A Limitations and Future Work

The scope of the evaluation is primarily limited to synthetic and well-known causal graphs, which
may not fully capture the complexity of real-world causal graphs. We presented 6 diverse tasks,
which can be built upon for future work. Future work can expand the diversity of causal graphs
and models evaluated, develop more robust encoding techniques, and explore methods to mitigate
contextual biases. Enhancing the models’ ability to handle complex tasks and improving downstream
task performance will also be crucial. Additionally, a deeper investigation into bias sources can
provide a more nuanced understanding of LLM capabilities in causal inference. Given the modular
nature of the benchmark, we aim to continue to build up this benchmark to assess newer models as
they come.

B Reproduciblility

We will release our code, prompts, evaluation setup, and all models’ outputs of our experiments.
For reproducibility, we used temperature 0 and top-p value as 1 across all of the models. We also
mentioned the snapshot of the model used.

The Alarm and Insurance datasets are under CC BY-SA 3.0 which allows us to freely modify the
datasets for benchmarking. Our benchmark will be released under the CC BY-SA License.

For Mistral, Mixtral and GritLM models, were run via Helmholtz Jeulich. Mistral and GritLM were
run on 1 A100 GPU whereas Mixtral was run on 8 A100 GPUs. Since we used off-the shelf LLM,
each graph-level experiment took no more than 30 minutes to run (longer for mediator, child, parent,
confounder whereas source and sink took ≈ 3 mins to run). Since the models were run by Jeulich
API, it is difficult to calculate the entire compute, however all of the experiments for each model took
≈ 38 hours. GPT-3.5 GPT-4 were accessed via API.

B.1 Dataset descriptions

The datasets used can be divided into two: 1. realistic datasets and 2. synthetic datasets.

We use the two real-world-based datasets. These are semi-synthetic datasets available from the
BNLearn library. The first graph, named Alarm, is a well-known benchmark in the field of causal
inference. The Alarm dataset (see Figure 11) is designed to model the relationships and dependencies
in an intensive care unit (ICU) monitoring system. It includes variables such as heart rate, blood
pressure, and other vital signs, making it a complex and realistic representation of medical data. This
dataset is particularly useful for evaluating the ability of LLMs to handle intricate causal relationships
in a medical high-stakes environment.

The second dataset, Insurance, is another widely used benchmark that models the risk factors and
dependencies in the insurance domain. This graph (see Figure 12) includes variables related to
policyholders, such as age, driving history, and vehicle type, and their relationships to insurance
claims and premiums. The Insurance dataset provides a different context from the medical domain,
allowing us to assess the versatility of LLMs in understanding and reasoning about causal relationships
in a financial setting.

B.2 Synthetic dataset

In addition to real-world-based datasets, we created synthetic datasets with varying levels of diffi-
culty to rigorously evaluate the performance of LLMs. These synthetic datasets were designed to
systematically vary in complexity by adjusting the number of nodes and edges in the causal graphs.
This variation allows us to assess how well the models handle different levels of graph complexity
and density. The synthetic datasets serve as a controlled environment to test the models’ ability to
interpret and reason about causal relationships under varying conditions. By incrementally increasing
the number of edges while keeping the number of nodes constant, we can observe how the models’
performance scales with the complexity of the causal structure. This approach provides valuable
insights into the strengths and limitations of LLMs in handling more intricate causal graphs, which is
crucial for understanding their potential applications in real-world scenarios. For the experiments, we
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synthesized graphs with 20 and 30 nodes. For each of these node variables, we experimented with
different densities of nodes. Hence we had density = 1 x nodes, 1.5 x nodes and 2 x nodes.

C Prompting stratergies

Adjacency

( 0 , 1 )
( 0 , 2 )
( 1 , 3 )
( 2 , 3 )
( 2 , 4 )
( 3 , 4 )
( 0 , 3 )
( 1 , 4 )
( 0 , 4 )
( 1 , 2 )

Adjacency Matrix

0 1 2 3 4
0 0 1 1 1 1
1 0 0 1 1 1
2 0 0 0 1 1
3 0 0 0 0 1
4 0 0 0 0 0

GraphML

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">

<graph edgedefault="directed">
<node id="0"/>
<node id="1"/>
<node id="2"/>
<node id="3"/>
<node id="4"/>
<edge source="0" target="1"/>
<edge source="0" target="2"/>
<edge source="1" target="3"/>
<edge source="2" target="3"/>
<edge source="2" target="4"/>
<edge source="3" target="4"/>
<edge source="0" target="3"/>
<edge source="1" target="4"/>
<edge source="0" target="4"/>
<edge source="1" target="2"/>

</graph>
</graphml>
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GraphViz

digraph G {
0 -> 1;
0 -> 2;
1 -> 3;
2 -> 3;
2 -> 4;
3 -> 4;
0 -> 3;
1 -> 4;
0 -> 4;
1 -> 2;

}

JSON

{
"0": {

"parents": []
},
"1": {

"parents": [
"0"

]
},
"2": {

"parents": [
"0",
"1"

]
},
"3": {

"parents": [
"0",
"1",
"2"

]
},
"4": {

"parents": [
"0",
"1",
"2",
"3"

]
}

}

Multi node
0 causes 1, 2, 3, 4. 1 causes 3, 4, 2. 2 causes 3, 4. 3 causes 4.
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Single node

0 causes 1. 0 causes 2. 0 causes 3. 0 causes 4. 1 causes 3. 1 causes 4. 1 causes 2. 2 causes 3.
2 causes 4. 3 causes 4.
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D Experiments

D.1 Variance

Model Enc Source Sink Parent Child Mediator Confounder Avg
G

ri
tL

M
JSON 0.25

±0.07
0.30
±0.05

0.15
±0.02

0.20
±0.07

0.10
±0.08

0.15
±0.07

0.19±0.10

Adjacency 0.20
±0.03

0.26
±0.04

0.12
±0.01

0.06
±0.02

0.35
±0.05

0.26
±0.04

0.20±0.12

Adjacency-M 0.00
±0.00

0.05
±0.01

0.08
±0.01

0.11
±0.02

0.06
±0.01

0.06
±0.01

0.06±0.03

GraphML 0.38
±0.06

0.24
±0.04

0.14
±0.03

0.21
±0.05

0.18
±0.04

0.29
±0.05

0.24±0.08

GraphViz 0.15
±0.03

0.25
±0.05

0.19
±0.04

0.23
±0.04

0.17
±0.03

0.22
±0.04

0.20±0.03

Multi node 0.11
±0.02

0.32
±0.06

0.10
±0.02

0.43
±0.08

0.19
±0.04

0.24
±0.05

0.23±0.12

Single node 0.12
±0.03

0.34
±0.06

0.18
±0.04

0.36
±0.07

0.25
±0.05

0.17
±0.04

0.23±0.10

M
is

tr
al

JSON 0.30
±0.03

0.04
±0.01

0.58
±0.06

0.20
±0.02

0.21
±0.02

0.19
±0.02

0.25±0.18

Adjacency 0.36
±0.04

0.15
±0.02

0.26
±0.03

0.56
±0.06

0.28
±0.03

0.31
±0.03

0.32±0.13

Adjacency-M 0.07
±0.01

0.16
±0.02

0.11
±0.01

0.10
±0.01

0.09
±0.01

0.10
±0.01

0.10±0.03

GraphML 0.18
±0.02

0.21
±0.02

0.31
±0.03

0.59
±0.06

0.46
±0.05

0.61
±0.06

0.39±0.18

GraphViz 0.35
±0.04

0.27
±0.03

0.36
±0.04

0.43
±0.04

0.46
±0.05

0.39
±0.04

0.37±0.06

Multi node 0.37
±0.04

0.25
±0.03

0.24
±0.02

0.45
±0.05

0.31
±0.03

0.42
±0.04

0.34±0.08

Single node 0.50
±0.05

0.22
±0.02

0.44
±0.04

0.43
±0.04

0.33
±0.03

0.20
±0.02

0.35±0.12

M
ix

tr
al

JSON 0.61
±0.06

0.04
±0.01

0.54
±0.05

0.18
±0.02

0.22
±0.02

0.43
±0.04

0.33±0.22

Adjacency 0.32
±0.03

0.56
±0.05

0.45
±0.04

0.49
±0.05

0.44
±0.04

0.32
±0.03

0.43±0.09

Adjacency-M 0.11
±0.01

0.08
±0.01

0.09
±0.01

0.12
±0.01

0.10
±0.01

0.09
±0.01

0.10±0.01

GraphML 0.38
±0.04

0.14
±0.01

0.30
±0.03

0.39
±0.04

0.45
±0.04

0.37
±0.04

0.34±0.10

GraphViz 0.76
±0.07

0.50
±0.05

0.46
±0.04

0.39
±0.04

0.55
±0.05

0.37
±0.04

0.50±0.14

Multi node 0.39
±0.04

0.49
±0.05

0.27
±0.03

0.29
±0.03

0.49
±0.05

0.19
±0.02

0.35±0.12

Single node 0.71
±0.07

0.33
±0.03

0.48
±0.05

0.42
±0.04

0.54
±0.05

0.39
±0.04

0.48±0.13

G
PT

-3
.5

JSON 0.75
±0.07

0.25
±0.03

0.47
±0.05

0.08
±0.01

0.37
±0.04

0.26
±0.03

0.36±0.23

Adjacency 0.47
±0.05

0.29
±0.03

0.44
±0.04

0.77
±0.08

0.65
±0.07

0.84
±0.09

0.57±0.21

Adjacency-M 0.05
±0.01

0.19
±0.02

0.10
±0.01

0.11
±0.01

0.15
±0.02

0.10
±0.01

0.12±0.11

GraphML 0.72
±0.07

0.51
±0.05

0.50
±0.05

0.61
±0.06

0.36
±0.04

0.37
±0.04

0.51±0.13

GraphViz 0.70
±0.07

0.18
±0.02

0.58
±0.06

0.77
±0.08

0.55
±0.06

0.43
±0.04

0.53±0.12

Multi node 0.39
±0.04

0.24
±0.02

0.50
±0.05

0.70
±0.07

0.64
±0.06

0.59
±0.06

0.51±0.17

Single node 0.70
±0.07

0.30
±0.03

0.56
±0.06

0.67
±0.07

0.55
±0.06

0.45
±0.05

0.54±0.14

G
em

in
i

JSON 0.80
±0.08

0.77
±0.08

0.97
±0.10

0.56
±0.06

0.68
±0.07

0.72
±0.07

0.76±0.13

Adjacency 0.53
±0.05

0.62
±0.06

0.66
±0.07

0.74
±0.07

0.64
±0.06

0.73
±0.07

0.66±0.07

Adjacency-M 0.12
±0.01

0.49
±0.05

0.07
±0.01

0.12
±0.01

0.11
±0.01

0.07
±0.01

0.22±0.16

GraphML 0.84
±0.08

0.54
±0.05

0.76
±0.08

0.56
±0.06

0.67
±0.07

0.60
±0.06

0.67±0.11

GraphViz 0.48
±0.05

0.56
±0.06

0.57
±0.06

0.64
±0.06

0.59
±0.06

0.69
±0.07

0.58±0.07

Multi node 0.50
±0.05

0.73
±0.07

0.70
±0.07

0.70
±0.07

0.63
±0.06

0.59
±0.06

0.64±0.08

Single node 0.88
±0.09

0.62
±0.06

0.69
±0.07

0.73
±0.07

0.71
±0.07

0.57
±0.06

0.71±0.10

G
PT

-4

JSON 0.68
±0.07

0.69
±0.07

0.52
±0.05

0.43
±0.04

0.75
±0.08

0.74
±0.07

0.80±0.13

Adjacency 0.77
±0.08

0.58
±0.06

0.69
±0.07

0.69
±0.07

0.84
±0.08

0.75
±0.08

0.73±0.09

Adjacency-M 0.10
±0.01

0.18
±0.02

0.21
±0.02

0.11
±0.01

0.10
±0.01

0.13
±0.01

0.14±0.04

GraphML 0.80
±0.08

0.80
±0.08

0.85
±0.09

0.90
±0.09

0.76
±0.08

0.75
±0.08

0.81±0.05

GraphViz 0.67
±0.07

0.67
±0.07

0.80
±0.08

0.85
±0.09

0.70
±0.07

0.69
±0.07

0.71±0.07

Multi node 0.66
±0.07

0.65
±0.07

0.73
±0.07

0.88
±0.09

0.84
±0.08

0.79
±0.08

0.75±0.09

Single node 0.80
±0.08

0.42
±0.04

0.89
±0.09

0.90
±0.09

0.69
±0.07

0.87
±0.09

0.77±0.18

Table 3: Performance comparison across methods and encodings.
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Enc Model Source Sink Parent Child
w/o w w/o w w/o w w/o w

In
su

ra
nc

e

GritLM 0.55
±0.07

0.72
±0.07

0.43
±0.03

0.65
±0.04

0.40
±0.04

0.62
±0.05

0.35
±0.03

0.53
±0.05

Mistral 0.66
±0.06

0.74
±0.08

0.21
±0.02

0.43
±0.09

0.43
±0.04

0.65
±0.02

0.50
±0.05

0.69
±0.10

Mixtral 0.66
±0.06

0.81
±0.04

0.32
±0.03

0.47
±0.05

0.36
±0.04

0.54
±0.08

0.49
±0.05

0.72
±0.03

GPT-3.5 0.48
±0.05

0.74
±0.05

0.40
±0.04

0.68
±0.08

0.39
±0.04

0.68
±0.09

0.42
±0.04

0.66
±0.04

Gemini 0.72
±0.07

0.78
±0.06

0.65
±0.06

0.74
±0.03

0.57
±0.06

0.74
±0.07

0.73
±0.07

0.79
±0.05

GPT-4 0.68
±0.07

0.79
±0.03

0.83
±0.08

0.92
±0.02

0.75
±0.07

0.92
±0.06

0.88
±0.09

0.80
±0.03

A
la

rm

GritLM 0.52
±0.05

0.59
±0.07

0.47
±0.05

0.54
±0.07

0.36
±0.04

0.54
±0.04

0.52
±0.05

0.61
±0.09

Mistral 0.33
±0.03

0.81
±0.05

0.46
±0.05

0.63
±0.04

0.31
±0.03

0.54
±0.02

0.46
±0.05

0.58
±0.08

Mixtral 0.66
±0.06

0.81
±0.05

0.32
±0.07

0.47
±0.03

0.36
±0.06

0.54
±0.07

0.49
±0.05

0.72
±0.04

GPT-3.5 0.60
±0.06

0.76
±0.09

0.69
±0.07

0.84
±0.03

0.38
±0.04

0.48
±0.09

0.42
±0.04

0.38
±0.04

Gemini 0.77
±0.08

0.84
±0.07

0.68
±0.07

0.82
±0.14

0.71
±0.03

0.69
±0.02

0.49
±0.05

0.55
±0.06

GPT-4 0.82
±0.08

0.83
±0.01

0.78
±0.08

0.89
±0.04

0.66
±0.07

0.82
±0.06

0.77
±0.08

0.68
±0.03

Table 4: Performance of different models across Alarm and Insurance graphs. w/o - without context
w - with contextual variables. The results are averages across the encodings.

JSON Adjacency Adjacency-M GraphML GraphViz Multi node Single node

GritLM 0.44
±0.04

0.50
±0.05

0.54
±0.05

0.53
±0.05

0.53
±0.05

0.58
±0.06

0.54
±0.05

Mistral 0.43
±0.04

0.47
±0.05

0.51
±0.05

0.50
±0.05

0.55
±0.05

0.53
±0.05

0.58
±0.06

Mixtral 0.48
±0.05

0.56
±0.06

0.51
±0.05

0.63
±0.06

0.72
±0.07

0.61
±0.06

0.58
±0.06

GPT-3.5 0.50
±0.05

0.37
±0.04

0.48
±0.05

0.52
±0.05

0.64
±0.06

0.56
±0.06

0.58
±0.06

Gemini 0.80
±0.08

0.78
±0.08

0.54
±0.05

0.76
±0.07

0.88
±0.04

0.78
±0.08

0.63
±0.06

GPT-4 0.74
±0.07

0.74
±0.07

0.52
±0.05

0.78
±0.08

0.88
±0.03

0.82
±0.04

0.77
±0.08

Table 5: Sensitivity to encoding for downstream intervention analysis.
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Figure 5: Node inspection vs. graph overview query performances.

D.2 Ordering of prompt matter for causal queries

In BFS, the traversal starts from the source nodes, while in BFS-R, the traversal begins from the sink
nodes. The values in the table represent the performance of the models on the tasks, with higher
values indicating better performance.

16



GritL
M

Mistr
al

Mixt
ral

GPT-
3.5

GPT-
4

Gem
ini

100

FP
/F

N

Figure 6: Evaluation of over- and underestimation biases.

The results show that the traversal order significantly impacts the performance of the models. For
instance, GritLM performs better on source tasks when the traversal is in BFS order, while it performs
better on sink tasks when the traversal is in BFS-R order. This pattern is consistent across all models,
suggesting that BFS is more suitable for identifying source nodes, while BFS-R is more suitable for
identifying sink nodes.

D Model Source Sink
BFS BFS-R BFS BFS-R

Sy
nt

he
tic

GritLM 0.18 0.24 0.27 0.0.47
Mistral 0.32 0.26 0.21 0.39
Mixtral 0.48 0.40 0.31 0.44
GPT-3.5 0.57 0.48 0.31 0.64
Gemini 0.65 0.54 0.62 0.82
GPT-4 0.68 0.57 0.61 0.89

Table 6: Comparing the order for prompts, BFS means it starts from source and BFS-R means it
starts from sinks.

D.3 Downstream performance under/over bias

In the main paper, we analyzed over and underestimation bias for the binary node inspection task.
We can conduct a similar analysis on the downstream task. Here, we observe a similar trend to the
estimation biases in Section 4.3.1. Notably, GPT-3.5 and GPT-4 usually have FP/FN ratios closer to
1.
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Figure 7: Evaluation of over- and underestimation biases for downstream task.

D.4 Effect of node explanations

In our experimental setup, we took an approach to defining each task for every metric. This was
primarily due to the varying terminologies used in causal inference across different academic circles.
For instance, what some researchers might refer to as a ’source’, others might call a ’root’. To avoid
any potential confusion, we provided clear definitions for each term used in our causal queries.

Since pretraining for each model was not known, this adds an element of uncertainty to the task.
To counteract this, we explicitly mentioned the query in our experiments. We conducted a set of
preliminary experiments without an explanation of the query to demonstrate its effectiveness. The
results showed a decrease in model performance, suggesting that providing explicit direction in the
form of a mentioned query can be beneficial.

Model Enc Source Sink Parent Child Mediator Confounder

G
PT

-3
.5

JSON 0.52 0.25 0.47 0.08 0.30 0.31
Adjacency 0.32 0.26 0.44 0.65 0.72 0.51
Adjacency-M 0.06 0.15 0.10 0.11 0.08 0.12
GraphML 0.34 0.38 0.50 0.61 0.37 0.39
GraphViz 0.42 0.19 0.58 0.77 0.52 0.28
Multi node 0.39 0.24 0.50 0.70 0.64 0.27
Single node 0.45 0.27 0.56 0.67 0.39 0.50

Table 7: Performance comparison across methods and encodings for GPT-3.5 without causal query
explanations.
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D.5 Node Complexity
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Figure 8: With an increase in graph complexity by increasing the number of nodes, we observe poorer
performance of the LLM - Mistral model.
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Figure 9: With an increase in graph complexity by increasing the number of edges, we observe poorer
performance of the LLM - Mistral model.

D.6 Further models

D.6.1 LLama3.1 models

We additionally tested models from the LLama-3.1 family. We observe that LLama3.1 models also
observe sensitivity to the graph encoding.
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Model Enc Source Sink Parent Child Mediator Confounder

8b

JSON 0.30 0.35 0.22 0.25 0.20 0.22
Adjacency 0.28 0.30 0.18 0.20 0.22 0.23
GraphML 0.35 0.31 0.28 0.29 0.18 0.31
Single node 0.36 0.27 0.33 0.40 0.36 0.38

70
b

JSON 0.62 0.65 0.52 0.55 0.48 0.50
Adjacency 0.55 0.58 0.48 0.50 0.50 0.52
GraphML 0.63 0.62 0.60 0.62 0.58 0.62
Single node 0.71 0.75 0.72 0.74 0.68 0.69

40
5b

JSON 0.80 0.82 0.74 0.76 0.70 0.72
Adjacency 0.75 0.78 0.70 0.72 0.68 0.70
GraphML 0.85 0.83 0.80 0.82 0.77 0.79
Single node 0.88 0.90 0.85 0.87 0.82 0.84

Table 8: Performance comparison across methods and encodings. x̄ denotes the average performance
for each task and σ denotes the difference between the best and the worst encoding.

D.6.2 Multimodal models

In this work we focus on textual encodings into LLMs, however with the developments of multimodal
models, we can test LLM’s ability to answer causal queries when presented with image inputs. We
performed our experiment on GPT-4 model with T=0. Future works can be built upon to test better
image inputs for multimodal models.

Source Sink Child Parent Mediator Confounder

0.58 0.62 0.71 0.65 0.58 0.63

D.7 Effect of finetuning

In this paper, we focused on zero-shot prompting as the current models have billions of trainable
parameters and have been trained on a plethora of training data, potentially including causal graphs.
We hence aimed to evaluate how this reflects in the causal queries. Additionally, most current methods
utilize LLMs without fine-tuning for causal discovery queries, and our study aimed to replicate this
environment to provide a realistic benchmark. We performed QLORA on Mistral 7b specifically on
synthetic datasets. As expected, we observed an increase in the performance with finetuning.

Source Sink Parent Child Mediator Confounder

JSON 0.30 0.04 0.58 0.20 0.21 0.19
JSON -FT 0.63 0.36 0.73 0.42 0.33 0.44
GraphML 0.18 0.21 0.31 0.59 0.46 0.61
GraphML - FT 0.47 0.42 0.55 0.73 0.68 0.73

Table 9: Effect of finetuning Mistral 7b model for JSON and GraphML encoding.

E Causal Query explanation

Source
A source node in a causal graph is a variable that does not have any incoming edges, meaning
it is not caused by any other variable in the graph.
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Sink
A sink node in a causal graph is a variable that does not have any children in the graph,
meaning it is not caused by any other variables in the system.

Direct Mediator
A direct mediator in a causal graph is a variable that lies on the direct path between two
other immediate variables. Only consider mediators that exist in the direct causal path (not
mediated via other mediators).

Confounder
A confounder in a causal graph is a variable that influences both the cause and the effect
variables. It is a common cause for both the dependent and independent variables.

Parents
What nodes are the direct causes of Node X?

Child
What nodes are directly caused by Node X?

E.1 Prompt

For further prompt templates, please check the codebase.

Graph level query prompt

Hello. You will be given a causal graph. The causal relationships in this causal graph are
- [causal-graph-based-encoding]. Now answer using this causal graph only, name all of
the [node-type] in the graph. [node-type-description]. Think step by step. Give reason-
ing and then give answer within <Answer> [a1,a2,a3..] </Answer>, if Null then return
<Answer>Null</Answer>.

Node level query prompt

Hello. You will be given a causal graph. The causal relationships in this causal graph are
- [causal-graph-encodingbased]. Now answer using this causal graph only, is [nodeX] a
[node-type] in the graph. [node-type-description]. Think step by step. Give reasoning and
then give answer within <Answer> Yes/No </Answer>.
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F Graphs

Figure 10: Alarm causal graph
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Figure 11: Insurance causal graph

G Related Works

LLMs. Instruction-tuned LLMs have become the gold standard for uncovering pre-trained knowl-
edge via prompting [29]. In this work, we explore the causal reasoning and causal graph understanding
abilities of LLMs through prompting. LLMs have demonstrated numerous emerging abilities in
language generation and certain reasoning tasks which has motivated their applications in scientific
discovery [3, 32, 15, 16].

Causality and LLMs. Causal discovery and inference have predominantly been dominated by
data-driven methods. However, due to the complexity of inferring causal structures, previous works
have introduced priors on causal graphs in terms of interventions, domain expertise, edge existence,
or ancestral constraints [13, 6, 9]. These priors help to reduce the search spaces of potential causal
graphs. Recent advancements in LLMs have motivated the use of LLM-based priors and causal
discovery [32, 12, 4, 25, 28]. Unlike data-driven methods, LLMs leverage causal variable names to
evaluate the existence of edges between them, thereby constructing causal graphs. The rich pretrained
knowledge of LLMs has proven to be almost as effective in discovering causal structures as traditional
data-driven methods [42, 28]. These initial results have motivated the integration of LLMs as priors
combined with different statistical causal discovery methods. For instance, Vashishtha et al. [42]
used pairwise queries to discover the existence of edges between different causal variables and then
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applied methods such as PC [39] to reorient the edges, whereas Ban et al. [6] utilized LLM-based
priors for scoring-based discovery methods. Vashishtha et al. [42] suggest triplet-based prompting
strategies, and Jiralerspong et al. [27] proposed reducing the prompting complexity by prompting in a
depth-first search (DFS) manner. More recently, Abdulaal et al. [1] proposed an iterative collaboration
between LLMs and structural causal models, where the LLM refines the output of SCMs. Despite
their success, Jin et al. [25] and Zečević et al. [45] find that LLMs are not yet fully capable of
understanding true causality. Combined with external tools, Jin et al. [26] demonstrated the use of
LLMs for causal inference tasks, albeit on 3-4 node tasks. Another line of previous works [19, 20, 41]
explored the use of LLMs to discover potential causal structures from unstructured data.

Most of these works assume a particular prompting strategy. However, it remains unclear which
strategy would be most effective. In this paper, we aim to contribute to this line of research by
benchmarking a variety of LLMs on a range of tasks related to causal graphs and exploring the
effectiveness of different causal graph encoders.
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