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Abstract

Large Language Models (LLMs) trained on
web-scale text corpora have been shown to cap-
ture world knowledge in their parameters. How-
ever, the mechanism by which language models
store different types of knowledge is poorly un-
derstood. In this work, we examine two types
of knowledge relating to temporally sensitive
entities and demonstrate that each type is lo-
calized to different sets of parameters within
the LLMs. We hypothesize that the lack of
consideration of the locality of knowledge in
existing continual learning methods is respon-
sible for failed uptake of new information and
catastrophic forgetting of previously learned in-
formation. We demonstrate that targeted train-
ing to these relevant layers can improve the
performance of continually learned language
under temporal drift.

1 Introduction

Pretraining over diverse datasets has been shown
to encode world knowledge in the parameters of
large language models (LLMs) (Petroni et al., 2019;
Roberts et al., 2020; Gueta et al., 2023) from mas-
sive static web-scale datasets. However, these mod-
els are frequently trained on large static text corpora
which are unable to reflect changes in world knowl-
edge or language usage that occur after the initial
data collection. In practice language models are
deployed in dynamic real-world settings, and their
learned knowledge becomes stale over time; the
temporal degradation can be evaluated according
to intrinsic measures such as perplexity, or extrinsic
downstream performance (e.g. question answering)
(Lazaridou et al., 2021; Luu et al., 2022; Dhingra
et al., 2022; Yao et al., 2022; Nylund et al., 2023;
Cheang et al., 2023).

Incrementally training of language models on
streams of data which reflect the changes in lan-
guage usage and world knowledge has been ex-
plored as a method to mitigate temporal perfor-
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Figure 1: The NLL loss gradients of updated entities and
newly mentioned entities observe characteristic patterns of
layers with large norms.

mance degradation without incurring the heavy
computational and environmental costs of retrain-
ing models on large pretraining corpora (Jang et al.,
2021, 2022; Lin et al., 2022). However, naive on-
line finetuning on these datastreams has been ob-
served to: induce hallucinations in model gener-
ations (Kang et al., 2024), failures to uptake new
information (Hu et al., 2023a), and catastrophic
forgetting of previously learned information (Zhu
et al., 2020). To address these problems, recent
work has explored continual learning and online
learning methods for adapting large language mod-
els on streams of documents (Loureiro et al., 2022;
Scialom et al., 2022; Jang et al., 2022)

As one potential solution, continual pretrain-
ing has been shown to improve performance when
training on a sequence of natural language domains
(Gururangan et al., 2020), but these methods often
fail to acquire new knowledge (Hu et al., 2023a;
Onoe et al., 2023). While continual learning meth-
ods have been shown to mitigate temporal degra-
dation on the task-level, the mechanisms by which
neural language models store and update informa-
tion are not well understood: Appendix C contains
details of related work.

In this work, we consider the practical contin-
ual language learning setting of temporal language
drift and probe the performance of language mod-
els on two types of entity relationships known to
observe temporal degradation: (1) acquisiton of
information about new entities, and (2) updating



relationships between existing entities. We hypoth-
esize that the poor performance of existing contin-
ual learning methods on these tasks can be in part
attributed to a misalignment in the autoregressive
language modeling pretraining objective and the
ideal parameter updates required to acquire new
information or update existing knowledge. As an
indicator of this misalignment, we examine models’
gradient updates computed on knowledge intensive
salient entity spans and compare them with those
seen instandard continual pretraining, and discover
that the gradient norms observe high values in dis-
tinct groups of layers based on the type of entity
relationship presented in the sequence (see Fig. 1).

Based on these observations, we propose new
methods for aligning the updates steps during con-
tinual pretraining to better align with the Through
empirical study, we show that the observed charac-
teristic gradient patterns occur across autoregres-
sive, transformer language models of various of
sizes; and we demonstrate the efficacy of our pro-
posed method through performance improvements
on knowledge probing tasks when applied on top of
existing continual learning methods in pretraining.

2 Knowledge Probing with Salient Span
Prediction

We probe language models with the problem
of salient span prediction, which has previously
shown success as a pretraining objective for
knowledge-intensive tasks such as closed-book
question answering (Cole et al., 2023; Guu et al.,
2020). In salient span prediction, a model is pro-
vided with a sequence and tasked with completing
a masked slot corresponding to a named entity or
noun phrase. Specifically, we examine language
models on probing tasks for temporal entity knowl-
edge in which the masked sequence corresponds to
an update existing of knowledge about temporally
sensitive entities or is a mention of an emerging
new entities that was not previously seen during
pretraining.

2.1 Probing Datasets

We study these using the Dynamic TempLAMA
(Dhingra et al., 2022) and the Entity Cloze By Date
(ECBD) (Onoe et al., 2022) diagnostic datasets,
respectively. Examples can be found in Table 3.
The Dynamic TempLAMA dataset contains slot-
filling cloze queries where the goal is to complete
a subject-object relation in which there are mul-

tiple candidate object answers that change over
time. Examples are generated from natural lan-
guage templates based on subject-object relations
extracted from Wikipedia metadata, and are gen-
erated sequentially for three month periods. For
our analysis, we examine splits for each year from
2019 to 2021. As the subject in each example
has been mentioned in both the seen and unseen
data, we use this dataset to evaluate the ability of
continual learning techniques to update existing
knowledge. To evaluate continual learning meth-
ods in knowledge acquisition about new entities,
we consider the ECBD dataset which consists of
sentences reference emerging entities. Examples
consist sentences containing the emerging entity
with the goal of predicting noun-phrase spans re-
lated to the target entity. Examples are grouped by
year, according to the first time of mention.

2.2 Models

We examine decoder-only transformer language
models of various sizes, specifically: GPT 2-Base
(110M parameters) and GPT-2 Large (770M pa-
rameters). To evaluate the perplexity of each of
these models, we provide the example context of
each example up to the salient span and compute
the perplexity over the salient span as in (Onoe
et al., 2022, 2023).

To align the each language model with each
Wikipedia-based knowledge for the probing tasks,
we perform domain adaptive pretraining on snap-
shots of Wikipedia retrieved prior to the pretraining
data cutoffs for each model. We perform initial
pretraining GPT-2 models on Wikipedia snapshots
from January 2019; GPT-Neo from January 2020.

2.3 Probing Model Response to Salient Spans

We hypothesize that the portions of the model re-
sponsible for different forms of knowledge can be
identified by tracing the gradient norm of examples
which reflect the target form of knowledge.

For the ECBD probing dataset, we examine
the loss gradient with respect to the salient span
corresponding to the target entity or its related
noun phrase, which we refer to as ECBD-ENT
and ECBD-NP, respectively. For the TempLAMA
dataset, we examine the loss gradient with respect
to the object noun phrase.

Beginning with a domain-adapted model pre-
trained on a snapshot of Wikipedia from 2019, we
examine the average per-token loss gradients of the
salient spans from the 2019 splits of TempLAMA
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Figure 2: Relative gradient norms for the salient spans in ECBD and TempLAMA for the GPT-2 Base (110M),
(1,3), and GPT-2 Large (770M; (2,4)), models. Norms for attention (/,2) and norms for MLP (3,4) are depicted
separately. Gradient norms of salient spans are 4 to 15x larger than those of the full sequence.

and ECBD. For comparison, we compute the gra-
dient of the loss for 2000 examples from the 2019
Wikipedia snapshot over the full sequence.

Precisely, we provide the autoregressive lan-
guage model with the left context preceding the
salient span and compute the parameter gradient
with respect to the loss averaged over each token
in the target span tokens. We then aggregate the
gradients according to their respective transformer
block, and component attention and MLP layers
and compute the L2-Norm of the gradients for each
layer.

For the GPT-2 Base model, the gradient norms of
each attention and MLP block for the salient spans
probes are consistently 4 to 15x higher than the gra-
dient norms of the randomly sampled pretraining
examples for all transformer layers. Additionally,
we observe that salients spans corresponding to
changes in entity relations observe a distinct profile
in which they exhibit large magnitude in the early
and middle layers and are larger in the attention
layers than in the MLP layers.

3 Gradient Localized Continual
Pretraining

Ideally, naive pretraining of a language model on
a changing stream of data would be sufficient to
update a model to capture the relevant changes
in knowledge. However, recent work has demon-
strated that current methods for continual learning
often suffer from both catastrophic forgetting and
a failure to uptake new knowledge even when it is
directly contained in the training corpus (Hu et al.,
2023a; Kang et al., 2024). We hypothesize that
failed transfer occurs due to a misalignment of the
NLL objective with the information content of the
data observed during continual pretraining.

Based on our observations from §2, we hypoth-
esize that the acquisition of entity knowledge can
be improved by amplifying updates to the layers

are relevant to the learning of salient entity spans.
To identify these relevant layers, we compute the
relative gradient norm for each layer as the ratio be-
tween the gradient norm V~i in the layer ¢ w.r.t. ran-
domly sampled data from the continual pretraining
data stream, and data sampled from the validation
set of the TempLAMA diagnostic dataset:
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We propose two methods for aligning gradient
updates during continual pretraining with to im-
prove knowledge uptake by tracing the gradient
magnitudes for relevant salient spans from the Tem-
pLAMA diagnostic dataset based on the relative
gradient norms traced through each layer. We refer
to our methods as Traced Gradient Layers (TGL).

Selecting Trainable Layers for Pretraining
Based on Relative Gradient Norm We consider
a simple approach to target continual pretraining
updates to layers with high relative gradient norm,
by only updating parameters where the relative gra-
dient norm on the TempLAMA diagnostic dataset
exceed the mean relative gradient norm of all lay-
ers — we refer to this parameter freezing method as
TGL + FP. In the case of the GPT-2 architecture,
we separate the model into its component MLP and
attention layers, then compute the relative gradient
norm for each layer as the ratio between the av-
erage gradient norm computed over samples from
both the TempLAMA dataset and the continual pre-
training corpus. Precsisely, we freeze a parameter
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Per-Layer Adaptive Learning Rates from Rela-
tive Gradient Norm Rather than using relative
gradient norm as a hard threshold to determine
which layers to update, we instead consider an
adaptive approach in which we set the learning rate
for layers to scale with the magnitude of the rela-



Evaluation Set: 2020 ECBD Pop. ECBD NP TempLAMA
Pretrain 40.99 47.44 81.92
Domain Pretrain 30.90 41.39 62.99
Continual Pretrain 34.79 43.97 56.72
+ TGL with FP 34.13 44.20 55.19
LoRA: 64D, Attn 31.94 41.40 57.21
+ TGL with FP 30.28 41.05 56.32
MixReview 28.70 37.34 67.64
+ TGL with FP 28.24 37.71 60.05
RecAdam 34.78 43.92 57.34
+ TGL with FP 33.56 43.41 54.75

Table 1: TGL with frozen layers improves performance
(perplexity of slot) of GPT2-Large (770M) during con-
tinual pretraining.

tive gradient norm. We scale the per-layer learning

rate for layer 1as:n; = nm

3.1 Baselines

We compare the performance of our proposed con-
tinual pretraining method with existing approaches
from continual learning. We consider vanilla con-
tinual pretraining in which we update all parame-
ters; a prarameter-expansion method LoRA (Hu
et al., 2021), which introduces additional train-
able low rank adapters to the self-attention lay-
ers; a replay-based method MixReview (He et al.,
2021), which adds previously seen data is ran-
domly mixed alongside current data during contin-
ued pretraining; and a regularization-based method
of RecAdam (Chen et al., 2020), which imposes a
quadratic penalty on the norm of parameter updates.
We provide full details on the training datasets and
hyperparameters in the Appendix.

3.2 Evaluating TGL for Continual PT

To evaluate the performance of TGLA+FP and
TGL+AR, we perform domain adaptive pretrain-
ing of GPT-2 Base and Large on the complete
Wikipedia corpus from January 2019 for 4 epochs,
then incrementally train on the complete set of
Wikipedia revisions for the subsequent years of
2020 and 2021. To evaluate the performance
of these models, we probe the continually pre-
trained model after each updating on new year of
Wikipedia revisions using the corresponding tem-
porally delineated split from the ECBD-NP and
TempLAMA test datasets 2.1. To evaluate whether
either TGL method leads to catastrophic forgetting,
we also report performance on ECBD-Popular, se-
quences referring to entities common in all years.
In Table 2, we report the perplexities of the con-
tinually pretrained model on the 2020 test splits

Evaluation Set: 2020 ECBD Pop. ECBDNP TempLAMA
Pretrain 78.61 80.04 162.54
Domain Pretrain 55.26 62.59 80.51
Continual Pretrain 64.13 72.42 83.39
+ TGL with ALR 57.62 64.83 77.58
+ TGL with FP 57.75 65.08 74.55
MixReview 54.10 61.54 82.16
+ TGL with ALR 53.50 61.01 77.04
+ TGL with FP 53.48 61.48 76.35
LoRA 55.77 65.56 80.11
+ TGL with ALR 57.75 69.44 78.40
+ TGL with FP 58.09 67.62 78.77
RecAdam 57.55 64.60 76.67
+ TGL with ALR 57.52 64.77 77.32
+ TGL with FP 57.55 64.89 74.88
Evaluation Set: 2021 ECBD Pop. ECBDNP TempLAMA
Pretrain 78.61 98.47 167.23
Domain Pretrain 55.26 66.16 82.60
Continual Pretrain 67.18 77.70 86.34
+ TGL with ALR 57.91 63.45 78.85
+ TGL with FP 57.83 63.55 74.88
MixReview 51.96 57.69 81.88
+ TGL with ALR 53.42 59.60 78.75
+ TGL with FP 52.81 58.31 79.17
LoRA 58.07 66.89 76.78
+ TGL with ALR 58.06 69.17 79.03
+ TGL with FP 58.39 66.31 78.19
RecAdam 64.42 73.34 92.26
+ TGL with ALR 57.72 63.53 78.39
+ TGL with FP 57.69 63.60 75.21

Table 2: Traced Gradient Layers (TGL) can be applied
on top of existing continual pretraining methods by ap-
plying per-layer adaptive learning rates (ALR) or frozen
parameters (FP) to improve performance (perplexity of
the slot) of existing continual learning methods.

with the GPT-2 Base (110M) model. We observe
that all continual learning baselines exhibit per-
formance tradeoffs in which performance either
improves on the probe tasks for recognizing new
entities (ECBD-NP) or improves on mapping of en-
tity relations (TempLAMA) relative to the domain-
adapted pretrained initialization. When applying
TGL methods on top of continual learning meth-
ods, we see that it is possible to avoid catastrophic
forgetting through decreases in probing task per-
plexity. In Table 1, we scale our experiments to
the GPT-2 Large (770M) model and observe that
the improvements from localized gradient updates
extend to continual pretraining for the larger model.

Limitations and Ethical Considerations

In our work, we observe that per-layer gradient
norms can be utilized as an informative indicator
for identifying layers to train during continual pre-
training on temporally changing data. Although



perplexity is a commonly used metric for evaluat-
ing language models and can often be useful in mea-
suring the quality of a model, it is unclear whether
improvements in knowledge probe perplexity trans-
fers to downstream settings.

While the goal of our investigations is to miti-
gate the need for environmentally and financially
prohibitive pretraining by enabling the continual
learning of existing models, it is possible that re-
ductions in the cost of pretraining may then lead
more individuals and organizations to pursue large
model pretraining (i.e. Jevons Paradox).
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A Dataset Details

To perform domain adaptive pretraining, we sample
and preprocess a snapshot of Wikipedia from Jan-
uary 2019 using Wikiextractor to extract plain text.
For continual pretraining, we follow the method-
ology of (Jang et al., 2022) to collect snapshots
of Wikipedia from each of the subsequent years
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until 20222 and filter each corpus to contain the
edits to Wikipedia made in the intervening year,
consisting of new articles and sentences within ex-
isting articles that were edited between succeeding
snapshots.

A.1 Licenses

Wikipedia data, which was used to construct the
TempLAMA and ECBD, the datasets we used, has
a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA). TempLAMA
is also derived from LAMA which has a CC
Attribution-NonCommercial 4.0 International Li-
cense (CC BY-NC 4.0), and the script for construct-
ing it is licensed under the Apache License, Version
2.0.

Our use of the datasets is for research purposes
only and aligns with the intended use.

B Training Details

Initial domain adaptive pretraining is performed on
a the complete Wikipedia snapshot for 4 epochs
with a global batch size of 64, or approximately
500,000 training iterations. Models are trained
using the Adam optimizer with weight decay and a
linear warmup schedule over 10% of examples and
a linear decay with a max learning rate of 1E-4.

During continual pretraining, the model is
trained for one epoch on the Wikipedia edits for
the subsequent year. For the MixReview contin-
ual learning method, unedited articles are added
Wikipedia edits corpus at a 2:1 ratio. We train
LoRA adapters with a hidden rank of 64 dimen-
sions.

C Related Work

Continued pretraining of models on the target dis-
tribution is often used to adapt the source language
model to its target setting to update factual knowl-
edge or to adapt to new language domains (Lin
et al., 2022; Jin et al., 2022; Wu et al., 2024). How-
ever, standard finetuning techniques can result in
catastrophic forgetting of previously learned tasks
and the loss of the pretrained models generaliza-
tion capabilities due to distortion of the underlying
features and lack of regularization (Kumar et al.,
2022). As mitigations for forgetting, it is common
to apply regularizers or constraints on the standard
gradient descent updates such as: gradient projec-
tion, example-replay, loss rescaling, or introduction
of additional parameters (Cossu et al., 2022; Saha

et al., 2021; Farajtabar et al., 2020). While contin-
ual pretraining is commonly used in the adaptation
to a sequence of domains (Gururangan et al., 2020;
Yildiz et al., 2024), recent work is only beginning
to explore its use in the adaptation to changing
temporal knowledge which can often exhibit finer-
grained changes (Jang et al., 2021, 2022; Nylund
et al., 2023).

Knowledge Localization and Model Editing.
Another method to adjust the information contained
within large pretrained models is knowledge edit-
ing, in which specific factual relations are injected
or manipulated by performing causal traces of acti-
vations to identify where a model stored knowledge
necessary for prediction (De Cao et al., 2021; Meng
et al., 2022a,b). However, these methods exhibit
high per-edit computational costs and fail to scale
after a sufficiently large number of edits (Gupta
et al., 2024).

Knowledge conflicts: Temporal adaptation is
made more difficult due to averaging effects Fac-
tual knowledge can be retrieved from parametric
memory but can be distracted with irrelevant and
contradicting evidence (Hu et al., 2023b; Xie et al.,
2023) Knowledge is a region in weight space Fac-
tual knowledge is highest correlated with the em-
bedding layer (Akyiirek et al., 2022)



Dataset Year  Example Answer
TempLAMA 2020  Joe Biden holds the position of __ . President-elect.of the United States
2021  Joe Biden holds the position of __. President of the United States
. The Congressional Budget Office provided a score for the . .
gf;‘gﬁgl(oééw) 2020 CARES Act on April 16, 2020 estimating it would __,  nerease federal deficits.
2021 On August 14, when Hurricane Grace entered the entire coast of Haiti.

the Caribbean, a tropical storm watch was issued for __.

Table 3: Examples from TempLAMA and ECBD probing tasks. The temporally sensitive entity is bolded.

Split Date No. Articles  No. Tokens
Complete Jan. 2019 7.9 Million 1.81 Billion
Edits Jan. 2020 364,235 268 Million
Edits Jan. 2021 419,879 311 Million
Edits Jan. 2022 425,296 309 Million

Table 4: Statistics on the Wikipedia corpora used for

domain adaptive and continual pretraining.
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