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Abstract001

Large Language Models (LLMs) trained on002
web-scale text corpora have been shown to cap-003
ture world knowledge in their parameters. How-004
ever, the mechanism by which language models005
store different types of knowledge is poorly un-006
derstood. In this work, we examine two types007
of knowledge relating to temporally sensitive008
entities and demonstrate that each type is lo-009
calized to different sets of parameters within010
the LLMs. We hypothesize that the lack of011
consideration of the locality of knowledge in012
existing continual learning methods is respon-013
sible for failed uptake of new information and014
catastrophic forgetting of previously learned in-015
formation. We demonstrate that targeted train-016
ing to these relevant layers can improve the017
performance of continually learned language018
under temporal drift.019

1 Introduction020

Pretraining over diverse datasets has been shown021

to encode world knowledge in the parameters of022

large language models (LLMs) (Petroni et al., 2019;023

Roberts et al., 2020; Gueta et al., 2023) from mas-024

sive static web-scale datasets. However, these mod-025

els are frequently trained on large static text corpora026

which are unable to reflect changes in world knowl-027

edge or language usage that occur after the initial028

data collection. In practice language models are029

deployed in dynamic real-world settings, and their030

learned knowledge becomes stale over time; the031

temporal degradation can be evaluated according032

to intrinsic measures such as perplexity, or extrinsic033

downstream performance (e.g. question answering)034

(Lazaridou et al., 2021; Luu et al., 2022; Dhingra035

et al., 2022; Yao et al., 2022; Nylund et al., 2023;036

Cheang et al., 2023).037

Incrementally training of language models on038

streams of data which reflect the changes in lan-039

guage usage and world knowledge has been ex-040

plored as a method to mitigate temporal perfor-041
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Figure 1: The NLL loss gradients of updated entities and
newly mentioned entities observe characteristic patterns of
layers with large norms.

mance degradation without incurring the heavy 042

computational and environmental costs of retrain- 043

ing models on large pretraining corpora (Jang et al., 044

2021, 2022; Lin et al., 2022). However, naive on- 045

line finetuning on these datastreams has been ob- 046

served to: induce hallucinations in model gener- 047

ations (Kang et al., 2024), failures to uptake new 048

information (Hu et al., 2023a), and catastrophic 049

forgetting of previously learned information (Zhu 050

et al., 2020). To address these problems, recent 051

work has explored continual learning and online 052

learning methods for adapting large language mod- 053

els on streams of documents (Loureiro et al., 2022; 054

Scialom et al., 2022; Jang et al., 2022) 055

As one potential solution, continual pretrain- 056

ing has been shown to improve performance when 057

training on a sequence of natural language domains 058

(Gururangan et al., 2020), but these methods often 059

fail to acquire new knowledge (Hu et al., 2023a; 060

Onoe et al., 2023). While continual learning meth- 061

ods have been shown to mitigate temporal degra- 062

dation on the task-level, the mechanisms by which 063

neural language models store and update informa- 064

tion are not well understood: Appendix C contains 065

details of related work. 066

In this work, we consider the practical contin- 067

ual language learning setting of temporal language 068

drift and probe the performance of language mod- 069

els on two types of entity relationships known to 070

observe temporal degradation: (1) acquisiton of 071

information about new entities, and (2) updating 072
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relationships between existing entities. We hypoth-073

esize that the poor performance of existing contin-074

ual learning methods on these tasks can be in part075

attributed to a misalignment in the autoregressive076

language modeling pretraining objective and the077

ideal parameter updates required to acquire new078

information or update existing knowledge. As an079

indicator of this misalignment, we examine models’080

gradient updates computed on knowledge intensive081

salient entity spans and compare them with those082

seen instandard continual pretraining, and discover083

that the gradient norms observe high values in dis-084

tinct groups of layers based on the type of entity085

relationship presented in the sequence (see Fig. 1).086

Based on these observations, we propose new087

methods for aligning the updates steps during con-088

tinual pretraining to better align with the Through089

empirical study, we show that the observed charac-090

teristic gradient patterns occur across autoregres-091

sive, transformer language models of various of092

sizes; and we demonstrate the efficacy of our pro-093

posed method through performance improvements094

on knowledge probing tasks when applied on top of095

existing continual learning methods in pretraining.096

2 Knowledge Probing with Salient Span097

Prediction098

We probe language models with the problem099

of salient span prediction, which has previously100

shown success as a pretraining objective for101

knowledge-intensive tasks such as closed-book102

question answering (Cole et al., 2023; Guu et al.,103

2020). In salient span prediction, a model is pro-104

vided with a sequence and tasked with completing105

a masked slot corresponding to a named entity or106

noun phrase. Specifically, we examine language107

models on probing tasks for temporal entity knowl-108

edge in which the masked sequence corresponds to109

an update existing of knowledge about temporally110

sensitive entities or is a mention of an emerging111

new entities that was not previously seen during112

pretraining.113

2.1 Probing Datasets114

We study these using the Dynamic TempLAMA115

(Dhingra et al., 2022) and the Entity Cloze By Date116

(ECBD) (Onoe et al., 2022) diagnostic datasets,117

respectively. Examples can be found in Table 3.118

The Dynamic TempLAMA dataset contains slot-119

filling cloze queries where the goal is to complete120

a subject-object relation in which there are mul-121

tiple candidate object answers that change over 122

time. Examples are generated from natural lan- 123

guage templates based on subject-object relations 124

extracted from Wikipedia metadata, and are gen- 125

erated sequentially for three month periods. For 126

our analysis, we examine splits for each year from 127

2019 to 2021. As the subject in each example 128

has been mentioned in both the seen and unseen 129

data, we use this dataset to evaluate the ability of 130

continual learning techniques to update existing 131

knowledge. To evaluate continual learning meth- 132

ods in knowledge acquisition about new entities, 133

we consider the ECBD dataset which consists of 134

sentences reference emerging entities. Examples 135

consist sentences containing the emerging entity 136

with the goal of predicting noun-phrase spans re- 137

lated to the target entity. Examples are grouped by 138

year, according to the first time of mention. 139

2.2 Models 140

We examine decoder-only transformer language 141

models of various sizes, specifically: GPT 2-Base 142

(110M parameters) and GPT-2 Large (770M pa- 143

rameters). To evaluate the perplexity of each of 144

these models, we provide the example context of 145

each example up to the salient span and compute 146

the perplexity over the salient span as in (Onoe 147

et al., 2022, 2023). 148

To align the each language model with each 149

Wikipedia-based knowledge for the probing tasks, 150

we perform domain adaptive pretraining on snap- 151

shots of Wikipedia retrieved prior to the pretraining 152

data cutoffs for each model. We perform initial 153

pretraining GPT-2 models on Wikipedia snapshots 154

from January 2019; GPT-Neo from January 2020. 155

2.3 Probing Model Response to Salient Spans 156

We hypothesize that the portions of the model re- 157

sponsible for different forms of knowledge can be 158

identified by tracing the gradient norm of examples 159

which reflect the target form of knowledge. 160

For the ECBD probing dataset, we examine 161

the loss gradient with respect to the salient span 162

corresponding to the target entity or its related 163

noun phrase, which we refer to as ECBD-ENT 164

and ECBD-NP, respectively. For the TempLAMA 165

dataset, we examine the loss gradient with respect 166

to the object noun phrase. 167

Beginning with a domain-adapted model pre- 168

trained on a snapshot of Wikipedia from 2019, we 169

examine the average per-token loss gradients of the 170

salient spans from the 2019 splits of TempLAMA 171
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Figure 2: Relative gradient norms for the salient spans in ECBD and TempLAMA for the GPT-2 Base (110M),
(1,3), and GPT-2 Large (770M; (2,4)), models. Norms for attention (1,2) and norms for MLP (3,4) are depicted
separately. Gradient norms of salient spans are 4 to 15x larger than those of the full sequence.

and ECBD. For comparison, we compute the gra-172

dient of the loss for 2000 examples from the 2019173

Wikipedia snapshot over the full sequence.174

Precisely, we provide the autoregressive lan-175

guage model with the left context preceding the176

salient span and compute the parameter gradient177

with respect to the loss averaged over each token178

in the target span tokens. We then aggregate the179

gradients according to their respective transformer180

block, and component attention and MLP layers181

and compute the L2-Norm of the gradients for each182

layer.183

For the GPT-2 Base model, the gradient norms of184

each attention and MLP block for the salient spans185

probes are consistently 4 to 15x higher than the gra-186

dient norms of the randomly sampled pretraining187

examples for all transformer layers. Additionally,188

we observe that salients spans corresponding to189

changes in entity relations observe a distinct profile190

in which they exhibit large magnitude in the early191

and middle layers and are larger in the attention192

layers than in the MLP layers.193

3 Gradient Localized Continual194

Pretraining195

Ideally, naive pretraining of a language model on196

a changing stream of data would be sufficient to197

update a model to capture the relevant changes198

in knowledge. However, recent work has demon-199

strated that current methods for continual learning200

often suffer from both catastrophic forgetting and201

a failure to uptake new knowledge even when it is202

directly contained in the training corpus (Hu et al.,203

2023a; Kang et al., 2024). We hypothesize that204

failed transfer occurs due to a misalignment of the205

NLL objective with the information content of the206

data observed during continual pretraining.207

Based on our observations from §2, we hypoth-208

esize that the acquisition of entity knowledge can209

be improved by amplifying updates to the layers210

are relevant to the learning of salient entity spans. 211

To identify these relevant layers, we compute the 212

relative gradient norm for each layer as the ratio be- 213

tween the gradient norm ∇̃i in the layer i w.r.t. ran- 214

domly sampled data from the continual pretraining 215

data stream, and data sampled from the validation 216

set of the TempLAMA diagnostic dataset: 217

||∇iL(Mθ, (x, y)TempLAMA)||
||∇iL(Mθ, (x, y)PT)||

(1) 218

We propose two methods for aligning gradient 219

updates during continual pretraining with to im- 220

prove knowledge uptake by tracing the gradient 221

magnitudes for relevant salient spans from the Tem- 222

pLAMA diagnostic dataset based on the relative 223

gradient norms traced through each layer. We refer 224

to our methods as Traced Gradient Layers (TGL). 225

Selecting Trainable Layers for Pretraining 226

Based on Relative Gradient Norm We consider 227

a simple approach to target continual pretraining 228

updates to layers with high relative gradient norm, 229

by only updating parameters where the relative gra- 230

dient norm on the TempLAMA diagnostic dataset 231

exceed the mean relative gradient norm of all lay- 232

ers – we refer to this parameter freezing method as 233

TGL + FP. In the case of the GPT-2 architecture, 234

we separate the model into its component MLP and 235

attention layers, then compute the relative gradient 236

norm for each layer as the ratio between the av- 237

erage gradient norm computed over samples from 238

both the TempLAMA dataset and the continual pre- 239

training corpus. Precsisely, we freeze a parameter 240

group i if ∇̃i <
1

No. Layers(
∑

k∈Layers ∇̃k). 241

Per-Layer Adaptive Learning Rates from Rela- 242

tive Gradient Norm Rather than using relative 243

gradient norm as a hard threshold to determine 244

which layers to update, we instead consider an 245

adaptive approach in which we set the learning rate 246

for layers to scale with the magnitude of the rela- 247
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Evaluation Set: 2020 ECBD Pop. ECBD NP TempLAMA

Pretrain 40.99 47.44 81.92
Domain Pretrain 30.90 41.39 62.99

Continual Pretrain 34.79 43.97 56.72
+ TGL with FP 34.13 44.20 55.19

LoRA: 64D, Attn 31.94 41.40 57.21
+ TGL with FP 30.28 41.05 56.32

MixReview 28.70 37.34 67.64
+ TGL with FP 28.24 37.77 60.05

RecAdam 34.78 43.92 57.34
+ TGL with FP 33.56 43.41 54.75

Table 1: TGL with frozen layers improves performance
(perplexity of slot) of GPT2-Large (770M) during con-
tinual pretraining.

tive gradient norm. We scale the per-layer learning248

rate for layer i as : ηi = η ∇̃i

maxi∈Layers(∇̃k)
249

3.1 Baselines250

We compare the performance of our proposed con-251

tinual pretraining method with existing approaches252

from continual learning. We consider vanilla con-253

tinual pretraining in which we update all parame-254

ters; a prarameter-expansion method LoRA (Hu255

et al., 2021), which introduces additional train-256

able low rank adapters to the self-attention lay-257

ers; a replay-based method MixReview (He et al.,258

2021), which adds previously seen data is ran-259

domly mixed alongside current data during contin-260

ued pretraining; and a regularization-based method261

of RecAdam (Chen et al., 2020), which imposes a262

quadratic penalty on the norm of parameter updates.263

We provide full details on the training datasets and264

hyperparameters in the Appendix.265

3.2 Evaluating TGL for Continual PT266

To evaluate the performance of TGL+FP and267

TGL+AR, we perform domain adaptive pretrain-268

ing of GPT-2 Base and Large on the complete269

Wikipedia corpus from January 2019 for 4 epochs,270

then incrementally train on the complete set of271

Wikipedia revisions for the subsequent years of272

2020 and 2021. To evaluate the performance273

of these models, we probe the continually pre-274

trained model after each updating on new year of275

Wikipedia revisions using the corresponding tem-276

porally delineated split from the ECBD-NP and277

TempLAMA test datasets 2.1. To evaluate whether278

either TGL method leads to catastrophic forgetting,279

we also report performance on ECBD-Popular, se-280

quences referring to entities common in all years.281

In Table 2, we report the perplexities of the con-282

tinually pretrained model on the 2020 test splits283

Evaluation Set: 2020 ECBD Pop. ECBD NP TempLAMA

Pretrain 78.61 80.04 162.54

Domain Pretrain 55.26 62.59 80.51

Continual Pretrain 64.13 72.42 83.39
+ TGL with ALR 57.62 64.83 77.58
+ TGL with FP 57.75 65.08 74.55

MixReview 54.10 61.54 82.16
+ TGL with ALR 53.50 61.01 77.04
+ TGL with FP 53.48 61.48 76.35

LoRA 55.77 65.56 80.11
+ TGL with ALR 57.75 69.44 78.40
+ TGL with FP 58.09 67.62 78.77

RecAdam 57.55 64.60 76.67
+ TGL with ALR 57.52 64.77 77.32
+ TGL with FP 57.55 64.89 74.88

Evaluation Set: 2021 ECBD Pop. ECBD NP TempLAMA

Pretrain 78.61 98.47 167.23

Domain Pretrain 55.26 66.16 82.60

Continual Pretrain 67.18 77.70 86.34
+ TGL with ALR 57.91 63.45 78.85
+ TGL with FP 57.83 63.55 74.88

MixReview 51.96 57.69 81.88
+ TGL with ALR 53.42 59.60 78.75
+ TGL with FP 52.81 58.31 79.17

LoRA 58.07 66.89 76.78
+ TGL with ALR 58.06 69.17 79.03
+ TGL with FP 58.39 66.31 78.19

RecAdam 64.42 73.34 92.26
+ TGL with ALR 57.72 63.53 78.39
+ TGL with FP 57.69 63.60 75.21

Table 2: Traced Gradient Layers (TGL) can be applied
on top of existing continual pretraining methods by ap-
plying per-layer adaptive learning rates (ALR) or frozen
parameters (FP) to improve performance (perplexity of
the slot) of existing continual learning methods.

with the GPT-2 Base (110M) model. We observe 284

that all continual learning baselines exhibit per- 285

formance tradeoffs in which performance either 286

improves on the probe tasks for recognizing new 287

entities (ECBD-NP) or improves on mapping of en- 288

tity relations (TempLAMA) relative to the domain- 289

adapted pretrained initialization. When applying 290

TGL methods on top of continual learning meth- 291

ods, we see that it is possible to avoid catastrophic 292

forgetting through decreases in probing task per- 293

plexity. In Table 1, we scale our experiments to 294

the GPT-2 Large (770M) model and observe that 295

the improvements from localized gradient updates 296

extend to continual pretraining for the larger model. 297

Limitations and Ethical Considerations 298

In our work, we observe that per-layer gradient 299

norms can be utilized as an informative indicator 300

for identifying layers to train during continual pre- 301

training on temporally changing data. Although 302
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perplexity is a commonly used metric for evaluat-303

ing language models and can often be useful in mea-304

suring the quality of a model, it is unclear whether305

improvements in knowledge probe perplexity trans-306

fers to downstream settings.307

While the goal of our investigations is to miti-308

gate the need for environmentally and financially309

prohibitive pretraining by enabling the continual310

learning of existing models, it is possible that re-311

ductions in the cost of pretraining may then lead312

more individuals and organizations to pursue large313

model pretraining (i.e. Jevons Paradox).314
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Çağatay Yıldız, Nishaanth Kanna Ravichandran, Pr- 501
ishruit Punia, Matthias Bethge, and Beyza Ermis. 502
2024. Investigating continual pretraining in large 503
language models: Insights and implications. arXiv 504
preprint arXiv:2402.17400. 505

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh 506
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar. 507
2020. Modifying memories in transformer models. 508
arXiv preprint arXiv:2012.00363. 509

A Dataset Details 510

To perform domain adaptive pretraining, we sample 511

and preprocess a snapshot of Wikipedia from Jan- 512

uary 2019 using Wikiextractor to extract plain text. 513

For continual pretraining, we follow the method- 514

ology of (Jang et al., 2022) to collect snapshots 515

of Wikipedia from each of the subsequent years 516
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until 20222 and filter each corpus to contain the517

edits to Wikipedia made in the intervening year,518

consisting of new articles and sentences within ex-519

isting articles that were edited between succeeding520

snapshots.521

A.1 Licenses522

Wikipedia data, which was used to construct the523

TempLAMA and ECBD, the datasets we used, has524

a Creative Commons Attribution-ShareAlike 4.0525

International License (CC BY-SA). TempLAMA526

is also derived from LAMA which has a CC527

Attribution-NonCommercial 4.0 International Li-528

cense (CC BY-NC 4.0), and the script for construct-529

ing it is licensed under the Apache License, Version530

2.0.531

Our use of the datasets is for research purposes532

only and aligns with the intended use.533

B Training Details534

Initial domain adaptive pretraining is performed on535

a the complete Wikipedia snapshot for 4 epochs536

with a global batch size of 64, or approximately537

500,000 training iterations. Models are trained538

using the Adam optimizer with weight decay and a539

linear warmup schedule over 10% of examples and540

a linear decay with a max learning rate of 1E-4.541

During continual pretraining, the model is542

trained for one epoch on the Wikipedia edits for543

the subsequent year. For the MixReview contin-544

ual learning method, unedited articles are added545

Wikipedia edits corpus at a 2:1 ratio. We train546

LoRA adapters with a hidden rank of 64 dimen-547

sions.548

C Related Work549

Continued pretraining of models on the target dis-550

tribution is often used to adapt the source language551

model to its target setting to update factual knowl-552

edge or to adapt to new language domains (Lin553

et al., 2022; Jin et al., 2022; Wu et al., 2024). How-554

ever, standard finetuning techniques can result in555

catastrophic forgetting of previously learned tasks556

and the loss of the pretrained models generaliza-557

tion capabilities due to distortion of the underlying558

features and lack of regularization (Kumar et al.,559

2022). As mitigations for forgetting, it is common560

to apply regularizers or constraints on the standard561

gradient descent updates such as: gradient projec-562

tion, example-replay, loss rescaling, or introduction563

of additional parameters (Cossu et al., 2022; Saha564

et al., 2021; Farajtabar et al., 2020). While contin- 565

ual pretraining is commonly used in the adaptation 566

to a sequence of domains (Gururangan et al., 2020; 567

Yıldız et al., 2024), recent work is only beginning 568

to explore its use in the adaptation to changing 569

temporal knowledge which can often exhibit finer- 570

grained changes (Jang et al., 2021, 2022; Nylund 571

et al., 2023). 572

Knowledge Localization and Model Editing. 573

Another method to adjust the information contained 574

within large pretrained models is knowledge edit- 575

ing, in which specific factual relations are injected 576

or manipulated by performing causal traces of acti- 577

vations to identify where a model stored knowledge 578

necessary for prediction (De Cao et al., 2021; Meng 579

et al., 2022a,b). However, these methods exhibit 580

high per-edit computational costs and fail to scale 581

after a sufficiently large number of edits (Gupta 582

et al., 2024). 583

Knowledge conflicts: Temporal adaptation is 584

made more difficult due to averaging effects Fac- 585

tual knowledge can be retrieved from parametric 586

memory but can be distracted with irrelevant and 587

contradicting evidence (Hu et al., 2023b; Xie et al., 588

2023) Knowledge is a region in weight space Fac- 589

tual knowledge is highest correlated with the em- 590

bedding layer (Akyürek et al., 2022) 591
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Dataset Year Example Answer

TempLAMA 2020 Joe Biden holds the position of __ . President-elect.of the United States
2021 Joe Biden holds the position of __ . President of the United States

Entity Cloze
By Date (ECBD)

2020 The Congressional Budget Office provided a score for the
CARES Act on April 16, 2020 estimating it would __. increase federal deficits.

2021 On August 14, when Hurricane Grace entered
the Caribbean, a tropical storm watch was issued for __. the entire coast of Haiti.

Table 3: Examples from TempLAMA and ECBD probing tasks. The temporally sensitive entity is bolded.

Split Date No. Articles No. Tokens

Complete Jan. 2019 7.9 Million 1.81 Billion
Edits Jan. 2020 364,235 268 Million
Edits Jan. 2021 419,879 311 Million
Edits Jan. 2022 425,296 309 Million

Table 4: Statistics on the Wikipedia corpora used for
domain adaptive and continual pretraining.
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