
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INVERSESCOPE: SCALABLE ACTIVATION INVERSION
FOR INTERPRETING LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the internal representations of large language models (LLMs) is
a central challenge in interpretability research. Existing feature interpretabil-
ity methods often rely on strong assumptions about the structure of representa-
tions that may not hold in practice. In this work, we introduce InverseScope, an
assumption-light and scalable framework for interpreting neural activations via
input inversion. Given a target activation, we define a distribution over inputs that
generate similar activations and analyze this distribution to infer the encoded in-
formation. To address the inefficiency of sampling in high-dimensional spaces,
we propose a novel conditional generation architecture that significantly improves
sample efficiency compared to previous method. We further introduce a quantita-
tive evaluation protocol that tests interpretability hypotheses using the feature con-
sistency rate computed over the sampled inputs. InverseScope scales inversion-
based interpretability methods to larger models and practical tasks, enabling sys-
tematic and quantitative analysis of internal representations in real-world LLMs.

1 INTRODUCTION

Recent advances in mechanistic interpretability aim to reverse-engineer neural networks’ compu-
tations into human-understandable processes (Bereska & Gavves, 2024; Sharkey et al., 2025). A
central task in this field is feature interpretability, which seeks to understand what information is
encoded in a network’s activations and how it is represented. This understanding is crucial for an-
alyzing how information propagates and is processed across layers. Numerous methods have been
proposed for feature interpretability, including linear probing (Alain & Bengio, 2016; Park et al.,
2023), sparse dictionary learning (Cunningham et al., 2023; Gao et al., 2024), and other approaches
(Bau et al., 2017; Xu et al., 2024).

Despite their successes, these methods share a fundamental limitation: they rely on strong assump-
tions about the structure of neural representations. Specifically, linear probing assumes a linear
relationship between activations and specific concepts in the inputs, and sparse dictionary learning
presupposes that activations can be decomposed into a sparse sum of linear directions. The valid-
ity of these assumptions remains an open and actively debated question, particularly in the context
of LLMs (Levy & Geva, 2024; Engels et al.; Smith, 2024). Designing experiments that rigorously
test these hypotheses is itself a challenging problem, making it difficult to assess the reliability of
interpretations derived from such approaches.

These limitations highlight the need for interpretability methods that rely on minimal assumptions
about the structure of neural representations. One promising direction is to invert activation back
to the input space, where human intuitions are more naturally grounded. The strategy of connect-
ing activations back to the inputs that produce them has a long-standing history in interpretability
research, including early work on activation maximization (Erhan et al., 2009; Nguyen et al., 2016)
and neural representation inversion (Mahendran & Vedaldi, 2014). Building on this line, Inver-
sionView (Huang et al., 2024b) adapts the idea of previous inversion-based methods to language
models by interpreting the information encoded in an activation through the collection of inputs that
generates similar representations. These methods enable feature interpretability by relying only on
the geometric proximity of activations, without presupposing restrictive structural assumptions like
linearity or sparsity.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An toy example of samples in activation space and their corresponding inputs.

While prior works have demonstrated the feasibility of interpreting activations through distributions
of matching inputs, such efforts have largely been limited to small-scale models and qualitative case
studies, lacking scalability to real-world settings. This motivates our work to advance inversion-
based interpretability by scaling it to larger open-source LLMs and applying it to practical tasks.

The main contributions of this paper are as follows:

• We introduce InverseScope, a novel conditional generation architecture that substantially
improves sampling efficiency for input sampling, making inversion-based methods practi-
cal for LLMs with up to 7B parameters.

• We establish a rigorous, quantitative evaluation framework that systematically assesses the
information revealed in the input distributions recovered via inversion.

• We apply our framework to in-context learning tasks, revealing new mechanistic insights
into the generation and disappearance of task-level features.

Collectively, our work substantially expands the reach of inversion-based interpretability, scaling
this powerful, assumption-light approach to 7B-parameter LLMs and complex in-context learning
tasks. This enables the field to move beyond illustrative examples toward a more systematic and
rigorous analysis of feature representations.

2 METHOD DESCRIPTION

Our method builds on a simple observation: similar activations tend to encode semantically similar
information (Bengio et al., 2013). In this paper, we use the term “activation” to specifically denote
the output of a network layer. If two distinct inputs produce nearly identical activations, then the
differences between those inputs are unlikely to be distinguishable or encoded in that representation.
Conversely, if nearby activations consistently correspond to inputs sharing a particular feature, this
indicates that the feature is encoded within that region of latent space. This reasoning is funda-
mentally grounded in the continuity of neural networks: since downstream layers apply continuous
transformations to their inputs, activations that are close in space are functionally equivalent from
the network’s perspective.

Building on this observation, our method investigates the information encoded in a target activa-
tion ẑ by inverting the activation geometry to recover the distribution of functionally equivalent
inputs. By inspecting this distribution, we can generate hypotheses about which features might be
encoded in that activation. Once a hypothesis is proposed, we employ quantitative metrics to eval-
uate whether the feature is consistently reflected in the distribution, thereby rigorously testing the
feature’s representation in the latent space.

For example, as illustrated in Figure 1, consider an input–activation pair (x̂, ẑ), where x̂ is “John is
a doctor.” and ẑ is the activation it produces. Our method assigns higher weights to inputs such as
“Mary is a doctor.” and “Alice is a doctor.”, which yield activations close to ẑ, while downweight-
ing inputs like “John hates apples.” that produce activations farther away. Analyzing this reweighted
distribution allows us to hypothesize that ẑ encodes features like “Subject is a doctor” or, more gener-
ally, “Subject’s profession.” Then, we can formalize this feature and use our quantitative framework
to rigorously test its consistency across the latent space.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Example results from applying our method to the indirect object identification task on
GPT-2-small. Left: Feature consistency rates for the object feature, computed using ẑ extracted
from the outputs of different attention heads across layers. Right: Example samples from the con-
ditional distribution P (x; ẑ) for specific activations ẑ from heads L9H3 and L9H9, annotated with
their distance d(z(x), ẑ) and the corresponding feature label f(x).

Formally, the reweighting procedure is defined by a probability distribution P (x; ẑ) over all pos-
sible inputs, assigning higher probability to inputs whose activations z(x) lie closer to a reference
activation ẑ under a chosen distance metric. Mathematically, given a target activation ẑ ∈ Rn, we
define the probability of sampling an input x by:

P (x; ẑ) ∝ k(d(z(x), ẑ)/ϵ).

where d is a metric over activation space Rn, and k is a kernel function (e.g., a Gaussian k(d) =
exp(−d2) or a hard threshold k(d) = I{d<1}, as used in Huang et al. (2024b)), and ϵ is a bandwidth
parameter controlling the neighborhood size.

Given the distribution P (x; ẑ), we propose a three-step pipeline for feature interpret, involving hy-
pothesize, formalize and evaluate:

1. (Optional) Sample inputs from P (x; ẑ). Human analysts or auxiliary models (e.g., LLMs)
can summarize the commonalities in these samples to form hypotheses about which inter-
pretable feature is encoded in ẑ.

2. Define a candidate feature function. Translate the hypothesis into a formal feature func-
tion f : x → f(x), which maps each input x to a discrete, interpretable label f(x). This
function operationalizes the interpretable concept we aim to test.

3. Evaluate f via feature consistency rate. We measure how consistently the feature f is
represented in the local activation neighborhood by computing the feature consistency rate
(FCR):

FCR(f) = E(x̂,ẑ)∼DEx∼P (x;ẑ)I{f(x)=f(x̂)}. (1)

where D denotes a predefined dataset distribution over inputs and their corresponding acti-
vations. The FCR is the expected probability that a sampled input x from the neighborhood
of ẑ possesses the same feature f as the seed input x̂. A high feature consistency rate in-
dicates that the feature f is consistently preserved across local neighborhoods in activation
space, suggesting it is reliably encoded in the activations.

For scenarios where the feature of interest is known in advance, steps 2 and 3 can be applied directly
to quantitatively assess whether the target feature is represented in the given activations. We recog-
nize that step 2 – formalizing a feature into a function – may appear abstract in general terms. We
provide a more detailed explanation in Appendix A.

Figure 2 illustrates an example of the results obtained with our method on the indirect object identi-
fication task. In this case, we analyze the ”object feature,” formalized as a function f that maps the
input x to the object’s name. We compute the feature consistency rate (Equation 1) for activations
extracted from different attention heads. The results reveal a notable variation in feature consistency

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

across attention heads, indicating that certain sites encode the object feature significantly more reli-
ably than others. A more detailed discussion of these results is provided in Section 4.1.

The key challenge in implementing this evaluation lies in efficiently sampling from P (x; ẑ). In the
high-dimensional activation spaces typical of modern LLMs, the probability that a random input
produces an activation close to ẑ decays exponentially with dimensionality. This renders naive
rejection sampling prohibitively inefficient for practical applications, particularly with LLMs where
activation dimensions can reach thousands.

To address this fundamental bottleneck, we introduce InverseScope, a novel conditional generation
architecture. InverseScope efficiently generates inputs guaranteed to produce activations close to the
target ẑ, effectively overcoming the sampling bottleneck that plagues naive inversion methods.

3 INVERSESCOPE

In this section we describe InverseScope, including its network architecture and training proce-
dure. Our objective is to efficiently sample from the conditional distribution P (x; ẑ) defined in the
previous section. To achieve this, InverseScope is designed as a conditional generator trained to
approximate this target distribution.

We adopt the decoder-only Transformer paradigm, which has proven highly effective for modeling
natural language distributions via next-token prediction objectives (Brown et al., 2020). Invers-
eScope extends this standard language modeling framework by conditioning the token prediction
not only on the preceding sequence context but critically, also on the target activation ẑ. This con-
ditioning is essential to align the generated sequence with the semantic information encoded in ẑ,
allowing the generator to approximate the target distribution P (x; ẑ).

3.1 NETWORK ARCHITECTURE

Figure 3: Network architecture of InverseScope. The decoder-only Transformer backbone is shown
with its parameters colored in orange and blue. The additional control and site-encoding layers
introduced for conditioning are colored in green.

As illustrated in Figure 3, our conditional generator is based on a standard decoder-only Transformer,
augmented with additional Control Layers that transmit the conditioning information from activation
ẑ into the model’s hidden states. These Control Layers operate analogously to the cross-attention
mechanism found in encoder-decoder Transformers.

The mathematical formulation of the control layers is as follows:

q
(i)
ℓ = Qℓh

(i)
ℓ + q̄ℓ, kℓ = Kℓẑ + k̄ℓ, vℓ = Vℓẑ + v̄ℓ,

ω
(i)
ℓ = tanh(⟨q(i)ℓ , kℓ⟩),

Controlℓ(h
(i)
ℓ , ẑ) = ω

(i)
ℓ vℓ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where i is the inference position index. The parameter matrices Qℓ,Kℓ, Vℓ are distinct from the
self-attention parameters of the backbone model, and q̄ℓ, k̄ℓ, v̄ℓ are the corresponding bias terms.
For simplicity, we omit the layer norm and only provide formulation for the single-head version. In
practice, we use a multi-head variant where each head has its own query, key, value matrices and
their outputs are summed to produce the final control signal. This signal is then added to the hidden
state h

(i)
ℓ , after the standard self-attention operation.

Condition on different sites. In practice, we are interested in interpreting activations collected
from multiple sites in the target model. By site, we mean a specific location in the network, such
as the output of the ℓ-th decoder layer at the last inference position. Training a separate conditional
generator for each site would be prohibitively expensive. Instead, we design a shared conditional
generator that supports conditioning on activations from arbitrary sites.

To achieve this, we introduce a series of site-specific projection layers, as shown in the left-bottom
corner of Figure 3. Each activation ẑ is first pass through a learned, site-specific linear transformation
before being sent to the shared generator. These linear layers project the conditions from different
sites into a common latent space, allowing the core generator to operate uniformly regardless of the
origin of ẑ.

By combining novel Control Layers with parameter sharing for handling activations from arbitrary
sites, InverseScope provides a flexible and scalable architecture for conditional generation. As
demonstrated in Section 4.1, this design enables us to more accurately approximate the complex,
high-dimensional distributions P (x; ẑ), leading to lower refusal rates and more efficient sampling.
This capability is essential for scaling inversion-based interpretability methods to large models and
diverse activation sites.

3.2 DATASET AND TRAINING

In the applications considered in this paper, we focus on task specific input distributions, such as all
possible inputs for the indirect object identification task, or all possible in-context learning prompts
for translation tasks, rather than the general distribution of all possible natural languages. We use
P(X) to denote this task-specific prior input distribution.

Given a target model and a task-specific prior P(X), we construct a training dataset by collecting
input–activation pairs (x̂, ẑ), where x̂ ∼ P(X) and ẑ = z(x̂) denotes the activation at a specified
site within the model. To prevent the conditional generator from collapsing to a degenerate solution
and just fitting the delta function δ(x̂), we inject noise into the collected activations. As a result,
the final training dataset takes the form {(x̂i, ẑi + ri)}Ni=1. Ideally, the injected noise ri should be
sampled to match the kernel function used to define P (x; ẑ). A more detailed discussion of this
procedure is provided in Appendix B.

For each task, we perform a 2-step training. First fine-tune the backbone, then train the additional
layers independently. In the first step, we fine-tune a decoder-only Transformer on P(X), which
will serve as the backbone of our conditional generator (corresponding to the non-green layers in
Figure 3). This step follows standard supervised fine-tuning procedures. Across all experiments in
this paper, we use GPT-2-small (Radford et al., 2019) as our backbone model, regardless of which
target model is being interpreted.

During the subsequent training phase, we freeze the backbone parameters and train only the addi-
tional layers introduced in Section 3.1 (corresponding to the green layers in Figure 3). By decoupling
the supervised fine-tuning of the backbone from the training of the conditional layers, we ensure that
the control layers are dedicated to capturing distinctions between different conditioning activations
ẑ. More detailed training settings are provided in Appendix C.

The training objective for the control layers is to maximize the conditional log-likelihood of the
training input x̂ given the noisy activation:

max
θ

1

N

∑
i

logPθ(x̂i; ẑi + ri),

where θ denote the parameters of the control layers. This objective can be decomposed into standard
next-token prediction loss.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Feature consistency rate of the outputs of GPT-2-small’s attention heads in the IOI task.
Left: consistency rate of object feature. Right: consistency rate of subject feature. The top-5
attention heads with the highest feature consistency rates are marked with red rectangular.

4 EXPERIMENTS

In this section, we evaluate our method across a range of tasks and target models, benchmarking
its performance against an inversion method and a sparse dictionary learning method. We begin
with the indirect object identification (IOI) task (Wang et al., 2022) as a case study, showcasing
InverseScope’s significant gains in sampling efficiency compared to the inversion baseline. Next,
we benchmark our approach against sparse dictionary learning on the RAVEL dataset (Huang et al.,
2024a), demonstrating that InverseScope yields a clearer signal of the information encoded in acti-
vations. Finally, we apply our method to in-context learning tasks (Hendel et al., 2023), providing a
mechanistic explanation for a phenomenon previously observed but not understood.

4.1 CASE STUDY: INDIRECT OBJECT IDENTIFICATION

In this subsection, we apply our method to the indirect object identification (IOI) task (Wang et al.,
2022) on GPT-2-small (Radford et al., 2019). IOI serves as a case study for two reasons. First,
the mechanism underlying GPT-2-small’s behavior on IOI has been carefully dissected in prior
work (Wang et al., 2022; Makelov et al., 2024), providing a strong reference point against which
to validate our findings. Second, it offers a standard benchmark for evaluating sampling efficiency,
allowing for a direct comparison with the inversion-based baseline of Huang et al. (2024b). A more
detailed experimental setting is provided in Appendix D.1.

For IOI, the input distribution P(X) is defined as a uniform distribution over template-generated
sentences such as x̂ = “When [A] and [B] went to the store, [A] gave a drink to”. We analyze
attention head outputs across layers at the final inference position—i.e., the position that takes the
token “to” as input. This yields a total of 144 activation sites in GPT-2-small (12 layers with 12
heads per layer). Our objective is to characterize the information encoded in these activations and to
identify which attention heads contribute features that enable GPT-2-small to correctly resolve the
indirect object and generate the appropriate name.

To solve IOI, two features are naturally hypothesized: the subject feature, Subject(x), which maps
x to the repeated name, and the object feature, Object(x), which maps x to the correct indirect
object to be predicted. In this case, Step 2 of our method is straightforward, as both features can
be formalized using simple rule-based functions. Step 3 is then carried out by evaluating feature
consistency to identify which attention heads aggregate information about these features into the
final inference position.

As shown in Figure 4, the object feature is primarily encoded by attention heads in layers 9 to 11.
The top 5 heads with the highest feature consistency rates are L9H6, L9H9, L10H0, L10H7, and
L11H10—precisely the Name Mover Heads and Negative Name Mover Heads identified in Wang
et al. (2022). Other heads with high feature consistency rates also coincide with the Backup Name
Mover Heads. In contrast, the subject feature is encoded earlier in the network, such as L7H9 and
L8H10, which correspond to the Subject Inhibition heads also described in Wang et al. (2022).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

These results support the circuit discovered in Wang et al. (2022), that the model first aggregates the
subject feature to the last position, then is the object feature.

Figure 5: Histogram of sample refusal rates
across GPT-2-small’s 144 attention heads in the
IOI task. The vertical dashed line indicates the
average refusal rate across all heads. Lower
refusal rates correspond to higher sample effi-
ciency. The y-axis is log-scaled for illustrative
purpose.

Figure 6: The attribute classification accuracy
of SAE (General), SAE (RAVEL) and Invers-
eScope for residual stream activations across
different layers. InverseScope achieves consis-
tently higher accuracy than both SAE baselines
across all layers.

Comparison with other inversion-based method. We compare the sample efficiency of our
method against InversionView (Huang et al., 2024b). To ensure a fair comparison, we follow the
same experimental setup as Huang et al. (2024b), using the kernel function k(d) = I{d<ϵ}. Under
this setting, P (x; ẑ) defines a uniform distribution over all inputs whose activations z(x) lie within
the ϵ−neighborhood Bϵ(ẑ). We evaluate sample efficiency by computing the refusal rate—the pro-
portion of samples provided by different method’s conditional generator for which z(x) /∈ Bϵ(ẑ).
A lower refusal rate corresponds to higher sampling efficiency.

As shown in Figure 5, our method consistently improves sample efficiency across all attention heads.
We reduce the average refusal rate from 10.2% to 3.5%. In the worst case, we significantly re-
duce the refusal rate from 60.5% to 31.7%. This demonstrates the robustness of our approach.
Such robustness is especially important for scaling to larger models and more complex tasks, where
high-refusal-rate cases are more likely to arise. Ensuring that the generator can approximate more
complex P (x; ẑ) is critical for making inversion-based methods viable at scale.

4.2 ATTRIBUTE IDENTIFICATION EVALUATIONS

In this subsection, we evaluate our method’s efficacy in attribute identification from activations, and
benchmark it against the sparse autoencoder (SAE) approach (Bricken et al., 2023). SAEs are un-
supervised models trained to reconstruct activations under a sparsity constraint, with the goal of
decomposing them into monosemantic, interpretable features. We focus on residual stream activa-
tions of Gemma-2-2B (Team et al., 2024) on the RAVEL dataset (Huang et al., 2024a), a dataset
specifically designed to assess attribute identification fidelity. We demonstrate that our method pro-
vides a clearer signal of the encoded attributes compared with SAEs.

The SAE baselines we compare against are: (1) a series of 16k-wide SAEs from gemma-scope-2b-
res (Lieberum et al., 2024), referred to as SAE (General); and (2) a series of 4k-wide JumpReLU
SAEs trained specifically on the RAVEL training set, referred to as SAE (RAVEL). We include the
latter for a fair comparison, since the InverseScope model evaluated here is also trained only on the
RAVEL training dataset. Additional experimental details are provided in Appendix D.2.

RAVEL provides prompts designed to elicit concept-related attributes (e.g., “language” or “conti-
nent” for a given city). For instance, the prompt “People in [City] usually speak” is used to probe
the “language” attribute of the ”city” entities. Crucially, while the original benchmark evaluates
interpretability via causal interventions on model behavior, we instead focus on a more fundamental

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 7: Left: Feature consistency rates of the outputs of Gemma-2-2B’s attention layers in the
ICL task. Blue represents the task feature. Orange represents the query feature. Right: Results of
task-vector patching experiments. Green represents the rate at which the patched inference produces
the correct target output, which indicate the activation encoded the abstract task. Red represents the
rate at which it incorrectly produces the source output, which indicate the activation encoded the
specific output token.

question: assessing the method’s fidelity in identifying the correct attribute encoded within the acti-
vation itself. Specifically, we target residual stream activations, focusing on the last token position
across all decoder layers.

We frame this benchmark as a classification task. For SAE, this involves identifying a representative
feature for each attribute, which then serves as a simple classifier: when the feature activates, it
indicates the presence of the corresponding attribute. In our method, we classify an attribute based
on the attributes of similar inputs generated by InverseScope. Given a target activation ẑ, we sample
a candidate input x ∼ P (x; ẑ) with InverseScope. If x exhibits a recognizable attribute, we classify
ẑ as encoding that attribute; otherwise, we assign a null attribute, counting it as a failed classifica-
tion. Notably, the classification accuracy in this setup corresponds exactly to the feature consistency
rate computed in Step 3 of our pipeline. Additional experimental details for SAE baselines and
InverseScope classification are provided in Appendix D.2.

As shown in Figure 6, InverseScope achieves consistently higher accuracy than both SAE baselines
across all layers. This indicates that InverseScope can recover attribute information that SAEs fail to
capture. Moreover, both InverseScope and SAE (RAVEL) reveal a gradual accumulation of attribute
information across layers, whereas SAE (General) suggests more abrupt shifts. Given the residual
connection structure of the model, we believe the smoother progression observed with InverseScope
better reflects the underlying mechanisms of attribute representation.

4.3 UNDERSTANDING IN-CONTEXT LEARNING

In this subsection, we apply our method to investigate the mechanism of in-context learning (ICL),
aiming to explain a phenomenon discovered prior interpretability research (Hendel et al., 2023). We
conduct experiments on Gemma-2-2B (Team et al., 2024) and LLaMA-2-7B (Touvron et al., 2023)
using a synthetic ICL translation dataset. The main results for Gemma-2-2B are presented here,
while the results for LLaMA-2-7B are deferred to Appendix D.3, where we also provide further
details of the experimental setup.

ICL is a well-known emergent capability of LLMs, in which the model generalizes from a few
input–output examples presented in the prompt to perform the same task on a new input. Prior
work has shown that residual stream activations at intermediate layers can encode abstract task-level
representations, referred to as task vectors (Hendel et al., 2023).

However, as shown by the green curve in Figure 7 (right), only a narrow range of layers exhibit
this property. In shallower layers, residual activations do not appear to encode task-related features,
while in deeper layers the residual activations instead capture specific output tokens rather than the
abstract ICL task, as illustrated by the red curve in Figure 7 (right). Due to space limitations, a
detailed description of the original task-vector experiment is provided in Appendix D.3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

This raises a natural question: why do task vectors emerge specifically at these specific layers?
While Hendel et al. (2023) identifies the phenomenon, it does not provide a grounded explanation.
We will demonstrate that our method can help to explain such phenomenon, by analyzing the infor-
mation encoded in the output activations of attention layers.

Similar to the IOI task, we analyze the output activations of attention layers to identify where im-
portant features of the ICL task are aggregated. The first hypothesized feature is the task feature
Task(x), which maps x to the task demonstrated in the prompt (e.g., Task(x) = “English-to-French
translation”). The second is the query feature Query(x), which maps x to the specific query that
needs to be processed (e.g., the English word to be translated). Since both features can be defined
as rule-based functions, we can automatically compute their feature consistence rates.

The consistence rates are shown in Figure 7 (left). As the figure indicates, neither feature is consis-
tently encoded in the outputs of the first 13 layers. Around layer 13, the task feature becomes clearly
detectable, while the query feature remains largely absent. This separation continues until layer 16,
at which point the query feature begins to emerge strongly.

We propose that the separation in the emergence of task and query features underlies the task vector
phenomenon. In layers 13–15 (shaded green in Figure 7), attention outputs inject the task feature
into the residual stream without yet incorporating the query feature. As a result, the residual stream
encodes only an abstract representation of the task. After layer 16 (shaded red), the query feature
accumulates, transforming the residual stream into a representation of the specific output token
rather than the abstract task. The task vector does not disappear after layer 16—it is simply masked
by the presence of the query feature. A similar pattern is observed in LLaMA-2-7B, as shown in
Figure 9 in Appendix D.3.

5 RELATED WORKS

Feature interpretability. A variety of methods have been developed to interpret neural network
features. Classical approaches such as linear probing train simple classifiers on activations to iden-
tify linearly encoded features (Alain & Bengio, 2016; Park et al., 2023). More recent work includes
sparse dictionary learning, which decomposes activations into sparse and interpretable components
to disentangle feature representations (Cunningham et al., 2023; Gao et al., 2024), and methods that
analyze the activation by mapping them to the vocabulary space (Geva et al., 2022).

Inversion-based interpretability. A complementary line of research focuses on interpreting
model activations by identifying the inputs that give rise to them. This approach has its roots in
early work on activation maximization and representation inversion (Erhan et al., 2009; Nguyen
et al., 2016; Mahendran & Vedaldi, 2014), originally developed in the vision domain. Recent efforts
have extended these techniques to language models. Recent efforts such as InversionView (Huang
et al., 2024b) have extended these techniques to language models.

Nautral language interpretability. Several recent works have explored assigning human-
interpretable labels—such as natural language descriptions—to the internal activations of LLMs.
Training free methods like SelfIE (Chen et al., 2024) and PatchScope (Ghandeharioun et al., 2024)
use a pretrained LLM to read out the information encoded in residual stream activations. Simi-
larly, LatentQA (Pan et al., 2024) use supervise training to get a decoder model that answers natural
language questions about these activations.

6 LIMITATIONS

While our results demonstrate the effectiveness of InverseScope, several limitations remain. First,
the method does not yet scale to long input sequences. As input length increases, the correspond-
ing input distribution becomes substantially more complex, and our approach currently performs
reliably only on inputs spanning tens of tokens. Second, although we provide a quantitative—and
thus automatable—framework for evaluating feature hypotheses, generating these hypotheses still
requires human involvement. Automating or systematizing this step remains an open challenge. We
leave addressing these issues to future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. ArXiv, abs/1610.01644, 2016. URL https://api.semanticscholar.org/
CorpusID:9794990.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6541–6549, 2017.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review. arXiv
preprint arXiv:2404.14082, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Haozhe Chen, Carl Vondrick, and Chengzhi Mao. Selfie: Self-interpretation of large language model
embeddings. arXiv preprint arXiv:2403.10949, 2024.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
features are one-dimensionally linear. In The Thirteenth International Conference on Learning
Representations.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341(3):1, 2009.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward
layers build predictions by promoting concepts in the vocabulary space. arXiv preprint
arXiv:2203.14680, 2022.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patch-
scopes: A unifying framework for inspecting hidden representations of language mod-
els. ArXiv, abs/2401.06102, 2024. URL https://api.semanticscholar.org/
CorpusID:266933130.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. ArXiv,
abs/2310.15916, 2023. URL https://api.semanticscholar.org/CorpusID:
264439386.

10

https://api.semanticscholar.org/CorpusID:9794990
https://api.semanticscholar.org/CorpusID:9794990
https://api.semanticscholar.org/CorpusID:266933130
https://api.semanticscholar.org/CorpusID:266933130
https://api.semanticscholar.org/CorpusID:264439386
https://api.semanticscholar.org/CorpusID:264439386

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jing Huang, Zhengxuan Wu, Christopher Potts, Mor Geva, and Atticus Geiger. Ravel: Evaluat-
ing interpretability methods on disentangling language model representations. arXiv preprint
arXiv:2402.17700, 2024a.

Xinting Huang, Madhur Panwar, Navin Goyal, and Michael Hahn. Inversionview: A
general-purpose method for reading information from neural activations. arXiv preprint
arXiv:2405.17653, 2024b.

Amit Arnold Levy and Mor Geva. Language models encode numbers using digit representations in
base 10. arXiv preprint arXiv:2410.11781, 2024.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5188–
5196, 2014. URL https://api.semanticscholar.org/CorpusID:206593185.

Aleksandar Makelov, George Lange, and Neel Nanda. Towards principled evaluations of sparse
autoencoders for interpretability and control. arXiv preprint arXiv:2405.08366, 2024.

Anh Totti Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature visualization: Uncov-
ering the different types of features learned by each neuron in deep neural networks. ArXiv,
abs/1602.03616, 2016. URL https://api.semanticscholar.org/CorpusID:
5970910.

Alexander Pan, Lijie Chen, and Jacob Steinhardt. Latentqa: Teaching llms to decode activations
into natural language. arXiv preprint arXiv:2412.08686, 2024.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the
geometry of large language models. ArXiv, abs/2311.03658, 2023. URL https://api.
semanticscholar.org/CorpusID:265042984.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems in
mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

Lewis Smith. The ’strong’ feature hypothesis could be wrong, 2024.
URL https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/
the-strong-feature-hypothesis-could-be-wrong. Accessed: 2025-05-15.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. In-
terpretability in the wild: a circuit for indirect object identification in gpt-2 small. ArXiv,
abs/2211.00593, 2022. URL https://api.semanticscholar.org/CorpusID:
253244237.

Zhihao Xu, Ruixuan Huang, Changyu Chen, and Xiting Wang. Uncovering safety risks of large
language models through concept activation vector. Advances in Neural Information Processing
Systems, 37:116743–116782, 2024.

11

https://api.semanticscholar.org/CorpusID:206593185
https://api.semanticscholar.org/CorpusID:5970910
https://api.semanticscholar.org/CorpusID:5970910
https://api.semanticscholar.org/CorpusID:265042984
https://api.semanticscholar.org/CorpusID:265042984
https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://api.semanticscholar.org/CorpusID:253244237
https://api.semanticscholar.org/CorpusID:253244237

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DEFINING FEATURE FUNCTIONS

The term “feature” can have different meanings depending on the context, so we clarify our usage
here. In this paper, we define a feature as a function over inputs. For example, a binary classification
function that returns 1 if an input x is a harmful prompt and 0 if it is harmless constitutes a feature
function in our setting.

While binary classification functions are a common example, our definition of a feature function is
not limited to them. Any function that clearly describes a property of the input—whether rule-based
or expressed in natural language—can be treated as a feature function in our setting. In cases where
the function is specified via a natural language description, we can employ an LLM to compute its
output.

For the ”Object” feature illustrated in Figure 2, we can define it either as “the indirect object name
in the prompt” or as “the name in the prompt that appears only once.” Both descriptions can be
transformed into a concrete algorithm that deterministically assigns a piece of text as a label to any
given prompt in the IOI dataset.

B APPROXIMATING P (x; ẑ) VIA ACTIVATION PERTURBATION

In order for the training dataset {(x, z)} to faithfully approximate the conditional distribution
P (x; ẑ) as defined, we perturbate the original activations ẑ extracted from the target model. Without
this perturbation, our experiments show that the conditional generator tends to memorize the exact
correspondence between ẑ and its original input x̂—a behavior we explicitly want to avoid.

If the distance function d(·, ·) is a proper metric, i.e., it is symmetric and satisfies d(z, ẑ) = 0 ⇒ z =
ẑ, then we can inject noise in a way that mirrors the kernel-based conditional distribution P (x; ẑ).
Specifically, we perturb the original activation ẑ by sampling a continuous noise vector r from a
distribution defined as:

p(r) ∝ k (d(r + ẑ, ẑ)) ,
where k is the kernel function used in the definition of P (x; ẑ).

Let p̃(x, z) denote the joint density over inputs and perturbed activations, where each input x is
paired with a perturbed activation z = ẑ + r. Then, one can show that evaluating this density at
z = ẑ recovers the reweighted distribution:

p̃(x, z = ẑ) = P (x; ẑ).

This construction enables us to train the conditional generator on samples of the form (x, ẑ+r) such
that, at test time, it approximates the desired distribution P (x; ẑ) when conditioned on the original
activation ẑ.

However, when using measures like cosine distance, as in our experiments, additional complications
arise. Specifically, cosine distance satisfies d(z, ẑ) = 0 for any z = cẑ with c ⩾ 0, so the kernel
function k(d(r + ẑ, ẑ)) does not induce a proper probability density over the noise variable r.

To address this, we introduce a modified distance function:

d̃(z, ẑ) =

{
d(z, ẑ), if |∥z∥ − ∥ẑ∥| < δ∥ẑ∥
∞, otherwise

This effectively constrains the norm of the perturbed activation to lie within a small band around
∥ẑ∥, ensuring the noise distribution remains well-defined and avoids degenerate directions along the
ẑ ray.

One can verify that for sufficiently large δ, the equality p̃(x, z = ẑ) = P (x; ẑ) still holds. However,
increasing δ introduces greater variance into the training labels, making the conditional generator
harder to train. In practice, we set δ = 0.1 as a trade-off between theoretical fidelity and empirical
stability.

C NETWORK AND TRAINING DETAILS

In this section, we describe the general training settings used throughout our experiments.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C.1 TRAINING OF BACKBONE

As mentioned in the main text, we use GPT-2-small as our backbone model, regardless of the target
model we want to interpret. Since GPT-2’s tokenizer lacks a predefined begin-of-sentence token,
we exploit the original <|endoftext|> token to serve as both the begin-of-sentence and end-of-
sentence token during backbone fine-tuning.

For the fine-tuning stage, We employ a full-parameter fine-tuning and use the AdamW optimizer
with a learning rate of 1 × 10−5, while all other hyperparameters are set to their default values in
PyTorch. The max token length and the batch size depend on the specific task.

C.2 TRAINING OF ADDITIONAL LAYERS

For the additional multi-head control layers, we use 32 attention heads, each with a head dimension
of 64. The site-specific transformations consist of linear layers with input and output dimensions
that are equal to the target model’s hidden dimension. All parameters in the additional layers are
initialized using Kaiming initialization, except for the value projection matrices in the control layers,
which are initialized to zero. We find that this initialization strategy leads to more stable training
dynamics.

In all cases, we use the AdamW optimizer with a learning rate of 1 × 10−5, while all other hyper-
parameters are set to their default values in PyTorch. A warmup period of 1000 batches is applied,
during which the learning rate is linearly increased from zero to 1× 10−5.

For training the backbone and additional layers, we use 4 NVIDIA A800 GPUs. Most training runs
complete within 24 hours.

D EXPERIMENT SETTINGS AND RESULTS

In this section, we describe the detailed experimental setup, including how the training datasets are
constructed and how feature functions are defined. We also present a more detailed version of the
results produced by our method.

D.1 IOI

D.1.1 DATASET

To generate IOI inputs, we adopt the templates from the implementation of Conmy et al. (2023).
For example, a template such as “Then, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT]
to” is instantiated by replacing “[B]” and “[A]” with two random names, while “[PLACE]” and
“[OBJECT]” are substituted with random locations and items drawn from predefined sets. This
procedure yields approximately 3 million possible combinations. From these, we sample 100,000
examples for training and 5,000 examples for testing.

The activation at

D.1.2 FEATURE FUNCTIONS

Given a valid IOI input, we compute the subject and object feature label by checking the frequency
of each name in the sentence. Specifically, the name that appears once is assigned as Object(x),
and the name that appears twice is assigned as Subject(x). This forms a rule-based feature function
over input x.

D.1.3 MORE RESULTS

We first present a few examples of samples generated by our conditional generator, each conditioned
on activations ẑ from selected attention heads. Since there are too many attention heads in total, we
only visualize results from a few representative sites.

We found L9H3 particularly interesting: as shown in Figure 4 and the examples in Table 1, it does
not clearly encode information about the subject or object names. However, one can observe from

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 1: Example of inputs sampled from P (x; ẑ), where ẑ are activations extracted from attention
heads L7H9, L9H9, and L9H3. The activations ẑ correspond to the input x̂ =“After John and Mary
went to the store, Mary give a drink to”.

(a) L7H9

d(z, ẑ) x ∼ P (x; ẑ)
0.007 After Mary and Jeffrey went to the garden, Mary gave a drink to
0.011 After Mary and Michael went to the station, Mary gave a drink to
0.014 After Mary and Kenneth went to the garden, Mary gave a ring to
0.018 After Mary and Jeffrey went to the office, Mary gave a computer to
0.017 After Mary and Jeffrey went to the restaurant, Mary gave a drink to
0.024 After Mary and Nicole went to the hospital, Mary gave a drink to
0.107 Afterwards, Mary and Timothy went to the office. Mary gave a drink to
0.196 Afterwards, Mark and Mary went to the office. Mary gave a drink to
0.183 Afterwards, Matthew and Mary went to the house. Mary gave a drink to
0.199 Afterwards, Joseph and Mary went to the garden. Mary gave a computer to

(b) L9H9

d(z, ẑ) x ∼ P (x; ẑ)
0.031 Then, Mary and John had a lot of fun at the garden. Mary gave a drink to
0.064 When Elizabeth and John got a drink at the hospital, Elizabeth decided to give it to
0.066 When Samuel and John got a bone at the hospital, Samuel decided to give it to
0.073 After the lunch, Sarah and John went to the house. Sarah gave a kiss to
0.077 When Erin and John got a computer at the garden, Erin decided to give the computer

to
0.088 After the lunch, Lindsey and John went to the garden. Lindsey gave a drink to
0.092 After John and Crystal went to the school, Crystal gave a drink to
0.094 Then, Danielle and John had a lot of fun at the hospital. Danielle gave a drink to
0.163 After the lunch, Kevin and John went to the hospital. Kevin gave a computer to
0.189 After John and Steven went to the garden, Steven gave a kiss to

(c) L9H3

d(z, ẑ) x ∼ P (x; ẑ)
0.028 After Jacob and Benjamin went to the store, Benjamin gave a drink to
0.033 Then, Charles and James went to the house. James gave a drink to
0.036 Then, Mary and Kenneth went to the garden. Mary gave a drink to
0.041 Then, Charles and James went to the garden. James gave a drink to
0.051 Then, Jeffrey and James went to the restaurant. James gave a drink to
0.062 Then, Anthony and Shannon went to the restaurant. Shannon gave a drink to
0.067 Afterwards, Robert and Jeffrey went to the office. Robert gave a drink to
0.071 After the lunch, Andrew and James went to the station. Andrew gave a drink to
0.097 The school James and Jesse went to had a drink. James gave it to
0.137 Then, Shannon and Kenneth went to the store. Kenneth gave a kiss to
0.143 The local big house Aaron and Jose went to had a drink. Aaron gave it to

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 8: Detailed plot showing the relationship between d(z, ẑ) and the indicator If(x)=f(x̂) for the
object feature. Left: L9H6, Right: L9H10. Each blue point represents a sampled pair (x, z). The
orange curve shows a kernel-smoothed trend of the sampled points, while the grey line marks the
50% level of the smoothed curve.

the sampled examples that it appears to encode the item mentioned in the input x̂ —which is “drink”
in this case. From a human perspective, such information seems irrelevant to solving the IOI task,
yet the model still preserves and transmits it, revealing the complexity of the underlying circuit.

We can also leverage our method for additional forms of analysis. Figure 8 illustrates the rela-
tionship between the distance from the original activation and feature consistency. To obtain more
diverse input samples x, we manually inject additional noise into the activation during sampling.
Consequently, the inputs x visualized in this plot do not strictly follow the conditional distribution
P (x; ẑ).

As shown in the figure, attention head L9H6—which exhibits a high feature consistency rate—forms
a plateau where inputs with activations satisfying d(z, ẑ) < 0.2 have a high probability of sharing the
same object feature. Similar patterns can be observed for other heads with high feature consistency.
These results suggest that further investigation into the structure and distribution of activations z
around a given ẑ could yield deeper insights into how specific features are encoded and preserved in
the model’s internal representations.

D.1.4 COMPARING WITH PREVIOUS METHODS

To ensure a fair comparison between our method and InversionView (Huang et al., 2024b), we adopt
their experimental setting and use our conditional generator to sample inputs satisfying d(z(x), ẑ) <
ϵ. However, since the original InversionView method does not incorporate noise during training, it
relies on perturbing ẑ at sampling time. Accordingly, when sampling with InversionView, we follow
their protocol and add Gaussian noise of scale ϵ to ẑ before sending it to the conditional generator.

D.2 RAVEL

D.2.1 DATASET

All sub-datasets of RAVEL are combined into a single corpus, which is used to train both Invers-
eScope and SAE (RAVEL). Following the entity-level train–test split provided in the original dataset,
we construct a training set of 100,000 prompts and a test set of 10,000 prompts.

For InverseScope, residual stream activations are collected at the final inference position. For SAE
(RAVEL), residual stream activations are collected at all inference positions except the first inference
position. Following the setup of Lieberum et al. (2024), for SAE (RAVEL), the activations are
shuffled before saving as the training set.

D.2.2 TRAINING OF SAE (RAVEL)

To ensure a fair comparison, in addition to using the open-sourced SAEs (Lieberum et al., 2024)
as baselines, we train a series of JumpReLU SAEs with feature width 4096 specifically on the
RAVEL dataset. Training is performed for 100,000 steps with a batch size of 2048 using the AdamW
optimizer. We apply an L0 sparsity penalty with regularization parameter ρ = 5 × 10−5. All other

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

hyperparameters follow Lieberum et al. (2024). Due to computation limitations, we only trained
SAE (RAVEL) for half the layers (layer 0, 2, 4, ..., 24) in the original model.

D.2.3 REPRESENTATIVE FEATURE FOR SAE BASELINES

To perform attribute classification using SAE, we assign a representative feature to each attribute
in RAVEL. For this, we record which SAE features are activated for 100,000 input activations. For
each attribute, we then evaluate all features and select the one with the highest F1 score as the
representative feature for that attribute.

D.2.4 FEATURE/ATTRIBUTE FUNCTIONS

To assign attribute labels to the outputs of InverseScope, we define rule-based feature functions
using the templates provided in the RAVEL dataset. Each prompt template in the original dataset
is paired with an attribute label—for example, the template “[City] is a city in the country of” is
paired with the attribute “City:Country.” Accordingly, if the output text of InverseScope matches a
template, we assign the corresponding attribute label. Otherwise, we classify it as a null attribute,
indicating no match.

This matching criterion is intentionally strict. Nonetheless, InverseScope achieves high labeling
accuracy under this rule, as nearly all generated outputs conform to the prompt templates, with very
few nonsensical generations observed.

D.3 ICL

D.3.1 TASK VECTOR EXPERIMENTS

Task vectors are studied through activation patching, a causal intervention technique for probing
information encoded in specific activations. Consider the following English-to-French translation
setting with two inputs:

• With task examples (few-shot prompt):

mile → mile, cup → coupe, fact → fait, lead →

• Without task examples (query only):

black →

In this setup, the model with task examples correctly outputs “plomb” as the French translation of
“lead.” In contrast, the query-only input is highly likely to yield an unrelated token, since it provides
no information about the translation task.

The activation patching procedure proceeds as follows. At a chosen layer, the activation of the first
prompt (source) at the final position is recorded and substituted into the forward pass of the second
prompt (target) at the same site, while all other activations remain unchanged. If the patched target
inference produces “noir,” the correct French translation of “black,” this indicates that the patched
activation encodes task-level information about English-to-French translation. If the output remains
unrelated, this suggests no task-level information is encoded. If instead the output is “plomb,” the
source output token, this indicates that the activation carries output-token information, but it does
not reveal whether task-level information is also encoded.

By systematically applying this procedure across layers and positions, it is possible to localize where
abstract task representations emerge. As shown in Figure 7, only a few intermediate layers enable
correct translation of the second prompt. This observation forms the basis for defining the notion of
a “task vector” in prior work.

D.3.2 DATASET

To generate ICL inputs, we adapt the templates introduced in Hendel et al. (2023). Each prompt is
constructed in a 3-shot format:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: Left: Feature consistency rates of the outputs of LLaMA-2-7B’s attention layers in the
ICL task. Blue represents the task feature. Orange represents the query feature. Right: Results of
task-vector patching experiments. Green represents the rate at which the patched inference produces
the correct target output. Red represents the rate at which it incorrectly produces the source output.

Input: [input 1], Output: [output 1]\n Input:
[input 2], Output: [output 2]\Input: [input 3],
Output: [output 3]\n Input: [input], Output:

where each pair ([inputi], [outputi]) consists of words with equivalent meaning in two different lan-
guages.

We focus on six translation tasks: English → French/Italian/Spanish, and their reverse directions,
French/Italian/Spanish → English. All six tasks are sampled in equal proportion.

The number of possible prompts is combinatorially large due to the vocabulary size and pairing
choices. From this space, we sample 120,000 examples for training and 5,000 distinct examples for
evaluation.

D.3.3 FEATURE FUNCTIONS

The definition of the query feature Query(x) is straightforward: we identify the word that follows
the final “Input:” marker in the prompt. This word serves as the output of the function Query(x).

To define the task feature Task(x), we leverage an LLM to assist with labeling. Given an input x,
we prompt the assistant LLM with a system message asking it to identify the translation task demon-
strated in the examples. We use Gemma-2-2B-instruct for this purpose. Additionally, we provide an
extra “Mix” task label for cases where the LLM detects more than one type of input–output language
pair in the prompt.

D.3.4 MORE RESULTS

As shown in Figure 9, LLaMA-2-7B exhibits the same feature consistency rate trend as Gemma2-
2B. In layers 12–14 (shaded green), the task feature is clearly detectable, while the query feature is
absent—exactly corresponding to the layers where patching produces the correct target output. After
layer 15 (shaded red), where the query feature begins to emerge, patching leads to the generation of
the source output.

17

	Introduction
	Method Description
	InverseScope
	Network architecture
	Dataset and training

	Experiments
	Case study: indirect object identification
	Attribute Identification Evaluations
	Understanding in-context learning

	Related works
	Limitations
	Defining feature functions
	Approximating P(x;) via activation perturbation
	Network and training details
	Training of Backbone
	Training of Additional layers

	Experiment settings and results
	IOI
	Dataset
	Feature functions
	More results
	Comparing with previous methods

	RAVEL
	Dataset
	Training of SAE (RAVEL)
	Representative Feature for SAE Baselines
	Feature/Attribute Functions

	ICL
	Task Vector Experiments
	Dataset
	Feature functions
	More results

