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ABSTRACT

Understanding the internal representations of large language models (LLMs) is
a central challenge in interpretability research. Existing feature interpretabil-
ity methods often rely on strong assumptions about the structure of representa-
tions that may not hold in practice. In this work, we introduce InverseScope, an
assumption-light and scalable framework for interpreting neural activations via
input inversion. Given a target activation, we define a distribution over inputs that
generate similar activations and analyze this distribution to infer the encoded in-
formation. To address the inefficiency of sampling in high-dimensional spaces,
we propose a novel conditional generation architecture that significantly improves
sample efficiency compared to previous method. We further introduce a quantita-
tive evaluation protocol that tests interpretability hypotheses using the feature con-
sistency rate computed over the sampled inputs. InverseScope scales inversion-
based interpretability methods to larger models and practical tasks, enabling sys-
tematic and quantitative analysis of internal representations in real-world LLMs.

1 INTRODUCTION

Recent advances in mechanistic interpretability aim to reverse-engineer neural networks’ compu-
tations into human-understandable processes (Bereska & Gavves, 2024; Sharkey et al., 2025). A
central task in this field is feature interpretability, which seeks to understand what information is
encoded in a network’s activations and how it is represented. This understanding is crucial for an-
alyzing how information propagates and is processed across layers. Numerous methods have been
proposed for feature interpretability, including linear probing (Alain & Bengio, 2016; Park et al.,
2023), sparse dictionary learning (Cunningham et al., 2023; Gao et al., 2024), and other approaches
(Bau et al., 2017; Xu et al., 2024).

Despite their successes, these methods share a fundamental limitation: they rely on strong assump-
tions about the structure of neural representations. Specifically, linear probing assumes a linear
relationship between activations and specific concepts in the inputs, and sparse dictionary learning
presupposes that activations can be decomposed into a sparse sum of linear directions. The valid-
ity of these assumptions remains an open and actively debated question, particularly in the context
of LLMs (Levy & Geva, 2024; Engels et al.; Smith, 2024). Designing experiments that rigorously
test these hypotheses is itself a challenging problem, making it difficult to assess the reliability of
interpretations derived from such approaches.

These limitations highlight the need for interpretability methods that rely on minimal assumptions
about the structure of neural representations. One promising direction is to invert activation back
to the input space, where human intuitions are more naturally grounded. The strategy of connect-
ing activations back to the inputs that produce them has a long-standing history in interpretability
research, including early work on activation maximization (Erhan et al., 2009; Nguyen et al., 2016)
and neural representation inversion (Mahendran & Vedaldi, 2014). Building on this line, Inver-
sionView (Huang et al., 2024b) adapts the idea of previous inversion-based methods to language
models by interpreting the information encoded in an activation through the collection of inputs that
generates similar representations. These methods enable feature interpretability by relying only on
the geometric proximity of activations, without presupposing restrictive structural assumptions like
linearity or sparsity.
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Figure 1: An toy example of samples in activation space and their corresponding inputs.

While prior works have demonstrated the feasibility of interpreting activations through distributions
of matching inputs, such efforts have largely been limited to small-scale models and qualitative case
studies, lacking scalability to real-world settings. This motivates our work to advance inversion-
based interpretability by scaling it to larger open-source LLMs and applying it to practical tasks.

The main contributions of this paper are as follows:

• We introduce InverseScope, a novel conditional generation architecture that substantially
improves sampling efficiency for input sampling, making inversion-based methods practi-
cal for LLMs with up to 7B parameters.

• We establish a rigorous, quantitative evaluation framework that systematically assesses the
information revealed in the input distributions recovered via inversion.

• We apply our framework to in-context learning tasks, revealing new mechanistic insights
into the generation and disappearance of task-level features.

Collectively, our work substantially expands the reach of inversion-based interpretability, scaling
this powerful, assumption-light approach to 7B-parameter LLMs and complex in-context learning
tasks. This enables the field to move beyond illustrative examples toward a more systematic and
rigorous analysis of feature representations.

2 METHOD DESCRIPTION

Our method builds on a simple observation: similar activations tend to encode semantically similar
information (Bengio et al., 2013). In this paper, we use the term “activation” to specifically denote
the output of a network layer. If two distinct inputs produce nearly identical activations, then the
differences between those inputs are unlikely to be distinguishable or encoded in that representation.
Conversely, if nearby activations consistently correspond to inputs sharing a particular feature, this
indicates that the feature is encoded within that region of latent space. This reasoning is funda-
mentally grounded in the continuity of neural networks: since downstream layers apply continuous
transformations to their inputs, activations that are close in space are functionally equivalent from
the network’s perspective.

Building on this observation, our method investigates the information encoded in a target activa-
tion ẑ by inverting the activation geometry to recover the distribution of functionally equivalent
inputs. By inspecting this distribution, we can generate hypotheses about which features might be
encoded in that activation. Once a hypothesis is proposed, we employ quantitative metrics to eval-
uate whether the feature is consistently reflected in the distribution, thereby rigorously testing the
feature’s representation in the latent space.

For example, as illustrated in Figure 1, consider an input–activation pair (x̂, ẑ), where x̂ is “John is
a doctor.” and ẑ is the activation it produces. Our method assigns higher weights to inputs such as
“Mary is a doctor.” and “Alice is a doctor.”, which yield activations close to ẑ, while downweight-
ing inputs like “John hates apples.” that produce activations farther away. Analyzing this reweighted
distribution allows us to hypothesize that ẑ encodes features like “Subject is a doctor” or, more gener-
ally, “Subject’s profession.” Then, we can formalize this feature and use our quantitative framework
to rigorously test its consistency across the latent space.
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Figure 2: Example results from applying our method to the indirect object identification task on
GPT-2-small. Left: Feature consistency rates for the object feature, computed using ẑ extracted
from the outputs of different attention heads across layers. Right: Example samples from the con-
ditional distribution P (x; ẑ) for specific activations ẑ from heads L9H3 and L9H9, annotated with
their distance d(z(x), ẑ) and the corresponding feature label f(x).

Formally, the reweighting procedure is defined by a probability distribution P (x; ẑ) over all pos-
sible inputs, assigning higher probability to inputs whose activations z(x) lie closer to a reference
activation ẑ under a chosen distance metric. Mathematically, given a target activation ẑ ∈ Rn, we
define the probability of sampling an input x by:

P (x; ẑ) ∝ k(d(z(x), ẑ)/ϵ).

where d is a metric over activation space Rn, and k is a kernel function (e.g., a Gaussian k(d) =
exp(−d2) or a hard threshold k(d) = I{d<1}, as used in Huang et al. (2024b)), and ϵ is a bandwidth
parameter controlling the neighborhood size.

Given the distribution P (x; ẑ), we propose a three-step pipeline for feature interpret, involving hy-
pothesize, formalize and evaluate:

1. (Optional) Sample inputs from P (x; ẑ). Human analysts or auxiliary models (e.g., LLMs)
can summarize the commonalities in these samples to form hypotheses about which inter-
pretable feature is encoded in ẑ.

2. Define a candidate feature function. Translate the hypothesis into a formal feature func-
tion f : x → f(x), which maps each input x to a discrete, interpretable label f(x). This
function operationalizes the interpretable concept we aim to test.

3. Evaluate f via feature consistency rate. We measure how consistently the feature f is
represented in the local activation neighborhood by computing the feature consistency rate
(FCR):

FCR(f) = E(x̂,ẑ)∼DEx∼P (x;ẑ)I{f(x)=f(x̂)}. (1)

where D denotes a predefined dataset distribution over inputs and their corresponding acti-
vations. The FCR is the expected probability that a sampled input x from the neighborhood
of ẑ possesses the same feature f as the seed input x̂. A high feature consistency rate in-
dicates that the feature f is consistently preserved across local neighborhoods in activation
space, suggesting it is reliably encoded in the activations.

For scenarios where the feature of interest is known in advance, steps 2 and 3 can be applied directly
to quantitatively assess whether the target feature is represented in the given activations. We recog-
nize that step 2 – formalizing a feature into a function – may appear abstract in general terms. We
provide a more detailed explanation in Appendix A.

Figure 2 illustrates an example of the results obtained with our method on the indirect object identi-
fication task. In this case, we analyze the ”object feature,” formalized as a function f that maps the
input x to the object’s name. We compute the feature consistency rate (Equation 1) for activations
extracted from different attention heads. The results reveal a notable variation in feature consistency
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across attention heads, indicating that certain sites encode the object feature significantly more reli-
ably than others. A more detailed discussion of these results is provided in Section 4.1.

The key challenge in implementing this evaluation lies in efficiently sampling from P (x; ẑ). In the
high-dimensional activation spaces typical of modern LLMs, the probability that a random input
produces an activation close to ẑ decays exponentially with dimensionality. This renders naive
rejection sampling prohibitively inefficient for practical applications, particularly with LLMs where
activation dimensions can reach thousands.

To address this fundamental bottleneck, we introduce InverseScope, a novel conditional generation
architecture. InverseScope efficiently generates inputs guaranteed to produce activations close to the
target ẑ, effectively overcoming the sampling bottleneck that plagues naive inversion methods.

3 INVERSESCOPE

In this section we describe InverseScope, including its network architecture and training proce-
dure. Our objective is to efficiently sample from the conditional distribution P (x; ẑ) defined in the
previous section. To achieve this, InverseScope is designed as a conditional generator trained to
approximate this target distribution.

We adopt the decoder-only Transformer paradigm, which has proven highly effective for modeling
natural language distributions via next-token prediction objectives (Brown et al., 2020). Invers-
eScope extends this standard language modeling framework by conditioning the token prediction
not only on the preceding sequence context but critically, also on the target activation ẑ. This con-
ditioning is essential to align the generated sequence with the semantic information encoded in ẑ,
allowing the generator to approximate the target distribution P (x; ẑ).

3.1 NETWORK ARCHITECTURE

Figure 3: Network architecture of InverseScope. The decoder-only Transformer backbone is shown
with its parameters colored in orange and blue. The additional control and site-encoding layers
introduced for conditioning are colored in green.

As illustrated in Figure 3, our conditional generator is based on a standard decoder-only Transformer,
augmented with additional Control Layers that transmit the conditioning information from activation
ẑ into the model’s hidden states. These Control Layers operate analogously to the cross-attention
mechanism found in encoder-decoder Transformers.

The mathematical formulation of the control layers is as follows:

q
(i)
ℓ = Qℓh

(i)
ℓ + q̄ℓ, kℓ = Kℓẑ + k̄ℓ, vℓ = Vℓẑ + v̄ℓ,

ω
(i)
ℓ = tanh(⟨q(i)ℓ , kℓ⟩),

Controlℓ(h
(i)
ℓ , ẑ) = ω

(i)
ℓ vℓ,
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where i is the inference position index. The parameter matrices Qℓ,Kℓ, Vℓ are distinct from the
self-attention parameters of the backbone model, and q̄ℓ, k̄ℓ, v̄ℓ are the corresponding bias terms.
For simplicity, we omit the layer norm and only provide formulation for the single-head version. In
practice, we use a multi-head variant where each head has its own query, key, value matrices and
their outputs are summed to produce the final control signal. This signal is then added to the hidden
state h

(i)
ℓ , after the standard self-attention operation.

Condition on different sites. In practice, we are interested in interpreting activations collected
from multiple sites in the target model. By site, we mean a specific location in the network, such
as the output of the ℓ-th decoder layer at the last inference position. Training a separate conditional
generator for each site would be prohibitively expensive. Instead, we design a shared conditional
generator that supports conditioning on activations from arbitrary sites.

To achieve this, we introduce a series of site-specific projection layers, as shown in the left-bottom
corner of Figure 3. Each activation ẑ is first pass through a learned, site-specific linear transformation
before being sent to the shared generator. These linear layers project the conditions from different
sites into a common latent space, allowing the core generator to operate uniformly regardless of the
origin of ẑ.

By combining novel Control Layers with parameter sharing for handling activations from arbitrary
sites, InverseScope provides a flexible and scalable architecture for conditional generation. As
demonstrated in Section 4.1, this design enables us to more accurately approximate the complex,
high-dimensional distributions P (x; ẑ), leading to lower refusal rates and more efficient sampling.
This capability is essential for scaling inversion-based interpretability methods to large models and
diverse activation sites.

3.2 DATASET AND TRAINING

In the applications considered in this paper, we focus on task specific input distributions, such as all
possible inputs for the indirect object identification task, or all possible in-context learning prompts
for translation tasks, rather than the general distribution of all possible natural languages. We use
P(X ) to denote this task-specific prior input distribution.

Given a target model and a task-specific prior P(X ), we construct a training dataset by collecting
input–activation pairs (x̂, ẑ), where x̂ ∼ P(X ) and ẑ = z(x̂) denotes the activation at a specified
site within the model. To prevent the conditional generator from collapsing to a degenerate solution
and just fitting the delta function δ(x̂), we inject noise into the collected activations. As a result,
the final training dataset takes the form {(x̂i, ẑi + ri)}Ni=1. Ideally, the injected noise ri should be
sampled to match the kernel function used to define P (x; ẑ). A more detailed discussion of this
procedure is provided in Appendix B.

For each task, we perform a 2-step training. First fine-tune the backbone, then train the additional
layers independently. In the first step, we fine-tune a decoder-only Transformer on P(X ), which
will serve as the backbone of our conditional generator (corresponding to the non-green layers in
Figure 3). This step follows standard supervised fine-tuning procedures. Across all experiments in
this paper, we use GPT-2-small (Radford et al., 2019) as our backbone model, regardless of which
target model is being interpreted.

During the subsequent training phase, we freeze the backbone parameters and train only the addi-
tional layers introduced in Section 3.1 (corresponding to the green layers in Figure 3). By decoupling
the supervised fine-tuning of the backbone from the training of the conditional layers, we ensure that
the control layers are dedicated to capturing distinctions between different conditioning activations
ẑ. More detailed training settings are provided in Appendix C.

The training objective for the control layers is to maximize the conditional log-likelihood of the
training input x̂ given the noisy activation:

max
θ

1

N

∑
i

logPθ(x̂i; ẑi + ri),

where θ denote the parameters of the control layers. This objective can be decomposed into standard
next-token prediction loss.
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Figure 4: Feature consistency rate of the outputs of GPT-2-small’s attention heads in the IOI task.
Left: consistency rate of object feature. Right: consistency rate of subject feature. The top-5
attention heads with the highest feature consistency rates are marked with red rectangular.

4 EXPERIMENTS

In this section, we evaluate our method across a range of tasks and target models, benchmarking
its performance against an inversion method and a sparse dictionary learning method. We begin
with the indirect object identification (IOI) task (Wang et al., 2022) as a case study, showcasing
InverseScope’s significant gains in sampling efficiency compared to the inversion baseline. Next,
we benchmark our approach against sparse dictionary learning on the RAVEL dataset (Huang et al.,
2024a), demonstrating that InverseScope yields a clearer signal of the information encoded in acti-
vations. Finally, we apply our method to in-context learning tasks (Hendel et al., 2023), providing a
mechanistic explanation for a phenomenon previously observed but not understood.

4.1 CASE STUDY: INDIRECT OBJECT IDENTIFICATION

In this subsection, we apply our method to the indirect object identification (IOI) task (Wang et al.,
2022) on GPT-2-small (Radford et al., 2019). IOI serves as a case study for two reasons. First,
the mechanism underlying GPT-2-small’s behavior on IOI has been carefully dissected in prior
work (Wang et al., 2022; Makelov et al., 2024), providing a strong reference point against which
to validate our findings. Second, it offers a standard benchmark for evaluating sampling efficiency,
allowing for a direct comparison with the inversion-based baseline of Huang et al. (2024b). A more
detailed experimental setting is provided in Appendix D.1.

For IOI, the input distribution P(X ) is defined as a uniform distribution over template-generated
sentences such as x̂ = “When [A] and [B] went to the store, [A] gave a drink to”. We analyze
attention head outputs across layers at the final inference position—i.e., the position that takes the
token “to” as input. This yields a total of 144 activation sites in GPT-2-small (12 layers with 12
heads per layer). Our objective is to characterize the information encoded in these activations and to
identify which attention heads contribute features that enable GPT-2-small to correctly resolve the
indirect object and generate the appropriate name.

To solve IOI, two features are naturally hypothesized: the subject feature, Subject(x), which maps
x to the repeated name, and the object feature, Object(x), which maps x to the correct indirect
object to be predicted. In this case, Step 2 of our method is straightforward, as both features can
be formalized using simple rule-based functions. Step 3 is then carried out by evaluating feature
consistency to identify which attention heads aggregate information about these features into the
final inference position.

As shown in Figure 4, the object feature is primarily encoded by attention heads in layers 9 to 11.
The top 5 heads with the highest feature consistency rates are L9H6, L9H9, L10H0, L10H7, and
L11H10—precisely the Name Mover Heads and Negative Name Mover Heads identified in Wang
et al. (2022). Other heads with high feature consistency rates also coincide with the Backup Name
Mover Heads. In contrast, the subject feature is encoded earlier in the network, such as L7H9 and
L8H10, which correspond to the Subject Inhibition heads also described in Wang et al. (2022).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

These results support the circuit discovered in Wang et al. (2022), that the model first aggregates the
subject feature to the last position, then is the object feature.

Figure 5: Histogram of sample refusal rates
across GPT-2-small’s 144 attention heads in the
IOI task. The vertical dashed line indicates the
average refusal rate across all heads. Lower
refusal rates correspond to higher sample effi-
ciency. The y-axis is log-scaled for illustrative
purpose.

Figure 6: The attribute classification accuracy
of SAE (General), SAE (RAVEL) and Invers-
eScope for residual stream activations across
different layers. InverseScope achieves consis-
tently higher accuracy than both SAE baselines
across all layers.

Comparison with other inversion-based method. We compare the sample efficiency of our
method against InversionView (Huang et al., 2024b). To ensure a fair comparison, we follow the
same experimental setup as Huang et al. (2024b), using the kernel function k(d) = I{d<ϵ}. Under
this setting, P (x; ẑ) defines a uniform distribution over all inputs whose activations z(x) lie within
the ϵ−neighborhood Bϵ(ẑ). We evaluate sample efficiency by computing the refusal rate—the pro-
portion of samples provided by different method’s conditional generator for which z(x) /∈ Bϵ(ẑ).
A lower refusal rate corresponds to higher sampling efficiency.

As shown in Figure 5, our method consistently improves sample efficiency across all attention heads.
We reduce the average refusal rate from 10.2% to 3.5%. In the worst case, we significantly re-
duce the refusal rate from 60.5% to 31.7%. This demonstrates the robustness of our approach.
Such robustness is especially important for scaling to larger models and more complex tasks, where
high-refusal-rate cases are more likely to arise. Ensuring that the generator can approximate more
complex P (x; ẑ) is critical for making inversion-based methods viable at scale.

4.2 ATTRIBUTE IDENTIFICATION EVALUATIONS

In this subsection, we evaluate our method’s efficacy in attribute identification from activations, and
benchmark it against the sparse autoencoder (SAE) approach (Bricken et al., 2023). SAEs are un-
supervised models trained to reconstruct activations under a sparsity constraint, with the goal of
decomposing them into monosemantic, interpretable features. We focus on residual stream activa-
tions of Gemma-2-2B (Team et al., 2024) on the RAVEL dataset (Huang et al., 2024a), a dataset
specifically designed to assess attribute identification fidelity. We demonstrate that our method pro-
vides a clearer signal of the encoded attributes compared with SAEs.

The SAE baselines we compare against are: (1) a series of 16k-wide SAEs from gemma-scope-2b-
res (Lieberum et al., 2024), referred to as SAE (General); and (2) a series of 4k-wide JumpReLU
SAEs trained specifically on the RAVEL training set, referred to as SAE (RAVEL). We include the
latter for a fair comparison, since the InverseScope model evaluated here is also trained only on the
RAVEL training dataset. Additional experimental details are provided in Appendix D.2.

RAVEL provides prompts designed to elicit concept-related attributes (e.g., “language” or “conti-
nent” for a given city). For instance, the prompt “People in [City] usually speak” is used to probe
the “language” attribute of the ”city” entities. Crucially, while the original benchmark evaluates
interpretability via causal interventions on model behavior, we instead focus on a more fundamental
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Figure 7: Left: Feature consistency rates of the outputs of Gemma-2-2B’s attention layers in the
ICL task. Blue represents the task feature. Orange represents the query feature. Right: Results of
task-vector patching experiments. Green represents the rate at which the patched inference produces
the correct target output, which indicate the activation encoded the abstract task. Red represents the
rate at which it incorrectly produces the source output, which indicate the activation encoded the
specific output token.

question: assessing the method’s fidelity in identifying the correct attribute encoded within the acti-
vation itself. Specifically, we target residual stream activations, focusing on the last token position
across all decoder layers.

We frame this benchmark as a classification task. For SAE, this involves identifying a representative
feature for each attribute, which then serves as a simple classifier: when the feature activates, it
indicates the presence of the corresponding attribute. In our method, we classify an attribute based
on the attributes of similar inputs generated by InverseScope. Given a target activation ẑ, we sample
a candidate input x ∼ P (x; ẑ) with InverseScope. If x exhibits a recognizable attribute, we classify
ẑ as encoding that attribute; otherwise, we assign a null attribute, counting it as a failed classifica-
tion. Notably, the classification accuracy in this setup corresponds exactly to the feature consistency
rate computed in Step 3 of our pipeline. Additional experimental details for SAE baselines and
InverseScope classification are provided in Appendix D.2.

As shown in Figure 6, InverseScope achieves consistently higher accuracy than both SAE baselines
across all layers. This indicates that InverseScope can recover attribute information that SAEs fail to
capture. Moreover, both InverseScope and SAE (RAVEL) reveal a gradual accumulation of attribute
information across layers, whereas SAE (General) suggests more abrupt shifts. Given the residual
connection structure of the model, we believe the smoother progression observed with InverseScope
better reflects the underlying mechanisms of attribute representation.

4.3 UNDERSTANDING IN-CONTEXT LEARNING

In this subsection, we apply our method to investigate the mechanism of in-context learning (ICL),
aiming to explain a phenomenon discovered prior interpretability research (Hendel et al., 2023). We
conduct experiments on Gemma-2-2B (Team et al., 2024) and LLaMA-2-7B (Touvron et al., 2023)
using a synthetic ICL translation dataset. The main results for Gemma-2-2B are presented here,
while the results for LLaMA-2-7B are deferred to Appendix D.3, where we also provide further
details of the experimental setup.

ICL is a well-known emergent capability of LLMs, in which the model generalizes from a few
input–output examples presented in the prompt to perform the same task on a new input. Prior
work has shown that residual stream activations at intermediate layers can encode abstract task-level
representations, referred to as task vectors (Hendel et al., 2023).

However, as shown by the green curve in Figure 7 (right), only a narrow range of layers exhibit
this property. In shallower layers, residual activations do not appear to encode task-related features,
while in deeper layers the residual activations instead capture specific output tokens rather than the
abstract ICL task, as illustrated by the red curve in Figure 7 (right). Due to space limitations, a
detailed description of the original task-vector experiment is provided in Appendix D.3.
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This raises a natural question: why do task vectors emerge specifically at these specific layers?
While Hendel et al. (2023) identifies the phenomenon, it does not provide a grounded explanation.
We will demonstrate that our method can help to explain such phenomenon, by analyzing the infor-
mation encoded in the output activations of attention layers.

Similar to the IOI task, we analyze the output activations of attention layers to identify where im-
portant features of the ICL task are aggregated. The first hypothesized feature is the task feature
Task(x), which maps x to the task demonstrated in the prompt (e.g., Task(x) = “English-to-French
translation”). The second is the query feature Query(x), which maps x to the specific query that
needs to be processed (e.g., the English word to be translated). Since both features can be defined
as rule-based functions, we can automatically compute their feature consistence rates.

The consistence rates are shown in Figure 7 (left). As the figure indicates, neither feature is consis-
tently encoded in the outputs of the first 13 layers. Around layer 13, the task feature becomes clearly
detectable, while the query feature remains largely absent. This separation continues until layer 16,
at which point the query feature begins to emerge strongly.

We propose that the separation in the emergence of task and query features underlies the task vector
phenomenon. In layers 13–15 (shaded green in Figure 7), attention outputs inject the task feature
into the residual stream without yet incorporating the query feature. As a result, the residual stream
encodes only an abstract representation of the task. After layer 16 (shaded red), the query feature
accumulates, transforming the residual stream into a representation of the specific output token
rather than the abstract task. The task vector does not disappear after layer 16—it is simply masked
by the presence of the query feature. A similar pattern is observed in LLaMA-2-7B, as shown in
Figure 9 in Appendix D.3.

5 RELATED WORKS

Feature interpretability. A variety of methods have been developed to interpret neural network
features. Classical approaches such as linear probing train simple classifiers on activations to iden-
tify linearly encoded features (Alain & Bengio, 2016; Park et al., 2023). More recent work includes
sparse dictionary learning, which decomposes activations into sparse and interpretable components
to disentangle feature representations (Cunningham et al., 2023; Gao et al., 2024), and methods that
analyze the activation by mapping them to the vocabulary space (Geva et al., 2022).

Inversion-based interpretability. A complementary line of research focuses on interpreting
model activations by identifying the inputs that give rise to them. This approach has its roots in
early work on activation maximization and representation inversion (Erhan et al., 2009; Nguyen
et al., 2016; Mahendran & Vedaldi, 2014), originally developed in the vision domain. Recent efforts
have extended these techniques to language models. Recent efforts such as InversionView (Huang
et al., 2024b) have extended these techniques to language models.

Nautral language interpretability. Several recent works have explored assigning human-
interpretable labels—such as natural language descriptions—to the internal activations of LLMs.
Training free methods like SelfIE (Chen et al., 2024) and PatchScope (Ghandeharioun et al., 2024)
use a pretrained LLM to read out the information encoded in residual stream activations. Simi-
larly, LatentQA (Pan et al., 2024) use supervise training to get a decoder model that answers natural
language questions about these activations.

6 LIMITATIONS

While our results demonstrate the effectiveness of InverseScope, several limitations remain. First,
the method does not yet scale to long input sequences. As input length increases, the correspond-
ing input distribution becomes substantially more complex, and our approach currently performs
reliably only on inputs spanning tens of tokens. Second, although we provide a quantitative—and
thus automatable—framework for evaluating feature hypotheses, generating these hypotheses still
requires human involvement. Automating or systematizing this step remains an open challenge. We
leave addressing these issues to future work.

9
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A DEFINING FEATURE FUNCTIONS

The term “feature” can have different meanings depending on the context, so we clarify our usage
here. In this paper, we define a feature as a function over inputs. For example, a binary classification
function that returns 1 if an input x is a harmful prompt and 0 if it is harmless constitutes a feature
function in our setting.

While binary classification functions are a common example, our definition of a feature function is
not limited to them. Any function that clearly describes a property of the input—whether rule-based
or expressed in natural language—can be treated as a feature function in our setting. In cases where
the function is specified via a natural language description, we can employ an LLM to compute its
output.

For the ”Object” feature illustrated in Figure 2, we can define it either as “the indirect object name
in the prompt” or as “the name in the prompt that appears only once.” Both descriptions can be
transformed into a concrete algorithm that deterministically assigns a piece of text as a label to any
given prompt in the IOI dataset.

B APPROXIMATING P (x; ẑ) VIA ACTIVATION PERTURBATION

In order for the training dataset {(x, z)} to faithfully approximate the conditional distribution
P (x; ẑ) as defined, we perturbate the original activations ẑ extracted from the target model. Without
this perturbation, our experiments show that the conditional generator tends to memorize the exact
correspondence between ẑ and its original input x̂—a behavior we explicitly want to avoid.

If the distance function d(·, ·) is a proper metric, i.e., it is symmetric and satisfies d(z, ẑ) = 0 ⇒ z =
ẑ, then we can inject noise in a way that mirrors the kernel-based conditional distribution P (x; ẑ).
Specifically, we perturb the original activation ẑ by sampling a continuous noise vector r from a
distribution defined as:

p(r) ∝ k (d(r + ẑ, ẑ)) ,
where k is the kernel function used in the definition of P (x; ẑ).

Let p̃(x, z) denote the joint density over inputs and perturbed activations, where each input x is
paired with a perturbed activation z = ẑ + r. Then, one can show that evaluating this density at
z = ẑ recovers the reweighted distribution:

p̃(x, z = ẑ) = P (x; ẑ).

This construction enables us to train the conditional generator on samples of the form (x, ẑ+r) such
that, at test time, it approximates the desired distribution P (x; ẑ) when conditioned on the original
activation ẑ.

However, when using measures like cosine distance, as in our experiments, additional complications
arise. Specifically, cosine distance satisfies d(z, ẑ) = 0 for any z = cẑ with c ⩾ 0, so the kernel
function k(d(r + ẑ, ẑ)) does not induce a proper probability density over the noise variable r.

To address this, we introduce a modified distance function:

d̃(z, ẑ) =

{
d(z, ẑ), if |∥z∥ − ∥ẑ∥| < δ∥ẑ∥
∞, otherwise

This effectively constrains the norm of the perturbed activation to lie within a small band around
∥ẑ∥, ensuring the noise distribution remains well-defined and avoids degenerate directions along the
ẑ ray.

One can verify that for sufficiently large δ, the equality p̃(x, z = ẑ) = P (x; ẑ) still holds. However,
increasing δ introduces greater variance into the training labels, making the conditional generator
harder to train. In practice, we set δ = 0.1 as a trade-off between theoretical fidelity and empirical
stability.

C NETWORK AND TRAINING DETAILS

In this section, we describe the general training settings used throughout our experiments.
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C.1 TRAINING OF BACKBONE

As mentioned in the main text, we use GPT-2-small as our backbone model, regardless of the target
model we want to interpret. Since GPT-2’s tokenizer lacks a predefined begin-of-sentence token,
we exploit the original <|endoftext|> token to serve as both the begin-of-sentence and end-of-
sentence token during backbone fine-tuning.

For the fine-tuning stage, We employ a full-parameter fine-tuning and use the AdamW optimizer
with a learning rate of 1 × 10−5, while all other hyperparameters are set to their default values in
PyTorch. The max token length and the batch size depend on the specific task.

C.2 TRAINING OF ADDITIONAL LAYERS

For the additional multi-head control layers, we use 32 attention heads, each with a head dimension
of 64. The site-specific transformations consist of linear layers with input and output dimensions
that are equal to the target model’s hidden dimension. All parameters in the additional layers are
initialized using Kaiming initialization, except for the value projection matrices in the control layers,
which are initialized to zero. We find that this initialization strategy leads to more stable training
dynamics.

In all cases, we use the AdamW optimizer with a learning rate of 1 × 10−5, while all other hyper-
parameters are set to their default values in PyTorch. A warmup period of 1000 batches is applied,
during which the learning rate is linearly increased from zero to 1× 10−5.

For training the backbone and additional layers, we use 4 NVIDIA A800 GPUs. Most training runs
complete within 24 hours.

D EXPERIMENT SETTINGS AND RESULTS

In this section, we describe the detailed experimental setup, including how the training datasets are
constructed and how feature functions are defined. We also present a more detailed version of the
results produced by our method.

D.1 IOI

D.1.1 DATASET

To generate IOI inputs, we adopt the templates from the implementation of Conmy et al. (2023).
For example, a template such as “Then, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT]
to” is instantiated by replacing “[B]” and “[A]” with two random names, while “[PLACE]” and
“[OBJECT]” are substituted with random locations and items drawn from predefined sets. This
procedure yields approximately 3 million possible combinations. From these, we sample 100,000
examples for training and 5,000 examples for testing.

The activation at

D.1.2 FEATURE FUNCTIONS

Given a valid IOI input, we compute the subject and object feature label by checking the frequency
of each name in the sentence. Specifically, the name that appears once is assigned as Object(x),
and the name that appears twice is assigned as Subject(x). This forms a rule-based feature function
over input x.

D.1.3 MORE RESULTS

We first present a few examples of samples generated by our conditional generator, each conditioned
on activations ẑ from selected attention heads. Since there are too many attention heads in total, we
only visualize results from a few representative sites.

We found L9H3 particularly interesting: as shown in Figure 4 and the examples in Table 1, it does
not clearly encode information about the subject or object names. However, one can observe from
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Table 1: Example of inputs sampled from P (x; ẑ), where ẑ are activations extracted from attention
heads L7H9, L9H9, and L9H3. The activations ẑ correspond to the input x̂ =“After John and Mary
went to the store, Mary give a drink to”.

(a) L7H9

d(z, ẑ) x ∼ P (x; ẑ)
0.007 After Mary and Jeffrey went to the garden, Mary gave a drink to
0.011 After Mary and Michael went to the station, Mary gave a drink to
0.014 After Mary and Kenneth went to the garden, Mary gave a ring to
0.018 After Mary and Jeffrey went to the office, Mary gave a computer to
0.017 After Mary and Jeffrey went to the restaurant, Mary gave a drink to
0.024 After Mary and Nicole went to the hospital, Mary gave a drink to
0.107 Afterwards, Mary and Timothy went to the office. Mary gave a drink to
0.196 Afterwards, Mark and Mary went to the office. Mary gave a drink to
0.183 Afterwards, Matthew and Mary went to the house. Mary gave a drink to
0.199 Afterwards, Joseph and Mary went to the garden. Mary gave a computer to

(b) L9H9

d(z, ẑ) x ∼ P (x; ẑ)
0.031 Then, Mary and John had a lot of fun at the garden. Mary gave a drink to
0.064 When Elizabeth and John got a drink at the hospital, Elizabeth decided to give it to
0.066 When Samuel and John got a bone at the hospital, Samuel decided to give it to
0.073 After the lunch, Sarah and John went to the house. Sarah gave a kiss to
0.077 When Erin and John got a computer at the garden, Erin decided to give the computer

to
0.088 After the lunch, Lindsey and John went to the garden. Lindsey gave a drink to
0.092 After John and Crystal went to the school, Crystal gave a drink to
0.094 Then, Danielle and John had a lot of fun at the hospital. Danielle gave a drink to
0.163 After the lunch, Kevin and John went to the hospital. Kevin gave a computer to
0.189 After John and Steven went to the garden, Steven gave a kiss to

(c) L9H3

d(z, ẑ) x ∼ P (x; ẑ)
0.028 After Jacob and Benjamin went to the store, Benjamin gave a drink to
0.033 Then, Charles and James went to the house. James gave a drink to
0.036 Then, Mary and Kenneth went to the garden. Mary gave a drink to
0.041 Then, Charles and James went to the garden. James gave a drink to
0.051 Then, Jeffrey and James went to the restaurant. James gave a drink to
0.062 Then, Anthony and Shannon went to the restaurant. Shannon gave a drink to
0.067 Afterwards, Robert and Jeffrey went to the office. Robert gave a drink to
0.071 After the lunch, Andrew and James went to the station. Andrew gave a drink to
0.097 The school James and Jesse went to had a drink. James gave it to
0.137 Then, Shannon and Kenneth went to the store. Kenneth gave a kiss to
0.143 The local big house Aaron and Jose went to had a drink. Aaron gave it to
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Figure 8: Detailed plot showing the relationship between d(z, ẑ) and the indicator If(x)=f(x̂) for the
object feature. Left: L9H6, Right: L9H10. Each blue point represents a sampled pair (x, z). The
orange curve shows a kernel-smoothed trend of the sampled points, while the grey line marks the
50% level of the smoothed curve.

the sampled examples that it appears to encode the item mentioned in the input x̂ —which is “drink”
in this case. From a human perspective, such information seems irrelevant to solving the IOI task,
yet the model still preserves and transmits it, revealing the complexity of the underlying circuit.

We can also leverage our method for additional forms of analysis. Figure 8 illustrates the rela-
tionship between the distance from the original activation and feature consistency. To obtain more
diverse input samples x, we manually inject additional noise into the activation during sampling.
Consequently, the inputs x visualized in this plot do not strictly follow the conditional distribution
P (x; ẑ).

As shown in the figure, attention head L9H6—which exhibits a high feature consistency rate—forms
a plateau where inputs with activations satisfying d(z, ẑ) < 0.2 have a high probability of sharing the
same object feature. Similar patterns can be observed for other heads with high feature consistency.
These results suggest that further investigation into the structure and distribution of activations z
around a given ẑ could yield deeper insights into how specific features are encoded and preserved in
the model’s internal representations.

D.1.4 COMPARING WITH PREVIOUS METHODS

To ensure a fair comparison between our method and InversionView (Huang et al., 2024b), we adopt
their experimental setting and use our conditional generator to sample inputs satisfying d(z(x), ẑ) <
ϵ. However, since the original InversionView method does not incorporate noise during training, it
relies on perturbing ẑ at sampling time. Accordingly, when sampling with InversionView, we follow
their protocol and add Gaussian noise of scale ϵ to ẑ before sending it to the conditional generator.

D.2 RAVEL

D.2.1 DATASET

All sub-datasets of RAVEL are combined into a single corpus, which is used to train both Invers-
eScope and SAE (RAVEL). Following the entity-level train–test split provided in the original dataset,
we construct a training set of 100,000 prompts and a test set of 10,000 prompts.

For InverseScope, residual stream activations are collected at the final inference position. For SAE
(RAVEL), residual stream activations are collected at all inference positions except the first inference
position. Following the setup of Lieberum et al. (2024), for SAE (RAVEL), the activations are
shuffled before saving as the training set.

D.2.2 TRAINING OF SAE (RAVEL)

To ensure a fair comparison, in addition to using the open-sourced SAEs (Lieberum et al., 2024)
as baselines, we train a series of JumpReLU SAEs with feature width 4096 specifically on the
RAVEL dataset. Training is performed for 100,000 steps with a batch size of 2048 using the AdamW
optimizer. We apply an L0 sparsity penalty with regularization parameter ρ = 5 × 10−5. All other
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hyperparameters follow Lieberum et al. (2024). Due to computation limitations, we only trained
SAE (RAVEL) for half the layers (layer 0, 2, 4, ..., 24) in the original model.

D.2.3 REPRESENTATIVE FEATURE FOR SAE BASELINES

To perform attribute classification using SAE, we assign a representative feature to each attribute
in RAVEL. For this, we record which SAE features are activated for 100,000 input activations. For
each attribute, we then evaluate all features and select the one with the highest F1 score as the
representative feature for that attribute.

D.2.4 FEATURE/ATTRIBUTE FUNCTIONS

To assign attribute labels to the outputs of InverseScope, we define rule-based feature functions
using the templates provided in the RAVEL dataset. Each prompt template in the original dataset
is paired with an attribute label—for example, the template “[City] is a city in the country of” is
paired with the attribute “City:Country.” Accordingly, if the output text of InverseScope matches a
template, we assign the corresponding attribute label. Otherwise, we classify it as a null attribute,
indicating no match.

This matching criterion is intentionally strict. Nonetheless, InverseScope achieves high labeling
accuracy under this rule, as nearly all generated outputs conform to the prompt templates, with very
few nonsensical generations observed.

D.3 ICL

D.3.1 TASK VECTOR EXPERIMENTS

Task vectors are studied through activation patching, a causal intervention technique for probing
information encoded in specific activations. Consider the following English-to-French translation
setting with two inputs:

• With task examples (few-shot prompt):

mile → mile, cup → coupe, fact → fait, lead →

• Without task examples (query only):

black →

In this setup, the model with task examples correctly outputs “plomb” as the French translation of
“lead.” In contrast, the query-only input is highly likely to yield an unrelated token, since it provides
no information about the translation task.

The activation patching procedure proceeds as follows. At a chosen layer, the activation of the first
prompt (source) at the final position is recorded and substituted into the forward pass of the second
prompt (target) at the same site, while all other activations remain unchanged. If the patched target
inference produces “noir,” the correct French translation of “black,” this indicates that the patched
activation encodes task-level information about English-to-French translation. If the output remains
unrelated, this suggests no task-level information is encoded. If instead the output is “plomb,” the
source output token, this indicates that the activation carries output-token information, but it does
not reveal whether task-level information is also encoded.

By systematically applying this procedure across layers and positions, it is possible to localize where
abstract task representations emerge. As shown in Figure 7, only a few intermediate layers enable
correct translation of the second prompt. This observation forms the basis for defining the notion of
a “task vector” in prior work.

D.3.2 DATASET

To generate ICL inputs, we adapt the templates introduced in Hendel et al. (2023). Each prompt is
constructed in a 3-shot format:
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Figure 9: Left: Feature consistency rates of the outputs of LLaMA-2-7B’s attention layers in the
ICL task. Blue represents the task feature. Orange represents the query feature. Right: Results of
task-vector patching experiments. Green represents the rate at which the patched inference produces
the correct target output. Red represents the rate at which it incorrectly produces the source output.

Input: [input 1], Output: [output 1]\n Input:
[input 2], Output: [output 2]\Input: [input 3],
Output: [output 3]\n Input: [input], Output:

where each pair ([inputi], [outputi]) consists of words with equivalent meaning in two different lan-
guages.

We focus on six translation tasks: English → French/Italian/Spanish, and their reverse directions,
French/Italian/Spanish → English. All six tasks are sampled in equal proportion.

The number of possible prompts is combinatorially large due to the vocabulary size and pairing
choices. From this space, we sample 120,000 examples for training and 5,000 distinct examples for
evaluation.

D.3.3 FEATURE FUNCTIONS

The definition of the query feature Query(x) is straightforward: we identify the word that follows
the final “Input:” marker in the prompt. This word serves as the output of the function Query(x).

To define the task feature Task(x), we leverage an LLM to assist with labeling. Given an input x,
we prompt the assistant LLM with a system message asking it to identify the translation task demon-
strated in the examples. We use Gemma-2-2B-instruct for this purpose. Additionally, we provide an
extra “Mix” task label for cases where the LLM detects more than one type of input–output language
pair in the prompt.

D.3.4 MORE RESULTS

As shown in Figure 9, LLaMA-2-7B exhibits the same feature consistency rate trend as Gemma2-
2B. In layers 12–14 (shaded green), the task feature is clearly detectable, while the query feature is
absent—exactly corresponding to the layers where patching produces the correct target output. After
layer 15 (shaded red), where the query feature begins to emerge, patching leads to the generation of
the source output.
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