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Abstract

Cross-modal attention mechanisms have been
widely applied to the image-text matching
task and have achieved remarkable improve-
ments thanks to its capability of learning
fine-grained relevance across different modali-
ties. However, the cross-modal attention mod-
els of existing methods could be sub-optimal
and inaccurate because there is no direct su-
pervision provided during the training pro-
cess. In this work, we propose two novel
training strategies, namely Contrastive Con-
tent Re-sourcing (CCR) and Contrastive Con-
tent Swapping (CCS) constraints, to address
such limitations. These constraints supervise
the training of cross-modal attention models in
a contrastive learning manner without requir-
ing explicit attention annotations. They are
plug-in training strategies and can be gener-
ally integrated into existing cross-modal atten-
tion models. Additionally, we introduce three
metrics including Attention Precision, Recall,
and F1-Score to quantitatively measure the
quality of learned attention models. We eval-
uate the proposed constraints by incorporat-
ing them into four state-of-the-art cross-modal
attention-based image-text matching models.
Experimental results on both Flickr30k and
MS-COCO datasets demonstrate that integrat-
ing these constraints generally improves the
model performance in terms of both retrieval
performance and attention metrics.

1 Introduction

The task of image-text matching aims to learn a
model that measures the similarity between visual
and textual contents. By using the learned model,
users can retrieve images that visually match the
context described by a text query, or retrieve texts

that describe the visual context of an image query.

Because of its critical role to bridge the human
vision and language world, this task has emerged
as an active research area (Faghri et al., 2017; Nam
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Figure 1: Visualization of the attention maps of the
SCAN model learned without and with our proposed
constraints.

et al., 2017; Huang et al., 2017; Lee et al., 2018;
Liu et al., 2019; Chen et al., 2020; Wang et al.,
2019).

Recently, cross-modal attention models have
been widely applied to this task (Liu et al., 2019;
Lee et al., 2018; Nam et al., 2017; Huang et al.,
2017, 2018; Chen et al., 2019; Li et al., 2020).
These approaches have achieved remarkable im-
provements thanks to their ability to capture fine-
grained cross-modal relevance by the cross-modal
attention mechanism. Specifically, given an im-
age description and its corresponding image, they
are first represented by fragments, i.e., individual
words and image regions. We refer to the frag-
ments of the context modality as query fragments,
and the fragments of the attended modality as key
fragments. Given a query fragment, a cross-modal
attention model first assigns an attention weight
to each key fragment, each of which measures the
semantic relevance between the query fragment
and the corresponding key fragment. Then the
attended information of the query fragment is en-
coded as the weighted sum of all key fragment fea-
tures. The similarity between each query fragment
and its attended information is thus aggregated as
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Figure 2: Overview of the training pipeline which contains (a) the cross-modal attention mechanism and our
proposed attention constraints including (b) Contrastive Content Re-sourcing (CCR) and (¢) Contrastive Content

Swapping (CCS).

the similarity measurement between the query and
the retrieval candidates.

In ideal cases, well-trained cross-modal attention
models will attend to the semantically relevant key
fragments by assigning large attention weights to
them, and ignore irrelevant fragments by producing
small attention weights. Take Figure 1 (b) as an
example: when “dog" is used as a query fragment,
the cross-modal attention model is supposed to out-
put large attention weights for all image regions
containing the dog, and small attention weights for
other irrelevant image fragments. However, since
the cross-modal attention models of most existing
image-text matching methods are trained in a pure
data-driven manner and do not receive any explicit
supervision or constraints, the learned attention
models may not be able to precisely attend to the
relevant contents. As shown in Figure 1 (a), the
learned SCAN model (Lee et al., 2018), a state-
of-the-art cross-modal attention based image-text
matching model, fails to attend to the relevant im-
age regions containing the dog’s main body when
using the word “dog" as the query fragment. This
example illustrates a false negative case, i.e., a low
attention “recall”". Additionally, a learned cross-
modal attention model might also suffer from false
positives (low attention “precision”). As shown
in Figure 1 (c), when using “helmet" as the query
fragment, the SCAN model assigns large attention
weights to the irrelevant human body and back-
ground areas. A possible solution to these limi-
tations is to rely on manually generated attention

map ground truth to supervise the training process
of cross-modal attention models (Qiao et al., 2018;
Zhang et al., 2019). However, annotating atten-
tion distributions is an ill-defined task, and will be
labor-intensive.

To this end, we propose two learning constraints,
namely Contrastive Content Re-sourcing (CCR)
and Contrastive Content Swapping (CCS), to su-
pervise the training process of cross-modal atten-
tions. Figure 2 gives an overview of our method.
CCR enforces a query fragment to be more rele-
vant to its attended information than to the reversed
attended information, which is generated by cal-
culating the weighted sum of key fragments using
reversed attention weights (details in Section 3.2).
It can guide a cross-modal attention model to as-
sign large attention weights to the relevant key frag-
ments and small weights to irrelevant fragments.
On the other hand, CCS further encourages a cross-
modal attention model to ignore irrelevant key frag-
ments by constraining the attended information to
be more relevant to the corresponding query frag-
ment than to a negative query fragment. In the
example shown in Figure 2 (c), by using the word
“grass" as a negative query fragment, the attention
weights assigned to regions containing grass will
be diminished so that a more accurate attention
map is generated. The proposed constraints are
plug-in training strategies which can be easily in-
tegrated into existing cross-modal attention-based
image-text matching models.

We evaluate the performance of the proposed



constraints by incorporating them into four state-
of-the-art cross-modal attention-based image-text
matching networks (Lee et al., 2018; Liu et al.,
2019; Wang et al., 2019; Chen et al., 2019). Ad-
ditionally, in order to quantitatively compare and
measure the quality of the learned attention models,
we propose three new attention metrics, namely
Attention Precision, Attention Recall and Atten-
tion F1-Score. The experimental results on both
MS-COCO (Lin et al., 2014) and Flickr30K (Young
et al., 2014) demonstrate that these constraints
significantly improve image-text matching perfor-
mances and quality of the learned attention models
of these methods.

To sum up, the main contributions of this work
include: (i) we propose two learning constraints
to supervise the training of cross-modal attention
models in a contrastive manner without requiring
additional attention annotations. They are plug-
in training strategies and can be easily applied to
different cross-modal attention-based image-text
methods; (ii) we introduce the attention metrics
to quantitatively evaluate the quality of learned at-
tention models, in terms of precision, recall, and
F1-Score; (iii) we validate our approach by incor-
porating it into four state-of-the-art attention-based
image-text matching models. Extensive experi-
ments conducted on two publicly available datasets
demonstrate its strong generality and effectiveness.

2 Related Work

Image-Text Matching. The task of image-text
matching is well-explored yet challenging. Its main
challenge is how to measure the similarity between
texts and images. Early approaches propose to mea-
sure the similarity at the global level (Kiros et al.,
2014; Frome et al., 2013; Zhang and Lu, 2018;
Faghri et al., 2017). Specifically, these methods
first train an image encoder and a text encoder to
embed the global information of images and sen-
tences into feature vectors, and then measure the
similarity between images and sentences by calcu-
lating the cosine similarity between the correspond-
ing feature vectors. One major limitation of these
methods is that they failed to capture fine-grained
image-text relevance.

To address this limitation, recent studies propose
to apply the cross-modal attention mechanism to
measure the similarity between texts and images at
the fragment level (Liu et al., 2019; Lee et al., 2018;
Wang et al., 2019; Xu et al., 2020). Typically, given

an image and a sentence, these methods first extract
object regions from the image, and embed each
word of the sentence. Then the relevance between
words and image regions are inferred by leveraging
the cross-modal attention mechanism. The similar-
ity between each fragment (word or image region)
and its relevant information is calculated and ag-
gregated as the final similarity score between the
image and sentence. Although these methods have
achieved notable results, the learning process of
these cross-modal attention models could be sub-
optimal due to the lack of direct supervision, as
discussed in Section 1.

Supervision on Learning Cross-Modal Atten-
tion. The task of training cross-modal attention
models with proper supervision has drawn grow-
ing interests. The main challenge lies in how to
define and collect supervision signals. Qiao et al.
(2018) first trains an attention map generator on
a human annotated attention dataset and then ap-
plies the attention map predicted by the generator
as weak annotations. Liu et al. (2017) leverages
human annotated alignments between words and
corresponding image regions as supervision. Simi-
lar to (Liu et al., 2017), image local region descrip-
tions and object annotations in Visual Genome (Kr-
ishna et al., 2017) are used for generating attention
supervision (Zhang et al., 2019). These methods
obtain attention supervision from different forms
of human annotations, such as word-image corre-
spondence and image local region annotations. By
contrast, we provide attention supervision by con-
structing pair-wise samples in a contrastive learn-
ing manner which does not require additional man-
ual attention annotations.

3 Methodology
3.1 Cross-Modal Attention Model

Given an image-sentence pair in image-text match-
ing, they are first represented as fragments, i.e.,
individual words and image regions. The frag-
ments of the context modality are query fragments,
and the fragments of the attended modality are key
fragments. Each of these fragments is encoded
as a vector. A cross-modal attention model takes
these vectors as input, and infers the cross-modal
relevance between each query fragment and all
key fragments. The similarity score of the image-
sentence pair is then calculated according to the
obtained cross-modal relevance.

Let ¢; and k; refer to the feature representation of



the i-th query and j-th key fragments, respectively.
The cross-modal attention model first calculates
k;’s attention weight with respect to g; as follows:

€ij = fatt(qi’ kj)a

exp(e; ;) (1)
ZjeK exp(e;,;)’
where f4 is the attention function whose output
is a scalar e; ; that measures the cross-modal rele-
vance between ¢; and k;; K is a set of indexes of
all key fragments; w; ; is k;’s attention weight with
respect to ¢;.

q;’s attended information (i.e., ¢;’s relevant
cross-modal information) is summarized as the at-
tention feature a;, which is the weighted sum of
key fragment features, as defined by the following
equation:

wivj =

a; = Z (’UJZ'J' . k?]) . (2)
jeK
The similarity score between the image / and
the sentence T’ is then defined as:

S(I,T) = AGGicq(Sim(gi,a;)),  (3)

where () denotes the set of indexes of all query
fragments; Sim is the similarity function; AGG is
a function that aggregates similarity scores among
all query fragments, such as the average pooling
function (Lee et al., 2018).

The most widely used loss function for this task
is the triplet ranking loss with hard negative sam-
pling (Faghri et al., 2017) defined as:

gr‘ank - [S(17T> - S(I7T> +71]+
+ [S(faT) _S(IaT)_‘_'Yl]Jrv 4)

where v, controls the margin of similarity differ-
ence; the matched image I and the sentence 7" form
a positive sample pair, while T and I represent the
hardest negative sentence and image for the posi-
tive sample pair as defined by (Faghri et al., 2017).
{rank enforces the similarity between the anchor
image [ and its matched sentence 7' to be larger
than the similarity between the anchor image and
an unmatched sentence by a margin ;. Vice versa
for the sentence 7.

However, this loss function works at the
similarity-level and does not provide any super-
vision for connecting cross-modal contents at the
attention-level. In other words, learning cross-
modal attentions is a pure data-driven approach
and lacks supervision. As a result, the learned
cross-modal attention model could be sub-optimal.

3.2 Contrastive Content Re-sourcing

A desired property of a well-learned cross-modal
attention model is that, for a query fragment, the at-
tention model should assign large attention weights
to the key fragments that are relevant to the query
fragment, and assign small attention weights to the
key fragments that are irrelevant to the query frag-
ment. The Contrastive Content Re-sourcing (CCR)
constrain is proposed to explicitly guide attention
models to learn this property. It is implemented
by enforcing a query fragment to be more rele-
vant to its attended information than to its reversed
attention information. For example, as shown in
Figure 2 (b), the query word “dog" is required to
be more relevant to its attended information than
to reversed attended information (e.g., the person
and tree).

To be specific, given a query fragment ¢;, its
attended information is embedded as the attention
feature a;. Its reversed attention information is
encoded by the vector a;, which is obtained by re-
versing attention weights and calculating weighted
sum of key fragment features based on the reversed
attention weights, as shown in Equation 5:

L —wij
ZjeK(l —wij)’

ai =y (i kj),

jEK

wivj =

&)

where 1); ; is the reversed attention weight of the
key fragment k; with respect to the query fragment
qi-

We use the similarity function Sim to measure
the relevance between the query fragment and ei-
ther the attention feature or reversed one. There-
fore, the loss function for CCR is defined as:

locr = [Stm(q;, a;) — Sim(g;, a;) + y2]+, (6)

where 2 controls the similarity difference margin.

Intuitively, in order to minimize this loss, a cross-
modal attention model should assign large attention
weights to relevant key fragments to increase ¢;’s
relevant information ratio in a; and decrease that
contained in a;. The attention model will also learn
to assign small attentions weights to irrelevant key
fragments to diminish g;’s irrelevant information
ratio in a; and increase that in ;.

3.3 Contrastive Content Swapping

As shown in Figure 1 (c), attention models could
assign large attention weights to both relevant and



irrelevant key fragments. In such cases, the CCR
constraint might not be able to fully address these
false-positive scenarios because the query fragment
can be more relevant to its attended information
than to its reversed attention information. There-
fore, we propose the Contrastive Content Swapping
(CCS) constraint to address this problem. It con-
strains a query fragment’s attended information to
be more relevant to the query fragment than to a
negative query fragment.

Specifically, given a query fragment g;, we first
sample its negative query fragment ¢; from a prede-
fined set (; which contain all negative query frag-
ments with respect to ¢;. The relevance between the
attended information and either the query fragment
or the negative query fragment is also measured
by the similarity function Sim. Then the CCS
constraint’s loss function g is defined as:

locs = [Sim(Gi, ai) — Sim(q;, ai) + 3]+, (7)

where 3 is the margin parameter.

The CCS constraint will enforce the cross-modal
attention model to diminish the attention weights
of the key fragments that are relevant to ¢;. As
a result, the information that is relevant to §¢; but
irrelevant to g; is eliminated.

By incorporating the CCR and CCS constraints
for image-text matching, we obtain the full ob-
jective function by Equation 8, where A\ccgr and
Accs are scalars that control the contributions of
CCR and CCS, respectively:

= Llrgnk + Accr - Locr + Aces - bocs- (8)

3.4 Attention Metrics

Previous studies (Lee et al., 2018; Liu et al.,
2019) focus on qualitatively evaluating the atten-
tion models by visualizing attention maps. These
approaches cannot serve as standard metrics for
comparing attention correctness among different
models. Therefore, we propose Attention Preci-
sion, Attention Recall and Attention F1-Score, to
quantitatively evaluate the performance of learned
attention models. Attention Precision is the frac-
tion of attended key fragments that are relevant to
the correspondent query fragment, and Attention
Recall is the fraction of relevant key fragments that
are attended. Attention F1-Score is a combination
of the Attention Precision and Attention Recall that
provides an overall way to measure the attention
correctness of a model.

In this paper, we only evaluate the attention mod-
els that use texts as the query fragments. This
is because text encoders used in the evaluated
models (Lee et al., 2018; Wang et al., 2019; Liu
et al., 2019; Chen et al., 2019) are GRUs (Chung
et al., 2014) or Transformers (Vaswani et al., 2017),
where defining the relevant and irrelevant key text
fragments of a query region fragment could be dif-
ficult since the text fragments will be updated to
include global information by the text encoder.

Given a matched image-text pair, an image frag-
ment v is labeled as a relevant fragment of the text
fragment ¢ if the Intersection over Union (IoU)! be-
tween v and the correspondent region® of ¢ is larger
than a threshold 77,y;. In addition, v is regraded as
an attended fragment by ¢ if v’s attention weight
with respect to ¢ is larger than a threshold 7744;. Let
A and R be the sets of attended and relevant image
fragments of ¢. ¢’s Attention Precision (AP), At-
tention Recall (AR), and Attention F1-Score (AF)
are defined as:

Ap =108 AR = B AF = 9 x 4548
©)
The annotations (Plummer et al., 2015) that
are used to calculate attention metrics provide the
correspondence between noun phrases and image
regions. A noun phrase might contain multiple
words, and different words could correspond to the
same image region. In order to obtain the overall
attention metrics of a learned attention model, we
first calculate the attention metrics at word-level,
and use the maximal values within each phrase
as the phrase-level metrics. The overall attention
metrics are then obtained by averaging the phrase-
level metrics.

4 Experiments

4.1 Datasets and Evaluations

Datasets. We evaluate our method on two
public image-text matching benchmarks:
Flickr30K (Young et al., 2014) and MS-
COCO (Lin et al., 2014). Flickr30K (Young et al.,
2014) dataset contains 31K images, each of which
is annotated with 5 captions. Following the setting
of (Liu et al., 2019; Lee et al., 2018), we split the
dataset into 29K training images, 1K validation
images, and 1K testing images. The MS-COCO

!Given two bounding boxes, the IoU score between them
is calculated as the ratio of their joint area to their union area.

*The correspondent regions of a word ¢ are the regions that
contain the object described by .



dataset used for image-text matching consists
of 123,287 images, each of which includes 5
human-annotated descriptions. Following (Liu
et al., 2019; Lee et al., 2018), the dataset is divided
into 113,283 images for training, 5K images for
validation, and 5K images for testing.

Evaluation Metrics. Following (Liu et al.,
2019; Lee et al., 2018; Wang et al., 2019), we mea-
sure the performance of both Image Retrieval and
Sentence Retrieval tasks by calculating recalls at
different K values (R@K, K = 1, 5, 10), which
are the proportions of the queries whose top-K re-
trieved items contain their matched items. We also
report rsum, which is the summation of all R@K
values for a model. On the Flickr30K dataset, we
report results on the 1K testing images. On the MS-
COCO dataset, we report results through averaging
over 5-folds 1K test images (referred to MS-COCO
1K), and testing on the full 5K test images (referred
to MS-COCO 5K) following the standard evalu-
ation protocol (Lee et al., 2018; Liu et al., 2019;
Wang et al., 2019).

To compute the attention metrics, 17,y is set as
0.4, and the results for other values of T, can be
found in the supplementary material. The possi-
ble values of T4y are uniformly chosen between
0 and 0.1 with the interval of 0.01. We set the
range of T4y based on the experimental results
that when achieving the best Attention F1-Score
the T'44is ranging from O to 0.1. We calculate the
Attention Precision, Attention Recall and Attention
F1-Score for each value of 144, and then report
the precision-recall (PR) curves and the best At-
tention F1-Score with its correspondent Attention
Precision and Attention Recall.

4.2 Baselines and Implementation Details

We evaluate the proposed constraints by incor-
porating them into the following state-of-the-art
attention-based image-text matching models:

e UNITER (Chen et al., 2019) is a Transformer-
based model (Vaswani et al., 2017; Devlin
et al., 2018). It is first pre-trained on a large
scale of dataset to learn a unified image-text
feature representation, and then is fine-tuned
for the image-text retrieval task.

¢ SCAN (Lee et al., 2018) is a stacked cross-
modal attention model to infer the relevance
between words and regions and calculate
image-text similarity.

Sentence Retrieval Image Retrieval

Method R@]l R@5 R@10 R@l R@5 R@I10 rsum
UNITER 84.1 96.8 983 69.7 913 951 535.5
+CCR 84.1 972 98.6 703 913 954 536.9
+CCS 84.0 96.8 985 70.6 915 954 536.8
+CCR&CCS 843 972 9838 70.6 918 952 537.9
SCAN 672  90.7 948 484 776 849 463.6
+CCR 67.8 91.1 950 494 776 853 466.2
+CCS 69.1 91.1 954 508 784 856 470.4
+CCR&CCS 688 91.6 953 511 79.0 86.5 472.3
PFAN 69.7 90.2 94.1 50.1 78.6 86.0 468.7
+ CCR 703  90.5 947 519 794 86.7 4735
+ CCS 703 909 952 519 792 865 474.0
+CCR&CCS 709 918 95.6 525 79.6 86.9 477.3
BFAN 70.7 923  96.3 51.8 793 859 476.3
+ CCR 717 928  96.0 532 80,5 871 481.3
+ CCS 71.0 932 96.0 526 794 864 478.6

+CCR&CCS 720 934 962 53.1 803 869 481.9

Table 1: Results of sentence retrieval and image re-
trieval tasks on the Flickr30K test set.

* PFAN (Wang et al., 2019) improves cross-
modal attention models by integrating image
region position information into them.

e BFAN (Liu et al., 2019) is a bidirectional
cross-modality attention model which allows
to attend to relevant fragments and also diverts
all the attention into these relevant fragments
to concentrate on them.

We apply the proposed constraints to one ran-
domly sampled query fragment for each matched
image-text pair, in order to reduce the computa-
tional cost. For a query word fragment, its nega-
tive query set (); is consisted of the other words
of its correspondent sentence. For a query region
fragment, its @); is set as the other regions of its
correspondent image. The constraint loss weight
factors A\ocgr and Agog could be 0.1 or 1, and
constraint similarity margins 2 and 3 are set to
0, 0.1 or 0.2. We train models with all possible
combinations with constraint loss weight factors
and similarity margins, and report the best results.
More implementation details can be found in the
supplementary materials.

4.3 Experiments on Image-Text Matching

We start by evaluating the proposed approach
for image and sentence retrieval tasks on both
Flickr30K and MS-COCO datasets. Table 1 shows
the results on the Flickr30K dataset. We find that
when the proposed CCR and CCS constraints are
employed separately, they both achieve consistent
performance improvements on all baselines and



Sentence Retrieval Image Retrieval
Method R@l R@5 R@10 R@! R@5 R@I0 rsum

1K Test Images

UNITER 793 964 986 67.3 923 969 530.8
+CCR 792 963 98.6 67.3 924 969 530.6
+CCS 79.4 963 98.7 673 923 97.0 531.0
+CCR&CCS 795 964 986 67.3 923 97.0 531.1
SCAN 70.6 938 977 541 86.0 934 495.6
+CCR 714 942 977 55.6  86.7 938 499.4
+CCS 71.1 940 977 56.6 872 94.0 500.6
+CCR&CCS 71.6 940 977 56.4 873 94.0 501.0
PFAN* 745 954 98.6 59.8 88.8 948 511.9
+ CCR* 744 953 983 60.5 89.1 948 5124
+ CCS* 749 958 983 60.8 89.1 945 513.4
+CCR & CCS* 752 956 982 61.2 889 947 513.8
BFAN 75.0 950 982 58.8 883 944 509.7
+CCR 752 953 983 60.1 887 947 5123
+CCS 75.1 953 983 59.6 885 946 511.4
+CCR&CCS 752 955 98.1 60.3 888 947 512.6
5K Test Images

UNITER 58.1 856 918 457 749 844 440.5
+CCR 582 856 91.8 457 749 844 440.6
+CCS 59.2 857 919 46.0 749 845 4422
+CCR&CCS 593 858 919 46.0 749 845 442.4
SCAN 472 716 877 347 652 713 389.7
+CCR 477 783 882 362  66.6 782 395.2
+CCS 46.5 785 88.0 365 66.6 783 394.4
+CCR&CCS 479 781 882 369 669 784 396.4
BFAN 525 803 89.5 375 66.7 78.1 404.6
+CCR 520 815 899 387 678 788 408.7
+CCS 53.8 81.1 899 38.0 673 785 408.6
+CCR&CCS 534 813 901 384 676 786 409.4

Table 2: Results of sentence retrieval and image re-
trieval tasks on the MS-COCO test set. *Note that since
the official implementation of PFAN only provides 1K
images for testing, PFAN is tested without 5-fold cross-
validation under the setting of 1K test images, and can-
not be tested under the setting of 5K test images.

tasks. More importantly, when we apply both con-
straints concurrently, all models achieve the best
improvements.

We report the results on the MS-COCO dataset
in Table 2. Similar performance improvements as
those on Flickr30K can be observed under both
settings of 1K and 5K test images. However, we
find that both constraints achieve fewer improve-
ments on UNITER than on other baseline mod-
els. One possible reason is that UNITER benefits
more from the pre-training process, where a larger
scale of data (including MS-COCO training set)
and tasks explicitly enforcing the model to learn
both fragment and global level cross-modal align-
ments (Chen et al., 2019) are applied.

4.4 Attention Evaluation

Quantitative Analysis. We report the results on
Flickr30K since it has publicly available cross-
modal correspondence annotations (Plummer et al.,

Method Attention  Attention Attention
Precision Recall F1-Score
SCAN 32.79 65.30 39.96
+CCR 36.30 66.80 43.10
+CCS 37.28 64.97 43.38
+ CCR & CCS 38.81 64.62 44.44
BFAN 46.08 63.32 4891
+CCR 50.21 64.20 51.78
+CCS 49.16 61.44 49.74
+ CCR & CCS 51.13 62.97 51.73

Table 3: Results of Attention Precision, Attention Re-
call and Attention F1-Score (%) of the SCAN and
BFAN models trained on the Flickr30K dataset.

2015) while MS-COCO does not. We note that the
results of PFAN are not reported because we can-
not obtain the bounding boxes of the input image
regions that are correspondent to the testing data
provided by its official implementation. We do
not include the results of UNITER since defining
the relevant and irrelevant key fragments of a query
fragment could be ambiguous. This is because each
individual fragment in UNITER encodes global in-
formation across all other fragments due to the
self-attention mechanism (Vaswani et al., 2017).

The attention metrics of SCAN and BFAN are
shown in Table 3. We can see that applying CCR
and CCS individually yields higher Attention F1-
Score than both baseline methods, and this is con-
sistent to the observations in Section 4.3. More
interestingly, we can find that using CCR alone
improves both Attention Precision and Attention
Recall; using CCS alone mainly improves Atten-
tion Precision; combining both constraints further
improves Attention Precision. These results demon-
strates the motivation of the proposed constraints.
Note that the slight decrease in Attention Recall
caused by CCS might be due to the fact that CCS
enforces attention models to ignore the regions con-
taining both foreground objects and noise back-
ground. We also present the PR curves of SCAN
and BFAN in Figure 4 to demonstrate the impact of
different T'4;; on Attention Precision and Attention
Recall. We can observe that applying the proposed
constraints yields consistently better results than
both baseline methods for different T 44;.

We further evaluate the relation between the
image-text matching performance and the qual-
ity of learned attention models by calculating the
Pearson correlation coefficient between Attention
F1-Score and rsum, and the obtained correlation
coefficient and p-value is 0.995 and 3.724 x 1077,
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Figure 3: Examples illustrating attended image regions with respect to the given words for the SCAN model.
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Figure 4: The Attention PR curves of the SCAN and
BFAN model trained on the Flickr30K Dataset.

respectively. The results show that the image-text
matching performance has strong positive correla-
tion with the quality of learned attention models.

Qualitative Analysis. We visualize the atten-
tion weights with respect to three sampled query
word fragments in Figure 3, and more examples
are provided in the supplementary material. In the
example of the query word fragment “fire", the
learned attention model of SCAN (see Column (b))
fails to assign large attention weights to the most
regions containing fire. By contrast, the CCR con-
straint (see Column (c)) mitigates this issue by sig-
nificantly increasing the attention weights assigned
to the regions containing fire. The CCS constraint
(see Column (d)) is less effective in this case be-
cause the CCS constraint has already been satisfied.
In the case of the query word fragment “infant", the
learned attention model of SCAN (see Column (b))
assigns large attention weights to both the irrelevant
and relevant regions. In this case, the CCR con-
straint (see Column (c)) cannot fully diminish the
attention weights assigned to the regions irrelevant

to “infant”. In contrast, as shown in Column (d),
the attention weights assigned to irrelevant regions
are largely diminished by the CCS constraint. In
the example of the query word “guy”, it shows that
combining both constraints decreases the attention
weights of the background regions (e.g., the sur-
rounding areas of the “guy”) more significantly
than applying the them separately.

5 Conclusions

To tackle the issue of missing direct supervisions in
learning cross-modal attention models for image-
text matching, we introduce the constraints of CCR
and CCS to supervise the learning of attention mod-
els in a contrastive manner without requiring addi-
tional attention annotations. Both constraints are
generic learning strategies that can be generally
integrated into attention models. Furthermore, in
order to quantitatively measure the attention cor-
rectness, we propose three new attention metrics.
The extensive experiments demonstrate that the
proposed constraints manage to improve the cross-
modal retrieval performance as well as the attention
correctness when integrated into four state-of-the-
art attention models. For future work, we will ex-
plore on how to extend the proposed constraints
to other cross-modal attention models based tasks,
such as Visual Question Answering (VQA) and
Image Captioning.

References

Tianlang Chen, Jiajun Deng, and Jiebo Luo. 2020.
Adaptive offline quintuplet loss for image-text



matching. arXiv preprint arXiv:2003.03669.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2019. Uniter: Learning universal
image-text representations.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and
Sanja Fidler. 2017. Vse++: Improving visual-
semantic embeddings with hard negatives. arXiv
preprint arXiv:1707.05612.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Ben-
gio, Jeff Dean, Marc’ Aurelio Ranzato, and Tomas
Mikolov. 2013. Devise: A deep visual-semantic em-
bedding model. In Advances in neural information
processing systems, pages 2121-2129.

Feiran Huang, Xiaoming Zhang, Zhonghua Zhao, and
Zhoujun Li. 2018. Bi-directional spatial-semantic
attention networks for image-text matching. IEEE
Transactions on Image Processing, 28(4):2008—
2020.

Yan Huang, Wei Wang, and Liang Wang. 2017.
Instance-aware image and sentence matching with
selective multimodal Istm. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 2310-2318.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S
Zemel. 2014. Unifying visual-semantic embeddings
with multimodal neural language models. arXiv
preprint arXiv:1411.2539.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.

International journal of computer vision, 123(1):32—
73.

Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu,
and Xiaodong He. 2018. Stacked cross attention
for image-text matching. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 201-216.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xi-
aowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision,
pages 121-137. Springer.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740-755. Springer.

Chenxi Liu, Junhua Mao, Fei Sha, and Alan Yuille.
2017. Attention correctness in neural image caption-
ing. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 31.

Chunxiao Liu, Zhendong Mao, An-An Liu, Tianzhu
Zhang, Bin Wang, and Yongdong Zhang. 2019. Fo-
cus your attention: A bidirectional focal attention
network for image-text matching. In Proceedings of
the 27th ACM International Conference on Multime-
dia, pages 3—11.

Hyeonseob Nam, Jung-Woo Ha, and Jeonghee Kim.
2017. Dual attention networks for multimodal rea-
soning and matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 299-307.

Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015.  Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE
international conference on computer vision, pages
2641-2649.

Tingting Qiao, Jianfeng Dong, and Duanqing Xu. 2018.
Exploring human-like attention supervision in visual
question answering. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Yaxiong Wang, Hao Yang, Xueming Qian, Lin Ma,
Jing Lu, Biao Li, and Xin Fan. 2019. Position
focused attention network for image-text matching.
arXiv preprint arXiv:1907.09748.

Xing Xu, Tan Wang, Yang Yang, Lin Zuo, Fumin Shen,
and Heng Tao Shen. 2020. Cross-modal attention
with semantic consistence for image-text matching.
IEEE Transactions on Neural Networks and Learn-
ing Systems.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67-78.

Ying Zhang and Huchuan Lu. 2018. Deep cross-modal
projection learning for image-text matching. In Pro-
ceedings of the European Conference on Computer

Vision (ECCV), pages 686-701.


http://arxiv.org/abs/1909.11740
http://arxiv.org/abs/1909.11740
http://arxiv.org/abs/1909.11740

Yundong Zhang, Juan Carlos Niebles, and Alvaro Soto.
2019. Interpretable visual question answering by
visual grounding from attention supervision mining.
In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 349-357. IEEE.

10



A Appendix

A.1 Implementation Details

SCAN and PFAN. These two methods separately
train the text-to-image attention models where
words are used as query fragments, and the image-
to-text attention models where image regions are
used as query fragments. When training the text-to-
image attention models, we randomly sample one
word fragment from each matched image-text pair
to apply the proposed constraints. The image-to-
text attention models are trained in a similar way
by sampling image fragments.

BFAN. The method jointly trains the text-to-
image and image-to-text attention models. In or-
der to jointly supervise both attention models and
reduce computation cost, for each matched image-
text pair, we apply our constraints to either a sam-
pled word fragment for the text-to-image attention
model or a sampled image region for the image-to-
text attention model with a probability of 50%.

UNITER. This approach consists of multiple
stacked multi-head self-attention layers. Each layer
computes the inter-modal (where the query and
key fragments are from the same modality) and
cross-modal (where both text-to-image and image-
to-text attentions are included) attention weights
simultaneously. The proposed constraints are ap-
plied to all attention heads of the last layer, since
our preliminary experimental results show that this
strategy achieves the best performance. When com-
puting the constraints, we follow the same strategy
as BFAN to sample query fragments, and we mask
the inter-modal attention weights by zero.

The experiments on Flickr30K and MS-COCO
are conducted on the RTX8000 and A100 GPU,
respectively. All the baselines are trained by
their officially released codes. > 3 . SCAN,
PFAN, and BFAN are trained from scratch by com-
pletely following their original hyper-parameters
settings such as the learning rate, batch size,
model structure, and optimizer (Lee et al., 2018;
Liu et al., 2019; Wang et al., 2019). When we
evaluate UNITER, the pre-trained UNITER-based
model (Chen et al., 2019) is used for fine-tuning.
Its hard negative sampling ranking loss is replaced
with the binary cross-entropy loss following (Li

3https://github.com/kuanghuei/SCAN
*https://github.com/CrossmodalGroup/BFAN
Shttps://github.com/HaoYang0123/Position-Focused-
Attention-Network
®https://github.com/ChenRocks/UNITER
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et al., 2020). We set batch size to 128 and other
hyper-parameters to default values.

A.2 Additional Attention Evaluation Results

Quantitative Analysis. To demonstrate the influ-
ence of different 17,7 on Attention Precision, At-
tention Recall, and Attention F1-Score, we report
the results when 17,7 is set to 0.6 on Table 4 and
Figure 5. We can observe similar performance im-
provements as when 17, is set to 0.4 (shown in
the main paper). It demonstrates that by applying
the proposed constraints to attention models, we
can achieve consistently better results than both
baseline methods when different 77,77 values are
chosen.

Attention Attention Attention

Method Precision Recall F1-Score
SCAN 16.88 47.40 22.88
+CCR 18.87 49.96 25.05
+CCS 20.30 48.58 26.22
+ CCR & CCS 21.31 47.15 26.80
BFAN 27.50 46.52 31.92
+CCR 30.17 48.72 34.49
+CCS 29.55 46.97 33.55
+ CCR & CCS 30.24 49.20 34.69

Table 4: Results of Attention Precision, Attention Re-
call and Attention F1-Score (%) of the SCAN and
BFAN models trained on the Flickr30K dataset when
TIoU is 0.6.
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Figure 5: The Attention PR curves of the SCAN and
BFAN models trained on the Flickr30K Dataset when
TIOU is 0.6.

Qualitative Analysis. We visualize three exam-
ples of the SCAN model trained on the MS-COCO
dataset on Figure 6. We also report three cases
of the BFAN model trained on the Flickr30K (see
Figure 7) and MS-COCO dataset (see Figure 8),
respectively. We find that the attention models
trained with the proposed constraints can assign
attention weights in a more accurate way than the
correspondent baseline methods across different
datasets.
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Figure 6: Examples of attended image regions with respect to the given words for the SCAN model on the MS-
COCO dataset.
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Figure 7: Examples of attended image regions with respect to the given words for the BFAN model on the
Flickr30K dataset.
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Figure 8: Examples of attended image regions with respect to the given words for the BFAN model on the MS-
COCO dataset.
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