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Abstract

Cross-modal attention mechanisms have been001
widely applied to the image-text matching002
task and have achieved remarkable improve-003
ments thanks to its capability of learning004
fine-grained relevance across different modali-005
ties. However, the cross-modal attention mod-006
els of existing methods could be sub-optimal007
and inaccurate because there is no direct su-008
pervision provided during the training pro-009
cess. In this work, we propose two novel010
training strategies, namely Contrastive Con-011
tent Re-sourcing (CCR) and Contrastive Con-012
tent Swapping (CCS) constraints, to address013
such limitations. These constraints supervise014
the training of cross-modal attention models in015
a contrastive learning manner without requir-016
ing explicit attention annotations. They are017
plug-in training strategies and can be gener-018
ally integrated into existing cross-modal atten-019
tion models. Additionally, we introduce three020
metrics including Attention Precision, Recall,021
and F1-Score to quantitatively measure the022
quality of learned attention models. We eval-023
uate the proposed constraints by incorporat-024
ing them into four state-of-the-art cross-modal025
attention-based image-text matching models.026
Experimental results on both Flickr30k and027
MS-COCO datasets demonstrate that integrat-028
ing these constraints generally improves the029
model performance in terms of both retrieval030
performance and attention metrics.031

1 Introduction032

The task of image-text matching aims to learn a033

model that measures the similarity between visual034

and textual contents. By using the learned model,035

users can retrieve images that visually match the036

context described by a text query, or retrieve texts037

that describe the visual context of an image query.038

Because of its critical role to bridge the human039

vision and language world, this task has emerged040

as an active research area (Faghri et al., 2017; Nam041
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Figure 1: Visualization of the attention maps of the
SCAN model learned without and with our proposed
constraints.

et al., 2017; Huang et al., 2017; Lee et al., 2018; 042

Liu et al., 2019; Chen et al., 2020; Wang et al., 043

2019). 044

Recently, cross-modal attention models have 045

been widely applied to this task (Liu et al., 2019; 046

Lee et al., 2018; Nam et al., 2017; Huang et al., 047

2017, 2018; Chen et al., 2019; Li et al., 2020). 048

These approaches have achieved remarkable im- 049

provements thanks to their ability to capture fine- 050

grained cross-modal relevance by the cross-modal 051

attention mechanism. Specifically, given an im- 052

age description and its corresponding image, they 053

are first represented by fragments, i.e., individual 054

words and image regions. We refer to the frag- 055

ments of the context modality as query fragments, 056

and the fragments of the attended modality as key 057

fragments. Given a query fragment, a cross-modal 058

attention model first assigns an attention weight 059

to each key fragment, each of which measures the 060

semantic relevance between the query fragment 061

and the corresponding key fragment. Then the 062

attended information of the query fragment is en- 063

coded as the weighted sum of all key fragment fea- 064

tures. The similarity between each query fragment 065

and its attended information is thus aggregated as 066
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Figure 2: Overview of the training pipeline which contains (a) the cross-modal attention mechanism and our
proposed attention constraints including (b) Contrastive Content Re-sourcing (CCR) and (c) Contrastive Content
Swapping (CCS).

the similarity measurement between the query and067

the retrieval candidates.068

In ideal cases, well-trained cross-modal attention069

models will attend to the semantically relevant key070

fragments by assigning large attention weights to071

them, and ignore irrelevant fragments by producing072

small attention weights. Take Figure 1 (b) as an073

example: when “dog" is used as a query fragment,074

the cross-modal attention model is supposed to out-075

put large attention weights for all image regions076

containing the dog, and small attention weights for077

other irrelevant image fragments. However, since078

the cross-modal attention models of most existing079

image-text matching methods are trained in a pure080

data-driven manner and do not receive any explicit081

supervision or constraints, the learned attention082

models may not be able to precisely attend to the083

relevant contents. As shown in Figure 1 (a), the084

learned SCAN model (Lee et al., 2018), a state-085

of-the-art cross-modal attention based image-text086

matching model, fails to attend to the relevant im-087

age regions containing the dog’s main body when088

using the word “dog" as the query fragment. This089

example illustrates a false negative case, i.e., a low090

attention “recall". Additionally, a learned cross-091

modal attention model might also suffer from false092

positives (low attention “precision"). As shown093

in Figure 1 (c), when using “helmet" as the query094

fragment, the SCAN model assigns large attention095

weights to the irrelevant human body and back-096

ground areas. A possible solution to these limi-097

tations is to rely on manually generated attention098

map ground truth to supervise the training process 099

of cross-modal attention models (Qiao et al., 2018; 100

Zhang et al., 2019). However, annotating atten- 101

tion distributions is an ill-defined task, and will be 102

labor-intensive. 103

To this end, we propose two learning constraints, 104

namely Contrastive Content Re-sourcing (CCR) 105

and Contrastive Content Swapping (CCS), to su- 106

pervise the training process of cross-modal atten- 107

tions. Figure 2 gives an overview of our method. 108

CCR enforces a query fragment to be more rele- 109

vant to its attended information than to the reversed 110

attended information, which is generated by cal- 111

culating the weighted sum of key fragments using 112

reversed attention weights (details in Section 3.2). 113

It can guide a cross-modal attention model to as- 114

sign large attention weights to the relevant key frag- 115

ments and small weights to irrelevant fragments. 116

On the other hand, CCS further encourages a cross- 117

modal attention model to ignore irrelevant key frag- 118

ments by constraining the attended information to 119

be more relevant to the corresponding query frag- 120

ment than to a negative query fragment. In the 121

example shown in Figure 2 (c), by using the word 122

“grass" as a negative query fragment, the attention 123

weights assigned to regions containing grass will 124

be diminished so that a more accurate attention 125

map is generated. The proposed constraints are 126

plug-in training strategies which can be easily in- 127

tegrated into existing cross-modal attention-based 128

image-text matching models. 129

We evaluate the performance of the proposed 130
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constraints by incorporating them into four state-131

of-the-art cross-modal attention-based image-text132

matching networks (Lee et al., 2018; Liu et al.,133

2019; Wang et al., 2019; Chen et al., 2019). Ad-134

ditionally, in order to quantitatively compare and135

measure the quality of the learned attention models,136

we propose three new attention metrics, namely137

Attention Precision, Attention Recall and Atten-138

tion F1-Score. The experimental results on both139

MS-COCO (Lin et al., 2014) and Flickr30K (Young140

et al., 2014) demonstrate that these constraints141

significantly improve image-text matching perfor-142

mances and quality of the learned attention models143

of these methods.144

To sum up, the main contributions of this work145

include: (i) we propose two learning constraints146

to supervise the training of cross-modal attention147

models in a contrastive manner without requiring148

additional attention annotations. They are plug-149

in training strategies and can be easily applied to150

different cross-modal attention-based image-text151

methods; (ii) we introduce the attention metrics152

to quantitatively evaluate the quality of learned at-153

tention models, in terms of precision, recall, and154

F1-Score; (iii) we validate our approach by incor-155

porating it into four state-of-the-art attention-based156

image-text matching models. Extensive experi-157

ments conducted on two publicly available datasets158

demonstrate its strong generality and effectiveness.159

2 Related Work160

Image-Text Matching. The task of image-text161

matching is well-explored yet challenging. Its main162

challenge is how to measure the similarity between163

texts and images. Early approaches propose to mea-164

sure the similarity at the global level (Kiros et al.,165

2014; Frome et al., 2013; Zhang and Lu, 2018;166

Faghri et al., 2017). Specifically, these methods167

first train an image encoder and a text encoder to168

embed the global information of images and sen-169

tences into feature vectors, and then measure the170

similarity between images and sentences by calcu-171

lating the cosine similarity between the correspond-172

ing feature vectors. One major limitation of these173

methods is that they failed to capture fine-grained174

image-text relevance.175

To address this limitation, recent studies propose176

to apply the cross-modal attention mechanism to177

measure the similarity between texts and images at178

the fragment level (Liu et al., 2019; Lee et al., 2018;179

Wang et al., 2019; Xu et al., 2020). Typically, given180

an image and a sentence, these methods first extract 181

object regions from the image, and embed each 182

word of the sentence. Then the relevance between 183

words and image regions are inferred by leveraging 184

the cross-modal attention mechanism. The similar- 185

ity between each fragment (word or image region) 186

and its relevant information is calculated and ag- 187

gregated as the final similarity score between the 188

image and sentence. Although these methods have 189

achieved notable results, the learning process of 190

these cross-modal attention models could be sub- 191

optimal due to the lack of direct supervision, as 192

discussed in Section 1. 193

Supervision on Learning Cross-Modal Atten- 194

tion. The task of training cross-modal attention 195

models with proper supervision has drawn grow- 196

ing interests. The main challenge lies in how to 197

define and collect supervision signals. Qiao et al. 198

(2018) first trains an attention map generator on 199

a human annotated attention dataset and then ap- 200

plies the attention map predicted by the generator 201

as weak annotations. Liu et al. (2017) leverages 202

human annotated alignments between words and 203

corresponding image regions as supervision. Simi- 204

lar to (Liu et al., 2017), image local region descrip- 205

tions and object annotations in Visual Genome (Kr- 206

ishna et al., 2017) are used for generating attention 207

supervision (Zhang et al., 2019). These methods 208

obtain attention supervision from different forms 209

of human annotations, such as word-image corre- 210

spondence and image local region annotations. By 211

contrast, we provide attention supervision by con- 212

structing pair-wise samples in a contrastive learn- 213

ing manner which does not require additional man- 214

ual attention annotations. 215

3 Methodology 216

3.1 Cross-Modal Attention Model 217

Given an image-sentence pair in image-text match- 218

ing, they are first represented as fragments, i.e., 219

individual words and image regions. The frag- 220

ments of the context modality are query fragments, 221

and the fragments of the attended modality are key 222

fragments. Each of these fragments is encoded 223

as a vector. A cross-modal attention model takes 224

these vectors as input, and infers the cross-modal 225

relevance between each query fragment and all 226

key fragments. The similarity score of the image- 227

sentence pair is then calculated according to the 228

obtained cross-modal relevance. 229

Let qi and kj refer to the feature representation of 230
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the i-th query and j-th key fragments, respectively.231

The cross-modal attention model first calculates232

kj’s attention weight with respect to qi as follows:233

ei,j = fatt(qi, kj),

wi,j =
exp(ei,j)∑

j∈K exp(ei,j)
,

(1)234

where fatt is the attention function whose output235

is a scalar ei,j that measures the cross-modal rele-236

vance between qi and kj ; K is a set of indexes of237

all key fragments; wi,j is kj’s attention weight with238

respect to qi.239

qi’s attended information (i.e., qi’s relevant240

cross-modal information) is summarized as the at-241

tention feature ai, which is the weighted sum of242

key fragment features, as defined by the following243

equation:244

ai =
∑
j∈K

(wi,j · kj) . (2)245

The similarity score between the image I and246

the sentence T is then defined as:247

S(I, T ) = AGGi∈Q(Sim(qi, ai)), (3)248

where Q denotes the set of indexes of all query249

fragments; Sim is the similarity function; AGG is250

a function that aggregates similarity scores among251

all query fragments, such as the average pooling252

function (Lee et al., 2018).253

The most widely used loss function for this task254

is the triplet ranking loss with hard negative sam-255

pling (Faghri et al., 2017) defined as:256
257

`rank = [S(I, T̂ )− S(I, T ) + γ1]+258

+ [S(Î , T )− S(I, T ) + γ1]+, (4)259

where γ1 controls the margin of similarity differ-260

ence; the matched image I and the sentence T form261

a positive sample pair, while T̂ and Î represent the262

hardest negative sentence and image for the posi-263

tive sample pair as defined by (Faghri et al., 2017).264

`rank enforces the similarity between the anchor265

image I and its matched sentence T to be larger266

than the similarity between the anchor image and267

an unmatched sentence by a margin γ1. Vice versa268

for the sentence T .269

However, this loss function works at the270

similarity-level and does not provide any super-271

vision for connecting cross-modal contents at the272

attention-level. In other words, learning cross-273

modal attentions is a pure data-driven approach274

and lacks supervision. As a result, the learned275

cross-modal attention model could be sub-optimal.276

3.2 Contrastive Content Re-sourcing 277

A desired property of a well-learned cross-modal 278

attention model is that, for a query fragment, the at- 279

tention model should assign large attention weights 280

to the key fragments that are relevant to the query 281

fragment, and assign small attention weights to the 282

key fragments that are irrelevant to the query frag- 283

ment. The Contrastive Content Re-sourcing (CCR) 284

constrain is proposed to explicitly guide attention 285

models to learn this property. It is implemented 286

by enforcing a query fragment to be more rele- 287

vant to its attended information than to its reversed 288

attention information. For example, as shown in 289

Figure 2 (b), the query word “dog" is required to 290

be more relevant to its attended information than 291

to reversed attended information (e.g., the person 292

and tree). 293

To be specific, given a query fragment qi, its 294

attended information is embedded as the attention 295

feature ai. Its reversed attention information is 296

encoded by the vector âi, which is obtained by re- 297

versing attention weights and calculating weighted 298

sum of key fragment features based on the reversed 299

attention weights, as shown in Equation 5: 300

ŵi,j =
1− wi,j∑

j∈K(1− wi,j)
,

âi =
∑
j∈K

(ŵi,j · kj) ,
(5) 301

where ŵi,j is the reversed attention weight of the 302

key fragment kj with respect to the query fragment 303

qi. 304

We use the similarity function Sim to measure 305

the relevance between the query fragment and ei- 306

ther the attention feature or reversed one. There- 307

fore, the loss function for CCR is defined as: 308

`CCR = [Sim(qi, âi)− Sim(qi, ai) + γ2]+, (6) 309

where γ2 controls the similarity difference margin. 310

Intuitively, in order to minimize this loss, a cross- 311

modal attention model should assign large attention 312

weights to relevant key fragments to increase qi’s 313

relevant information ratio in ai and decrease that 314

contained in âi. The attention model will also learn 315

to assign small attentions weights to irrelevant key 316

fragments to diminish qi’s irrelevant information 317

ratio in ai and increase that in âi. 318

3.3 Contrastive Content Swapping 319

As shown in Figure 1 (c), attention models could 320

assign large attention weights to both relevant and 321
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irrelevant key fragments. In such cases, the CCR322

constraint might not be able to fully address these323

false-positive scenarios because the query fragment324

can be more relevant to its attended information325

than to its reversed attention information. There-326

fore, we propose the Contrastive Content Swapping327

(CCS) constraint to address this problem. It con-328

strains a query fragment’s attended information to329

be more relevant to the query fragment than to a330

negative query fragment.331

Specifically, given a query fragment qi, we first332

sample its negative query fragment q̂i from a prede-333

fined set Q̂i which contain all negative query frag-334

ments with respect to qi. The relevance between the335

attended information and either the query fragment336

or the negative query fragment is also measured337

by the similarity function Sim. Then the CCS338

constraint’s loss function `CCS is defined as:339

`CCS = [Sim(q̂i, ai)− Sim(qi, ai) + γ3]+, (7)340

where γ3 is the margin parameter.341

The CCS constraint will enforce the cross-modal342

attention model to diminish the attention weights343

of the key fragments that are relevant to q̂i. As344

a result, the information that is relevant to q̂i but345

irrelevant to qi is eliminated.346

By incorporating the CCR and CCS constraints347

for image-text matching, we obtain the full ob-348

jective function by Equation 8, where λCCR and349

λCCS are scalars that control the contributions of350

CCR and CCS, respectively:351

` = `rank + λCCR · `CCR + λCCS · `CCS . (8)352

3.4 Attention Metrics353

Previous studies (Lee et al., 2018; Liu et al.,354

2019) focus on qualitatively evaluating the atten-355

tion models by visualizing attention maps. These356

approaches cannot serve as standard metrics for357

comparing attention correctness among different358

models. Therefore, we propose Attention Preci-359

sion, Attention Recall and Attention F1-Score, to360

quantitatively evaluate the performance of learned361

attention models. Attention Precision is the frac-362

tion of attended key fragments that are relevant to363

the correspondent query fragment, and Attention364

Recall is the fraction of relevant key fragments that365

are attended. Attention F1-Score is a combination366

of the Attention Precision and Attention Recall that367

provides an overall way to measure the attention368

correctness of a model.369

In this paper, we only evaluate the attention mod- 370

els that use texts as the query fragments. This 371

is because text encoders used in the evaluated 372

models (Lee et al., 2018; Wang et al., 2019; Liu 373

et al., 2019; Chen et al., 2019) are GRUs (Chung 374

et al., 2014) or Transformers (Vaswani et al., 2017), 375

where defining the relevant and irrelevant key text 376

fragments of a query region fragment could be dif- 377

ficult since the text fragments will be updated to 378

include global information by the text encoder. 379

Given a matched image-text pair, an image frag- 380

ment v is labeled as a relevant fragment of the text 381

fragment t if the Intersection over Union (IoU)1 be- 382

tween v and the correspondent region2 of t is larger 383

than a threshold TIoU . In addition, v is regraded as 384

an attended fragment by t if v’s attention weight 385

with respect to t is larger than a threshold TAtt. Let 386

A and R be the sets of attended and relevant image 387

fragments of t. t’s Attention Precision (AP ), At- 388

tention Recall (AR), and Attention F1-Score (AF ) 389

are defined as: 390

AP = |A∩R|
|A| , AR = |A∩R|

|R| , AF = 2× AP×AR
AP+AR .

(9) 391

The annotations (Plummer et al., 2015) that 392

are used to calculate attention metrics provide the 393

correspondence between noun phrases and image 394

regions. A noun phrase might contain multiple 395

words, and different words could correspond to the 396

same image region. In order to obtain the overall 397

attention metrics of a learned attention model, we 398

first calculate the attention metrics at word-level, 399

and use the maximal values within each phrase 400

as the phrase-level metrics. The overall attention 401

metrics are then obtained by averaging the phrase- 402

level metrics. 403

4 Experiments 404

4.1 Datasets and Evaluations 405

Datasets. We evaluate our method on two 406

public image-text matching benchmarks: 407

Flickr30K (Young et al., 2014) and MS- 408

COCO (Lin et al., 2014). Flickr30K (Young et al., 409

2014) dataset contains 31K images, each of which 410

is annotated with 5 captions. Following the setting 411

of (Liu et al., 2019; Lee et al., 2018), we split the 412

dataset into 29K training images, 1K validation 413

images, and 1K testing images. The MS-COCO 414

1Given two bounding boxes, the IoU score between them
is calculated as the ratio of their joint area to their union area.

2The correspondent regions of a word t are the regions that
contain the object described by t.
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dataset used for image-text matching consists415

of 123,287 images, each of which includes 5416

human-annotated descriptions. Following (Liu417

et al., 2019; Lee et al., 2018), the dataset is divided418

into 113,283 images for training, 5K images for419

validation, and 5K images for testing.420

Evaluation Metrics. Following (Liu et al.,421

2019; Lee et al., 2018; Wang et al., 2019), we mea-422

sure the performance of both Image Retrieval and423

Sentence Retrieval tasks by calculating recalls at424

different K values (R@K, K = 1, 5, 10), which425

are the proportions of the queries whose top-K re-426

trieved items contain their matched items. We also427

report rsum, which is the summation of all R@K428

values for a model. On the Flickr30K dataset, we429

report results on the 1K testing images. On the MS-430

COCO dataset, we report results through averaging431

over 5-folds 1K test images (referred to MS-COCO432

1K), and testing on the full 5K test images (referred433

to MS-COCO 5K) following the standard evalu-434

ation protocol (Lee et al., 2018; Liu et al., 2019;435

Wang et al., 2019).436

To compute the attention metrics, TIoU is set as437

0.4, and the results for other values of TIoU can be438

found in the supplementary material. The possi-439

ble values of TAtt are uniformly chosen between440

0 and 0.1 with the interval of 0.01. We set the441

range of TAtt based on the experimental results442

that when achieving the best Attention F1-Score443

the TAttis ranging from 0 to 0.1. We calculate the444

Attention Precision, Attention Recall and Attention445

F1-Score for each value of TAtt, and then report446

the precision-recall (PR) curves and the best At-447

tention F1-Score with its correspondent Attention448

Precision and Attention Recall.449

4.2 Baselines and Implementation Details450

We evaluate the proposed constraints by incor-451

porating them into the following state-of-the-art452

attention-based image-text matching models:453

• UNITER (Chen et al., 2019) is a Transformer-454

based model (Vaswani et al., 2017; Devlin455

et al., 2018). It is first pre-trained on a large456

scale of dataset to learn a unified image-text457

feature representation, and then is fine-tuned458

for the image-text retrieval task.459

• SCAN (Lee et al., 2018) is a stacked cross-460

modal attention model to infer the relevance461

between words and regions and calculate462

image-text similarity.463

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10 rsum

UNITER 84.1 96.8 98.3 69.7 91.3 95.1 535.5
+ CCR 84.1 97.2 98.6 70.3 91.3 95.4 536.9
+ CCS 84.0 96.8 98.5 70.6 91.5 95.4 536.8
+ CCR & CCS 84.3 97.2 98.8 70.6 91.8 95.2 537.9

SCAN 67.2 90.7 94.8 48.4 77.6 84.9 463.6
+ CCR 67.8 91.1 95.0 49.4 77.6 85.3 466.2
+ CCS 69.1 91.1 95.4 50.8 78.4 85.6 470.4
+ CCR & CCS 68.8 91.6 95.3 51.1 79.0 86.5 472.3

PFAN 69.7 90.2 94.1 50.1 78.6 86.0 468.7
+ CCR 70.3 90.5 94.7 51.9 79.4 86.7 473.5
+ CCS 70.3 90.9 95.2 51.9 79.2 86.5 474.0
+ CCR & CCS 70.9 91.8 95.6 52.5 79.6 86.9 477.3

BFAN 70.7 92.3 96.3 51.8 79.3 85.9 476.3
+ CCR 71.7 92.8 96.0 53.2 80.5 87.1 481.3
+ CCS 71.0 93.2 96.0 52.6 79.4 86.4 478.6
+ CCR & CCS 72.0 93.4 96.2 53.1 80.3 86.9 481.9

Table 1: Results of sentence retrieval and image re-
trieval tasks on the Flickr30K test set.

• PFAN (Wang et al., 2019) improves cross- 464

modal attention models by integrating image 465

region position information into them. 466

• BFAN (Liu et al., 2019) is a bidirectional 467

cross-modality attention model which allows 468

to attend to relevant fragments and also diverts 469

all the attention into these relevant fragments 470

to concentrate on them. 471

We apply the proposed constraints to one ran- 472

domly sampled query fragment for each matched 473

image-text pair, in order to reduce the computa- 474

tional cost. For a query word fragment, its nega- 475

tive query set Qi is consisted of the other words 476

of its correspondent sentence. For a query region 477

fragment, its Qi is set as the other regions of its 478

correspondent image. The constraint loss weight 479

factors λCCR and λCCS could be 0.1 or 1, and 480

constraint similarity margins γ2 and γ3 are set to 481

0, 0.1 or 0.2. We train models with all possible 482

combinations with constraint loss weight factors 483

and similarity margins, and report the best results. 484

More implementation details can be found in the 485

supplementary materials. 486

4.3 Experiments on Image-Text Matching 487

We start by evaluating the proposed approach 488

for image and sentence retrieval tasks on both 489

Flickr30K and MS-COCO datasets. Table 1 shows 490

the results on the Flickr30K dataset. We find that 491

when the proposed CCR and CCS constraints are 492

employed separately, they both achieve consistent 493

performance improvements on all baselines and 494

6



Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10 rsum

1K Test Images

UNITER 79.3 96.4 98.6 67.3 92.3 96.9 530.8
+ CCR 79.2 96.3 98.6 67.3 92.4 96.9 530.6
+ CCS 79.4 96.3 98.7 67.3 92.3 97.0 531.0
+ CCR & CCS 79.5 96.4 98.6 67.3 92.3 97.0 531.1

SCAN 70.6 93.8 97.7 54.1 86.0 93.4 495.6
+ CCR 71.4 94.2 97.7 55.6 86.7 93.8 499.4
+ CCS 71.1 94.0 97.7 56.6 87.2 94.0 500.6
+ CCR & CCS 71.6 94.0 97.7 56.4 87.3 94.0 501.0

PFAN* 74.5 95.4 98.6 59.8 88.8 94.8 511.9
+ CCR* 74.4 95.3 98.3 60.5 89.1 94.8 512.4
+ CCS* 74.9 95.8 98.3 60.8 89.1 94.5 513.4
+ CCR & CCS* 75.2 95.6 98.2 61.2 88.9 94.7 513.8

BFAN 75.0 95.0 98.2 58.8 88.3 94.4 509.7
+ CCR 75.2 95.3 98.3 60.1 88.7 94.7 512.3
+ CCS 75.1 95.3 98.3 59.6 88.5 94.6 511.4
+ CCR & CCS 75.2 95.5 98.1 60.3 88.8 94.7 512.6

5K Test Images

UNITER 58.1 85.6 91.8 45.7 74.9 84.4 440.5
+ CCR 58.2 85.6 91.8 45.7 74.9 84.4 440.6
+ CCS 59.2 85.7 91.9 46.0 74.9 84.5 442.2
+ CCR & CCS 59.3 85.8 91.9 46.0 74.9 84.5 442.4

SCAN 47.2 77.6 87.7 34.7 65.2 77.3 389.7
+ CCR 47.7 78.3 88.2 36.2 66.6 78.2 395.2
+ CCS 46.5 78.5 88.0 36.5 66.6 78.3 394.4
+ CCR & CCS 47.9 78.1 88.2 36.9 66.9 78.4 396.4

BFAN 52.5 80.3 89.5 37.5 66.7 78.1 404.6
+ CCR 52.0 81.5 89.9 38.7 67.8 78.8 408.7
+ CCS 53.8 81.1 89.9 38.0 67.3 78.5 408.6
+ CCR & CCS 53.4 81.3 90.1 38.4 67.6 78.6 409.4

Table 2: Results of sentence retrieval and image re-
trieval tasks on the MS-COCO test set. *Note that since
the official implementation of PFAN only provides 1K
images for testing, PFAN is tested without 5-fold cross-
validation under the setting of 1K test images, and can-
not be tested under the setting of 5K test images.

tasks. More importantly, when we apply both con-495

straints concurrently, all models achieve the best496

improvements.497

We report the results on the MS-COCO dataset498

in Table 2. Similar performance improvements as499

those on Flickr30K can be observed under both500

settings of 1K and 5K test images. However, we501

find that both constraints achieve fewer improve-502

ments on UNITER than on other baseline mod-503

els. One possible reason is that UNITER benefits504

more from the pre-training process, where a larger505

scale of data (including MS-COCO training set)506

and tasks explicitly enforcing the model to learn507

both fragment and global level cross-modal align-508

ments (Chen et al., 2019) are applied.509

4.4 Attention Evaluation510

Quantitative Analysis. We report the results on511

Flickr30K since it has publicly available cross-512

modal correspondence annotations (Plummer et al.,513

Method
Attention
Precision

Attention
Recall

Attention
F1-Score

SCAN 32.79 65.30 39.96
+ CCR 36.30 66.80 43.10
+ CCS 37.28 64.97 43.38
+ CCR & CCS 38.81 64.62 44.44

BFAN 46.08 63.32 48.91
+ CCR 50.21 64.20 51.78
+ CCS 49.16 61.44 49.74
+ CCR & CCS 51.13 62.97 51.73

Table 3: Results of Attention Precision, Attention Re-
call and Attention F1-Score (%) of the SCAN and
BFAN models trained on the Flickr30K dataset.

2015) while MS-COCO does not. We note that the 514

results of PFAN are not reported because we can- 515

not obtain the bounding boxes of the input image 516

regions that are correspondent to the testing data 517

provided by its official implementation. We do 518

not include the results of UNITER since defining 519

the relevant and irrelevant key fragments of a query 520

fragment could be ambiguous. This is because each 521

individual fragment in UNITER encodes global in- 522

formation across all other fragments due to the 523

self-attention mechanism (Vaswani et al., 2017). 524

The attention metrics of SCAN and BFAN are 525

shown in Table 3. We can see that applying CCR 526

and CCS individually yields higher Attention F1- 527

Score than both baseline methods, and this is con- 528

sistent to the observations in Section 4.3. More 529

interestingly, we can find that using CCR alone 530

improves both Attention Precision and Attention 531

Recall; using CCS alone mainly improves Atten- 532

tion Precision; combining both constraints further 533

improves Attention Precision. These results demon- 534

strates the motivation of the proposed constraints. 535

Note that the slight decrease in Attention Recall 536

caused by CCS might be due to the fact that CCS 537

enforces attention models to ignore the regions con- 538

taining both foreground objects and noise back- 539

ground. We also present the PR curves of SCAN 540

and BFAN in Figure 4 to demonstrate the impact of 541

different TAtt on Attention Precision and Attention 542

Recall. We can observe that applying the proposed 543

constraints yields consistently better results than 544

both baseline methods for different TAtt. 545

We further evaluate the relation between the 546

image-text matching performance and the qual- 547

ity of learned attention models by calculating the 548

Pearson correlation coefficient between Attention 549

F1-Score and rsum, and the obtained correlation 550

coefficient and p-value is 0.995 and 3.724× 10−7, 551
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(a) Original Images (b) SCAN (c) SCAN+CCR (d) SCAN+CCS (e) SCAN+CCR+CCSQuery
Fragments

fire

infant

guy

Figure 3: Examples illustrating attended image regions with respect to the given words for the SCAN model.
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(b) PR curves of BFAN

Figure 4: The Attention PR curves of the SCAN and
BFAN model trained on the Flickr30K Dataset.

respectively. The results show that the image-text552

matching performance has strong positive correla-553

tion with the quality of learned attention models.554

Qualitative Analysis. We visualize the atten-555

tion weights with respect to three sampled query556

word fragments in Figure 3, and more examples557

are provided in the supplementary material. In the558

example of the query word fragment “fire", the559

learned attention model of SCAN (see Column (b))560

fails to assign large attention weights to the most561

regions containing fire. By contrast, the CCR con-562

straint (see Column (c)) mitigates this issue by sig-563

nificantly increasing the attention weights assigned564

to the regions containing fire. The CCS constraint565

(see Column (d)) is less effective in this case be-566

cause the CCS constraint has already been satisfied.567

In the case of the query word fragment “infant", the568

learned attention model of SCAN (see Column (b))569

assigns large attention weights to both the irrelevant570

and relevant regions. In this case, the CCR con-571

straint (see Column (c)) cannot fully diminish the572

attention weights assigned to the regions irrelevant573

to “infant”. In contrast, as shown in Column (d), 574

the attention weights assigned to irrelevant regions 575

are largely diminished by the CCS constraint. In 576

the example of the query word “guy”, it shows that 577

combining both constraints decreases the attention 578

weights of the background regions (e.g., the sur- 579

rounding areas of the “guy”) more significantly 580

than applying the them separately. 581

5 Conclusions 582

To tackle the issue of missing direct supervisions in 583

learning cross-modal attention models for image- 584

text matching, we introduce the constraints of CCR 585

and CCS to supervise the learning of attention mod- 586

els in a contrastive manner without requiring addi- 587

tional attention annotations. Both constraints are 588

generic learning strategies that can be generally 589

integrated into attention models. Furthermore, in 590

order to quantitatively measure the attention cor- 591

rectness, we propose three new attention metrics. 592

The extensive experiments demonstrate that the 593

proposed constraints manage to improve the cross- 594

modal retrieval performance as well as the attention 595

correctness when integrated into four state-of-the- 596

art attention models. For future work, we will ex- 597

plore on how to extend the proposed constraints 598

to other cross-modal attention models based tasks, 599

such as Visual Question Answering (VQA) and 600

Image Captioning. 601
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A Appendix718

A.1 Implementation Details719

SCAN and PFAN. These two methods separately720

train the text-to-image attention models where721

words are used as query fragments, and the image-722

to-text attention models where image regions are723

used as query fragments. When training the text-to-724

image attention models, we randomly sample one725

word fragment from each matched image-text pair726

to apply the proposed constraints. The image-to-727

text attention models are trained in a similar way728

by sampling image fragments.729

BFAN. The method jointly trains the text-to-730

image and image-to-text attention models. In or-731

der to jointly supervise both attention models and732

reduce computation cost, for each matched image-733

text pair, we apply our constraints to either a sam-734

pled word fragment for the text-to-image attention735

model or a sampled image region for the image-to-736

text attention model with a probability of 50%.737

UNITER. This approach consists of multiple738

stacked multi-head self-attention layers. Each layer739

computes the inter-modal (where the query and740

key fragments are from the same modality) and741

cross-modal (where both text-to-image and image-742

to-text attentions are included) attention weights743

simultaneously. The proposed constraints are ap-744

plied to all attention heads of the last layer, since745

our preliminary experimental results show that this746

strategy achieves the best performance. When com-747

puting the constraints, we follow the same strategy748

as BFAN to sample query fragments, and we mask749

the inter-modal attention weights by zero.750

The experiments on Flickr30K and MS-COCO751

are conducted on the RTX8000 and A100 GPU,752

respectively. All the baselines are trained by753

their officially released codes. 3 4 5 6. SCAN,754

PFAN, and BFAN are trained from scratch by com-755

pletely following their original hyper-parameters756

settings such as the learning rate, batch size,757

model structure, and optimizer (Lee et al., 2018;758

Liu et al., 2019; Wang et al., 2019). When we759

evaluate UNITER, the pre-trained UNITER-based760

model (Chen et al., 2019) is used for fine-tuning.761

Its hard negative sampling ranking loss is replaced762

with the binary cross-entropy loss following (Li763

3https://github.com/kuanghuei/SCAN
4https://github.com/CrossmodalGroup/BFAN
5https://github.com/HaoYang0123/Position-Focused-

Attention-Network
6https://github.com/ChenRocks/UNITER

et al., 2020). We set batch size to 128 and other 764

hyper-parameters to default values. 765

A.2 Additional Attention Evaluation Results 766

Quantitative Analysis. To demonstrate the influ- 767

ence of different TIoU on Attention Precision, At- 768

tention Recall, and Attention F1-Score, we report 769

the results when TIoU is set to 0.6 on Table 4 and 770

Figure 5. We can observe similar performance im- 771

provements as when TIoU is set to 0.4 (shown in 772

the main paper). It demonstrates that by applying 773

the proposed constraints to attention models, we 774

can achieve consistently better results than both 775

baseline methods when different TIoU values are 776

chosen. 777

Method
Attention
Precision

Attention
Recall

Attention
F1-Score

SCAN 16.88 47.40 22.88
+ CCR 18.87 49.96 25.05
+ CCS 20.30 48.58 26.22
+ CCR & CCS 21.31 47.15 26.80

BFAN 27.50 46.52 31.92
+ CCR 30.17 48.72 34.49
+ CCS 29.55 46.97 33.55
+ CCR & CCS 30.24 49.20 34.69

Table 4: Results of Attention Precision, Attention Re-
call and Attention F1-Score (%) of the SCAN and
BFAN models trained on the Flickr30K dataset when
TIoU is 0.6.
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Figure 5: The Attention PR curves of the SCAN and
BFAN models trained on the Flickr30K Dataset when
TIoU is 0.6.

Qualitative Analysis. We visualize three exam- 778

ples of the SCAN model trained on the MS-COCO 779

dataset on Figure 6. We also report three cases 780

of the BFAN model trained on the Flickr30K (see 781

Figure 7) and MS-COCO dataset (see Figure 8), 782

respectively. We find that the attention models 783

trained with the proposed constraints can assign 784

attention weights in a more accurate way than the 785

correspondent baseline methods across different 786

datasets. 787
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(a) Original Images (b) SCAN (c) SCAN+CCR (d) SCAN+CCS (e) SCAN+CCR+CCSQuery
Fragments

surfer

hitter

suitcases

Figure 6: Examples of attended image regions with respect to the given words for the SCAN model on the MS-
COCO dataset.

(a) Original Images (b) BFAN (c) BFAN+CCR (d) BFAN+CCS (e) BFAN+CCR+CCSQuery
Fragments

arm

skis

paragraphs

Figure 7: Examples of attended image regions with respect to the given words for the BFAN model on the
Flickr30K dataset.
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(a) Original Images (b) BFAN (c) BFAN+CCR (d) BFAN+CCS (e) BFAN+CCR+CCSQuery
Fragments

arm

bird

soccer

Figure 8: Examples of attended image regions with respect to the given words for the BFAN model on the MS-
COCO dataset.
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