InstructFlow: Adaptive Symbolic Constraint-Guided
Code Generation for Long-Horizon Planning

Haotian Chi'? Zeyu Feng? Yueming Lyu’ Chenggqi Zheng? Linbo Luo® Yew-Soon Ong?* Ivor Tsang?*
Hechang Chen' Yi Chang' Haiyan Yin?

Abstract

Long-horizon planning in robotic manipulation
tasks requires translating under-specified, sym-
bolic goals into executable control programs sat-
isfying spatial, temporal, and physical constraints.
However, language model-based planners often
struggle with long-horizon task decomposition,
robust constraint satisfaction, and adaptive fail-
ure recovery. We introduce InstructFlow, a
multi-agent framework that establishes a sym-
bolic, feedback-driven flow of information for
code generation in robotic manipulation tasks. In-
structFlow employs a InstructFlow Planner to
construct and traverse a hierarchical instruction
graph that decomposes goals into semantically
meaningful subtasks, while a

generates executable code snippets conditioned
on this graph. Crucially, when execution failures
occur, a Constraint Generator analyzes feed-
back and induces symbolic constraints, which
are propagated back into the instruction graph
to guide targeted code refinement without regen-
erating from scratch. This dynamic, graph-guided
flow enables structured, interpretable, and failure-
resilient planning, significantly improving task
success rates and robustness across diverse ma-
nipulation benchmarks, especially in constraint-
sensitive and long-horizon scenarios.

1. Introduction

Large language models have become a prevalent approach
for robotic code generation due to their ability to trans-

!Jilin University, China *CFAR and IHPC, Agency for Sci-
ence, Technology and Research (A*STAR), Singapore *Xidian
University, China *Nanyang Technological University, Singa-
pore. Correspondence to: Haiyan Yin <yin_haiyan@cfar.a-
star.edu.sg>, Hechang Chen <chenhc@jlu.edu.cn>, Yi Chang
<yichang @jlu.edu.cn>.

ICML 2025 Workshop on Programmatic Representations for Agent
Learning, Vancouver, Canada. Copyright 2025 by the author(s).

late natural language instructions into executable programs
(Chen et al., 2024; Liang et al., 2023; Mu et al., 2024;
Tang et al., 2024). However, they often struggle with long-
horizon task decomposition, adaptive failure recovery, and
robust constraint satisfaction. For example, when instructed
to place a target object into a bowl, LLM-based planners
can detect that a grasp attempt fails due to collisions with
stacked objects. But, they lack the ability to reason beyond
the surface-level failure and infer the deeper structural cause,
existing methods rely on blind retries or ad-hoc replanning,
failing to adaptively repair the plan or refine the code to
resolve the root cause.

These failures expose the fundamental limitation of rely-
ing solely on natural language prompts for planning: lan-
guage is often under-specified, ambiguous, or too abstract
to ground reliably in the physical world. When prompted
to generate full plans directly, LLMs frequently hallucinate
valid-looking but physically infeasible code or fail to recover
when execution errors occur. Recent approaches have at-
tempted to bridge the gap between language instructions and
executable code by either directly generating grounded skill
sequences with continuous parameters (Wang et al., 2024),
or synthesizing end-to-end executable programs (Liang
et al., 2023). However, these methods rely on flat plan-
ning paradigms that lack structured task decomposition or
feedback-driven repair, often struggling in scenarios that
require reasoning over dynamic failures or layered environ-
ment constraints.

Based on these, PRoC3S (Curtis et al., 2024) intro-
duced a two-phase pipeline that separates plan genera-
tion and constraint checking, allowing failure-triggered re-
planning. While this improves robustness by incorporating
environment-level feedback, its re-planning process remains
reactive and lacks mechanisms to reason about the task-
level causes of failures or to generalize corrective strategies
across tasks.

To bridge this gap, we propose InstructFlow, a modu-
lar, multi-agent framework that establishes a symbolic,
feedback-driven information flow for adaptive task planning
and code generation. InstructFlow enables structured reason-
ing over execution failures, inducing interpretable symbolic

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

constraints that are injected back into the instruction graph.
This dynamic flow of symbolic knowledge allows the sys-
tem to restructure plans at both the task and code level,
enabling targeted repair without full plan regeneration.

At the core of InstructFlow are two key innovations: First,
InstructFlow introduces a hierarchical instruction graph that
modularizes task planning into structured subgoals, while
supporting dynamic, feedback-driven updates based on in-
duced constraints. Second, its symbolic constraint induc-
tion mechanism abstracts raw execution failures into in-
terpretable symbolic predicates, capturing both relational
and physical task-level causes. These symbolic abstrac-
tions enable precise and generalizable plan and code re-
finement, improving robustness in complex, long-horizon,
and constraint-sensitive tasks. This continuous flow of sym-
bolic information throughout the instruction graph under-
pins InstructFlow’s robustness and efficiency, distinguishing
it from prior flat or reactive methods.

We highlight the following contributions: (i) InstructFlow
framework, a modular system with hierarchical instruction
graphs and symbolic reasoning for structured task decom-
position and interpretable code generation; (ii) Symbolic
constraint induction, feedback-driven mechanism that ab-
stracts execution failures into reusable symbolic constraints
for efficient and targeted plan repair; (iii) Comprehensive
experiments on Drawing, Arrange-block, and Arrange-YCB
demonstrate our method’s superior success rates, robustness,
and failure recovery over strong LLM-based baselines.

2. Related Works

LLM-Based Code Generation for Robotic Manipulation
Recent advances highlight the potential of LLMs as general-
purpose planners for robotic manipulation via code genera-
tion. CaP (Liang et al., 2023) introduces the use of LLMs
to synthesize Python-based reactive controllers, integrat-
ing perception modules and control primitives. RoboScript
(Chen et al., 2024) proposes a unified interface for deploy-
ing such code across simulation and real robots, focusing on
deployability and modularity. LLM?3 (Wang et al., 2024) fur-
ther integrates task and motion planning with LLM-driven
failure reasoning for robust code generation in dynamic envi-
ronments. Instruct2Act (Huang et al., 2023a) and VoxPoser
(Huang et al., 2023b) combine LL.Ms with vision-language
models, grounding language instructions into actionable
code conditioned on perceptual inputs. RoboCodeX (Mu
et al., 2024) introduces a tree-structured multimodal rea-
soning framework, decomposing language commands into
object-centric manipulation code. Recent systems like Oc-
toPack (Muennighoff et al., 2023) and RobotCode (Li et al.,
2024) further enhance generalization and reliability by com-
bining LLM-generated programs with skill libraries. While
these methods demonstrate the effectiveness of LLMs when

equipped with structured APIs, affordance models, and per-
ceptual grounding, they still struggle with handling execu-
tion failures and adapting plans in constraint-sensitive or
long-horizon tasks.

Symbolic Abstraction Planning Symbolic represen-
tations remain crucial for long-horizon and constraint-
sensitive manipulation. Classical TAMP systems (Kaelbling
& Lozano-Pérez, 2011; Curtis et al., 2022; Dantam et al.,
2016; Garrett et al., 2021; Srivastava et al., 2014) integrate
symbolic task planning with motion controllers but depend
on domain-specific predicates. Traditional robotics plan-
ning relies on hard-coded symbolic world models (Garrett
et al., 2021; Konidaris, 2019). Hybrid methods bridge lan-
guage and symbolic planning, such as LLM+P (Liu et al.,
2023a), which translates instructions into PDDL for optimal
symbolic planning. VisualPredicator (Liang et al., 2025)
learns neuro-symbolic predicates from visual inputs, while
ViLaln (Shirai et al., 2024) extracts scene-level symbolic
representations from vision-language models. Other works
like PlanBench (Valmeekam et al., 2023) create symbolic
abstractions for plan feasibility analysis; P3IV (Zhao et al.,
2022) and RLang (Rodriguez-Sanchez et al., 2023) focus
on domain-agnostic symbolic representations aligned with
LLM reasoning. Despite their use of symbolic abstractions,
these approaches lack mechanisms for dynamic symbolic
reasoning to abstract task-relevant information or diagnose
failures for plan repair, which is a gap our method explicitly
addresses by integrating symbolic reasoning into the code
generation and planning loop.

Feedback-Driven Failure Recovery Recovering from
execution failures remains a central challenge for LLM-
driven robotics. Most approaches treat LLMs or VLMs as
success detectors (Du et al., 2023; Ma et al., 2022; Wang
et al., 2023), while recent works explore feedback-driven
plan repair. REFLECT (Liu et al., 2023b) and AHA (Duan
et al., 2024) leverage LLMs and VLMs for multi-modal
failure explanation, enabling language-guided correction.
RoboRepair (Schlesinger et al., 2024) and DoReMi (Guo
et al., 2024) integrate LLMs and VLMs for execution mis-
alignment detection and proactive repair. However, these
methods primarily rely on fine-tuning models for failure un-
derstanding. To avoid fine-tuning, LLM?(Wang et al., 2024),
ProgPrompt(Singh et al., 2023), and CLAIRify (Skreta et al.,
2023) propose failure-aware prompting and runtime verifi-
cation to guide iterative plan repair. PRoC3S (Curtis et al.,
2024) further introduces a hybrid approach that combines
LLM-generated partial programs with post-hoc constraint
optimization. Building on PRoC3S, our method integrates
symbolic constraint induction and graph-guided plan repair
into the code generation loop, enabling interpretable and
adaptive failure recovery.

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

3. Methodology

We begin by outlining the LLM-based code generation
paradigm for robotic manipulation. Then we introduce In-
structFlow, detailing its instruction graph structure, agent
roles, and symbolic constraint mechanism for structured,
feedback-driven code generation and repair. An overview
of InstructFlow is shown in Figure 1.

3.1. Overview

The problem of code generation for robotic manipulation
involves translating natural language instructions into exe-
cutable programs that operate reliably in robotic environ-
ments. Given task descriptions and initial state of the en-
vironment, a LLM is instructed to generate parameterized
action plans that invoke low-level control routines to solve
the task. Following a general paradigm (Curtis et al., 2024),
the LLM produces two functions per task:

 get_plan: a sequence of high-level actions conditioned
on free parameters and environment state.

* get_domain: the feasible ranges for those parameters
(e.g., spatial offsets), defining the search space for plan
instantiation.

At the task level, the goal is to generate code that com-
pletes the instructed objective without violating physical
constraints. Execution feasibility is assessed by a continu-
ous constraint satisfaction program (CCSP) module, which
enforces four environment-level checks: kinematic reacha-
bility, collision avoidance, grasp stability, and placement
validity. The LLM must reason not only over a series of
discrete action choices, but also over continuous numerical
parameters, which is a nontrivial requirement. Beyond se-
quencing skills, it must produce long-horizon code grounded
in geometry, dynamics, and task-specific semantics. The
core challenge lies in the lack of grounding from language
prompts to low-level control logic that adheres to physical
and dynamic constraints. When execution fails, LLMs of-
ten repeat or compound errors, exhibiting limited ability to
adaptively repair code.

Our work aims to improve the failure recovery ability of
LLM-based planners through structured planning and sym-
bolic constraint-driven code repair.

We propose InstructFlow, a modular multi-agent frame-
work for symbolic, feedback-driven code generation in
robotic manipulation. The core idea is to introduce an in-
struction graph that hierarchically decomposes high-level
task prompts into semantically structured subgoals, and
couple this representation with a symbolic constraint in-
duction mechanism for effective plan repair. InstructFlow
modularizes the code-generation pipeline into three coopera-

tive agents, each with a specialized role and local reasoning
context (see Appendix A for the prompts used in our three
Agents):

¢ InstructFlow Planner: Parses the task prompt and con-
structs a hierarchical instruction graph capturing semantic
and spatial dependencies. Each node encodes a typed sub-
goal grounded in the robot’s skill space.

. : Translates each subgoal into exe-
cutable Python code, producing symbolic control rou-
tines along with parameter domains for sampling feasible
continuous values;

* Constraint Generator: Monitors execution failures
and induces symbolic constraints that explain the cause.
These constraints guide context-specific graph and
prompt revisions, enabling targeted subgoal repair with-
out full plan regeneration.

3.2. Instruction Graph Semantics

A central architectural contribution of InstructFlow is an
hierarchical instruction graph that enables structured task
decomposition and adaptive symbolic reasoning. At each
interaction round ¢, the InstructFlow Planner constructs
an instruction graph G; = (V, &), conditioned on the task
goal, initial state, and symbolic feedback. This graph acts
as a typed, declarative scaffold for both task decomposition
and constraint-aware refinement. The node set is partitioned
as follows:

Vt = Vplan U Vreasonv Vplan n Vreason = Q)v (1)
with edges & C V, x V), capturing symbolic or temporal
dependencies. Each edge (v;, v;) denotes a directed flow of
information, allowing parent nodes to influence the semantic
context of their children.

(1) Planning nodes vP*" € V), define grounded subgoals
directly translatable into robot-executable code. Each is
instantiated as a symbolic prompt:

v : (goal, state) — subgoal 4, A € {pick, place, . ..}.

These nodes form the plan’s executable backbone and an-
chor structural code generation.

(2) Reasoning nodes vrf-js"" € Vreason perform typed sym-

bolic transformations that enrich planning with task-level
abstraction and constraint resolution. These typed modules
abstract reusable domain knowledge, enabling modular plan

revision: v - I — Or;, where Z7;, O7; denote

structured synell;z)hc ﬁelds Outputs are propagated to down-
stream planning nodes, injecting symbolic knowledge such
as spatial adjacency or parameter tuning. We instantiate five

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

g Y () g o & Envi
—_— nvironment ———
,@: InstructFlow Planner =~ ~ Generator—) N
@ Lem=a, Instruction Graph Failure Checker
{ {Spatial | @ VS < spatial relation > [# Subgoal 1
Task | ((otey) 27 & 0 | e =p
Prompt U < object selection> (=) QJ -
Subgoal 2
W <Subgoal 1> @ :> -----------
J‘L Execute
B <swgealz> G # Subgoal n
e yPlin < Subgoal n> Q’ ___________
@ Planning node {i_)) Reasoning node
\ ___J <> »
122 Symbolic Constraint Generator ﬂ’
(o—m3) 0. a D
i @ <> i Q JL Output
Symbolic Constraint **Explanation** **Phsical Diagnosis** **Manipulated Object** | ﬂ
‘object_4°, ‘griper’ 2
" ilu ——
T Below(o_4,0_5): **Related Object** — Feedback
ClearOf (gripper, object_5) the gripper and ‘object_ 5" (z_4 < z_5) “object 5°, object_6° R
Learot (art bsect 6 and “object 6 during the eobiect B » 250 occurrences: Step 0, Action
Aot esc) RIS s o e <= |\ pick, Violation: [Twin] Collision
directly above ‘object_4', B 3D “object_5': detected between object_5
creating a vertical stack." “object_6": N -
gripper finger.
J \ J

sz@:—

Figure 1. An overview of InstructFlow, a framework enabling multi-agent, symbolic, feedback-driven code generation for long-horizon
robotic manipulation planning. The system consists of three coordinated agents: (a) InstructFlow Planner: Parses the task prompt and

constructs a multi-level instruction graph of subgoals and reasoning nodes; (b)

: Generates executable code segments and

samples parameter domains to instantiate the plan; (c) Constraint Generator: Analyzes failure traces and induces symbolic constraints

that refine plan generation.

core reasoning modules:

Tspatial © S — Rel(Objects, Adjacency) (spatial relation inference)

Taensity : S — Rel(Objects, Density) (local clutter estimation)
Teeleet : (G, S, ®) — Select(Objects)
Torder : (G, S, ®) — Order(Actions)

Tparam : (G, ®) — Refine(ParamDomain)

(target object selection)
(plan logic inference)

Here, G denotes the high-level task goal, .S represents the
initial state, and ® captures symbolic constraints induced
from prior failures. These inputs are used by reasoning
nodes to extract task-relevant abstractions for plan refine-
ment.

Feedback-Driven Graph Update A core capability of
InstructFlow is its ability to revise the instruction graph
G; based on symbolic constraint feedback and failure diag-
nostics. At initialization (constraintg = (), the graph
contains only planning nodes. Upon failure (e.g., collisions,
instability), the planner inserts reasoning nodes upstream of
affected subgoals, dynamically composing a symbolic stack
tailored to the error mode:

(@)

G: = Planneryy(goal, state, constraint; 1).

This mechanism supports coarse-to-fine symbolic planning
by injecting only the reasoning needed to refine or repair
the faulty part of the task.

(parameter range refinement)

InstructFlow-Guided Code Generation InstructFlow
translates symbolic plans into executable code by compos-
ing structured prompts along the instruction graph G;. Each
planning node vfla" € Vplan generates a prompt:

reason(t)
instr® = Encode ({v%?‘m"}ljil 3 Upla"),

Task Prompt
code® =LLM (instr(t))7
——

Generated Code

3

where Encode(-) integrates the subgoal with symbolic re-
finements from reasoning nodes, such as spatial relations,
parameter ranges, or action dependencies. |v*®°"(*)| de-
notes the number of reasoning nodes providing contextual
information to v#", including types such as spatial reason-
ing, object selection, and other reasoning nodes as defined
above.

This symbolic conditioning guides the LLM to produce
context-aware and physically valid code. When failures
occur, InstructFlow selectively updates the relevant sub-
goals and reasoning nodes impacted by the constraint vi-
olations, avoiding unnecessary recomputation of unrelated
parts of the plan. InstructFlow leverages symbolic instruc-
tion graphs to generate interpretable, constraint-compliant
code, improving efficiency and robustness in long-horizon
tasks.

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

~ =
" **Manipulated Object**
‘griper’ ‘

250 occurrences: Step
0, Action pick,
Violation: [Twin] | —p
Collision detected
between object_5
gripper finger. —_—
e - -/

- r Failure-relevant retrieval

Object Pose

‘object_4': [-0.2, -0.6, 0.02]

Related Object
“object 4"
“object 5, object 6

object_4 —p green_block

“object_5°: [-0.2, -0.6, 0.06]
object_5 —p teal_block

“object_6': [-0.2, -0.6, 0.1]
object_6 —» yellow_block

|1 Code-level reasoning

<L **Explanation**
" ck indi s
ipper

Below(o_4,0_5):=
(z_4 < z_5)

above ‘object_4°,
vertical stack."

Below(o_5,0_6) :=
(z_5 < z_6)

Diagnostic reasoning

J Deemester=

~ T

ClearOf (gripper, object 5) ‘
A
‘ ClearOf (gripper, object 6)

~ T

7S§fnbolic constraint induction

Figure 2. Failure Diagnosis Workflow of Symbolic constraint gen-
erator.

The Role of ""Flow' While InstructFlow introduces mul-
tiple agents and a hierarchical instruction graph, the key
distinguishing feature lies in the flow of symbolic informa-
tion and feedback throughout the entire code generation
loop. Unlike static prompting approaches, InstructFlow
treats the prompt construction itself as a dynamic, graph-
guided flow, where high-level goals, reasoning outputs, and
failure-induced constraints are progressively injected into
task-specific prompts at each planning node. This flow-
centric prompt composition ensures that each code snip-
pet is generated in a context-aware, failure-resilient, and
constraint-compliant manner, enabling efficient plan repair
without full regeneration. The flow mechanism thus oper-
ates at two intertwined levels: Graph-level symbolic flow:
From reasoning nodes to planning nodes. Prompt-level in-
formation flow: From task goal, through symbolic reasoning
and feedback, into structured, adaptive prompts.

3.3. Symbolic Constraint Induction from Execution
Failures

LLM-based robotic planners often lack structured mech-
anisms for failure recovery, relying instead on naive re-
prompts or implicit retries. We introduce a Constraint Gen-
erator that diagnoses execution failures, and abstracts them
into logical constraints. These constraints serve as symbolic
corrections that guide graph restructuring and prompt re-

finement, enabling interpretable, efficient, and generalizable
plan repair.

Failure Diagnosis Workflow. As shown in Figure 2, the
symbolic constraint induction follows a four-stage reason-
ing workflow: (i) Failure-relevant entities retrieval, which
identifies failure-relevant entities from the failure trace F;
and executed code Py; (ii) Code-level reasoning, which
instantiates involved variables and reasoning symbolic pred-
icates that reflect the physical feasibility; (iii) Diagnostic
reasoning, which compute geometric or geometric diag-
nostics based on predicates, such as collision proximity,
path clearance, and placement stability; and (iv) Symbolic
constraint induction, which abstracts diagnostic findings
into declarative symbolic constraints that encapsulate the
feasibility conditions violated by the current plan. This
structured workflow transforms grounded execution fail-
ures into symbolic rules that guide prompt regeneration and
enable interpretable, plan repair.

Physical Predicate as an Induction Basis. To enable
interpretable failure diagnosis and structured symbolic con-
straint induction, we ground physical feasibility reasoning
on a set of declarative physical predicates. These predicates
abstract task-specific physical interactions into reusable log-
ical representations, serving as the foundation for symbolic
reasoning across diverse manipulation scenarios. We cate-
gorize predicates along four functional components:

(i) Entities (£): Rather than pre-defining entities rigidly,
InstructFlow dynamically abstracts task-relevant entities
into functional roles based on the evolving task context
and feedback, such as ?target (manipulated object),
?neighbor (potential obstacles), ?surface (support-
ing structures), and ?gripper (robot end-effector); (ii)
Relations (R): Symbolic relations are flexibly instantiated
to capture emergent spatial and semantic interactions dur-
ing task execution and diagnosis, such as On (?a, ?b)
for support/contact, or ClearOf (?a, ?b) for proxim-
ity constraints, enabling contextual adaptation rather than
relying on static domain rules; (iii) Physical Functions
(F): InstructFlow leverages a set of physical diagnostics
as interpretable abstractions, such as Dist (?a, ?b),
SupportArea (?0bj), and COMDeviation (?obj),
which are dynamically evaluated in response to execution
feedback, guiding the symbolic reasoning process without
hard-coded thresholds; (iv) Thresholds (5): Task-specific
feasibility bounds, such as dg,¢ for clearance margins, and
Nmin fOr support stability ratios, , which can be tuned or
inferred based on the environment state and failure modes,
allowing InstructFlow to generalize beyond fixed rule speci-
fications.

These symbolic forms are grounded by diagnostics over
physical basis, but are interpreted and manipulated as logi-

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

cal components of the instruction graph, which isolate the
physical root causes of failure and ground them in explicit
task parameters, forming the basis for symbolic abstraction.

Symbolic Constraint Induction. We formalize the sym-
bolic constraint ¢ as a conjunction over two complementary
modalities of failure correction: relational structure and
physical feasibility:

¢::/\ca

= {Ri(ea;,en,)} U{f;(O

Relational Constraints

where C(E,R,F,B)

i) ® 7). “4)

Physical Constraints

Here, for each relational constraint R; (e, , €p,), €4, and e,
are entity instances (e.g., block, bowl) participating in the
relation R;. For physical constraints, each term f;(0,) & 7;
represents a feasibility condition, where: ©; denotes the
variables involved (e.g., poses, offsets), & is a compari-
son operator (e.g., <, >, or =), 7; € B is a task-specific
threshold (e.g., maximum allowable clearance).

This formulation allows each constraint ¢ to capture both
high-level task semantics and low-level physical require-
ments within a unified logical form, which the Constraint
Generator can compose into logical constraints ¢ for plan
repair. For instance:

Gpick := ProximitySafe(?object, Tneighbor)
A PathClear(?gripper, Tobject),

Gplace := Dist(?pose, Tneighbor) > St
A StableOn(?object, ?sur face).

Notably, these symbolic constraints act as structured priors
for graph refinement and generalize across task instances
and environments, enabling not just plan repair but modu-
lar, interpretable priors that can be reused across planning
episodes. By treating failure correction as symbolic program
refinement, this representation integrates seamlessly into our
instruction graph and enables feedback-driven, structurally
grounded prompt generation.

4. Experiments
4.1. Experimental Setup

We adopt the same environments, evaluation metrics, and
protocol as PRoC3S (Curtis et al., 2024) to ensure fair com-
parison, while extending its core planning pipeline with
symbolic reasoning and constraint-guided repair. All experi-
ments are conducted in the Ravens simulation environment,
using a 6-DoF URS arm with a Robotiq 2F-85 gripper in a
tabletop workspace. Physics-based execution and constraint

n et
Stack pyramid of blocks

aa &

rsienacie J Rttt
e

hd &

(b) Arrange-Blocks (c) Arrange-YCB

ZX

Draw an artow pointing Drawa rectangle:
atthe largest obstace enclosing any obstacie

V-

(a) Drawing

Ir"“%

Figure 3. Tasks in our simulated environments, along with corre-
sponding goals.

checking are handled via PyBullet. Simulations run on
CPUs with 32GB RAM, with all baseline implementations
integrated into a unified evaluation framework.

Domains and Tasks.We evaluate our approach on three sim-
ulated domains, each designed to test different aspects of
long-horizon planning with parameterized skills and physi-
cal constraints:

1. Drawing: The robot is equipped with a draw_line
primitive that generates 2D trajectories to render geo-
metric and symbolic shapes on a surface, while avoiding
randomly placed objects. These tasks require precise
parameter coordination under tight spatial constraints.

2. Arrange-Blocks: The robot stacks and arranges colored

blocks and bowls to form pyramids, lines, or centered
clusters. This domain tests stability, spatial accuracy, and
planning under clutter and occlusions.

3. Arrange-YCB: The robot manipulates complex objects

from the YCB dataset (e.g., banana, meat can) to perform
packing and stacking. Irregular geometries introduce chal-
lenges in grasping, placement feasibility, and collision
avoidance.

Constraints. Across all domains, generated plans are eval-
uated against a set of physical and geometric constraints
that reflect real-world robotic limitations: (1) Kinematic
constraints ensure that the robot’s inverse kinematics solver
produces a reachable end-effector pose, rejecting infeasible
motions; (2) Collision constraints eliminate plans that lead
to unintended contact between the robot, environment, or
other objects, allowing only expected contact such as dur-
ing grasps; (3) Grasp constraints verify that the gripper
properly encloses the object and maintains stability during
lifting, rejecting grasps that cause slippage or collision; (4)
Placement constraints require that, upon release, the object
remains upright and stationary, i.e., any post-placement drift
or instability signals a failure of physical feasibility.

Baselines. We compare our approach against three base-
lines:

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

Drawing Arrange Blocks Arrange YCB

Star Arrow Letters Enclosed | Pyramid Line Packing Unstack | Packing Stacking
LLM? 40% 40% 80% 50% 0% 40% 30% 0% 0% 10%
CaP 10% 0% 40% 30% 20% 20% 20% 10% 30% 10%
PRoC3S 90% 80% 80% 90% 60% 70% 50% 60% 30% 40%
InstructFlow (Ours) | 100% 80% 100% 100% 90 % 100% 90 % 90 % 60% 70%

Table 1. Task success rates (%) across drawing, block arrangement, and YCB manipulation domains. Bold indicates top-performing

results.

1. PRoC3S (Curtis et al., 2024): The original two-phase
LLM-based planner that separates plan generation and
constraint satisfaction using a sampling-based solver with
feedback.

2. LLM?3 (Wang et al., 2024): A recent method in which
the LLM directly outputs grounded skill sequences with
continuous parameters.

3. Code-as-Policies (CaP) (Liang et al., 2023): A program
synthesis-based strategy that uses an LLM to produce
complete Python programs encoding the action sequence
and continuous parameters for execution.

Execution Details. Each approach is evaluated over 10
randomized seeds per simulated task. We use a maximum
budget of 1000 samples per trial (10000 for drawing tasks).
We limit the number of feedback iterations to 5. All methods
are queried via OpenAI’s GPT-40 unless otherwise stated. A
task is considered successful if the final robot state satisfies
the goal condition without violating any constraints (see
Appendix B.1 for more details on experiments setting).

4.2. Benchmark Experiments

We benchmark InstructFlow against PRoC3S, LLM?3, and
CaP across three domains. As shown in Table 1, across
drawing, block arrangement, and YCB manipulation tasks,
InstructFlow outperforms prior methods by 20-40% in task
success rate.

This improvement stems from InstructFlow’s ability to per-
form structured symbolic reasoning over task-specific fail-
ures, enabling targeted plan corrections at multiple levels:
(i) refining parameter domains to satisfy geometric con-
straints, (ii) inducing symbolic relations (e.g., adjacency,
clearance) to prevent repeated failures, and (iii) revising
subgoal sequences based on environment feedback. For ex-
ample, in Pyramid and Line, baseline methods like PROC3S
often fail due to improper block spacing. InstructFlow
detects these failures and augments the instruction graph
with adjacency constraints (e.g., Adjacent (?block_1i,
?block_7j)), guiding offset adjustments to improve sta-
bility without exhaustive re-planning.

Similarly, in Packing tasks involving irregular YCB objects,

Figure 4. Illustrative image of the environment for the Unstack
task from Arrange Blocks.

InstructFlow uses proximity constraints to guide precise
placement corrections. When initial plans yield collision-
prone configurations, violated ClearOf constraints are
identified, and placement ranges refined to ensure collision-
free, feasible solutions—capabilities absent in flat prompt-
based methods (see Appendix B.2.1).

Ablation results in Table 2 highlight the distinct roles of sym-
bolic planning and constraint induction in InstructFlow’s
performance. Without the Planner, the system loses its
ability to structure tasks hierarchically, resulting in brittle
plans and severe failures in multi-step spatial tasks (e.g.,
Pyramid, Packing, with up to 50% drops). Removing Con-
straint Induction disables feedback-driven repair, forcing
the model into blind retries that struggle with physical fea-
sibility, leading to 30-40% degradation in cluttered and
precision-sensitive tasks. These results confirm that Instruct-
Flow’s robustness stems from the synergy of symbolic task
decomposition and failure-informed constraint refinement.

4.3. Discovered Symbolic Constraints

Table 3 summarizes the symbolic constraints that were auto-
matically induced based on failure feedback across different
manipulation tasks. From a content perspective, we high-
light the following key properties:

Structural Consistency. All induced constraints conform
to the symbolic constraint formulation presented in Sec-
tion 3.3. Each constraint instance can be expressed either
as a relational predicate R;(e,, e5) or a physical threshold
condition f;(©) @ 7. This ensures that all constraints are

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed | Pyramid Line Packing Unstack | Packing Stacking
Ours 100% 80% 100% 100% 90% 100 % 90% 90 % 60% 70%
Ours
w/o Planner Agent 90% 80% 80% 100% 50% 90% 50% 40% 40% 40%
Ours
w/o Constraint Agent | 100% 80% 100% 80% 40% 100% 60% 60% 30% 40%

Table 2. Ablation study results (% task success) highlighting the contributions of the InstructFlow Planner and Symbolic Constraint

Generator.

Task Symbolic Constraints

StableOn(?block_top, ?block_bottom);
ProximitySafe(?block_bottom);

PathClear(?gripper, ?block);

Before(place(block_top), place(?block_bottom));
Distance(?block_bottom) €[0, 0.04]

Aligned(?block_bottom) A On(block_top, ?block_bottom);
Order(Place(block_bottom1), Place(block_bottom2), Place(block_top));

Pyramid

CenterOfMass(block,op) € SupportArea(?block_bottom)

StableOn(?block, table);
Alignment(?block);
Alignment_tolerance €[-0.01, 0.01]

Line

ProximitySafe(?block, ?boundary);
PlacementFeasible(?block, square_region);
WithinBounds(?block, region_center, 2¥blcok_size);
ProximitysSafe(block, region_center) A
WithinDistance(?block, region_center, ?max_distance)

StableOn(?block, ?bowl);

ProximitySafe(?gripper, ?block);
Cleafof(?gripper,?obstacle);
PlacementFeasible(green_block, green_bowl);
Inside(green_block, green_bowl);

Aligned(block_center, bowl_center);
NotStacked(green_block, ?obstacle) A of fset_z > 0.03

Packing (Blocks)

Unstack (Blocks)

ProximitySafe(?gripper, ?object);

GraspFeasible(?grasp, object_pose);

ProximitySafe(object, table_center);

Distance(?object, table_center) < 0.06;
PlacementFeasible(?object, center, threshold) A threshold = 0.06;
Graspable(?grasp, ?object);

CollisionFree(?gripper, ?object)

Packing (YCB)

OnTop(object_a, object_b);

ClearOf(object_a, surface);

ClearSurface(object_b);
PlacementFeasible(object_a, object_b);
StableOn(object_a, object_b);
AlignedForStacking(object_a, object_b);
Graspable(?object, ?grasp) A CollisionFree(?0object)

Stacking (YCB)

Table 3. Induced constraints for each task across Arrange-Blocks
and Arrange-YCB domains

logically composable, interpretable, and grounded in the
formal symbolic space defined by ¢.

Diverse Coverage of Constraint Types. The constraint set
spans a wide range of task-relevant constraint categories,
including:

e Spatial safety:
PathClear...

ProximitySafe, ClearOf,

¢ Placement feasibility:
Aligned, StableOn. ..

PlacementFeasible,

¢ Geometric parameters:
CenterOfMass. ..

Distance, Offset,

* Temporal logic: Before, Order. ..

Contact(block_top, ?block_bottom) A CloseTogether(?block_bottom);

These categories capture both physical feasibility and sym-
bolic reasoning failure modes, supporting a broad range of
corrective strategies.

Notably, the table does not include constraints for the Draw-
ing tasks. This is because the drawing tasks are compara-
tively simpler in structure and were typically solved by the
planner in a single attempt without triggering any failure-
driven refinement. As a result, no symbolic constraint in-
duction process was invoked for these tasks, and they are
therefore excluded from this table.

4.4. Case Study

We take the Unstack task as a case study to illustrate the
effectiveness of InstructFlow. The goal is to place the
green block into the green bowl, but the task poses hidden
challenges: the green block is often buried beneath a stack,
making direct access infeasible. Naive pick attempts cause
collisions with blocks above, violating the constraints and
leading to failure.

Existing methods such as PRoC3S can detect execution fail-
ures and make localized repairs, such as inserting obstacle
removal steps. However, they struggle with multi-layered
occlusions. When the green block is buried under multiple
stacked objects, PRoC3S lacks a structured mechanism to
reason about the correct removal order. As a result, it of-
ten generates plans with invalid sequences or actions that
reintroduce collisions, ultimately failing the task.

Symbolic Constraints In the first round of code generation,
InstructFlow receives the goal: place the green block into
the green bowl. It constructs an initial instruction graph
with two planning nodes: pick object_4 and place
object_7. Correspondingly, the code attempts to pick
object_4 at its current pose and place it at the target
location.

Execution feedback, however, reveals repeated collisions
during the pick action:

[Error Message]: "250 occurences:
pick, Violation: [Twin]

Step 0, Action
Collision detected between
object_5 object gripper finger" and "250 occurences:
Step 0, Action pick, Violation: [Twin] Collision
detected between object_6 object gripper finger"

Given the failure feedback and generated code, the Con-

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

straint Generator localizes the root cause to the pick
action on object_4, identifying the involved variables:
the manipulated object, its pose, and the interfering objects
(object_5, object_6). By analyzing the spatial con-
figuration, InstructFlow infers that the gripper’s approach
vector intersects with the stacked obstacles, violating colli-
sion constraints. This reasoning leads to the generation of
explicit symbolic constraints:

Gunstack = ClearOf(gripper,object_5) A
ClearOf(gripper,object_6)

These constraints distill raw collision feedback into sym-
bolic predicates that express the essential condition: the
gripper must reach the target without obstruction. This
abstraction transforms a low-level failure into a reusable,
structured signal for graph updates and targeted code repair.

Dynamic InstructFlow Graph Update. Given the sym-
bolic constraints, InstructFlow Planner dynamically up-
dates the instruction graph by introducing reasoning nodes
that explicitly model the spatial and logical dependencies in
the scene.

Specifically, the updated graph includes a spatial
reasoning node v, that analyzes vertical stack-
ing relations between objects, inferring that object_5
and object_6 are stacked above object_4 via sym-
bolic below relations. Based on this output, an object
selection reasoning node Vit iion identifies
object_5 and object_6 as obstacles to be removed
according to the induced ClearOf constraints. A logic
reasoning node v%e-‘l*;‘;“w then determines the action se-
quence that satisfies these constraints, ensuring the objects
are unstacked top-down. These reasoning nodes collectively
refine the instruction graph by introducing new planning
nodes to first move object_6 (yellow), then object_5
(teal), and finally pick object_4 (green), reflecting the

inferred symbolic dependencies.

Code Repair Based on the updated instruction graph,
regenerates the executable code to satisfy the
induced symbolic constraints. Unlike black-box retries, the
code repair is explicitly guided by InstructFlow’s graph
structure, ensuring that prerequisite actions (e.g., obstacle
removal) are correctly sequenced before the primary task.

As shown in Fig. 5, the repaired code respects both spatial
constraints (via clear placement of obstacles) and temporal
dependencies (via correct unstacking order), demonstrating
InstructFlow’s ability to produce interpretable, constraint-
compliant programmatic policies. (See Appendix B.2.2 for
more case study).

def gen_plan(initial: RavenBelief,

1

2 x_clearl: float, y clearl:

Bl x_clear2: float, y clear2:

4 x_offset: float, y offset: at) :

5 plan = []

6

7 # subgoal 1: Pick object_6 (the yellow block)

8 blocké = initial.objects["object 6"]

9 plan.append (Action ("pick", block6.pose.point))

10

11 # subgoal 2: Place object 6 at a clear location

128 | plan.append(Action("place”, [x clearl, y clearl, block.pose.point[2]]))
13

14 # subgoal 3: Pick object_5 (the teal block)

15 block5 = initial.objects["object 5"]

16 plan.append (Action ("pick", block5.pose.point))

17

18 # subgoal 4: Place object_5 at a clear location

19 plan.append (Action ("place", [x_clear2, y_clear2, block5.pose.point[2]]))
20

21 # subgoal 5: Pick object 4 (the green block)

22 block4 = initial.objects["object 4"]

23 plan.append (Action ("pick”, blockd.pose.point))

24

25 # subgoal 6: Place object_4 into object_7 (the green bowl)
26 bowl7 = initial.objects["object 7"]

27 X, y, z = bowl7.pose.point

28 plan.append (Action ("place", [x + x offset, y + y_ offset, z]))
29

30 return plan

Figure 5. A code snippet illustrating how InstructFlow repairs the
Unstack plan by intuitively injecting a targeted object removal
routine automatically derived from InstructFlow’s structural rea-
soning process.

5. Conclusions

We presented InstructFlow, a multi-agent framework for
long-horizon robotic manipulation that combines symbolic
constraints reasoning with feedback-driven code repair. By
introducing an adaptive instruction graph with symbolic con-
straints reasoning, InstructFlow decomposes complex tasks
into structured subgoals, enabling interpretable, constraint-
aware code generation and robust plan repair. Empirical
results across challenging benchmarks validate the system’s
ability to handle long-horizon, constraint-sensitive scenarios
with improved success rates and sample efficiency. Looking
ahead, we plan to extend InstructFlow to incorporate visual
grounding and multi-modal constraint induction, enabling
even richer symbolic reasoning from unstructured feedback
in the physical world.

Acknowledgments

This research is supported by the National Research Foun-
dation, Singapore and Infocomm Media Development Au-
thority under its Trust Tech Funding Initiative, Career De-
velopment Fund (CDF) of the Agency for Science, Tech-
nology and Research (A*STAR) (No: C233312007, No:
C243512014), and the National Research Foundation, Sin-
gapore under its Al Singapore Programme (AISG Award
No: AISG-NMLP-2024-003), and, in part, by the Key R&D
Project of Jilin Province, China (No. 20240304200SF). Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do
not reflect the views of the National Research Foundation,
Singapore, and Infocomm Media Development Authority.

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

References

Chen, J., Mu, Y., Yu, Q., Wei, T., Wu, S., Yuan, Z., Liang,
Z., Yang, C., Zhang, K., Shao, W,, et al. Roboscript:
Code generation for free-form manipulation tasks across
real and simulation. arXiv preprint arXiv:2402.14623,
2024.

Curtis, A., Fang, X., Kaelbling, L. P, Lozano-Pérez, T., and
Garrett, C. R. Long-horizon manipulation of unknown
objects via task and motion planning with estimated af-
fordances. In 2022 International Conference on Robotics
and Automation, ICRA 2022, Philadelphia, PA, USA,
May 23-27, 2022, pp. 1940-1946. IEEE, 2022. doi: 10.
1109/ICRA46639.2022.9812057. URL https://doi.
org/10.1109/ICRA46639.2022.9812057.

Curtis, A., Kumar, N., Cao, J., Lozano-Pérez, T., and Kael-
bling, L. P. Trust the proc3s: Solving long-horizon
robotics problems with 1lms and constraint satisfac-
tion. In Agrawal, P, Kroemer, O., and Burgard, W.
(eds.), Conference on Robot Learning, 6-9 November
2024, Munich, Germany, volume 270 of Proceedings
of Machine Learning Research, pp. 1362-1383. PMLR,
2024. URL https://proceedings.mlr.press/
v270/curtis25a.html.

Dantam, N. T., Kingston, Z. K., Chaudhuri, S., and
Kavraki, L. E. Incremental task and motion plan-
ning: A constraint-based approach. In Hsu, D., Am-
ato, N. M., Berman, S., and Jacobs, S. A. (eds.),
Robotics: Science and Systems XII, University of
Michigan, Ann Arbor, Michigan, USA, June 18 -
June 22, 2016, 2016. doi: 10.15607/RSS.2016.XII.

002. URL http://www.roboticsproceedings.

org/rssl2/p02.html.

Du, Y., Konyushkova, K., Denil, M., Raju, A., Landon, J.,
Hill, F., de Freitas, N., and Cabi, S. Vision-language mod-
els as success detectors. arXiv preprint arXiv:2303.07280,
2023.

Duan, J., Pumacay, W., Kumar, N., Wang, Y. R., Tian,
S., Yuan, W., Krishna, R., Fox, D., Mandlekar, A., and
Guo, Y. Aha: A vision-language-model for detecting and
reasoning over failures in robotic manipulation. arXiv
preprint arXiv:2410.00371, 2024.

Garrett, C. R., Chitnis, R., Holladay, R. M., Kim, B.,
Silver, T., Kaelbling, L. P., and Lozano-Pérez, T.
Integrated task and motion planning. Annu. Rev.
Control. Robotics Auton. Syst., 4:265-293, 2021. doi:
10.1146/ANNUREV-CONTROL-091420-084139.
URL https://doi.org/10.1146/
annurev-control-091420-084139.

10

Guo, Y., Wang, Y.-J., Zha, L., and Chen, J. Doremi: Ground-
ing language model by detecting and recovering from
plan-execution misalignment. In 2024 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 12124-12131. IEEE, 2024.

Huang, S., Jiang, Z., Dong, H., Qiao, Y., Gao, P, and Li,
H. Instruct2act: Mapping multi-modality instructions to
robotic actions with large language model. arXiv preprint
arXiv:2305.11176, 2023a.

Huang, W., Wang, C., Zhang, R., Li, Y., Wu, J., and Fei-Fei,
L. Voxposer: Composable 3d value maps for robotic
manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023b.

Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical task
and motion planning in the now. In IEEFE International
Conference on Robotics and Automation, ICRA 2011,
Shanghai, China, 9-13 May 2011, pp. 1470-1477. IEEE,
2011. doi: 10.1109/ICRA.2011.5980391. URL https:
//doi.org/10.1109/ICRA.2011.5980391.

Konidaris, G. On the necessity of abstraction. Current
opinion in behavioral sciences, 29:1-7, 2019.

Li, J., Chen, P., Wu, S., Zheng, C., Xu, H., and Jia, J.
Robocoder: Robotic learning from basic skills to gen-
eral tasks with large language models. arXiv preprint
arXiv:2406.03757, 2024.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control. In IEEE Inter-
national Conference on Robotics and Automation, ICRA
2023, London, UK, May 29 - June 2, 2023, pp. 9493-9500.
IEEE, 2023. doi: 10.1109/ICRA48891.2023.10160591.
URL https://doi.org/10.1109/ICRA48891.
2023.10160591.

Liang, Y., Kumar, N., Tang, H., Weller, A., Tenenbaum,
J. B, Silver, T., Henriques, J. F., and Ellis, K. Visual-
predicator: Learning abstract world models with neuro-
symbolic predicates for robot planning. In The Thir-
teenth International Conference on Learning Representa-
tions, ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025. URL https://openreview.net/
forum?id=Q0fswj7hij.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S.,
Biswas, J., and Stone, P. LLM+P: empowering large
language models with optimal planning proficiency.
CoRR, abs/2304.11477, 2023a. doi: 10.48550/ARXIV.
2304.11477. URL https://doi.org/10.48550/
arxXiv.2304.11477.

https://doi.org/10.1109/ICRA46639.2022.9812057
https://doi.org/10.1109/ICRA46639.2022.9812057
https://proceedings.mlr.press/v270/curtis25a.html
https://proceedings.mlr.press/v270/curtis25a.html
http://www.roboticsproceedings.org/rss12/p02.html
http://www.roboticsproceedings.org/rss12/p02.html
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591
https://openreview.net/forum?id=QOfswj7hij
https://openreview.net/forum?id=QOfswj7hij
https://doi.org/10.48550/arXiv.2304.11477
https://doi.org/10.48550/arXiv.2304.11477

InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

Liu, Z., Bahety, A., and Song, S. Reflect: Summarizing
robot experiences for failure explanation and correction.
arXiv preprint arXiv:2306.15724, 2023b.

Ma, Y. J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar,
V., and Zhang, A. Vip: Towards universal visual reward
and representation via value-implicit pre-training. arXiv
preprint arXiv:2210.00030, 2022.

Mu, Y., Chen, J., Zhang, Q., Chen, S., Yu, Q., Ge, C., Chen,
R., Liang, Z., Hu, M., Tao, C., Sun, P, Yu, H., Yang, C.,
Shao, W., Wang, W,, Dai, J., Qiao, Y., Ding, M., and Luo,
P. Robocodex: Multimodal code generation for robotic
behavior synthesis. In Forty-first International Confer-
ence on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=xnQlqoly7Q.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., Von Werra, L., and
Longpre, S. Octopack: Instruction tuning code large lan-
guage models. In NeurIPS 2023 Workshop on Instruction
Tuning and Instruction Following, 2023.

Rodriguez-Sanchez, R., Spiegel, B. A., Wang, J., Patel,
R., Tellex, S., and Konidaris, G. Rlang: a declarative
language for describing partial world knowledge to rein-
forcement learning agents. In International Conference
on Machine Learning, pp. 29161-29178. PMLR, 2023.

Schlesinger, C., Guha, A., and Biswas, J. Creating and
repairing robot programs in open-world domains. arXiv
preprint arXiv:2410.18893, 2024.

Shirai, K., Beltran-Hernandez, C. C., Hamaya, M.,
Hashimoto, A., Tanaka, S., Kawaharazuka, K., Tanaka,
K., Ushiku, Y., and Mori, S. Vision-language inter-
preter for robot task planning. In IEEE International
Conference on Robotics and Automation, ICRA 2024,
Yokohama, Japan, May 13-17, 2024, pp. 2051-2058.
1IEEE, 2024. doi: 10.1109/ICRA57147.2024.10611112.

URL https://doi.org/10.1109/ICRA57147.

2024.10611112.

Singh, 1., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A.
Progprompt: Generating situated robot task plans us-
ing large language models. In IEEE International Con-
ference on Robotics and Automation, ICRA 2023, Lon-
don, UK, May 29 - June 2, 2023, pp. 11523-11530.
IEEE, 2023. doi: 10.1109/ICRA48891.2023.10161317.

URL https://doi.org/10.1109/ICRA48891.

2023.10161317.

Skreta, M., Yoshikawa, N., Arellano-Rubach, S., Ji, Z.,
Kristensen, L. B., Darvish, K., Aspuru-Guzik, A., Shkurti,
F., and Garg, A. Errors are useful prompts: Instruction

11

guided task programming with verifier-assisted iterative
prompting. CoRR, abs/2303.14100, 2023. doi: 10.48550/
ARXIV.2303.14100. URL https://doi.org/10.
48550/arXiv.2303.14100.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell,
S., and Abbeel, P. Combined task and motion planning
through an extensible planner-independent interface layer.
In 2014 IEEE International Conference on Robotics and
Automation, ICRA 2014, Hong Kong, China, May 31 -
June 7, 2014, pp. 639—646. IEEE, 2014. doi: 10.1109/
ICRA.2014.6906922. URL https://doi.org/10.
1109/ICRA.2014.6906922.

Tang, H., Key, D., and Ellis, K. Worldcoder, a model-based
Ilm agent: Building world models by writing code and
interacting with the environment. Advances in Neural
Information Processing Systems, 37:70148-70212, 2024.

Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S.,
and Kambhampati, S. Planbench: An extensible bench-
mark for evaluating large language models on planning
and reasoning about change. Advances in Neural Infor-
mation Processing Systems, 36:38975-38987, 2023.

Wang, L., Ling, Y., Yuan, Z., Shridhar, M., Bao, C., Qin,
Y., Wang, B., Xu, H., and Wang, X. Gensim: Generating
robotic simulation tasks via large language models. arXiv
preprint arXiv:2310.01361, 2023.

Wang, S., Han, M., Jiao, Z., Zhang, Z., Wu, Y. N., Zhu,
S., and Liu, H. Lim3: Large language model-based
task and motion planning with motion failure reason-
ing. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS 2024, Abu Dhabi, United
Arab Emirates, October 14-18, 2024, pp. 12086—12092.
IEEE, 2024. doi: 10.1109/IROS58592.2024.10801328.
URL https://doi.org/10.1109/IR0OS58592.
2024.10801328.

Zhao, H., Hadji, 1., Dvornik, N., Derpanis, K. G., Wildes,
R. P, and Jepson, A. D. P3iv: Probabilistic procedure
planning from instructional videos with weak supervision.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 2938-2948,
2022.

https://openreview.net/forum?id=xnQ1qoly7Q
https://openreview.net/forum?id=xnQ1qoly7Q
https://doi.org/10.1109/ICRA57147.2024.10611112
https://doi.org/10.1109/ICRA57147.2024.10611112
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.48550/arXiv.2303.14100
https://doi.org/10.48550/arXiv.2303.14100
https://doi.org/10.1109/ICRA.2014.6906922
https://doi.org/10.1109/ICRA.2014.6906922
https://doi.org/10.1109/IROS58592.2024.10801328
https://doi.org/10.1109/IROS58592.2024.10801328

