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Abstract
This paper proposes an online, provably robust,
and scalable Bayesian approach for changepoint
detection. The resulting algorithm has key ad-
vantages over previous work: it provides provable
robustness by leveraging the generalised Bayesian
perspective, and also addresses the scalability is-
sues of previous attempts. Specifically, the pro-
posed generalised Bayesian formalism leads to
conjugate posteriors whose parameters are avail-
able in closed form by leveraging diffusion score
matching. The resulting algorithm is exact, can
be updated through simple algebra, and is more
than 10 times faster than its closest competitor.

1. Introduction
Changepoint (CP) detection is the task of identifying sud-
den changes in the statistical properties of a data stream.
The methods to detect CPs are used in applications includ-
ing systems health monitoring (Stival et al., 2022; Yang
et al., 2006), financial data (Kim et al., 2022; Kummerfeld
& Danks, 2013), climate change (Reeves et al., 2007; Itoh
& Kurths, 2010), and cyber security (Hallgren et al., 2022).
Existing approaches include likelihood ratio methods such
as the parametric method CUSUM (Page, 1954) or Change
Finder methods (Kawahara & Sugiyama, 2009), to Bayesian
methods such as in Chib (1998); Fearnhead (2006).

Detecting CPs in an online fashion is an even more challeng-
ing task, but can allow practitioners to act on these systems
in real-time. In a Bayesian context, the most popular method
is Bayesian online changepoint detection (BOCD) (Adams
& MacKay, 2007; Fearnhead & Liu, 2007). Here, the data
stream is assumed to come from one of several different
underlying distributions; and the goal is to quantify our
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Figure 1. Twitter Flash Crash. The run-length is the time since the
last changepoint (CP). Top: Jow Dones Index with Maximum a
posteriori CPs detected by standard BOCD marked as ▲. Middle
& Bottom: run-length posteriors of Dm-BOCD with most likely
run-length in blue and of standard BOCD in green. Standard
BOCD incorrectly detects a CP, Dm-BOCD does not.

uncertainty over the most recent time at which the data dis-
tribution changed. BOCD has many desirable properties:
it is suitable for multivariate data and has the capacity to
quantify uncertainty. However, it also has a significant flaw
inherited from Bayesian inference: it is not robust under
outliers or model misspecification. This can lead to failures,
where most data points inferred to be CPs are simply mild
heterogeneities in the data. This is a significant problem,
and can causes practitioners to act on safety-critical systems
based upon an erroneously declared CPs.

The lack of robustness in Bayesian methods has recently
come to the forefront, and various strategies have been pro-
posed to address it. Arguably the most successful amongst
these have been generalised Bayesian methods (see e.g. Bis-
siri et al., 2016; Jewson et al., 2018; Knoblauch et al., 2022).
Building on these ideas, Knoblauch et al. (2018) introduced
the first robust version of BOCD using generalised Bayesian
inference based on β-divergences (β-BOCD).

While the resulting algorithm is generally applicable and
provides robustness, it has a major drawback that has
severely impeded its broader use: it is not scalable. This
is mainly due to the intractability of the generalised pos-
terior and predictive distributions, which require multiple
variational approximations to be performed at each time
point. As a result, β-BOCD is practically infeasible if one
is interested in online methods for high-frequency data, or
if one deals with a constrained computational budget.
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This paper proposes a new generalised Bayesian inference
scheme based on diffusion score matching (Barp et al.,
2019), which is effectively a weighted version of the origi-
nal score-matching divergence of Hyvärinen (2006). If the
weights are chosen appropriately, the resulting posteriors
are provably robust, and the corresponding CP detection
algorithm, denoted Dm-BOCD, is also robust to outliers.
This is illustrated in Figure 1 on the value of the Dow Jones
Industrial Average (DJIA) on the day of the ‘Twitter flash
crash’ on 17/04/2013: standard BOCD falsely identifies 3
CPs, whilst Dm-BOCD correctly identifies no CPs.

Additionally—and unlike posteriors based on the β-
divergence—Dm-posteriors also have a conjugacy property
for likelihoods of the exponential family so long as the prior
is chosen to be a normal, truncated normal, or any other
squared exponential distribution. This makes Dm-BOCD
very fast: specifically, it ensures that all posteriors used in
the algorithm can be updated exactly and efficiently through
elementary vector and matrix calculations. If one uses the
pruning strategies for the CP posterior proposed in Adams
& MacKay (2007), the computational complexity of our
algorithm is O(T (d2 + p2)); where T is the length of the
data stream, d is the dimension of the observations, and
p is the number of model parameters. This is the same
computational complexity as the original BOCD algorithm.
This also makes Dm-BOCD more than 10 times faster than
β-BOCD in our numerical experiments.

Beyond that, Dm-BOCD has benefits that make it more
attractive than standard BOCD even from a purely computa-
tional point of view in certain settings. For example, when
modelling d-dimensional observations with non-Gaussian
exponential family distributions, we can obtain conjugate
Dm-posteriors, even though no conjugate posteriors exist in
the standard Bayesian case.

In summary, we make two key contributions:

(1) We derive and propose the Dm-posterior; proving its
robustness and closed form updates in the process;

(2) We use this posterior for BOCD, leading to the first
algorithm that is both robust and scalable.

The remainder of the paper is structured as follows: Sec-
tion 2 reviews BOCD and generalised Bayesian inference.
Section 3 derives the robustness and scalability properties
of Dm-posteriors, and integrates them with BOCD. We then
validate our approach experimentally in Section 4.

2. Background
Our method merges generalised Bayesian posteriors based
on diffusion score matching with the BOCD algorithm.
Here, we provide a short explanation of the concepts rele-
vant for understanding this interface.

2.1. Bayesian Online Changepoint Detection (BOCD)

Let x1:T be a sequence of observations x1, x2, . . . , xT ,
where xt ∈ X ⊆ Rd for the time index t ∈ {1, . . . , T}.
Throughout, x1:T follows the product partition model of
Barry & Hartigan (1993): the data is partitioned through
a sequence of changepoints (CPs) 0 = τ1 < τ2 < . . . so
that the i-th segment is xτi:τi+1−1, and data within the i-th
segment is independently and identically distributed (i.i.d.)
conditional on τi, τi+1. In the model underlying BOCD, the
data in each segment is modelled with the same model class
{pθ : θ ∈ Θ}, but with a different parameter for each seg-
ment. The key insight for this model, reached independently
by both Adams & MacKay (2007) and Fearnhead & Liu
(2007), is that Bayesian inference can be made online and
efficiently if, at time t, one only tracks a posterior distribu-
tion over the most recent CP. Instead of defining a prior and
posterior over the CPs directly, BOCD therefore seeks to
infer the so-called run-length rt of the current segment—the
amount of time since the most recent CP.

The remainder of this section details the hierarchical
Bayesian model underlying the BOCD construction. Firstly,
the approach uses a conditional prior on the run-length:

rt|rt−1 ∼ H(rt|rt−1). (Conditional prior on run-length)

Since at time t we either have a new CP (rt = 0) or the
current segment continues (rt = rt−1 + 1), H(rt|rt−1)
has positive probability mass only for rt ∈ {0, rt−1 + 1}.
See Wilson et al. (2010) for a broader discussion of prior
selection. Conditional on rt, all data points xt′ from the
same segment (t − rt) : t so that t′ ∈ {t − rt, t − rt +
1, . . . , t} are then modelled as i.i.d. from pθ via

θ ∼ π(θ) (Parameter prior),
xt′ |θ ∼ pθ(xt′) (Probability model for data).

The quantity of interest is the posterior over rt, which is

p(rt|x1:t) =
p(rt,x1:t)
p(x1:t)

= p(rt,x1:t)∑t
rt=0 p(rt,x1:t)

.

This shows that the run-length posterior is tractable when-
ever the joint distribution between run-length and observa-
tions given by p(rt, x1:t) is also tractable. Intriguingly, these
terms can be computed efficiently via an online recursion
whenever the posterior predictive is tractable:

p(rt, x1:t) =

t−1∑
rt−1=0

p
(
xt|x(rt)

t−1

)
︸ ︷︷ ︸
Predictive Posterior

H(rt|rt−1)︸ ︷︷ ︸
CP prior

p(rt−1, x1:t−1),

where x
(rt)
t−1 = xt−rt:t−1 is the segment with run-length rt

except the most recent observation xt, and the predictive of
xt constructed from x

(rt)
t−1 is

p(xt|x(rt)
t−1) =

∫
Θ
pθ(xt)π

B(θ|x(rt)
t−1)dθ, (1)
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where πB(θ|x(rt)
t−1) ∝

∏rt
i=1 pθ(xt−i)π(θ) is the Bayes pos-

terior over θ in the current segment. To ensure that this
integral is tractable in closed form, BOCD algorithms usu-
ally use prior densities π(θ) and models pθ(x) forming a
conjugate likelihood-prior pair.

Since the standard BOCD method was proposed, it has
been extended in a wide range of directions. A full literature
review is beyond the scope of this paper, but we highlight ex-
tensions to Gaussian processes models (Saatçi et al., 2010),
non-exponential families (Turner et al., 2013), multiple mod-
els in different segments (Knoblauch & Damoulas, 2018;
Knoblauch et al., 2022), observations with multiple fidelity
levels (Gundersen et al., 2021), and prediction (Agudelo-
España et al., 2020). We also note that while BOCD only
quantifies uncertainty about the most recent CP, an efficient
maximum a-posteriori Viterbi-style recursion can be used
to efficiently update point estimates of all CP locations (see
e.g. Fearnhead & Liu, 2007).

Unfortunately, BOCD is not robust: it finds spurious CPs
whenever the model is a poor description of data. To address
this issue, one can replace the standard Bayesian parameter
posterior in (1) with a robust generalised Bayesian posterior.

2.2. Generalised Bayesian (GB) inference

If the statistical model pθ is well-specified so that for some
θ0 ∈ Θ, the true data-generating mechanism is pθ0 , standard
Bayesian updating is the optimal way of integrating prior
information with data (Zellner, 1988). Crucially, this no
longer holds if the model is misspecified. In this setting,
uncertainties are miscalibrated, posterior inferences are sen-
sitive to outliers and heterogeneity, and the Bayesian update
may no longer be the best way of processing information.
To address these issues, a recent line of research has advo-
cated for the use of generalised Bayesian inference (see e.g.
Grünwald, 2012; Bissiri et al., 2016; Jewson et al., 2018;
Knoblauch et al., 2022; Fong et al., 2021; Jewson & Rossell,
2022; Matsubara et al., 2022b) which, once conditioned on
some data x1:T , is based on a belief distribution of the form

πD
ω (θ|x1:T ) ∝ π(θ) exp{−ωT · D̂(θ)}. (2)

While D̂(θ) could in principle represent any loss function,
we consider a narrowed scope. Specifically, for D being
a discrepancy measure on the space of probability mea-
sures on X , and p0 being the true data-generating process,
D̂ : Θ → R uses x1:T to estimate the part of the discrep-
ancy D(p0, pθ) that depends on θ. Here, ω > 0 is called the
learning rate and acts as a scaling parameter that determines
how quickly the posterior learns from the data. While the
choice of ω may depend on various other considerations
(Grünwald, 2012; Holmes & Walker, 2017), it is typically
chosen to provide approximate frequentist coverage (Lyd-
don et al., 2019; Martin & Syring, 2022). Neither of these

techniques are suitable for the online setting; and we will
therefore propose a new way of choosing ω in Section 3.4.

The posteriors in (2) are called generalised posteriors be-
cause for ω = 1, and D̂(θ) = 1

T

∑T
t=1 − log p(xt|θ) esti-

mating the Kullback-Leibler divergence between the model
and the data-generating process, one recovers the standard
Bayes posterior. Using such generalisations is usually done
for two main arguments: to provide robustness, and to im-
prove computation. For example, Chernozhukov & Hong
(2003) are the first to suggest them for estimation when com-
puting a minimum is hard. Rather than focusing on com-
putational aspects, Hooker & Vidyashankar (2014), Ghosh
& Basu (2016) and Bissiri et al. (2016) advocated for their
use to improve robustness. This has led to a flurry of papers
proposing particular discrepancy measures that induce ro-
bustness (e.g. Chérief-Abdellatif & Alquier, 2020), and their
various applications in sequential Monte Carlo (Boustati
et al., 2020), deep Gaussian processes (Knoblauch, 2019),
and Bayesian neural networks (Futami et al., 2018). More
recently, a line of work has exploited generalised posteriors
both for computational gain and robustness: Matsubara et al.
(2022b;a) showcased their use for robust inference in un-
normalised models with both continuous and discrete data.
Similarly, Schmon et al. (2020); Dellaporta et al. (2022);
Pacchiardi & Dutta (2021); Legramanti et al. (2022) have
used them for robustness in simulation-based and likelihood-
free settings.

2.3. Generalised Bayesian Inference in BOCD

Knoblauch et al. (2018) first proposed a robustification of
BOCD based on (2) and the β-divergence, which is robust
and well-defined for β ∈ (0,∞) when pθ is uniformly
bounded on X , and whose natural estimator was derived by
Basu et al. (1998) and is given by

D̂β(θ) =
1
T

∑T
t=1

1
1+β

∫
X pθ(x)

1+βdx+ 1
β pθ(xt)

β .

While the resulting method can be made robust, it has sev-
eral key failures that make it computationally infeasible in
most settings. Firstly, the loss depends on

∫
X pθ(x)

1+βdx.
Unless this integral is available in closed form, using D̂β

will introduce the same challenges as working with an in-
tractable likelihood in a standard Bayesian setting. Secondly,
the hyperparameter β enters the loss as the exponent of a
likelihood. Numerically, this makes the loss extremely sen-
sitive to even very minor changes in β, which makes it very
difficult to tune β and counteracts the very robustness one
hopes to achieve. This numerical instability is compounded
by the fact that (2) depends on the exponentiation of D̂β—
if pθ is an exponential family member, then even if one
ignores the integral term, exp{−ωT D̂β(θ)} is a double ex-
ponential. Thirdly, posteriors based on D̂β often have to be
approximated using variational methods. Since this has to
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be done for all run-lengths rt at each time step t for the re-
cursive relationship powering the algorithm, this represents
a substantive computational overhead.

Taken together, these issues often render posteriors based
on the β-divergence computationally infeasible; especially
in high-dimensional settings. In principle, one could replace
the β-divergence with various robust alternatives whose
numerical issues are less substantive and whose hyperpa-
rameters are easier to tune—such as α-divergences (Hooker
& Vidyashankar, 2014), γ-divergences (Knoblauch, 2019),
or maximum mean discrepancies (Chérief-Abdellatif &
Alquier, 2020). Unfortunately, none of these alternatives al-
leviate the problem of computationally expensive variational
approximations. This is an issue, since ultimately, it is the
conjugate forms that can be updated in terms of sufficient
statistics that make BOCD computationally attractive.

In the face of this, it may be tempting to postulate an inherent
trade-off between robustness and computational tractability
for generalised Bayes. But this is not so; recently, it was
shown that robust posteriors based on kernel Stein discrepan-
cies have a conjugacy property (Proposition 2 of Matsubara
et al., 2022b). These generalised posteriors however are
not suitable for BOCD: Updating them from t− 1 to t ob-
servations takes O(t) operations—as opposed to the O(1)
operations required for standard Bayesian posteriors. Such
updates would lead to an algorithm whose computational
demands per iteration increase linearly the longer it is run,
leading to an ‘online’ algorithm in name only. This is why
the current paper proposes a new class of generalised poste-
riors based on diffusion score matching (Barp et al., 2019):
we prove that they are robust, and lead to conjugacy, with
closed forms updates that take O(1) operations.

3. Methodology
We present the methodological innovations of the current
paper in three steps: After an exposition of diffusion score
matching, we first explain how the resulting generalised
Bayesian posterior yields closed form updates. In a second
step, we provide formal robustness guarantees for these
posteriors. In the last step, we show how to integrate them
into the BOCD framework, yielding Dm-BOCD; and how
to choose its hyperparameters.

3.1. Diffusion Score Matching Bayes

Notation. We write the divergence operator on a vector
field f as ∇ · f . This condenses the formulae derived in
this paper, but we provide all uncondensed versions in Ap-
pendix A. The d-dimensional vector (and d×p sized matrix)
of partial derivatives for f : X → R (and g : X → Rp)
evaluated at x ∈ X is written as ∇f(x) (and ∇g(x)).

Score Matching. Score matching is a discrepancy-
based method for estimating parameters first proposed by
Hyvärinen (2006). The key idea is to approximately min-
imise the Fisher divergence between the statistical model
{pθ : θ ∈ Θ} and the data-generating process p0. This
method takes its name from the fact that for a density p on
X and sp(x) = ∇ log p(x)—the so-called score function of
the density p—the Fisher divergence is

DId(p0||pθ) = EX∼p0

[
∥spθ

(X)− sp0
(X)∥22

]
.

This divergence is therefore minimised by matching the
scores of the model to that of the data-generating process p0.
This objective is convenient for two main reasons: Firstly,
for the density p = p̃ 1

Z with normaliser Z > 0, sp = sp̃, so
that the objective is attractive when working with likelihoods
whose normaliser Z is unknown. Secondly, the objective
can be rewritten so that the scores of p0 do not have to be
estimated to compute it.

Score matching has been used widely, including for data on
manifolds or other complex domains (Mardia et al., 2016;
Liu et al., 2022; Scealy & Wood, 2022), energy-based mod-
els (Vincent, 2011), anomaly detection (Zhai et al., 2016),
nonparametric density estimation (Sriperumbudur et al.,
2017), score-based generative modelling (Song & Ermon,
2019), and even for Bayesian model selection (Dawid &
Musio, 2015; Shao et al., 2019; Jewson & Rossell, 2022) or
as a scoring rule (Parry et al., 2012). In recent work, Wu
et al. (2023) used score matching for change point detec-
tion. This work differs from ours in three major ways: they
consider a frequentist setting based on the CUSUM statistic,
they only consider standard score matching, and they are
not concerned with robustness. Building on these successes,
various generalised forms of score matching have been pro-
posed over the years to address some of its shortcomings
(e.g. Lyu, 2009; Xu et al., 2022; Yu et al., 2022; Matsubara
et al., 2022a).

Diffusion Score Matching. The particular generalisation
we consider hereafter is diffusion score matching, which was
introduced in Barp et al. (2019) and amounts to a weighted
version of the Fisher divergence given as

Dm(p0∥pθ) = EX∼p0

[
∥m⊤(X)(spθ

(X)− sp0
(X))∥22

]
,

for a pointwise invertible matrix-valued function m : X →
Rd×d. The function m is also known as diffusion matrix
due to the construction of this distance as a Stein discrep-
ancy with a pre-conditioned diffusion Stein operator; see
Anastasiou et al. (2023) for full details.

Like DId , Dm is a statistical divergence between den-
sities p0 and pθ on X = Rd whenever

∫
X |spθ

(x) −
sp0

(x)|2p0(x)dx < ∞. Under appropriate smoothness
and boundary conditions, this can be extended to the case
where X is a connected subset of Rd (Liu et al., 2022;
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Zhang et al., 2022). More generally, Dm recovers DId

for m(x) = Id (the d−dimensional identity matrix), the
estimator in Hyvärinen (2007) for m(x) = x, and the gener-
alised h-score matching method for m(x) = diag(h1/2(x)),
where h is defined in Yu et al. (2018; 2019). The func-
tion m can be thought of as up-weighting areas of X on
which matching the scores of the model to that of the data-
generating process is most important. For the purposes of
the current paper, we will choose this weight to ensure that
the constructed generalised posteriors are provably robust
(see Section 3.3 for details).

Estimating Dm directly is challenging, as it would require
estimating the unknown score sp0

. Fortunately, under the
aforementioned smoothness and boundary conditions (Ap-
pendix B.5) (Liu et al., 2022), we can expand the above
equation and use integration by parts. Then, up to a constant
that does not depend on θ, we can rewrite Dm(p0∥pθ) as

EX∼p0
[∥(m⊤spθ

)(X)∥22 + (2∇ · (mm⊤spθ
))(X)]. (3)

Crucially, the quantity above no longer features sp0
, and

only depends on p0 through an expectation. This leads to a
natural estimator which for x1:T is given by

D̂m(θ) = 1
T

∑T
t=1 dm(θ, xt), where

dm(θ, xt) = ∥(m⊤spθ
)(xt)∥22 + (2∇ · (mm⊤spθ

))(xt).

Diffusion Score Matching Bayes. Based on the estimator
D̂m for the part of Dm that depends on θ, we can construct

πDm
ω (θ|x1:T ) ∝ π(θ) exp(−ωT D̂m(θ)). (4)

Using score matching for a generalised Bayes posterior
was first discussed in passing in Section 4.2 of Giummolè
et al. (2019), though the context is about reference priors for
objective Bayesian inference, and the method is only briefly
mentioned. This previous work also does not robustify the
resulting posterior through the introduction of a weighting
matrix m, or derive its conjugate posteriors.

3.2. Conjugacy for Exponential Family Models

The conjugacy of posteriors of the form (4) make them more
attractive than potential alternatives. For exponential fam-
ily likelihoods, these posteriors depend on two parameters
available in closed form. The exponential family is given
the collection of models with a probability density function

pθ(x) = exp (η(θ)⊤r(x)− a(θ) + b(x)), (5)

where η : Θ → Rp, r : X → Rp, a : Θ → R, and
b : X → R. When η(θ) = θ, we say that the exponential
family model is in natural form, and one can reparametrise
a model to natural form by reparameterising with the map
η−1. Exponential family class of distributions includes the
Gaussian, exponential, Gamma, and Beta distributions.

−10 −5 0 5 10 15

0.0

0.1

0.2

0.3
Dm predictive
Standard Bayes predictive
ε-contamination model

Figure 2. Impact of misspecification in posteriors. The robust Dm-
posterior and non-robust standard Bayes posterior predictive
when the data are incorrectly modelled as Gaussian, but follow an
ε-contamination model P = 0.95N (0, 1) + 0.05δ10.

Proposition 3.1. If pθ is given by (5), then

πDm
ω (θ|x1:T ) ∝ π(θ) exp(−ωT [η(θ)⊤ΛT η(θ) + η(θ)⊤νT ]),

for ΛT = 1
T

∑T
t=1 Λ(xt), νT = 2

T

∑T
t=1 ν(xt), and

Λ(x) = (∇r⊤mm⊤∇r)(x),

ν(x) =
(
∇r⊤mm⊤∇b+∇ · (mm⊤∇r)

)
(x).

Taking η(θ) = θ and choosing a squared exponential
prior π(θ) ∝ exp (− 1

2 (θ − µ)⊤Σ−1(θ − µ)), also makes
πDm
ω (θ|x1:T ) a (truncated) normal of the form

πDm
ω (θ|x1:T ) ∝ exp

(
− 1

2 (θ − µT )
⊤Σ−1

T (θ − µT )
)
,

for Σ−1
T = Σ−1+2ωTΛT and µT = ΣT

(
Σ−1µ− ωTνT

)
.

The proof is in Appendix B.1. The natural exponential fam-
ily allows us to recover a form of Gaussian conjugacy, since
the diffusion score matching squared becomes a quadratic
form in this case. This renders DSM-Bayes scalable; as
we will elaborate upon in Section 3.4, Σ−1

T and µT can be
updated with a new observation in O(p2 + d2) operations.

3.3. Global Bias-Robustness

Building a BOCD algorithm based on πDm
ω (θ|x1:T ) is at-

tractive not only computationally, but also due to its ro-
bustness. We prove this robustness formally by using the
classical framework of ε-contamination models (see, e.g.
Huber, 1981). Given a distribution P, we consider its ε-
contaminated counterpart Pε,y = (1− ε)P+ εδy , where δy
is the dirac-measure at some y ∈ X , and ε ∈ [0, 1]. The clas-
sical perspective on robustness proceeds by defining a point
estimator E : P(X ) → Θ that maps from P(X ), the space
of distributions on X , to Θ. One then investigates its robust-
ness via limε→0

1
ε∥E(P) − E(Pε,y)∥2, which under mild

conditions is equivalent to the derivative ∂
∂ε∥E(Pε,y)∥2

∣∣
ε=0

.
This limit is the so-called influence function. It quantifies
the impact of an infinitesimal contamination at y on the esti-
mator, and is a classical tool to measure outlier robustness.

The Bayesian case is slightly more complicated and de-
picted in Figure 2: we are not concerned by estimators
on Θ, but on P(Θ). The estimates under study are thus
infinite-dimensional objects that vary over Θ. To get a
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handle on this, we first define an influence function point-
wise for each θ ∈ Θ. To this end, note that D̂m(θ) =
EX∼PT

[dm(θ,X)]. We can now define the density-valued
estimator πDm

ω (θ|P) ∝ π(θ) exp{−ωTEX∼P[dm(θ,X)]},
noting πDm

ω (θ|PT ) = πDm
ω (θ|x1:T ) for PT = 1

T

∑T
t=1 δxt

.
Its pointwise posterior influence function (PIF) is

PIF(y, θ,P) =
d

dε
πDm
ω (θ|Pε,y)

∣∣
ε=0

.

Since this is a definition of sensitivity that is local to both θ
and y, making a global statement for all of πDm

ω (θ|x1:T )
requires that we aggregate a notion of sensitivity over
both arguments. The easiest way to do this is to investi-
gate supθ∈Θ,y∈X PIF(y, θ,PT ). If this double supremum
is bounded, we call a posterior globally bias-robust, which
means that the impact of contamination on the posterior den-
sity is uniformly bounded—both over the parameter space,
and the location of said contamination in the data space.
This way of studying the robustness of generalised posteri-
ors was pioneered in Ghosh & Basu (2016), and extended by
Matsubara et al. (2022b). We build on these advances, and
provide a simple condition on m for global bias-robustness
of πDm

ω (θ|x1:T ) in some exponential family models.

Proposition 3.2. If pθ is as in (5) so that η(θ) = θ and
∇b = 0, and if the prior is a squared exponential as in
Proposition 3.1, then πDm

ω (θ|x1:T ) is globally bias-robust
if m : X → Rd×d is chosen so that θ⋆ ̸= 0p and

mij(x) =

{ 1√
1+(∇r(x)θ⋆)2i

if i = j,

0 if i ̸= j.

While m could in principle depend on θ, this would break
the conjugacy presented in Proposition 3.1. The above
choice of m does not depend on θ, and therefore main-
tains the computational advantages of πDm

ω (θ|x1:T ). The
result’s conditions are also mild: we can always ensure
that η(θ) = θ by re-parameterising. Similarly, most dis-
tributions of interest satisfy ∇b = 0. Examples include
Gaussians, exponentials, (inverse) Gamma, and Beta dis-
tributions. Note also that m is only applicable to models
with support X = Rd, as the expansion in (3) is otherwise
not valid without additional boundary conditions. However,
we prove that the proposed weight matrix m also leads to a
well-defined discrepancy measure for various distributions
defined on subsets of X , including the Gamma and the
exponential distribution (see Appendix B.5).

3.4. Dm-BOCD

Using our robust posterior within BOCD is straightforward,
as its only appearance is in the posterior predictive via

p
(
xt|x(r)

t−1

)
=

∫
Θ
pθ(xt)π

Dm
ω

(
θ|x(r)

t−1

)
dθ.

If pθ is a natural exponential family with a squared exponen-
tial prior, then πDm

ω (θ|x(r)
t−1)) is a normal distribution pa-

rameterised by inverse covariance matrix Σ−1
t−1,r and mean

µt−1,r by virtue of 3.1. This makes the predictive easy
to compute—either in closed form or by sampling from
πDm
ω —which is a significant advantage over the β-BOCD

framework. For the latter, the posterior will generally be
intractable so that the algorithm relies on variational approx-
imations. Importantly, there is no way to both efficiently
and exactly update variational approximations based on x1:t

once observation xt+1 arrives: one either uses cheap updates
that lead to subpar variational approximations of the poste-
rior, or one re-computes the approximation from scratch at
the expense of a substantive computational overhead.

In contrast, our approach allows for a cheap and exact up-
date: if we store Σ−1

t−1,r and µt−1,r, we can perform the

update πDm
ω (θ|x(r)

t−1) 7→ πDm
ω (θ|x(r+1)

t ) that adds xt into
the parameter posterior of the segment x(r)

t−1 via

Σ−1
t,r+1 = Σ−1

t−1,r + 2ωΛ(xt),

µt,r+1 = Σt,r+1

(
Σ−1

t−1,rµt−1,r − 2ων(xt)
)
.

If we have access to the un-inverted matrix Σt,r+1, all of
these operations are basic matrix and vector additions or
multiplications that take O(p2 + d2) operations to execute.
While naively computing Σt,r+1 from Σ−1

t,r+1 would take
O(p3) operations, we can apply the Sherman-Morrison for-
mula to the update of Σ−1

t,r+1 to reduce this to O(p2), main-
taining the overall complexity of O(p2 + d2). This is also
the complexity of standard BOCD with the Gaussian like-
lihood and conjugate prior (Adams & MacKay, 2007). In
CP methods for high-frequency data, both the number of
parameters p and the data dimension d are typically small,
so that an update of O(p2 + d2) is attractive.

Run-length pruning. A naive implementation of Dm-
BOCD would keep a posterior over all possible run-lengths
rt = {0, 1 . . . , t − 1}, but this would lead to an algo-
rithm with overall complexity O(

∑T
t=1 t(d

2 + p2)) =
O(T 2(d2 + p2)) for a time series of length T . To pre-
vent this, authors have proposed to ‘prune’ the run-length
posterior to a constant length (Adams & MacKay, 2007;
Fearnhead & Liu, 2007). Here, we follow the most popular
strategy (e.g. Adams & MacKay, 2007; Saatçi et al., 2010;
Knoblauch & Damoulas, 2018) by keeping only the k most
probable run-lengths. For all experiments, we take k = 50.

Choice of m Throughout, we choose m as per Proposi-
tion 3.2, as it ensures robustness—even for certain distribu-
tions with boundaries (see Appendix B.5). Regarding θ⋆, we
found that Dm-BOCD was not very sensitive to this choice;
likely because tuning ω offsets any sensitivity to it. In all
experiments, we thus picked θ⋆ as the maximum likelihood
estimate computed on the full data set. We note that one
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Figure 3. Well-log data. MAP segmentation indicated by blue dashed lines for Dm-BOCD, ▼ for β-BOCD, and ▲ for standard BOCD.
Standard BOCD mistakenly labels outliers as CPs, while both Dm-BOCD and β-BOCD are robust and identify lasting changes.
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Figure 4. Crypto-crash. MAP segmentation indicated by blue
dashed lines for Dm-BOCD, and by ▲ for standard BOCD. There
are no outliers, so both methods identify the correct CP.

known issue with robust CP detection method is that they
can experience a latency when it comes to detecting actual
CPs. Interestingly, this is not something we observe in our
experiments with this choice of m and θ∗.

Choice of ω How to choose ω is an important question
for generalised Bayesian inference, and has more than one
answer (Lyddon et al., 2019; Syring & Martin, 2019; Mat-
subara et al., 2022a; Bochkina, 2022; Wu & Martin, 2023).
Previous methods are computationally expensive, asymp-
totically motivated, and focus on tuning the learning rate
to provide asymptotically correct frequentist coverage. As
the computational overhead of these methods is substantial
and their asymptotic arguments generally do not apply to
the CP setting, we pursue a different strategy: we match
the uncertainty of the generalised posterior to that of its
standard counterpart on the first t⋆ observations of the data
stream. To operationalise this, we choose

ω⋆ = argminω>0 KL
(
πDm
ω (θ|x1:t⋆)∥πB(θ|x1:t⋆)

)
.

Computing ω⋆ is implemented using automatic differentia-
tion via jax (Bradbury et al., 2018). This is possible even
if the standard Bayes posterior πB is intractable, since πDm

ω

has a conjugacy property (see Proposition 3.1). Since the
standard Bayes posterior is reliable in the absence of out-
liers and heterogeneity, this yields reasonable uncertainty
quantification if the degree of misspecification is mild at the
beginning of the data stream. Our experiments confirm this:
the uncertainty is well-calibrated, both predictively and with
regards to the run-length posterior.

4. Experiments
We investigate Dm-BOCD empirically in several numer-
ical experiments. In doing so, we highlight its computa-
tional and inferential advantages over standard BOCD and

β-BOCD. In all experiments, we choose conjugate priors
as in Proposition 3.1, and m and ω as in Section 3.4. All
code and data is publicly available at https://github.
com/maltamiranomontero/DSM-bocd.

Computational complexity. We compare the complexity
of the three BOCD methods in different settings and show
that Dm-BOCD is considerably faster than β-BOCD, even
when sampling is needed. Moreover, Figure 5 shows that
Dm is as fast as standard BOCD when d = 1 and the predic-
tive posterior is available in closed form. See Appendix C.1
for details.
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Dm-BOCD
Standard BOCD

Figure 5. Overall time in seconds versus number of observations.
We observe that both methods are equally fast for any number of
observations.

Accuracy and detection delay. We quantify the method’s
performance advantage by comparing detection delay and
accuracy on artificially generated data with outliers. We
generate 600 samples with 2% of outliers and 6 CPs; then,
we report the positive predictive value (PPV), true positive
rate (TPR), and detection delay. See Appendix C.3 for the
exact expression of the metrics. Table 1 shows that our
method detects the same amount of true positives as the
standard BOCD while not detecting many false positives,
showing the strength of our method. Moreover, the detection
delay shows that in spite of being robust to outliers, Dm-
BOCD does not cause any delay in the detection of CP.

Method PPV TPR Delays

Dm-BOCD 0.907±0.154 0.883±0.13 1.643±0.475
Standard BOCD 0.6±0.128 0.833±0.149 1.05±1.545

Table 1. Performance indices-mean and standard deviation-using
the positive predictive value (PPV), true positive rate (TPR), and
the detection delays over 10 realisations. For PPV and TPR, the
nearest to 1, the better. For delays, the lower, the better.
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Figure 6. UK’s 10 year government bond yield 2018-2023. The MAP-segmentation resulting from Dm-BOCD is indicated in dashed blue
lines. The bottom panel displays the corresponding run-length posterior, with the most likely run-length marked in blue. A series of
political events of national importance closely track the segmentation, and are marked with solid gray lines: 1. Theresa May announces
her resignation from her position as prime minister; 2. Boris Johnson sworn in as prime minister; 3. the first Covid case recorded in EU; 4.
the first Covid wave in the UK is officially declared; 5. the third Covid wave in the UK is officially declared; 6. the legal limits on social
contact removed in UK; 7. Covid ’Plan B’ measures are implemented in UK in response to the spread of the Omicron variant; 8. Liz
Truss is sworn in as prime minister.

Twitter flash crash & Cryptocrash. A robust CP detec-
tion algorithm must not to be fooled by outliers while detect-
ing CP correctly. We show that Dm-BOCD has this capabil-
ity on two real-world examples: the first is the Dow Jones In-
dustrial Average (DJIA) index every minute on 17/04/2013,
the day of the Twitter flash crash. The data is publicly avail-
able on FirstRate Data.1 That day, the Associated Press’
Twitter account was hacked and falsely tweeted that explo-
sions at the White House had injured then-president Barack
Obama. In response, the DJIA dropped by 150 points in a
matter of seconds before bouncing back. As Figure 1 shows,
this is a clear outlier. Modelling the time series with a Gaus-
sian, the plot shows that Dm-BOCD successfully ignores
this blip, while standard BOCD incorrectly labels it as a CP.
The second example tracks the average daily value of FTT
and Bitcoin between 10/2022 and 12/2022, data which is
publicly available on Yahoo finance.2 FTT was the token
issued by FTX, one of the biggest crypto-exchanges before
it failed due to a liquidity crisis on November 11th 2022.
The ensuing collapse of FTX marked a crash in the value of
various crypto-currencies, including Bitcoin. Using a two-
dimensional Gaussian distribution for both Dm-BOCD and
standard BOCD, Figure 4 shows that both methods correctly
detect the CP. Figure 12 in Appendix C also displays the
run-length posteriors, and shows that robustness does not
lead to increased CP detection latency.

Well-log. The well-log data was introduced in Ruanaidh
& Fitzgerald (1996), and consists in 4,050 nuclear magnetic
resonance measurements recorded while drilling a well. CPs
in the sequence correspond to changes in the sediment lay-
ers the drill is penetrating. On top of these clear changes,
the data contains outliers and contaminants corresponding
to more short-term events in geological history—such as
flooding, earthquakes, or volcanic activity. When this data
set is studied, its outliers have traditionally been removed
before CP detection algorithms are run (see e.g. Adams &

1https://firstratedata.com/free-intraday-data
2https://finance.yahoo.com/

MacKay, 2007; Ruggieri & Antonellis, 2016; Levy-leduc
& Harchaoui, 2008). We leave them in, and Figure 3 shows
that this is unproblematic for Dm-BOCD, but does lead to
falsely labelled CPs with BOCD. We also compare the algo-
rithm with β-BOCD (Knoblauch et al., 2018), and find that
the detected changes are almost identical. On a machine
with processor Intel i7-7500U 2.7 GHz, and 12GB of RAM,
Dm-BOCD took about 10 times less than β-BOCD.

Multivariate synthetic data. In certain settings, Dm-
posteriors are conjugate when standard posteriors are not.
An example is a multivariate time series whose dimensions
follow different distributions belonging to the exponential
family. To this end, we generate 1000 samples from a time
series with CPs at t = 250, 750. Conditional on the CPs,
the data is generated independently from an exponential in
the first dimension and Gaussian distribution in the second
dimension. Dm-BOCD is immediately applicable, and Fig-
ure 7 shows that the algorithm functions reliably. We do
not compare to BOCD in this setting: for this model, stan-
dard Bayesian posteriors would require expensive sampling
algorithms or variational approximations to be employed,
rendering the algorithm impractical.

UK 10 year government bond yield. Finally, we run the
Dm-BOCD on the daily yield of 10 year UK government
bonds from 2018 to 2022 (see Figure 6). The data is publicly
available via the Bank of England database.3 Since the 10-
year yield has been positive throughout history, we model
it using the gamma distribution. As shown in Figure 6,
we detect changes in the yield curve that correspond to
important political events in the UK. This distribution leads
to a Dm-posterior that is a Gaussian truncated at zero. For
standard Bayes, a conjugate prior exists, but it leads to a
posterior with intractable normalisation constant. Like the
multivariate synthetic data example, this constitutes another
instance where Dm-posteriors have better computational
properties than standard Bayes.

3https://www.bankofengland.co.uk/boeapps/database/
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Figure 7. Multivariate synthetic example. A 2-dimensional CP
problem. For the chosen model, Dm-BOCD is computationally
efficient, but standard BOCD is computationally infeasible. The
MAP segmentation is indicated by dashed blue lines, and the
bottom panel shows the run-length distribution, with the most
likely value in blue.

5. Conclusion
We proposed Dm-BOCD, a new version of BOCD that is
both robust to outliers and scalable. The algorithm relies on
a new generalised Bayesian inference scheme constructed
with diffusion score-matching. These posteriors have closed
form updates for models that are members of the exponential
family, and provide robustness by appropriately tuning the
diffusion matrix m. For T observations, d-dimensional
data, and p model parameters, the overall run time of the
method is O(T (p2 + d2)), and we demonstrate that it is
just as fast as standard BOCD. By showcasing the various
computational and inferential benefits of Dm-BOCD on a
range of examples, we demonstrate that it is a powerful
and needed addition to the literature. In the future, we will
also investigate the applicability of Dm-BOCD to regression
models. This is not trivial: the regression setting changes
both the definition of valid score matching losses, as well as
how to show their robustness (Xu et al., 2022).

Dm-posteriors also are of independent interest for computa-
tional challenges in Bayesian inference: like the generalised
posterior in Matsubara et al. (2022b) and Matsubara et al.
(2022a), they can be computed even without access to the
normalising constant of the likelihood. This suggests that
Dm-posteriors should be studied more broadly as a poten-
tial competitor to other Bayesian methods for intractable
likelihood problems.
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Supplementary Materials
In Appendix A, we provide mathematical background. In Appendix B, we present the proofs and derivations of all the
theoretical results in our paper, while Appendix C contains additional details regarding our experiments.

A. Background
Let ∇ = (∂/∂x1, . . . , ∂/∂xd)

⊤, f : X → Rd and g : X → Rd×p; the divergence operator is define as follows:

(∇ · f)(x) =
∑d

i=1
∂fi
∂xi

(x), (∇ · g)j(x) =
∑d

i=1
∂gij
∂xi

(x), ∀j ∈ {1, ..., p}.

Expanding the term ∇ ·mm⊤∇ log pθ(x) appearing as part of dm(θ, x), we get

∇ ·mm⊤∇ log pθ(x) =
∑d

i=1
∂

∂xi
(mm⊤∇ log pθ(x))i

=
∑d

i=1

∑d
j=1

∂
∂xi

(
(mm⊤)ij(∇ log pθ(x))j

)
=

∑d
i=1

∑d
j=1

(
∂

∂xi
(mm⊤)ij

)
(∇ log pθ(x))j +

∑d
i=1

∑d
j=1(mm⊤)ij

(
∇2 log pθ(x)

)
ij

=
∑d

i=1

∑d
j=1

(
∂

∂xi
(mm⊤)ij

)
(∇ log pθ(x))j +

∑d
j=1

(
mm⊤∇2 log pθ(x)

)
jj

=
∑d

j=1

∑d
i=1

(
∂

∂xi
(mm⊤)ij

)
(∇ log pθ(x))j +Tr

(
mm⊤∇2 log pθ(x)

)
.

Where ∇2 is the Hessian. The expression in the last line is more straightforward to implement in practice and it is therefore
the one we use in our code.

The term ν(x) in Proposition 3.1 contains (∇ · (mm⊤∇r)(x)). The j-th index of this p-dimensional vector equals

(∇ · (mm⊤∇r)(x))j =
∑d

i=1
∂

∂xi
(mm⊤∇r(x))ij .

B. Theoretical Results
In this section we present the derivation of the Dm-posterior, along with the proof of its robustness.

B.1. Proof of Proposition 3.1

In this Subsection we present the proof of the main result of Section 3.2: the conjugacy for exponential family models.

Proof. Let pθ be an exponential family model. Then ∇ log pθ = ∇r(x)⊤η(θ) +∇b(x), and the DSM estimator has the
following form:

D̂m(θ) = 1
T

∑T
t=1 ∥m⊤(∇r(xt)η(θ) +∇b(xt))∥22︸ ︷︷ ︸

(1)

+2∇ · (mm⊤(∇r(xt)η(θ) +∇b(xt)))︸ ︷︷ ︸
(2)

.

Let +C
= indicate equality up to an additive term that does not depend on θ.

(1) = η(θ)⊤∇r(xt)
⊤mm⊤∇r(xt)η(θ) +∇b(xt)

⊤mm⊤∇b(xt) + 2η(θ)⊤∇r(xt)
⊤mm⊤∇b(xt)

+C
= η(θ)⊤∇r(xt)

⊤mm⊤∇r(xt)η(θ) + 2η(θ)⊤∇r(xt)
⊤mm⊤∇b(xt),

and

(2) = ∇ · (mm⊤∇r(xt)η(θ)) +∇ · (mm⊤∇b(xt))

+C
= ∇ · (mm⊤∇r(xt)η(θ))

= η(θ)⊤(∇ · (mm⊤∇r(xt))).
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Therefore, D̂m(θ) = η(θ)⊤ΛT η(θ) + η(θ)⊤νT where

ΛT := 1
T

∑T
t=1 ∇r(xt)

⊤mm⊤∇r(xt),

νT := 2
T

∑T
t=1 ∇r(xt)

⊤mm⊤∇b(xt) +∇ · (mm⊤∇r(xt)).

Now, assuming the prior has a p.d.f. π, the DSM-Bayes generalised posterior has a p.d.f.

πDm
ω ∝ π(θ) exp (−ωT [η(θ)⊤ΛT η(θ) + η(θ)⊤νT ]).

For η(θ) = θ, and the prior π(θ) ∝ exp (− 1
2 (θ − µ)⊤Σ−1(θ − µ)), we obtain the generalised posterior by completing the

square as follows:

πDm
ω (θ) ∝ exp (− 1

2 (θ − µ)⊤Σ−1(θ − µT )) exp (−ωT [θ⊤ΛT θ + θ⊤νT ])

= exp
(
− 1

2

(
θ⊤Σ−1θ − 2θ⊤Σ−1µ+ µ⊤Σ−1µ+ θ⊤2ωTΛT θ + θ⊤2ωnνT

))
∝ exp

(
− 1

2

(
θ⊤(Σ−1 + 2ωTΛT )θ − 2θ⊤(Σ−1µ− ωTνT )

))
∝ exp

(
− 1

2 (θ − µT )
⊤Σ−1

T (θ − µT )
)
,

where

Σ−1
T := Σ−1 + 2ωTΛT ,

µT := ΣT

(
Σ−1µ− ωTνT

)
.

■

B.2. Update Parameters for online DSM-Bayes

In this Section we derive the efficient parameter updates presented in Section 3.4. To do so, we expand the expressions Λ
and ν as follows:

ΛT+1 := 1
T+1

∑T+1
t=1 ∇r(xt)

⊤mm⊤∇r(xt)

= 1
T+1

(∑T
t=1 ∇r(xt)

⊤mm⊤∇r(xt) +∇r(xT+1)
⊤mm⊤∇r(xT+1)

)
= 1

T+1

(
nΛT +∇r(xT+1)

⊤mm⊤∇r(xT+1)
)

νT+1 := 2
T+1

∑T+1
t=1 ∇r(xt)

⊤mm⊤∇b(xt) +∇ · (mm⊤∇r(xt))

= 1
T+1

(
TνT + 2(∇r(xT+1)

⊤mm⊤∇b(xT+1) +∇ · (mm⊤∇r(xT+1))
)
.

Now, assuming the prior has the conjugate form of Proposition 3.1, the Dm-posterior is given by

πDM
ω (θ) ∝ exp

(
− 1

2 (θ − µT )
⊤Σ−1

T (θ − µT )
)
,

where

Σ−1
T := Σ−1 + 2ωnΛT ,

µT := ΣT

(
Σ−1µ− ωnνT

)
.

So the parameter updates for ΣT and µT as T increases are:

Σ−1
T+1 := Σ−1 + 2ω(T + 1)ΛT+1

= Σ−1 + 2ω
(
nΛT +∇t(xT+1)

⊤mm⊤∇t(xT+1)
)

= Σ−1
T + 2ω∇r(xT+1)

⊤mm⊤∇r(xT+1)

µT+1 := ΣT+1

(
Σ−1µ− ω(T + 1)νT+1

)
= ΣT+1

(
Σ−1µ− ω

(
TνT + 2(∇r(xT+1)

⊤mm⊤∇b(xT+1) +∇ · (mm⊤∇r(xT+1))
))

= ΣT+1

(
Σ−1

T µT − 2ω
(
∇r(xT+1)

⊤mm⊤∇b(xT+1) +∇ · (mm⊤∇r(xT+1)
))

.

obtaining the desired expression.
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B.3. Global Bias-Robustness

In this Subsection, we present the theory necessary to prove that the generalized posterior presented in Section 3.1 is global
bias-robust conditioned to the choice of m.

We first need to review a result from Matsubara et al. (2022a) which states conditions for a discrepancy measure D(θ) in
order to prove that the corresponding generalised Bayes posterior πD

ω is globally robust to outliers. As in the original results,
we will state our findings in terms of distributions P ∈ P(X ), where P(X ) denotes the set of probability distributions on X .
To this end, we will build on the notation introduced in Section 3.3, and write

πD
ω (θ|P) ∝ π(θ) exp{−ωT · D(θ;P)} for D(θ;P) = EX∼P[d(θ,X)]. (6)

Here, the the discrepancy-based loss D(θ;P) = EX∼P[d(θ,X)] allows us to recover theoretical posteriors based on
averaging some kind of discrepancy d : Θ × X → R for any measure P. This makes the results more general and more
natural to derive. Note that all derived results apply to the Dm-posterior computed from data points x1:T , as we can recover
it by considering d = dm, and the corresponding empirical measure PT = 1

T

∑T
t=1 δxt

. In particular, for d = dm we have
that D(θ;PT ) = D̂m(θ) so that πD

ω (θ|PT ) = πDm
ω (θ|x1:T ) as defined in (4).

The original work of Matsubara et al. (2022b) constructed a proof of robustness for posteriors that did not depend on an
averaged loss D(θ;P) = EX∼P[d(θ,X)], and so the conditions they derive do not exploit this averaged form. Instead, they
showed in Lemma 5 of their paper that global bias-robustness holds if

sup
θ∈Θ

sup
y∈X

∣∣∣∣ ddεD(θ;Pε,y)|ε=0(y, θ,P)
∣∣∣∣π(θ) < ∞, and (7)∫

Θ

sup
y∈X

∣∣∣∣ ddεD(θ;Pε,y)|ε=0(y, θ,P)
∣∣∣∣π(θ)dθ < ∞. (8)

Clearly, we can simplify this further because our loss is an average. As long as the function d over which the loss is averaged
is sufficiently regular, the below result shows that we obtain global bias-robustness.

Proposition B.1. For each θ ∈ Θ. Suppose that π is upper bounded over Θ. If there exists a function γ : Θ → R such that:

1. supy∈X |d(θ, y)| ≤ γ(θ) ,

2. supθ∈Θ γ(θ)π(θ) < ∞ , and

3.
∫
Θ
γ(θ)π(θ)dθ < ∞.

Then the posterior influence function PIF(y, θ,P) of πD
ω (θ|P) defined in (6) is bounded over both θ ∈ Θ and y ∈ Y , so that

the πD
ω (θ|P) is globally robust.

Proof. As outlined above, we simply have to show that the the above conditions suffice to guarantee (7) and (8). Rewriting
the loss function related to the contamination model would be:

D(θ;Pε,y) = Ex∼Pε,y [d(θ, x)] = (1− ε)Ex∼P[d(θ, x)] + εEx∼δy [d(θ, x)].

Then, differentiating the last expression w.r.t. ε, and evaluating ε = 0, we obtain:

d
dεD(θ;Pε,y)|ε=0 = Ex∼P[d(θ, x)] + Ex∼δy [d(θ, x)]

Using Jensen’s inequality, we bound the expression | d
dεD(θ;Pε,y)|ε=0| as follows:

| d
dεD(θ;Pε,y)|ε=0| ≤ |Ex∼δy [d(θ, x)]|+ |Ex∼P[d(θ, x)]|

≤ Ex∼δy [|d(θ, x)|] + Ex∼P[|d(θ, x)|]
= |d(θ, y)|+ Ex∼P[|d(θ, x)|]
≤ |d(θ, y)|+ Ex∼P[supy∈X |d(θ, y)|]
= |d(θ, y)|+ supy∈X |d(θ, y)|,
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and taking a supremum over y we obtain the bound:

supy∈X | d
dεD(θ;Pε,y)| ≤ 2 supy∈X |d(θ, y)| ≤ 2γ(θ),

where the last inequality holds since γ fulfil condition 1. Using this bound, we check the two conditions of Matsubara et al.
(2022b).

1. supθ∈Θ supy∈X | d
dεD(θ;Pε,y)|π(θ) ≤ supθ∈Θ 2γ(θ)π(θ) < ∞ , and

2.
∫
Θ
supy∈X | d

dεD(θ;Pε,y)|π(θ)dθ ≤
∫
Θ
2γ(θ)π(θ)dθ < ∞,

where the last inequalities hold because γ meets conditions 2 and 3. Therefore, by virtue of Matsubara et al. (2022b) the
posterior is globally bias-robust. ■

B.4. Proof of Proposition 3.2

In this Subsection we provide the proof of Proposition 3.2. The strategy of the proof is simple: We show that d = dm admits
a natural function γ that satisfies the conditions of Proposition B.1.

Proof. From Proposition B.1, it is sufficient to find a function γ such that:

supy∈X | ∥m⊤(y)∇ log pθ(y)∥22︸ ︷︷ ︸
(1)

+2∇ ·m(y)m⊤(y)∇ log pθ(y)︸ ︷︷ ︸
(2)

| ≤ γ(θ).

Now, following from the form of m in Proposition 3.2 and the fact that pθ is an exponential family member as in (5), we
have:

(1) = ∥m⊤(y)∇ log pθ(y)∥22 =
∑d

i=1(m
⊤(y)∇ log pθ(y))

2
i =

∑d
i=1

(∇r(x)θ)2i
1+(∇r(x)θ⋆)2i

≤
∑d

i=1
(∇r(x)θ)2i
(∇r(x)θ⋆)2i

.

Using the fact that ∥x∥22 ≤ ∥x∥21 ≤ d∥x∥22 for x ∈ Rd, we have:∑d
i=1

(∇r(x)θ)2i
(∇r(x)θ⋆)2i

≤
∑d

i=1
p∥θ∥2

2

∥θ⋆∥2
2
=

dp∥θ∥2
2

∥θ⋆∥2
2
=: γ1(θ).

For the second expression, we have:

(2) = |∇ ·m(y)m⊤(y)∇ log pθ(y)| =
∣∣∣∑d

i=1
∂

∂xt
(m(y)m⊤(y)∇ log pθ(y))i

∣∣∣
=

∣∣∣∑d
i=1

∂
∂xt

(
(∇r(x)θ)i

1+(∇r(x)θ⋆)2i

)∣∣∣
=

∣∣∣∑d
i=1

(∇2r(x)θ)ii(1+(∇r(x)θ⋆)2i )−2(∇r(x)θ⋆)i(∇r(x)θ)i(∇2r(x)θ⋆)ii
(1+(∇r(x)θ⋆)2i )

2

∣∣∣
≤

∑d
i=1

∣∣∣ (∇2r(x)θ)ii
1+(∇r(x)θ⋆)2i )

∣∣∣+ 2
∣∣∣ (∇r(x)θ⋆)i(∇r(x)θ)i(∇2r(x)θ⋆)ii

(1+(∇r(x)θ⋆)2i )
2

∣∣∣ .
For most distributions of interest, including Gaussians, exponentials, (inverse) Gamma, and Beta distributions,∣∣∣∣∣ (∇2r(x)θ)ii

1 + (∇r(x)θ⋆)2i )

∣∣∣∣∣ is bounded for every θ ∈ Θ, then:∑d
i=1

∣∣∣ (∇2r(x)θ)ii
1+(∇r(x)θ⋆)2i

∣∣∣+ 2
∣∣∣ (∇r(x)θ⋆)i(∇r(x)θ)i(∇2r(x)θ⋆)ii

(1+(∇r(x)θ⋆)2i )
2

∣∣∣ ≤ dC(θ) + 2C(θ)
∑d

i=1

∣∣∣ (∇r(x)θ⋆)i(∇r(x)θ)i
(1+(∇r(x)θ⋆)2i )

2

∣∣∣
≤ dC(θ)(1 + 2d

∥θ∥2
2

∥θ⋆∥2
2
) =: γ2(θ).

Defining γ(θ) := γ1(θ) + γ2(θ) we have :

supy∈X
∣∣∥m⊤(y)∇ log pθ(y)∥22 + 2∇ ·m(y)m⊤(y)∇ log pθ(y)

∣∣ ≤ γ(θ).

Now we are in a position to verify conditions (I) and (II) of Proposition B.1. Since γ(θ) is a polynomial function, π(θ) is a
squared exponential prior, and the squared exponential has infinitely many moments, it is clear that:

supθ∈Θ π(θ)γ(θ) < ∞,∫
Θ
π(θ)γ(θ)dθ < ∞,

which completes the proof. ■
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B.5. Boundary and smoothness conditions

In this subsection, we review the boundary and smoothness conditions discussed in Section 3.1, alongside the DSM extension
to more general domains X .

The smoothness conditions needed to get the expansion of Dm as in Equation (3) for X = Rd are the following:

Lemma B.2. If pθ is twice-differentiable, and p0mm⊤∇ log pθ,∇ · (p0mm⊤∇ log pθ) ∈ L1(Rd), then we can rewrite Dm

as in Equation (3).

Yu et al. (2019) extended the DSM to densities with non-negative support, i.e. X = Rd
≥0.

Theorem B.3. Suppose that log p0(x) and m are continuously differentiable almost everywhere on Rd
+ and log pθ is twice

continuously differentiable with respect to x on Rd
+. Furthermore, we assume the boundary condition,

lim|x(i)|→∞ p0(x)m
2
ii(x)∂i log pθ(x)− lim|x(i)|→0+ p0(x)m

2
ii(x)∂i log pθ(x) = 0,∀i ∈ {1, ..., d},

where xi is the i-dimension of x. Then, we can rewrite Dm as in Equation (3)

Later, Liu et al. (2022) extended the DSM to densities with support in a Lipschitz Domain, which, intuitively speaking, are
bounded connected open domains whose local boundary is a level set of some Lipschitz function.

Theorem B.4. Assume X ⊂ Rd is a Lipschitz domain. Suppose p0, ∂i log pθ ∈ H1(X ) and that for any z ∈ ∂X it holds
that

limx→z p0(x)m
2
ii(x)∂i log pθ(x)vi(z) = 0,∀i ∈ {1, ..., d},

where x → z takes any point sequence converging to z ∈ ∂X into account, v = (v1, ..., vd) is the unit outward normal
vector on ∂X , and H1(X ) is the Sobolev-Hilbert space. Then, we can rewrite Dm as in Equation (3).

The Sobolev-Hilbert space is defined as follows:

H1(X ) =
{
f ∈ L2(X )

∣∣ ∥f∥2L2(X ) +
∑d

i=1 ∥Dif∥2L2(X ) < ∞
}
,

where Di is the weak derivative corresponding to ∂i and ∥f∥L2(X ) =
√∫

X |f(x)|2dx.

Gamma distribution Let pθ be a gamma distribution, and X = R+. Assume p0 bounded from above and that log p0(x)
is continuously differentiable almost everywhere on R+. Then for m as in Proposition 3.2, we have

lim|x|→0+ p0(x)m
2(x)∂ log pθ(x) = lim|x|→0+ p0(x)

∇r(x)θ+∇b(x)
1+(∇r(x)θ⋆)2i

= lim|x|→0+ p0(x)
θ1
x −θ2

1+(
θ⋆1
x −θ⋆

2 )
2

= lim|x|→0+ p0(x)
xθ1−x2θ2

x+(θ⋆
1−xθ⋆

2 )
2

= 0.

The last equality holds since p0 is bounded. Now, for the second boundary condition:

lim|x|→∞ p0(x)m
2(x)∂ log pθ(x) = lim|x|→∞ p0(x)

∇r(x)θ+∇b(x)
1+(∇r(x)θ⋆)2i

= lim|x|→∞ p0(x)
θ1
x −θ2

1+(
θ⋆1
x −θ⋆

2 )
2
= 0.

The last equality holds since p0 a density, therefore, lim|x|→∞ p0(x) = 0. Then the m proposed in Proposition 3.2 satisfies
the boundary conditions in Theorem B.3 for the gamma distribution.

Exponential distribution Let pθ be a exponential distribution, and X = R+. Assume p0 bounded, such that log p0(x) is
continuously differentiable almost everywhere on R+. Then for m such as in Proposition 3.2 :

lim|x|→0+ p0(x)m
2(x)∂ log pθ(x) = lim|x|→0+ p0(x)

∇r(x)θ+∇b(x)
1+(∇r(x)θ⋆)2i

= lim|x|→0+ p0(x) =
θ

1+θ⋆2 lim|x|→0+ p0(x).
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The term for the second limit would be similar:

lim|x|→∞ p0(x)m
2(x)∂ log pθ(x) =

θ
1+θ⋆2 lim|x|→∞ p0(x).

Therefore, the expression in Theorem B.3 looks as follows:

lim|x(i)|→∞ p0(x)m
2
ii(x)∂i log pθ(x)− lim|x(i)|→0+ p0(x)m

2
ii(x)∂i log pθ(x)

= θ
1+θ⋆2

(
lim|x|→∞ p0(x)− lim|x|→0+ p0(x)

)
.

Then the m proposed in Proposition 3.2 satisfies the boundary conditions in Theorem B.3 if

lim|x|→∞ p0(x) = lim|x|→0+ p0(x).

C. Additional Details on Numerical Experiments
In this section we give additional details on the numerical experiments of Section 4. We provide the exact prior and ω used
in each experiment. Moreover, we present an extra numerical experiment to compare the computational complexity of
standard BOCD and Dm-BOCD in Appendix C.1.

C.1. Computational complexity

The computational complexity of both standard BOCD and Dm-BOCD is linear in the number of data points. To verify that
this theoretical complexity mirrors the practical computational overhead, we generate samples from a Gaussian distribution
with 1 CP where the mean varies. We vary the sample size from T = 100 up to T = 20000. We fit a Gaussian distribution
with the correct variance taken as fixed in both the Dm-BOCD and the standard BOCD. As shown in Figure 8a, both
methods are equally fast for any number of observations.

Although the computational complexity of Dm-BOCD is linear in the data, it is quadratic in the dimension of the observations,
in particular, is O(T (p2 + d2)). To observe this in practice, we consider the same settings as before, but now we fix the
sample size to T = 100 and vary the data dimensions from d = 1 up to d = 500. Figure 8b shows that both methods take
practically the same time when d is less than 100.
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(a) Overall time in seconds versus number of observations. We
observe that both methods are equally fast for any number of
observations.
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(b) Overall time in seconds versus the dimension of the observa-
tions. We observe that both methods are practically equally fast
when the dimension of the observations is less than 100.

Figure 8. Comparison between Dm-BOCD and the standard BOCD. blue line for Dm-BOCD, and green line for standard BOCD.

The previous setting is where Dm-BOCD clearly shows its advantage over the β-BOCD due to its completely closed form,
making it nearly equivalent, in terms of computational overhead, to standard BOCD. In more complex settings, the posterior
predictive may not be available in closed form; hence, we approximate it by sampling from πDm

ω . It might not be obvious
how this is a significant advantage over the β-BOCD framework. To demonstrate that Dm-BOCD is faster than β-BOCD,
we generate samples from a Gaussian distribution with 1 CP, where the mean and the variance change. We vary the sample
size from T = 100 to T = 20000 and fit a Gaussian distribution in the Dm-BOCD, β-BOCD and the standard BOCD. In
Figure 9, we observe that although the standard BOCD is faster than Dm-BOCD, our method is considerably faster than the
β-BOCD for any number of observations.

18



Robust and Scalable Bayesian Online Changepoint Detection

0 2500 5000 7500 10000 12500 15000 17500 20000

number of observations

0

2000

4000

6000

8000

10000

12000

tim
e

[s
]

Dm-BOCD
β-BOCD
Standard BOCD

Figure 9. Overall time in seconds versus the number of observations. blue line for Dm-BOCD, orange line for β-BOCD, and green line
for standard BOCD. We observe that our method is faster than β-BOCD but is slower than the standard BOCD.

C.2. Varying m, k, and outliers intensity.

We have demonstrated that our method is insensitive to the scale of the outliers. To do so, we compare the performance
of the standard BOCD with the Dm-BOCD in different contaminated datasets: while everything else stays the same, we
scale the contamination points. We generate 600 samples with 6 CPs at T ∈ {200, 400}, and 3 contaminated point at
T ∈ {100, 300, 500}. We contaminate the data by adding (or subtracting) 0, 5, 10, 20, and 40. For the Dm-BOCD, we
choose two different m functions: m as proposed to assure robustness, and m = Id. In Figure 10, we observe that both
Standard BOCD and Dm-BOCD with m = Id mistakenly label outliers as CPs, while Dm-BOCD with m robust is robust
and identifies lasting changes.
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Figure 10. Contamination point scaled by 0, 5, 10, 20, and 40, from top to bottom. MAP segmentation indicated by blue dashed lines
for Dm-BOCD with m robust, ▼ for Dm-BOCD with m = Id, and ▲ for standard BOCD. Both Standard BOCD and Dm-BOCD with
m = Id mistakenly label outliers as CPs, while DSMm-BOCD with m robust is robust and identifies lasting changes.

Finally, for contamination scaled by 10, we compared the performance and wall-clock time for k ∈ {1, 50, 600}. In
Figure 11, we observe that for k = 1 the method cannot detect any changepoint, while for k = 50 and k = 600, the method
successfully identifies the changepoints. However, in Table 2 for k = 600, the method takes 6x more time. As we discussed
in the main paper, k is a parameter in all variants of BOCD and will make all algorithms more expensive if increased.
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Figure 11. MAP segmentation indicated by blue dashed lines for Dm-BOCD with m robust. For k = 1 the method cannot detect any
changepoint, while for k = 50 and k = 600, the method successfully identifies the changepoints

k time [s]

1 1
50 38
600 236

Table 2. Wall-clock time for varying k

C.3. Accuracy and detection delay

We quantify the method’s performance advantage by comparing detection delay and accuracy on artificially generated data
with outliers. In particular, We generate 600 samples with 2% of outliers and 6 CPs; then, we report the positive predictive
value (PPV), true positive rate (TPR), and the detection delays. These metrics are given by

TPR =
TP

TP + FN
, PPV =

TP
TP + FP

,

where TP, FP, and FN are true positives, false positives, and false negatives, respectively. We say the method detects a TP
changepoint when the changepoint detected for the method is in a small neighbourhood of the true CP. In order to measure
how far the predicted CP is from the true CP, we measure the time difference between both and call it detection delay. For
both PPV and TPR, the nearest to 1, the better. For delays, the lower, the better. We run the experiment 10 times, varying the
position of the outliers. The following table shows the mean and standard deviation for each metric:

Method PPV TPR Delays

DSM-BOCD 0.907±0.154 0.883±0.13 1.643±0.475
Standard BOCD 0.6±0.128 0.833±0.149 1.05±1.545

Table 3. Performance indices-mean and standard deviation-using the positive predictive value (PPV), true positive rate (TPR), and the
detection delays over 10 realisations. For PPV and TPR, the nearest to 1, the better. For delays, the lower, the better.

In Table 3, we observe Dm-BOCD has a significantly better performance with respect to PPV, meaning that the rate of false
positives is lower than standard BOCD. This is a consequence of the robustness of our method. Moreover, we see a similar
result concerning TPR, which measures the amount of changepoint not detected for the methods. Overall, this means that
our method detects the same amount of TP as the standard BOCD while not detecting many FP, showing the strength of our
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method. Lastly, the detection delay shows that in spite of being robust to outliers, Dm-BOCD does not cause any delay in
the detection of CP.

C.4. Twitter flash crash & Cryptocrash

In the Twitter flash crash experiment, we model the data with a Gaussian distribution, modelling its natural parameters. For
Dm-BOCD, we use a conjugate squared exponential prior r with parameters µ = (0, 1)⊤, and Σ a diagonal matrix so that
diag(Σ) = (10, 1) for the natural parameters of said Gaussian. For standard BOCD, we use a Normal-inverse gamma prior
with parameters µ0 = 0, ν = 1, α = 2 and β = 10. We use the first 50 observations to select ω as in Section 3.4, with an
obtained value of ω⋆ ≈ 0.0001

In the Cryptocrash experiment, we model the data with a multivariate Gaussian distribution modelling its natural parameters,
and use conjugate squared exponential prior with parameters µ = (0, 1, 0, 1)⊤, and Σ diagonal matrix such that diag(Σ) =
(2, 1, 2, 1) for the Dm-BOCD. For standard BOCD, we model mean and variance instead, and use a normal-inverse-Wishart
prior with parameters ν = 0, κ = 1, µ = (0, 0) and Ψ diagonal matrix such that diag(Ψ) = (1, 1). we manually fix
ω = 0.01. Figure 12 shows the run-length posteriors and the Maximum A Posteriori (MAP) segmentations produced by
each method. Since the most likely run-lengths are virtually identical, the below plot also shows that in spite of being robust
to outliers, Dm-BOCD does not cause any delay in the detection of CPs.

Figure 12. Maximum a posteriori (MAP) segmentation. In blue D-BOCD segmentation using dashed lines. In green Standard BOCD
segmentation using ▲ marks. In addition we plot the run-length posteriors of robust Dm-BOCD algorithm with most likely run-length in
blue and of standard BOCD in green. We observe that robustness does not lead to increased CP detection latency: both methods detect
the CP at the same time.

C.5. Well-log

We model the data with a Gaussian distribution, modelling its natural parameters and using a conjugate squared exponential
prior with parameters µ = (0, 10)⊤, and Σ diagonal matrix such that diag(Σ) = (100, 100). Figure 13 shows the run-length
and the segmentation of each method. We use the first 200 observations to select ω as in Section 3.4, with an obtained value
of ω⋆ ≈ 0.0004

C.6. Multivariate synthetic data

We generate 1000 samples from a time series with CPs at t = 250, 750. Conditional on the CPs, the data is generated
independently from an exponential in the first a and Gaussian distribution in the second dimension. Since both dimensions
are exponential family members, their joint distribution is too. On the natural parameters of this joint distribution, we place a
conjugate squared exponential prior with parameters µ = (1, 0, 0.5)⊤, and Σ diagonal matrix such that diag(Σ) = (1, 1, 0.2).
As we do not compare against BOCD on this data set, we simply fix ω⋆ = 0.15.
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C.7. UK 10 year government bond yield

We model the data with a Gamma distribution and use a conjugate squared exponential prior with parameters µ = (0, 1)⊤,
and Σ diagonal matrix such that diag(Σ) = (50, 3) on its natural parameters. We use the first 100 observations to select ω
as in 3.4. The obtained value is ω⋆ ≈ 0.05.

Figure 13. AP segmentation for the well-log indicated by blue dashed lines for Dm-BOCD, ▼ for β-BOCD, and ▲ for standard BOCD.
In addition we plot the run-length posteriors of robust Dm-BOCD algorithm with most likely run-length in blue, β-BOCD in orange, and
of standard BOCD in green. We observe that our method is more robust to outliers than the standard BOCD, but is more sensitive than
β-BOCD.
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