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Abstract
Aspect-based Sentiment Analysis (ABSA) eval-001
uates sentiment expressions within a text to002
comprehend sentiment information. Previous003
studies integrated external knowledge, such as004
knowledge graphs, to enhance the semantic fea-005
tures in ABSA models. Recent research has006
examined the use of Graph Neural Networks007
(GNNs) on dependency and constituent trees008
for syntactic analysis. With the ongoing devel-009
opment of ABSA, more innovative linguistic010
and structural features are being incorporated011
(e.g. latent graph), but this also introduces012
complexity and confusion. As of now, a scal-013
able framework for integrating diverse linguis-014
tic and structural features into ABSA does not015
exist. This paper presents the Extensible Multi-016
Granularity Fusion (EMGF) network, which in-017
tegrates information from dependency and con-018
stituent syntactic, attention semantic , and exter-019
nal knowledge graphs. EMGF, equipped with020
multi-anchor triplet learning and orthogonal021
projection, efficiently harnesses the combined022
potential of each granularity feature and their023
synergistic interactions, resulting in a cumu-024
lative effect without additional computational025
expenses. Experimental findings on SemEval026
2014 and Twitter datasets confirm EMGF’s su-027
periority over existing ABSA methods 1.028

1 Introduction029

The primary objective of the Aspect-Based Senti-030

ment Analysis(ABSA) task is to assess the senti-031

ment polarity associated with specific aspects or032

entities in a text, enabling a more comprehensive033

understanding of the text’s sentiment information.034

For example, give a laptops review "Looks nice035

, but has a horribly cheap feel ." and the senti-036

ment polarity of the two aspects "Looks" and "feel"037

are positive and negative, respectively. Therefore,038

ABSA accurately identifies the sentiment orienta-039

tion for individual aspects, rather than assigning040

1Code and datasets are available at https://anonymous.
4open.science/r/EMGF-E7A6
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Figure 1: An example sentence with its dependency tree
and constituent tree. This sentence from the laptops re-
views, contains two aspects but with opposite sentiment
polarities.

a general sentiment label to a whole sentence in 041

sentence-level sentiment analysis. The main chal- 042

lenge of ABSA is to model the relationship be- 043

tween aspects and their associated opinions. 044

To this end, previous studies (Ma et al., 2018; 045

Zhou et al., 2020; Zhong et al., 2023) leveraged 046

external knowledge to enhance semantic features 047

in ABSA models. For example, Zhou et al. (2020) 048

employed words related to knowledge graphs to 049

build subgraphs as seed nodes. Subgraph-based 050

approaches yielded remarkable outcomes but may 051

entail complexity, particularly when dealing with a 052

large number of aspect terms. Zhong et al. (2023) 053

incorporated external knowledge graphs into low- 054

dimensional embeddings to efficiently represent 055

aspect-specific knowledge. 056

More recent studies (Zhang et al., 2019; Sun 057

et al., 2019; Chen et al., 2020; Liang et al., 2020; 058

Wang et al., 2020; Li et al., 2021; Liang et al., 059

2022) have extensively investigated the use of 060

Graph Neural Networks (GNNs) on dependency 061

trees (Dep.Tree) and constituent trees (Con.Tree) 062

to explicitly leverage sentence syntactic structures. 063

While constituency and dependency trees share 064

common sentential syntactic information, they cap- 065

ture syntactic details from distinct perspectives 066
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(Dong et al., 2022).067

Dependency trees (Dep.Trees) can establish con-068

nections among words in a sentence (Li et al.,069

2021), while constituent trees (Con.Trees) pro-070

vide precise phrase segmentation and hierarchical071

structures, which facilitate precise alignment of as-072

pects with sentiment-indicative words (Liang et al.,073

2022). We illustrate this with an example in Figure074

1: (1) A dependency relation exists between the075

aspect term "Looks" and the opinion term "nice";076

(2) The phrase segmentation term "but" segments077

"Looks nice" from "has a horribly cheap feel".078

Most of the previous work has already estab-079

lished the effectiveness of single-granularity in-080

formation for the ABSA task. However, single-081

granularity features are insufficient to fully cap-082

ture the rich information contained in the raw083

data. Li et al. (2021) incorporating SynGCN and084

SemGCN networks through a Mutual BiAffine085

module, demonstrating the effectiveness of inte-086

grating these two granularity levels for the ABSA087

task.088

However, most current methods use complex089

and inefficient techniques to integrate diverse types090

of knowledge. Currently, there is no scalable091

framework capable of combining various multi-092

granularity features (e.g., syntactic, semantics, ex-093

ternal knowledge graphs information, and so on) to094

enhance model performance. In this context, a fun-095

damental question arises: How can we ensure that096

the combination of multiple granularity features097

achieves a cumulative effect 2 and addresses the098

problem of model scalability?099

In this paper, we introduce a novel architecture100

called the Extensible Multi-Granularity Fusion101

Network model (EMGF) to address the aforemen-102

tioned challenges. Firstly, we enhance the acquisi-103

tion of affective representations in ABSA tasks by104

integrating information from dependency syntax,105

constituent syntax, semantic attention, and external106

knowledge graphs. Secondly, we have developed107

an Extensible Multi-Stage Fusion (EMSF) mod-108

ule designed to capture profound and intricate in-109

teractions among features at various granularities.110

Moreover, it can integrate information of multiple111

granularities at an extremely low computational112

cost, thereby achieving scalability. To elaborate,113

our module comprises two stages: the "preprocess-114

2Combining multiple features from various granularity
levels results in incremental effects. Specifically, with each
additional feature included, the effect improves compared to
the previous combination.

ing stage" and the "fusion stage." In the "prepro- 115

cessing stage," we employ a multi-anchor triplet 116

learning approach to combine dependency and con- 117

stituent syntactic information, enhancing their mu- 118

tual complementarity. We also utilize an orthogo- 119

nal projection layer to acquire refined syntactic and 120

semantic discriminative features. Finally, external 121

knowledge graphs offer supplementary information 122

support during the "fusion stage." 123

Our contributions are highlighted as follows: 124

1) For the ABSA task, we present an Extensible 125

Multi-Granularity Fusion Network designed to cap- 126

ture intricate interactions among features at various 127

granularities, thus achieving the cumulative effect. 128

2) This network can fuse an arbitrary number of 129

features of different granularities in an expandable 130

manner, at an extremely low computational cost. 131

3) We present multi-anchor triplet learning to 132

enable mutual learning between dependency syn- 133

tax and constituent syntax, and employ orthogonal 134

projection techniques to obtain refined syntactic 135

and semantic features. 136

4) Our experimental findings establish that our 137

EMGF model surpasses the current state-of-the-art 138

methods when evaluated on the SemEval 2014 and 139

Twitter datasets, demonstrating the effectiveness of 140

our EMGF model. 141

2 Related Work 142

ABSA is an entity-level and fine-grained task for 143

sentiment analysis (Li et al., 2021; Ma et al., 2023). 144

Early research in ABSA makes use of attention- 145

based neural models for the purpose of capturing 146

semantic interactions (Wang et al., 2016; Ma et al., 147

2017; Xu et al., 2019). 148

Dependency with GNNs: Another emerging 149

trend is the effective incorporation of dependency 150

trees with Graph Neural Networks (GNNs). Xu 151

et al. (2020) introduce a GCN model with a hetero- 152

geneous graph, merging sentence and aspect nodes 153

via four relationship types, Liang et al. (2021) 154

propose a novel dependency syntactic knowledge 155

augmented interactive architecture with multi-task 156

learning, Zhang et al. (2022) enhance attention 157

score matrices with syntactic mask matrices for 158

integrating syntax and semantics, Zhao et al. 159

(2023) introduce RDGCN to better calculate depen- 160

dency importance, tackling syntactic ambiguities 161

in aspect-opinion analysis. 162

Constituent with GNNs: Structural syntax 163

knowledge has been proven effective for seman- 164
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Figure 2: The overall architecture of our EMGF model.

tic role labeling (SRL) (Marcheggiani and Titov,165

2020; Fei et al., 2021). Marcheggiani and Titov166

(2020) showcases the utilization of GCNs to en-167

code constituent structures in an SRL system, Fei168

et al. (2021) jointly learns phrasal boundaries ex-169

tracted from constituency and semantic relations170

from dependency to explore the integration of di-171

verse syntactic representations for SRL. For ABSA,172

Liang et al. (2022) first focus on effectively har-173

nessing syntactic information from the sentence’s174

constituent tree to model the sentiment context of175

individual aspects for learning.176

3 Methodology177

In this section, we provide a detailed explanation178

of EMGF. The overview of the EMGF framework179

is shown in Figure 2. The system comprises three180

components: 1) The Text Encoding Module. 2)181

The Granularity Feature Construction Module. 3)182

The Extensible Multi-Stage Fusion Module.183

3.1 Text Encoding Module184

In the ABSA task, give a n-word sentence s =185

{w1, w2, . . . , wn}, along with a specific aspect186

represented as a = {a1, a2, . . . , am}, to deter-187

mine its corresponding sentiment polarity class,188

ca. Here, a is a sub-sequence of s, and ca ∈189

{Positive,Neutral,Negative}. To obtain con-190

textualized representations, we utilize BERT (De-191

vlin et al., 2019). In the BERT encoder, we192

construct a sentence-aspect pair as input, repre-193

sented as x = ([CLS]s[SEP]a[SEP]). The out-194

put provides contextualized representations, de-195

noted as Hbert = BERT(x). In this representation, 196

Hbert =
[
hbert
1 , hbert

2 , · · · , hbert
n

]
∈ Rn×d, where d 197

represents the dimensionality of the last hidden 198

layer of BERT, and hbert
i corresponds to the contex- 199

tual representation of the i-th word. 200

3.2 Granularity Feature Construction Module 201

Dependency GCN The dependency graph con- 202

volutional networks (DepGCN) module takes syn- 203

tactic encoding as input and utilizes the probability 204

matrix of all dependency arcs from a dependency 205

parser to encode syntax information. The depen- 206

dency graph is embodied as an adjacency matrix 207

Adep ∈ Rn×n, which is defined as follows: 208

A
dep
ij =

{
1, if link(i, j) = 1
0, otherwise

(1) 209

where link(i, j) shows that i-th and j-th words have 210

a dependence link. The dependency graph rep- 211

resentation Hdep = {hdep
1 , h

dep
2 , . . . , h

dep
n } is then 212

obtained from the DepGCN module using the fol- 213

lowing formula: 214

hli = σ
( n∑

j=1

AijW
lhl−1

j + bl
)

(2) 215

here, W l represents a weight matrix, bl denotes a 216

bias term, and σ is an activation function, such as 217

ReLU. 218

Constituent GCN We follow the syntax struc- 219

ture of the Con.Tree in a bottom-up manner, in- 220

spired by BiSyn-GAT+ (Liang et al., 2022). The 221

Con.Tree is composed of multiple phrases (phlu) 222
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that make up the input text, and we create corre-223

sponding graphs based on these phrases phmu .224

Given the substantial depth of the constituent225

tree, we choose a total of m layers with alternating226

intervals 3. We make this choice because the vari-227

ation in phrase hierarchical information between228

adjacent layers is minimal, and excessive align-229

ment would be an inefficient use of computational230

resources. Additionally, the chosen value of m231

aligns with the number of ConGCN layers.232

The constituent graph is embodied as an adja-233

cency matrix Acon ∈ Rlc×n×n, which is defined as234

follows:235

Acon(m)
i,j =

{
1 if wi and wj are in same phmu ,
0 otherwise

(3)
236

where m denotes the level of the phrase237

within the selected lc layers, while u denotes238

the constituent label associated with the phrase,239

such as S, NP, VP, and so on. Subsequently240

yields the output hidden representation Hcon =241

{hcon
1 , hcon

2 , . . . , hcon
n } is then obtained from the242

ConGCN module using Eq. (2).243

Semantic GCN To construct the attention score244

matrix Asem, we employ the Multi-Head Attention245

(MHA) mechanism on the hidden state features246

Hbert derived from the BERT encoder. The MHA247

computes attention scores among words, and the248

formulation of the attention score matrix Asem ∈249

Rn×n is as follows:250

Asem
ij = Softmax(MHA(hbert

i , hbert
j )) (4)251

Subsequently yields the output hidden represen-252

tation Hsem = {hsem
1 , hsem

2 , . . . , hsem
n } is then ob-253

tained from the SemGCN module using Eq. (2).254

External Knowledge Zhong et al. (2023) syn-255

ergistically combine contextual and knowledge256

information to achieve more comprehensive fea-257

ture representations. We introduce the external258

knowledge as proposed by them, represented as259

Hkge = {hkge
1 , h

kge
2 , . . . , h

kge
n }.260

3.3 Extensible Multi-Stage Fusion Module261

In previous studies, it is common to combine only262

two granularity features, so when trying to combine263

additional features, the current model is no longer264

applicable. This means that a model needs to be265

3For instance, you can choose layer 1, skip one layer, pick
layer 3, and continue this pattern.

redesigned that can be compatible with multiple 266

features at the same time, but this will increase the 267

complexity and computational cost of the model. 268

To address this challenge and capture intricate 269

interactions among features at different granular 270

levels while efficiently integrating diverse granu- 271

lar information, we introduce the extensible multi- 272

granularity fusion (EMGF) module. This innova- 273

tive approach allows for the expansion and effec- 274

tive exploration of interrelationships among multi- 275

granular features. It achieves this by cascading 276

multiple Extensible Multi-Stage Fusion (EMSF) 277

blocks, each comprising a "preprocessing stage" 278

and a "fusion stage." During the preprocessing 279

stage of EMSF, four features from different lev- 280

els serve as inputs, namely Hcon, Hdep, Hsem, and 281

Hkge. 282

3.3.1 Preprocessing Stage 283

Con.Tree and Dep.Tree share syntactic informa- 284

tion from different viewpoints (Dong et al., 2022). 285

(Ata et al., 2021; Dong et al., 2022) use multi- 286

view learning to study three relationship categories: 287

intra-node intra-view, intra-node inter-view, and 288

inter-node inter-view. We collectively label nodes 289

in these scenarios as "important nodes." However, 290

there is currently no research addressing how to 291

handle "non-important nodes," which could poten- 292

tially disrupt the complementary learning of "im- 293

portant nodes." Moreover, to handle these three 294

types of collaboration, it’s necessary to design three 295

distinct loss functions, adding complexity to the 296

model. To this end, we propose Multi-Anchor 297

Triplet Learning to address the two categories of 298

issues mentioned above. 299

Additionally, inspired by Qin et al. (2020), we 300

utilize orthogonal projection techniques to encour- 301

age the DepGCN and ConGCN networks to acquire 302

distinct syntactic features from the semantic fea- 303

tures generated by the SemGCN network. This 304

results in refined and more discriminative syntactic 305

and semantic features.granularity levels. 306

Within this stage, we combine Multi-Anchor 307

Triplet Learning and Orthogonal Projection Tech- 308

niques to effectively capture the complementary 309

and discriminative aspects of features across vari- 310

ous granularity levels. 311

Multi-Anchor Triplet Learning We choose a 312

node from the con-view graph as the "Anchor" 313

node and consider three scenarios: 1) In the con- 314

view, all nodes connected to the Anchor are marked 315
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as "pos" nodes, 2) Nodes in the dep-view that share316

homologous 4 properties with the "Anchor" node317

in the con-view are likewise designated as "pos"318

nodes, 3) All "pos" nodes in the con-view corre-319

spond to homologous nodes in the dep-view. If320

these nodes are not connected to homologous nodes321

corresponding to the Anchor, they are still labeled322

as "pos" nodes. All other cases are labeled as "neg"323

nodes. The same procedure is applied in the dep-324

view when the Anchor node is located there.325

It is vital to stress that nodes do not possess326

equal significance. Designating all graph nodes327

as Anchor nodes would undermine differentiation328

and precision. Additionally, drawing inspiration329

from the work of MP-GCN (Zhao et al., 2022), we330

employ the Multi-Head S-Pool to select Anchor331

nodes. Specifically, we use the attention matrix332

Asem to conduct both average and maximum pool-333

ing from two distinct perspectives, resulting in the334

selection of the Top-K important nodes with the335

highest scores.336

Our goal is to have the "Anchor" node stay337

close to the "pos" nodes to acquire complementary338

knowledge, while minimizing interference from339

"neg" nodes. Specifically, we accomplish this goal340

by minimizing the following loss function:341

Ltriplet =
∑

i∈Anchor

σ
( ∑

j∈pos

fa(||hzi − hz
′

j ||
2
)

−
∑
j∈neg

fa(||hzi − hz
′

j ||
2
) + margin

) (5)342

343
Anchor = TopK (fa (A

sem) + fm (Asem)) (6)344

where z and z
′

belong to the set {dep, con}, we345

determine the size of the anchor set k based on346

Bourgain’s Theorem-1 (You et al., 2019). Here,347

k is expressed as k = c log2 n, with c represent-348

ing a constant, and n denoting the total number of349

nodes in the graph. Our approach employs func-350

tions fa for average pooling and fm for maximum351

pooling. The "margin" hyperparameter in control-352

ling the boundary of the triplet loss function, and353

σ corresponds to the non-linear activation function354

ReLU.355

Orthogonal Projection Techniques Mathemat-356

ically, we first project dependency syntax feature357

Hdep onto semantic feature Hsem:358

Hdep∗ = Proj
(
Hdep, Hsem) (7)359

4A homologous node refers to a node that corresponds to
the same entity in different data views.

where Proj is a projection function. 360

Proj(x, y) =
x · y
|y|

y

|y| (8) 361

where x and y are vectors. Next, we perform the 362

projection in the orthogonal direction of the pro- 363

jected feature Hdep to obtain a purer classification 364

feature vector. 365

H̃dep = Proj
(
Hdep, (Hdep −Hdep∗)

)
(9) 366

Correspondingly, the terms H̃con in the formula 367

can be expressed as follows: 368

H̃con = Proj
(
Hcon, (Hcon −Hcon∗)

)
(10) 369

3.3.2 Fusion Stage 370

Building on the preprocessing stage, we utilize the 371

purified dependency syntatic H̃dep, the purified con- 372

stituent syntactic H̃con, the semantic feature Hsem, 373

and the extra knowledge feature Hkge as inputs 374

during the fusion stage. Furthermore, inspired by 375

the multimodal fusion method MAMN (Xue et al., 376

2023a,b), we adopt the extended multimodal fac- 377

torized bilinear pooling mechanism from MAMN 378

in fusion stage to fuse H̃dep, H̃con, Hsem, and ex- 379

ternal knowledge feature Hkge. The Fusion Stage 380

is calculated as: 381

Z i
m = Norm

(
ŨT

depH̃
dep ◦ ŨT

conH̃
con

◦ŨT
semH

sem ◦ ŨT
kgeH

kge
) (11) 382

where all Ũ represent learnable weight parameters, 383

Norm denotes the normalization layer, and Z i
m 384

represents the outputs of the fusion stages within 385

the i-th EMSF block. Additionally, we have in- 386

troduced residual connections between different 387

blocks. Subsequently, we calculate the average of 388

the outputs from these le EMSF blocks (where le 389

indicates the number of EMSF blocks) to obtain 390

the feature r with four distinct granularity fusions. 391

The specific formula is as follows: 392

Z i+1
m = Z i

m + EMSF(

Z i
m, H̃dep, H̃con, Hsem, Hkge)

(12) 393

To obtain the final output, denoted as r for the 394

EMGF, we concatenate the output features from 395

the lm EMSF blocks and apply average pooling. 396

r = Mean
(
Z1
m,Z2

m, . . . ,Z lm
m

)
(13) 397
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Dataset
#Positve #Negative #Neutral

Train Dev Test Train Dev Test Train Dev Test
Laptop 976 - 337 851 - 128 455 - 167

Restaurant 2164 - 727 807 - 196 637 - 196
Twitter 1507 - 172 1528 - 169 3016 - 336
MAMS 3380 403 400 2764 325 329 5042 604 607

Table 1: Satistics of four datasets.

3.4 Model Training398

Softmax Classifier Subsequently, the fusion fea-399

ture r, obtained from the granularity fusion module,400

is used to calculate the sentiment probability dis-401

tribution ŷ(s,a) via a linear layer equipped with a402

softmax function:403

ŷ(s,a) = Softmax (Wpr + bp) (14)404

where (s, a) is a sentence-aspect pair.405

Our training goal is to minimize the following406

overall objective function:407

L(Θ) = Lc + βLtriplet (15)408

where Θ denotes all the trainable model parameters,409

while β are hyperparameters. The cross-entropy410

loss Lc for the primary classification task is defined411

as follows:412

Lc =
∑

(s,a)∈D

y(s,a) log ŷ(s,a) (16)413

where D contains all sentence-aspect pairs and414

y(s,a) is the real distribution of sentiment.415

4 Experiments416

4.1 Datasets417

Our model was evaluated using four bench-418

mark datasets: Laptop and Restaurant from Se-419

mEval2014 Task 4 (Pontiki et al., 2014), Twitter420

(Dong et al., 2014), and the large-scale multi-aspect421

MAMS dataset (Jiang et al., 2019). Consistent with422

prior studies (Chen et al., 2017; Li et al., 2021; Tang423

et al., 2022) and others, we excluded instances la-424

beled as "conflict." The statistics of these datasets425

are presented in Table 1.426

4.2 Implementation Details427

We utilized SuPar 5 as our parser to acquire both the428

dependency and constituent tree. For constructing429

our model, we employed the uncased base version430

5https://github.com/yzhangcs/parser

of BERT 6 with a dropout rate of 0.3. The training 431

process was conducted with a batch size of 16, uti- 432

lizing the Adam optimizer with a learning rate of 433

2e-5. For the four datasets, we set the ConGCN, 434

DepGCN, and SemGCN layers to (6, 3, 6, 6), (3, 435

3, 9, 3), and (3, 3, 1, 3), respectively, with β co- 436

efficients of (0.12, 0.12, 0.07, 0.12). We selected 437

3 layers (lc) for the constituent tree and optimized 438

its performance. Additionally, we determined that 439

6 layers (le) are optimal for EMSF blocks. The 440

hyper-parameter margin was set to 0.2. Each exper- 441

iment is replicated three times, with the results then 442

averaged for consistency. Our primary evaluation 443

metrics include accuracy (Acc.) and macro-f1 (F1). 444

4.3 Baseline Methods 445

We compare our EMGF with state-of-the-art base- 446

lines, described as follows: 447

1) BERT-SRC (Devlin et al., 2019) represents the 448

fine-tuning of BERT to incorporate aspect-specific 449

representations. 2) CDT (Sun et al., 2019) inves- 450

tigate combining dependency trees and neural net- 451

works for representation learning. 3) DualGCN (Li 452

et al., 2021) simultaneously considers the comple- 453

mentarity of syntax structures and semantic corre- 454

lations. 4) SSEGCN (Zhang et al., 2022) integrates 455

aspect-aware and self-attention mechanisms to en- 456

hance the precision of ABSA. 5) MGFN (Tang 457

et al., 2022) utilize a latent graph to leverage depen- 458

dency relation and semantic information. 6) TF- 459

BERT (Zhang et al., 2023) examines span-level 460

consistency in multi-word opinion expressions. 7) 461

HyCxG (Xu et al., 2023) introduce construction 462

grammar (CxG) to enrich language representation. 463

4.4 Main Results 464

Table 2 summarizes the primary experimental re- 465

sults. The EMGF model exceeds the current state- 466

of-the-art (SOTA) baseline, HyCxG (Xu et al., 467

2023), in both the Laptop and Restaurant bench- 468

marks. Models that incorporate syntactic depen- 469

dency information tend to outperform those that 470

do not, but relying solely on syntactic informa- 471

tion may lead to subpar performance, particularly 472

with informal or complex sentences. Leveraging 473

richer syntax dependency labels and incorporating 474

affective semantic information, as demonstrated 475

by models such as (Li et al., 2021; Tang et al., 476

2022), generally outperforms syntax-only models, 477

highlighting the effectiveness of integrating diverse 478

6https://github.com/huggingface/transformers
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Model Laptop Restaurant Twitter MAMS
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

BERT-SRC (Devlin et al., 2019) 78.99 75.03 84.46 76.98 73.55 72.14 82.34 81.94
CDT (Sun et al., 2019) 79.70 75.61 86.36 80.16 77.50 76.54 - -
DualGCN (Li et al., 2021) 81.80 78.10 87.13 81.16 77.40 76.02 - -
SSEGCN (Zhang et al., 2022) 81.01 77.96 87.31 81.09 77.40 76.02 - -
MGFN (Tang et al., 2022) 81.83 78.26 87.31 82.37 78.29 77.27 - -
TF-BERT (Zhang et al., 2023) 81.49 78.30 86.95 81.43 77.84 76.23 - -
HyCxG (Xu et al., 2023) 82.29 79.11 87.32 82.24 - - 85.03 84.40
Our EMGF 82.11 79.24 88.42 83.20 78.87 78.06 85.48 84.73

Table 2: Experimental results on ABSA datasets with BERT encoder. The best result on each dataset is in bold.

Model
Laptop Restaurant Twitter MAMS

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
Our EMGF (M4) 82.11 79.24 88.42 83.20 78.87 78.06 85.48 84.73
EMGF-M3 81.26 78.24 87.78 82.23 77.53 76.27 85.11 84.13

EMGF-M2 80.79 77.61 87.33 81.59 76.64 76.12 84.32 83.75

EMGF-M1 80.15 77.07 86.24 80.12 76.49 75.05 83.34 82.73

W/O Ltriplet 80.84 76.83 86.97 81.06 76.93 75.61 83.54 83.21

W/O Orthogonal Projection 79.41 75.24 86.15 80.22 77.83 76.53 84.44 84.13

W/O Dep Project Sem 80.52 76.92 86.15 79.96 76.04 75.20 84.44 83.87

W/O Con Project Sem 80.37 76.47 85.70 79.66 76.19 74.98 83.99 83.48

Table 3: Ablation study experimental results.

feature information. Experimental results indicate479

that our EMGF effectively integrates information480

from four different granularities.481

4.5 Ablation Study482

We evaluated the extensibility of EMGF and the483

effectiveness of its fusion approach by investigat-484

ing how the number of granularity features affects485

EMGF’s performance, the results are shown in Ta-486

ble 3. M4 indicates using all granularity features,487

M3 represents selecting three out of four granu-488

larity features (selected through combinatorial per-489

mutations) and averaging all possibilities. M2 and490

M1 follow a similar pattern. As we reduced the491

number of granularity features, we observed a de-492

crease in performance, highlighting the extensibil-493

ity of EMGF and the effectiveness of our fusion494

approach, which cumulative effects. W/O Ltriplet495

result in reduced performance of EMGF, this shows496

that multi-anchor triplet learning can gather com-497

plementary knowledge from various syntactic fea-498

ture information, thereby improving the model’s499

performance. The expression "Dep Project Sem500

(Con Project Sem)" denotes the projection of syn-501

tactic features related to dependency (constituent)502

onto orthogonal spaces associated with semantic503

features. W/O Dep Project Sem, W/O Con Project504

Sem, and W/O Orthogonal Projection Techniques,505

all lead to a decrease in EMGF performance. This506

implies that omitting the feature projections hin- 507

ders the model’s ability to accurately differentiate 508

between syntactic and semantic information, caus- 509

ing interference from redundant data during the 510

fusion stage. 511

4.6 Case Study 512

Table 4 illustrates our model through four exam- 513

ples. Identifying neutral sentiment is challenging 514

due to a lack of strong sentiment words in neutral 515

texts and data imbalance, with more data available 516

for positive and negative sentiments. In the third 517

sentence, MGFN incorrectly predicted the emo- 518

tional polarity of "chef." This can be attributed to 519

MGFN’s inability to capture its specific opinion 520

words associated with "chef," it incorrectly treated 521

the opinion words from "food" and "service" as 522

its own. The fourth sentence is particularly chal- 523

lenging, as MGFN, like many models, assigns pos- 524

itive sentiment to an aspect word without strong 525

emotional cues, causing three out of four EMGF 526

predictions to be incorrect. Drawing from our anal- 527

ysis, MGFN combines syntactic features derived 528

from the latent graph with semantic features. How- 529

ever, similar to other models, MGFN does not fully 530

capitalize on the potential offered by a variety of 531

granularity features. In juxtaposition, our EMGF 532

effectively leverages these features and their syner- 533

gistic effects through multi-anchor triplet learning 534
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Sentence MGFN (Tang et al., 2022) EMGF(Ours)

I know real [Indian food]neg and this wasn’t it. (neu ) (neg )

Our [waiter]pos was friendly and it is a shame that he didnt

have a supportive [staff]neg to work with.
(pos , pos ) (pos ,neg )

Even when the [chef]neu is not in the house, the [food]pos
and [service]pos are right on target.

(pos , pos ,pos ) (neu , pos ,pos )

We started with the [scallops]neu and [asparagus]neu and also

had the [soft shell crab]neu as well as the [cheese plate]neu.
(pos ,pos ,pos , neu ) (neu , neu ,neu , neu )

Table 4: Case study experimental results of MGFN and EMGF.
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Figure 3: The impact of the number of GCN and EMSF
block on Restaurant dataset.

and orthogonal projection.535

4.7 Impact of Number of GCN and EMSF536

Blocks537

We varied the number of layers, lcon, ldep, and538

lsem from 2 to 9 for ConGCN, DepGCN, and539

SemGCN to assess their impact on the model’s540

performance on Restaurant dataset. Based on ex-541

perimental results, we set lcon, ldep, and lsem to 3,542

3, and 9, respectively. Interestingly, maintaining543

consistent layer numbers for lcon, ldep, and lsem544

does not necessarily result in optimal performance.545

We observed that considering the layer count sep-546

arately for each of the three GCN types tends to547

enhance performance. The number of cascaded548

EMFB blocks (denoted as le) affects prediction ac-549

curacy and F1 score. Through experiments, we550

determined that the optimal number of modules is551

6, as depicted in Figure 3.552

4.8 Hype-parameter Analysis553

We will investigate the impact of a crucial parame-554

ter, k, in EMGF. This relates to selecting the num-555

ber of crucial nodes in each view. We have con-556

ducted experiments with various k values, such as557

c, log2(n), log2 n,
n
4 ,

n
3 ,

n
2 , where c is a constant,558

and n represents the number of view nodes. The559

value of c varies from 1 to 5, and we calculate the560

average performance. We can see from Figure 4561
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Figure 4: The impact of different k on Restaurant
dataset.

that the average performance reaches its peak when 562

k equals log2(n). 563

5 Conclusion 564

Through efficient integration of diverse granularity 565

features, including dependency and constituent syn- 566

tactic, attention semantic, and external knowledge 567

graphs, EMGF demonstrates superior performance 568

compared to existing ABSA methods. This study 569

has tackled the persistent challenge of fully lever- 570

aging the combined potential of diverse granularity 571

features in the ABSA framework. EMGF effec- 572

tively captures complex interactions among these 573

features by employing multi-anchor triplet learn- 574

ing and orthogonal projection techniques, yielding 575

a cumulative effect without incurring additional 576

computational expenses. EMGF offers a scalable 577

and flexible framework for integrating a variety of 578

multi-granularity features in ABSA, thereby en- 579

hancing model performance. 580

Limitations 581

Although our research has achieved commendable 582

results, there are limitations worth acknowledging. 583
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These limitations underscore areas for future im-584

provement and exploration. In this experiment, due585

to limited computational resources, we selected586

the top-k nodes as Anchor nodes in multi-anchor587

triplet learning. However, when we attempted to set588

the value of k to {log2 n, n4 ,
n
3 ,

n
2 } magnitude, we589

observed that the model training was excessively590

slow, and we had to adjust the magnitude of k to a591

smaller scale for experimentation. Finally, due to592

constraints in computational power and time, we593

were unable to explore larger model architectures594

or conduct extensive hyperparameter tuning. We595

hope that future research can address these limita-596

tions to enhance the reliability and applicability of597

the method we propose.598
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