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Abstract

Distributed learning has many computational benefits but is vulnerable to attacks from a
subset of devices transmitting incorrect information. This paper investigates Byzantine-
resilient algorithms in a decentralized setting, where devices communicate directly in a
peer-to-peer manner within a communication network. We leverage the so-called dual
approach for decentralized optimization and propose a Byzantine-robust algorithm. We
provide convergence guarantees in the average consensus subcase, discuss the potential of
the dual approach beyond this subcase, and re-interpret existing algorithms using the dual
framework. Lastly, we experimentally show the soundness of our method.

1 Introduction

Distributed optimization algorithms allow to harnessing the multiplication of devices to tackle the increasing
computational complexity of machine learning models. Yet, the involvement of many parties in the learning
process opens up the threat of misbehaving devices, that can purposely or inadvertently send arbitrarily
harmful messages. Such device failures are commonly termed Byzantine (Lamport et al., 1982). This paper
studies Byzantine robustness in the decentralized communication paradigm, which alleviates the risk of a
single point of failure due to a central server by making devices directly communicate with each other in a
peer-to-peer manner.

We consider devices (a.k.a nodes) that communicate synchronously within a communication network, ab-
stracted as a graph G = (V, E), where each vertex is a node that communicates with its neighbors in the
graph through the edges. We denote as Vh the Byzantine nodes, and Vh = V\Vb the remaining nodes, called
honest. Similarly, we split the edges in E = Eh ∪ Eb, where Eh are the edges linking honest nodes, while edges
in Eb link honest to Byzantine nodes. The subgraph of honest nodes Gh := (Vh, Eh) is always assumed to
connected. For any i ∈ Vh, we denote fi : Rd → R the local objective function on node i, and we study the
optimization problem:

minx∈Rd

∑
i∈Vh

fi(x). (1)
We study decentralized algorithms to solve this problem, which rely on the gossip communication protocol
(Boyd et al., 2006; Nedic & Ozdaglar, 2009; Duchi et al., 2011; Scaman et al., 2017), in which each node
i ∈ V maintains a local parameter xi ∈ Rd, and updates this parameter by performing approximate average
of this parameter with those of its neighbors in the graph.

Such gossip algorithms naturally arise when solving a well-chosen dual formulation of Equation (1) with
standard first-order methods. This dual approach gives a principled framework to design and analyze efficient
decentralized algorithms, leading for instance to acceleration (Scaman et al., 2017; Kovalev et al., 2020),
variance reduction (Hendrikx et al., 2019) and has strong links with gradient tracking (Jakovetić, 2018). This
paper investigates the benefits of this approach in the Byzantine robust setting.

Related works. Since its introduction by Blanchard et al. (2017), the setting of Byzantine-robust learning
has been extensively studied. The large majority of works focus on the federated case, in which a central
server organizes the training and communicates directly with each node (Yin et al., 2018; Chen et al., 2017;
Alistarh et al., 2018; Li et al., 2019; El-Mhamdi et al., 2020; Karimireddy et al., 2023; 2021; Farhadkhani
et al., 2022; Allouah et al., 2023). Some work investigated the robust decentralized optimization setting,
either with fully connected networks (El-Mhamdi et al., 2021; Farhadkhani et al., 2023) or with more generic
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networks (He et al., 2023; Wu et al., 2023; Gaucher et al., 2025). However, those works only skimmed over
the challenges of decentralized optimization in the Byzantine setting, and many key optimization techniques
such as gradient tracking or acceleration are still unexplored in the presence of adversaries. Developing the
dual framework in the presence of adversaries would thus open the way to tackle these challenges.

Contributions. In this paper, we (i) leverage the dual approach to derive EdgeClippedGossip, a decentralized
robust algorithm based on clipped dual gradient descent, (ii) derive clipping rules and their associated
convergence guarantees in the average consensus subproblem, in which EdgeClippedGossip recovers existing
algorithms. Finally, (iii) we highlight the dynamics of the developed method compared to previous approaches
and discuss its generalization beyond the average consensus case.

Notations. We denote 1n = (1, . . . , 1)T ; ∥ · ∥2 or simply ∥ · ∥ (resp. ⟨·, ·⟩) the Euclidean norm (resp.
inner product) on Rd; ∥ · ∥F the Frobenius norm of any matrix in Rd×n, and ⟨M, N⟩F = Tr(MT N) the
corresponding inner product. We denote Xi,: the i-th row of a matrix X. For a matrix M in Rn×d, we denote
M := n−11n1T

n M , and for p ∈ {1, 2, ∞}, we denote ∥M∥p,2, the p-norm of the vector of 2-norms of the rows
of M , i.e., ∥(∥Mi,:∥2)i⩽n∥p. Moreover, C† is the Moore Penrose inverse of C and Id is the identity matrix.
We identify RE to R|E| and RV to Rn. We denote a ∧ b = min(a, b).

2 Deriving EdgeClippedGossip

This section describes a dual approach to Byzantine robustness. We first introduce a dual gossip algorithm,
then show how it can be made robust using EdgeClippedGossip.

Setting: We denote nh = |Vh| and nb = |Vb| the total number of honest and Byzantine nodes, and Nh(i)
and Nb(i) the number of honest and Byzantine neighbors of node i. Each agent owns and iteratively updates
a local parameter xt

i. At time t, we denote Xt := [xt
1, . . . , xt

n]T ∈ RV×d the parameter matrix, which we split

into honest and Byzantine as Xt =
(

Xt
h

Xt
b

)
, where Xt

h = [(xt
i)i∈Vh

]T (resp. Xt
b) is the sub-matrix containing

the models held by the honest workers (resp. Byzantine). Note that Byzantine nodes can declare different
values to each of their neighbors. As such, only the number and positions of edges with Byzantine nodes
matter, and we can w.l.o.g identify the number of edges linking Byzantine and honest nodes |Eb| to the
number of Byzantine workers nb.

2.1 Gossip - average consensus case

Gossip communications (Boyd et al., 2006) consist in sharing information between neighbors through local
averaging steps. The standard gossip protocol writes Xt+1 = WXt, where W ∈ [0, 1]n×n is a gossip matrix.
Definition 1 (Gossip matrix). A matrix W ∈ Rn×n

+ is a gossip matrix for a graph G = (V, E) if: (i) W

is symmetric and doubly-stochastic: W1n = 1n, and 1T
n W = 1T

n . (ii) W is supported on the edges of the
network: Wij ̸= 0 if and only if i = j or (i ∼ j) ∈ E .

Such a matrix W has eigenvalues 1 = µ1(W ) ⩾ |µ2(W )| ⩾ . . . ⩾ |µn(W )|. The propagation of information in
the graph is characterized by the spectral gap of W , which is defined as γW := 1 − |µ2(W )|. Note that, if the
graph G is connected, then γW > 0.
Example 1 (Gossip from Graph Laplacian). Consider the Laplacian matrix of the graph L = D − A where D
is the diagonal matrix of degrees and A is the adjacency matrix (i.e., Aij = 1(i∼j)∈E). Then, WL = Id −ηL is
a gossip matrix for η ⩽ 1/µn(W ), with spectral gap γWL

= ηµ+
min(L), where µ+

min(L) is the second smallest
eigenvalue of L.

The average consensus problem is an important special case of Equation (1).
Definition 2. The approximate average consensus problem (ACP) consists in computing
x∗ = 1

nh

∑
i∈Vh

x∗
i , where each node i ∈ Vh holds a value x∗

i , which is equivalent to Problem (1) with
fi(x) = ∥x − x∗

i ∥2. In the presence of Byzantines, only an approximate estimation of x∗ can be found.

When there are no Byzantine nodes, standard gossip-averaging results ensure linear convergence of the
parameters to the average (Boyd et al., 2006):

∑
i∈V ∥xt

i − x∗∥2 ⩽ (1 − γ)2t
∑

i∈V ∥x0
i − x∗∥2. Yet, this result
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is not robust to adversarial nodes: as the standard gossip communication uses averaging steps, it is vulnerable
to a single Byzantine node, which can drive all honest nodes to any position (Blanchard et al., 2017).

2.2 Dual approach in decentralized optimization

The use of a dual formulation to solve decentralized optimization is very popular (Jakovetić et al., 2020;
Uribe et al., 2020). Not only has it been at the heart of key advances such as acceleration (Scaman et al.,
2017; Hendrikx et al., 2019; Kovalev et al., 2020) and variance reduction (Hendrikx et al., 2021), but it also
allows us to understand methods such as gradient tracking (Jakovetić, 2018). It is thus natural to investigate
whether the dual approach can be used for Byzantine robustness.

We first introduce the dual approach in a Byzantine-free setting. Then, we interpret dual variables and
explain their use in the Byzantine-robust setting. Eventually, we instantiate the algorithm in the ACP setting
and show that it recovers existing algorithms.

2.2.1 Byzantine-free dual approach.

We first show how the dual approach unrolls on Problem (1), in a setting without Byzantine agents. Let us
write Problem (1) as a constrained optimization problem on F (X) =

∑
i∈V fi(Xi:), where the constraints

write X1: = . . . = Xn:, or equivalently ∀(i ∼ j) ∈ E , Xi: = Xj: for a connected graph. By encoding this
constraint into a matrix CT ∈ RE×V , such that [CT X](i∼j),: = Xj: − Xi: for any edge (i ∼ j) in E , we obtain
a primal version of Problem (1), which is, under convexity of functions fi, equivalent to a dual problem:

min
X∈RV×d, CT X=0

F (X) = min
X∈RV×d

max
Λ∈RE×d

{
F (X) − ⟨Λ, CT X⟩

}
(Primal)

= − min
Λ∈RE×d

F ∗(CΛ), (Dual)

where F ∗(Y ) := supX∈RV×d⟨X, Y ⟩ − F (X) is the Fenchel conjugate of F . Note that as F is separable, F ∗

can be decomposed as F ∗(Y ) =
∑

i∈V f∗
i (Yi:). The dual approach leverages Equation (Dual) to design

decentralized optimization algorithms, for instance by solving the dual problem using gradient descent (GD).
If we denote Y := CΛ ∈ RV×d the dual variable deriving from the Lagrangian multipliers Λ ∈ RE×d, GD
with step-size η writes:

Λt+1 = Λt − ηCT ∇F ∗(CΛt) =⇒ Y t+1 = Y t − ηCCT ∇F ∗(Y t). (2)

Dual gossip update. The incidence matrix C is a root of the Laplacian matrix L, as CCT = L. It follows
that in the case of the average consensus problem where ∇f∗

i (y) = y + x∗
i , Equation (2) consists in doing an

update on the dual variable Y , which for the associated primal variable X := ∇F ∗(Y ) = Y + X∗ recovers
the standard gossip protocol Xt+1 = (I − ηL)Xt.

Convergence. Using standard GD results, Λt in Equation (2) converges linearly to Λ∗, the solution of
(Dual), under strong convexity and smoothness assumptions on the fi. It follows that Xt := ∇F ∗(CΛt)
converges to the solution of (Primal). Indeed:

1. Invariant. As Y t ≜ CΛt, ker CT = span 1, and ∇F (Xt) = Y t, the sum of (primal) gradients is null
by design: ∑

i∈Vh
∇fi(Xt

i:) = 1T ∇F (Xt) = 1T Y t = 0. (Invariant)
2. Asymptotic consensus. Reaching a stationary point of Equation (2) means that ∇F ∗(Y ) ∈ ker CT ,

thus Xi: = Xj: for all (i ∼ j) ∈ E , i.e. consensus is reached among nodes.

Note that although dual gradients are arguably hard to compute in the general case, several approaches allow
to leverage the (primal-)dual approach while either bypassing the problem or alleviating this cost (Hendrikx
et al., 2020; Kovalev et al., 2020).

2.2.2 Duality in the Byzantine setting.

In (Dual), the Lagrangian multipliers Λt ∈ RE×d correspond to the influence between nodes of the graph.
Precisely, each row of Λ, indexed by edges as Λ(i∼j), corresponds to the accumulated influence between
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Algorithm 1 Byzantine-Resilient Decentralized Optimization with EdgeClippedGossip (τ t)
Input: {fj}, {y0

j }, η, {τ t}
for t = 0 to T do

for j = 1, . . . , n in parallel do
Compute xt

j = ∇f∗
j (yt

j) if j ∈ Vh else ∗
Share parameter xt

j with neighbors
yt+1

j = yt
j − η

∑
i∼j Clip

(
xt

j − xt
i; τ t

(i∼j)

)

nodes i and j through edge (i ∼ j). Indeed, the (primal) gradient is equal to the aggregation of neighboring
Lagrangian multipliers, ∇fi(xt

i) ≜ yt
i =

∑
(i∼j) Λt

(i∼j), while the update of each Λt
(i∼j) multiplier involves

only the two nodes of the edge: Λt+1
(i∼j) = Λt

(i∼j) − η[∇f∗
j (yt

j) − ∇f∗
i (yt

i)]. This latter update thus corresponds
to the update of the influence between node i and node j during a time step.

It follows that applying an operator on the update on the row (i ∼ j) of Λt corresponds to altering the
influence between nodes i and j. For instance, setting the row Λ(i∼j) to 0 corresponds to removing edge
(i ∼ j) from the graph.

To address the vulnerability of plain gossip averaging to Byzantine parties, we regulate the influence update
between nodes by clipping the update on the edges. Formally, for τ ⩾ 0 and x ∈ Rd, the projection of x onto
the L2 ball of radius τ writes:

Clip(x; τ) := x

∥x∥2
min(∥x∥2, τ). (3)

We thus consider for a general vector τ ∈ RE , the regulation of the influence update on (i ∼ j), by setting
Λt+1

(i∼j) = Λt
(i∼j) − η Clip(∇f∗

j (yt
j) − ∇f∗

i (yt
i), τ t

(i∼j)), which writes under matrix form as

Λt+1 = Λt − η Clip
(
CT ∇F ∗(CΛt), τ t

)
(4)

This gives Algorithm 1, called EdgeClippedGossip, which translates the update described above in terms of
primal and dual iterates.

Oracle strategy. If the set of Byzantine edges Eb is known, then Equation (4) with τ(i∼j) = ∞ · 1(i∼j)/∈Eb

exactly recovers the generalized gossip algorithm 2 on the subgraph of honest nodes.

The previous derivations are summarized into the following result.
Proposition 1. Consider a threshold τ > 0 and τ = τ1E . Then, Algorithm 1 corresponds to a clipped
gradient descent on the dual problem (Dual): Λt+1 = Λt − ηΠτ

(
CT ∇F ∗(CΛt)

)
, where Πτ is the projection

on a ball of radius τ for the infinite-2 norm ∥M∥∞,2 := sup(i∼j)∈E ∥M(i∼j)∥2.

Next, we instantiate the algorithm in the ACP case, in which the ∇f∗
i have a special form, and which is the

setup under which theoretical guarantees are given in Sections 3 and 4.

2.2.3 EdgeClippedGossip for the ACP.

From now on, we focus on Algorithm 1 for the Average Consensus Problem (Definition 2).

We denote X∗ = [x∗
1, . . . , x∗

n]T , the matrix of node-wise optimal parameters. In the ACP setting, Xt =
∇F ∗(CΛt) ACP= CΛt + X∗, thus Equation (4) writes

Λt+1 = Λt − η Clip
(
CT ∇F ∗(CΛt); τ t

)
⇔ Xt+1 = Xt − ηC Clip(CT Xt; τ t). (5)

In order to distinguish the impact of honest and Byzantine nodes, we decompose Matrix C into blocks as
C =

(
Ch Cb

0 − IdEb

)
, and X as

(
Xh

Xb

)
. The update on (Λt) in Proposition 1 thus writes as

Xt+1
h = Xt

h − η(Ch Cb) Clip(CT Xt; τ t); Xt+1
b = ∗. (6)
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We analyze this sub-problem in the following section.

3 Global Clipping

We now investigate average consensus EdgeClippedGossip under a global clipping threshold, and highlight a
choice of thresholds (τ t)t⩾0 for which we derive convergence guarantees. All proofs for this section can be
found in Appendix B.2.

3.1 The Global Clipping Rule

To analyze Equation (6), we decompose the influence update between honest and Byzantine edges as
(CT Xt)h = CT

h Xt
h ∈ REh×d and (CT Xt)b = CT

b Xt
h − Xt

b ∈ REb×d. For a given threshold τ t we define as κt

the number of honest edges that are modified by Clip( · , τ t), i.e.,

κt = card
{

(i ∼ j) ∈ Eh, ∥(CT
h Xt

h)(i∼j)∥2 > τ t
}

. (7)

We then denote ∥CT
h Xt

h∥1,2;κt the 1, 2-norm of the sub-matrix of clipped messages, i.e.:

∥CT
h Xt

h∥1,2;κt :=
∑

(i∼j)∈Eh, κt largest

∥(CT
h Xt

h)(i∼j)∥2.

These quantities thus represent the fractions of weights of messages in (CT X)h = ((xi − xj)(i∼j)∈Eh
) that are

affected by clipping. We now introduce

∆∞ := sup
Ub∈REb×d, ∥Ub∥∞,2⩽1

∥C†
hCbUb∥∞,2,

which quantifies how much the Byzantine nodes can increase the variance of the honest nodes. We will need
∆∞ < 1 to obtain non-vacuous results, as otherwise, it means that Byzantine nodes introduce more variance
than what is reduced by the contraction obtained through gossip averaging. ∆∞ decreases when removing
Byzantine edges from the graph, and can be bounded for some graphs.
Lemma 1. For Gh fully connected where each honest node has exactly Nb(i) = Nb Byzantine neighbors,
∆∞ ⩽ 2Nb

nh

√
d ∧ nhNb.

To satisfy ∆∞ < 1, two regimes appear: it is sufficient that nh > 2Nb

√
d for small dimension d, but nh > 4N3

b

for large d, which is quickly untractable. Therefore, the limit fraction of Byzantine neighbors is significantly
impacted by the dimension. We now define the following clipping threshold rule.
Definition 3 (Global Clipping Rule (GCR)). Given a step size η, a sequence of clipping thresholds (τs)s⩾0,
satisfies the Global Clipping Rule if for all t ⩾ 0, either τ t = 0, or

∥CT
h Xt

h∥1,2;κt ⩾ ∆∞∥CT
h Xt

h∥1,2 + η
|Eb|2

nh

∑
0⩽s⩽t

τs.

This clipping rule enforces that the clipping threshold is below a certain value, since decreasing τ t increases
κt, which in turn increases the left term. In particular, τ t is reduced until the sum of the norms of clipped
honest edges is greater than the sum of the norms of all honest edges, shrunk by the contraction ∆∞, plus
a term proportional to the sum of previous thresholds (which is known by all nodes). This latter term,
η|Eb|2

∑
s⩽t τs/nh can be understood as a bound on the maximum bias induced by Byzantine nodes after t

steps, i.e. 1T (Xt

h − X
0
h).

Over-clipping. The GCR defines an upper bound on τ t, but any value below this threshold works. By
denoting κt,∗ the smallest κt such that the GCR holds, we must ensure that at least κt,∗ honest edges are
clipped. A solution to this end consists in clipping κt,∗ + |Eb| edges overall, by removing first the |Eb| largest
edges, and computing κt,∗ on the remaining edges afterwards. Note that the GCR still holds if the number of
Byzantine edges is over-estimated. We provide in Appendix B.3 a simplified (yet looser) version of the GCR.
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Global coordination. Implementing a global clipping threshold that satisfies Definition 3 requires some
global coordination, which is hard in general in this decentralized setting. As such, we propose a proof of
concept on what can be achieved by this approach under a favorable assumption of their communications,
more than a practical decentralized algorithm.

3.2 Convergence result

Recall that µmax(Lh) is the maximal eigenvalue of the honest subgraph Laplacian, and ∆∞ depends only on
the topology of the full graph G. We note X∗

h = 1h1T
h X∗

h/nh

Theorem 1. Assuming ∆∞ < 1, let η be a constant step size: η ⩽ 1/(1+|Eh|(1−∆∞))µmax(Lh). If the clipping
thresholds (τs)s⩾0 satisfy Definition 3 (GCR), then:

∥Xt+1
h − X∗

h∥2
F ⩽ ∥Xt

h − X∗
h∥2

F − η
∑

i∼j ∈ Eh

∥xt
i − xt

j∥2
21∥xt

i
−xt

j
∥2

2⩽τt .

Theorem 1 ensures that the squared distance of honest models Xt
h to the global optimum X∗

h decreases at
each step, although not necessarily all the way to 0. In essence, what happens is the following: each step
of EdgeClippedGossip pulls nodes closer together but at the cost of allowing Byzantine nodes to introduce
some bias so that Xt

h − X∗
h ̸= 0. This trade-off appears in the GCR: at some point, further reducing the

variance is not beneficial because it introduces too much bias, and so the GCR enforces that τ t ≈ 0, which
essentially stops the algorithm. Yet, regardless of the initial heterogeneity, nodes benefit from running
EdgeClippedGossip.

Asymptotic error. This theorem ensures that finding small τ t that satisfy the GCR reduces the distance
to the optimum, yet it does not characterize the asymptotic error. Furthermore, the smallest τ t satisfying
the GCR is an oracle quantity, in the sense that it requires computing a sum of node-wise differences on
honest neighbors only.

4 Beyond global coordination and averaging

In this section, we investigate how to extend the dual approach beyond the average consensus case. We
discuss de discrepancies between the developed dual framework and local clipping methods such as (He et al.,
2023; Gaucher et al., 2025). Then we discuss on the difficulties to extend the dual framework beyond the
average consensus setting.

4.1 Dual interpretation of existing algorithms

Several works investigated the problem of robust average consensus. Among those, He et al. (2023);
Farhadkhani et al. (2023); Gaucher et al. (2025) propose robust communication algorithms that rely, under
the hood, on performing gossip communication while altering the update on the Lagrangian multipliers at
each step. All those algorithms can be written as:{

xt+1
i = xt

i − ηF
(
(xt

i − xt
j)j∼i

)
if i ∈ Vh

xt+1
i = ∗ if i ∈ Vb.

(F-RG)

where F is an aggregation function that verifies a (b, ρ)-robust summand properties. The SOTA (b, ρ)-robust
summand, Clipped Sum, relies on a clipping strategy: CS(z1, . . . , zn) :=

∑n
i=1 Clip(zi; τ). Interestingly, the

success of those methods relies partially on the control of the quantities (xi − xj)i∼j . In other words, they
consist in altering the Lagrangian multipliers update ([CT Xt]i∼j) based on the norm of each entry.
Proposition 2. When τ is a fixed constant, (6) is equivalent to Equation (F-RG) with Clipped Sum
aggregation.

Local Clipping thresholds. An other key element of the robustness of CS+-RG, is that the clipping
threshold is tailored locally, in a node-wise manner. Typically, the clipping threshold τi on a node i is defined
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as the 2b largest value within (∥xi − xj∥)j∼i. It follows that the influence update of two neighbors may not be
symmetric when Clip(xi − xj ; τi) ̸= Clip(xi − xj ; τj). This asymmetry between clipping thresholds in CS-RG
may bias the average of honest parameters independently of the attack of Byzantine nodes.
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Figure 1: Bias - Variance decomposition of the parameters of honest nodes. GTS-RG (LocalTrimming),
CS-RG (LocalClipping) and the GCR are tested under ALIE attack, in a Two Worlds graph (cf. Section 5)
with 64 honest nodes in two cliques, each being neighbor to 16 nodes in the other clique, and to 3 Byzantine
nodes.

Trading bias and consensus. This bias induced by the communication scheme is a fundamental difference
with the dual approach such as exposed in Algorithm 1, where the bias is only induced by the Byzantines
nodes. This discrepancy is reflected in the analysis: in the bias of Algorithm 1 is controlled directly in the
GCR, while for instance (Gaucher et al., 2025) controls the additional bias at each step, and sum them up by
using that honest nodes converges quickly enough to the same value. Overall, Algorithm 1 with the GCR
does not alter the average of honest parameters and thus can induce less bias in the communication process
than local clipping methods. Yet, there is no free lunch: the variance of the honest parameters does not
converge to 0 using the GCR, while CS-RG for instance ensures asymptotic consensus. We illustrate this
point in Figure 1.

4.2 Dual formalism for asymmetric clipping

Considering the weak convergence guarantee of the GCR, we modify slightly the dual formalism to allow local
clipping thresholds. Then we discuss the major difficulties encountered when extending the dual approach
beyond the case of average consensus.

From symmetric to asymmetric clipping. In Byzantine-free settings (see Section 2.2.1), dual gradient
descent leads to gossip algorithms for which the influence of node i on node j is the opposite of the one of
node j on node i, both are stored in Λt

i∼j . The matrix of influence updates CT ∇F ∗(CΛt) thus has one row
for each edge, the update can be written as (2), and the (Invariant) property is kept. This symmetry between
the influence of two honest nodes (i, j) ∈ Vh remains when the influence update is clipped, as long as both
honest neighbors clip the influence update on edge (i ∼ j) with the same threshold. Allowing local clipping
thresholds requires storing in two different variables the influence from node i on node j and from node i to j.

To do so, we consider G̃ = (V, Ẽ) the directed version of the undirected graph G, we enumerate its set of
edges as Ẽ = {i → j}, and consider the directed incidence matrix C̃T ∈ RẼ×V , such that for X ∈ RV×d,
and i → j ∈ Ẽ , (C̃T X)i→j = Xj,: − Xi,:. Furthermore, we define B̃ ∈ RV×Ẽ as the positive coordinates of
the incidence matrix C̃, such that for Λ̃ ∈ RẼ×d and j ∈ V, we have [B̃Λ̃]j =

∑
(i→j)∈Ẽ Λ̃i→j . Under these

notations, Equation (2) can be written with directed edge-wise clipping thresholds τ ∈ RẼ as:

Λ̃t+1 = Λ̃t − η Clip(C̃T ∇F ∗(B̃Λ̃t), τ t) =⇒ Ỹ t+1 = Ỹ t − ηB̃ Clip(C̃T ∇F ∗(Ỹ t); τ t). (8)

And, in the average consensus sub-case, Equation (5) generalizes as

X̃t+1 = X̃t − ηB̃ Clip(C̃T X̃t; τ t). (9)

7



Under review as submission to TMLR

Node-wise clipping thresholds. This formalism allows node-wise clipping thresholds as a sub-case of
directed edge-wise clipping thresholds. Thus, communication algorithms with node-wise clipping thresholds
as ClippedGossip in (He et al., 2023) or CS-RG in Gaucher et al. (2025) exactly correspond to Equation (9)
for appropriate τ t.
Proposition 3. Denoting M := B̃†C̃, Equation (8) can be seen as a clipped pre-conditioned gradient descent
on the dual objective Λ → F ∗(CΛ):

Λ̃t+1 = Λ̃t − η Clip(MT B̃T ∇F ∗(B̃Λ̃t), τ ). (10)

In particular, we expect fixed points of this iteration to be minimizers of Λ̃ 7→ F ∗(B̃Λ̃) in the absence of
Byzantines.

Loss of the invariant. As denoted before, even in the absence of Byzantines, the (Invariant) property, i.e.
1T Ỹ t = 0, does not hold by design anymore, since 1T B̃ ̸= 0.

Error metric. The main difficulty in extending the dual approach to more generic loss functions, even with a
global clipping threshold, lies in this loss of invariant. The Fenchel transform F ∗(Y t

h) is no longer informative
of the distance between ∇F ∗(Y t

h) and the solution of the problem (Primal) when 1T Y t
h ̸= 0. Local clipping

analyses such as F-RG bypass this difficulty by directly proving a linear decrease for the variance of honest
nodes.

Lack of Lyapunov function Seeing Equation (8) as noisy variation of Equation (2) leads to writing
Ỹ t+1 = Ỹ t − ηL∇F ∗(Ỹ t) + ηEt, where Et is the error induced by both Byzantine corruption and clipping of
honest edges. Note that Et may lie in the kernel of L. If it is possible to use F-RG analysis to upper-bound
the error as ∥Et∥2 ⩽ ρb∥

√
L∇F ∗(Ỹ t

h)∥2, it is much more involved to find a proper Lyapunov function to
leverage this bound. One can consider F ∗(PY t), with P being the projection on span 1⊥. However, at some
point it is necessary to control P

(
∇F ∗(Ỹ t

h) − ∇F ∗(PỸ t
h)
)
, which leads to vacuous results beyond the average

consensus case.

Conclusion. In summary, the strength of the dual approach generally lies in its structure, which usually
allows for building Lyapunov functions in a principled manner. The Byzantine case breaks this structure,
which significantly hardens the analysis.

5 Experiments

We perform all experiments on a ‘Two Worlds’ graph with 64 nodes, made of two cliques of 32 honest nodes.
Each node is connected to 16 nodes in the other clique. On such a graph, the theoretical maximal number
of tolerated Byzantine numbers per honest node is 16. The actual number of Byzantine neighbors per
honest node depends on the experiment. We initialize the parameter of each honest node using a N(0, I5)
distribution, each experimental configuration is run with 5 different seeds, and results are averaged. We
implement ALIE (Baruch et al., 2019), FOE (Xie et al., 2020), Dissensus (He et al., 2023) and Spectral
Heterogeneity (Gaucher et al., 2025), more details are available in Appendix A.1. We compare 1) the Global
Clipping rule, the threshold is the largest clipping threshold verifying the GCR, 2) Local Clipping denotes
the algorithm CS-RG (Gaucher et al., 2025), 3) Local Trimming denotes GTS-RG, i.e. the implementation of
NNA (Farhadkhani et al., 2022) in the case of sparse communication networks (Gaucher et al., 2025).

Analysis. We note on Figure 2 that the GCR has similar worst-case1 performances on the investigated task
than methods with local aggregation rules (i.e. GTS-RG and CS-RG). However, as soon as ∆∞ ⩾ 1, the
GCR does not allow communication between nodes anymore, and we have MSET /MSE0 = 1. This follows
from the definition of the GCR itself: by design, the GCR is built such as to ensure that nodes benefit from
the communication. As such, when there is no guarantee that this is the case anymore, the algorithms prevent
communication between nodes. On the contrary, node-wise aggregation methods are provably robust up to a
certain amount of Byzantines but do not have any guarantees beyond this breakdown point, and they do
increase the mean square error by communicating – see e.g. Gaucher et al. (2025).

1Note that the empirical worst-case performance among all attacks is the meaningful evaluation of the resilience of an
algorithm, and thus the superior performance of LocalClipping against Dissensus and SpH only denotes that these attacks are
not optimal against LocalClipping, and not that LocalClipping has superior robustness.
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Figure 2: Relative mean square error after T = 100 communication steps, with a varying number of Byzantine
neighbors to each honest node.

6 Conclusion

In this paper, we leverage the dual approach to design a byzantine-robust algorithm, which we then analyze
in the average consensus case. We leverage the dual approach to re-interpret existing efficient robust
communication algorithms, and we experimentally compare our algorithms with them. Finally, we highlight
that the usual strength of the dual approach to decentralized learning - its structure - is broken by the
introduction of Byzantine nodes, which brings significant challenges to the analysis. Yet, interesting algorithms
arise, which do not ensure consensus among nodes (while standard algorithms do, at the price of some bias).
Finding new ways of better characterizing the convergence properties of such algorithms is an interesting
open problem.

7 Statement of Broader Impact
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A Experimental design

A.1 Byzantine attacks in the federated case

In our experiments, we implement SOTA attacks developed for the federated SGD setting: Fall of empire
(FOE) from Xie et al. (2020) and A little is enough (ALIE) from Baruch et al. (2019), Dissensus from He
et al. (2023) and Spectral Heterogeneity for Gaucher et al. (2025). We implement all these methods by making
a Byzantine node j ∈ Vb declare to an honest neighbor i ∈ Vh a vector xt

j = xt
i + εt

ta
t
i, where at

i ∈ Rd is the
attack direction on node i and εt

i ⩾ 0 is the scale of the attack.

• ALIE. The Byzantine nodes compute the coordinate-wise standard deviation σt. Then they use
at

i = σt.

• FOE. The Byzantine nodes compute the mean of the honest parameters xt, and declare at
i = xt.

• Dissensus. The Byzantines take at
i =

∑
k∼j, k∈Vh

xt
i − xt

k.

• Spectral Heterogeneity. The Byzantines compute the Fiedler vector of the honest subgraph efied,
i.e. the eigenvector associated with the second smallest eigenvalue of the Laplacian of the honest
subgraph. Then, they take at

i = [efied]i
∑

k∈Vh
[efied]kxt

k.

In all attacks we chose εt
i to maximize the error induced by Byzantines: for trimming we take it such that all

Byzantine attacks are just below the trimming threshold, while for clipping strategies we chose et
i >> 1.

B Proofs

B.1 Notations

In this subsection we resume the different notations of the proofs. Table 1 summarizes notations used for
primal and dual parameters, as well as Lagrange multipliers.

We recall the algorithm in the global clipping setting:

Xt+1
h = Xt

h − η(Ch Cb) Clip(CT Xt; τ t)
Xt+1

b = ∗.

11
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Table 1: Summary of notations
Variable Name Size Rows
X primal parameter V × d (xi)i∈V
Y dual parameter V × d (yi)i∈V
Λ Lagrange multipliers E × d (λ(i∼j))(i∼j)∈E
CT ∇F ∗(CΛ) Influence update on the edges E × d (xi − xj)(i∼j)∈E

In the global clipping setting, we consider that, as τ t = τ t1E , we can overload the clipping operators writing
for Λh ∈ REh×d and Λb ∈ REb×d,

Clip(Λh; τ t) = [Clip(λ(i∼j), τ t)](i∼j)∈Eh
(11)

Clip(Λb; τ t) = [Clip(λ(i∼j), τ t)](i∼j)∈Eb
(12)

We use the following notations:

• For any matrix M ∈ RVh×d, we denote

M := 1
nh

1nh
1T

nh
M.

• We note the primal parameter re-centered on the solution

Zt
h := Xt

h − X∗
h.

• The unitary matrix of attack on edges linking to Byzantine nodes

U t
b := 1

ητ t
(Λt+1

b − Λt
b).

Thus ∥U t
b∥∞,2 ⩽ 1 and Λt+1

b = Λt
b − η Clip([CT Xt]b; τ t) = Λt

b + ητ tU t
b .

• The error term induced by clipping and Byzantine nodes

Et := Ch

(
CT

h Zt
h − Clip(CT

h Zt
h; τ t)

)
+ τ tCbU t

b ,

• We denote for p ∈ {1, 2} and κt ∈ {0, . . . , |Eh|}

∥CT
h Xt

h∥p
p;κt :=

∑
(i∼j)∈Eh, κt largest

∥(CT
h Xt

h)(i∼j)∥p
2

∥CT
h Xt

h∥p
p;−κt :=∥CT

h Xt
h∥p

p − ∥CT
h Xt

h∥p
p;κt .

• We recall that by default ∥ · ∥ and ∥ · ∥2 is the usual Euclidean norm (or the Frobenius norm in case
of matrix).

And we recall some previous facts:

• Lh = ChCT
h = 1

2 C̃hC̃T
h the Lagrangian matrix on the honest subgraph Gh.

• CT
h 1nh

= 0 =⇒ CT
h Xt

h = 0 =⇒ CT
h Xt

h = CT
h Zt

h .
• C†

h is the Moore-Penrose pseudo inverse of Ch.

12
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B.2 Analysis of Global Clipping Rule (GCR) Theorem 1

Lemma 2. (Gossip - Error decomposition) The iterate update can be decomposed as

Zt+1
h = (Ih − ηLh)Zt

h + ηEt.

Proof. The actualization of Xt
h writes

Xt+1
h = Xt

h − ηCh Clip(CT
h Xt

h; τ t) − ηCb Clip([CT Xt]b; τ t).

Using CT
h Xt

h = CT
h Zt

h, we get

Zt+1
h = Zt

h − ηCh Clip(CT
h Xt

h; τ t) + ητ tCbU t
b

= (Ih − ηChCT
h )Zt

h + η
{

Ch

(
CT

h Zt
h − Clip(CT

h Zt
h; τ t)

)
+ τ tCbU t

b

}
= (Ih − ηLh)Zt

h + ηEt.

Lemma 3. (Sufficient decrease on the variance) We have the decomposition of the variance as a biased
gradient descent:

∥Zt+1
h − Zt

h∥2 = ∥Zt
h − Zt

h∥2 + η2∥LhZt
h − Et∥2 − 2η∥CT

h Zt
h∥2 + 2η⟨Zt

h − Zt
h, Et⟩.

Proof. we start from Lemma 2

∥Zt+1
h − Zt

h∥2 = ∥Zt
h − Zt

h − η(LhZt
h − Et)∥2

= ∥Zt
h − Zt

h∥2 + η2∥LhZt
h − Et∥2 − 2η⟨LhZt

h, Zt
h − Zt

h⟩ + 2η⟨Zt
h − Zt

h, Et⟩

= ∥Zt
h − Zt

h∥2 + η2∥LhZt
h − Et∥2 − 2η∥CT

h Zt
h∥2 + 2η⟨Zt

h − Zt
h, Et⟩,

where we used that CT
h Zt

h = 0 and ChCT
h = Lh.

Lemma 4. (complete sufficient decrease)

∥Zt+1
h ∥2 = ∥Zt

h∥2 + η2∥LhZt
h − Et∥2 − 2η∥CT

h Zt
h∥2 + 2η⟨Zt

h − Zt
h, Et⟩ + 2⟨Zt

h, Zt+1
h − Zt

h⟩.

Proof. We leverage that

∥Zt+1
h ∥2 = ∥Zt+1

h − Zt
h + Zt

h∥2

= ∥Zt+1
h − Zt

h∥2 + ∥Zt
h∥2 + 2⟨Zt

h, Zt+1
h − Zt

h⟩

= ∥Zt+1
h − Zt

h∥2 + ∥Zt
h∥2 + 2⟨Zt

h, Zt+1
h − Zt

h⟩.

Then we use Lemma 3.

Assumption 1. Definition 3 Trade-off between clipping error and Byzantine influence. By denoting

∆∞ := sup
Ub∈REb×d

∥Ub∥∞,2⩽1

∥C†
hCbUb∥∞,2,

We assume that τ t = 0, or

∥CT
h Xt

h∥κt ⩾ ∆∞∥CT
h Xt

h∥1 + η
|Eb|2

nh

∑
0⩽s⩽t

τs.

Lemma 5. (Join control of the first order error and second order bias) Under Definition 3, we have that

η⟨Zt
h − Zt

h, Et⟩ + ⟨Zt
h, Zt+1

h − Zt
h⟩ + η2∥Et∥2

2 ⩽ η∥CT
h Zt

h∥2
κt ,

or τ t = 0.
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Proof. We begin by upper bounding precisely both error terms:

1. Variance-induced error.

⟨Zt
h − Zt

h, Et⟩ = ⟨Zt
h − Zt

h, Ch

(
CT

h Zt
h − Clip(CT

h Zt
h; τ t)

)
⟩ + ⟨Zt

h − Zt
h, τ tCbU t

b⟩

= ⟨CT
h Zt

h, CT
h Zt

h − Clip(CT
h Zt

h; τ t)⟩ + ⟨CT
h Zt

h, τ tC†
hCbU t

b⟩,

Using that CT
h Zt

h = 0. On one side we have that,

⟨CT
h Zt

h, CT
h Zt

h − Clip(CT
h Zt

h; τ t)⟩ =
∑

(i∼j)∈Eh

⟨zt
i − zt

j , zt
i − zt

j − Clip(zt
i − zt

j ; τ t)⟩

=
∑

(i∼j)∈Eh

∥zt
i − zt

j∥2
(
∥zt

i − zt
j∥2 − τ t

)
+ .

One the other side, by using that, for M, N ∈ REh×d, ⟨M, N⟩ ⩽ ∥M∥1,2∥N∥∞,2, as:

⟨M, N⟩ =
∑

(i∼j)∈Eh

⟨M(i∼j), N(i∼j)⟩

⩽
∑

(i∼j)∈Eh

∥M(i∼j)∥2∥N(i∼j)∥2

⩽ ∥N∥∞,2
∑

(i∼j)∈Eh

∥M(i∼j)∥2,

we can upper bound the second term

⟨CT
h Zt

h, τ tC†
hCbU t

b⟩ ⩽ τ t∥CT
h ZT

h ∥1,2∥C†
hCbU t

b∥∞,2.

Then by defining ∆∞ = supUb∈REb×d ∥C†
hCbU t

b∥∞,2, using ∥CT
h Zt

h∥1,2 =
∑

(i∼j)∈Eh
∥zt

i − zt
j∥2, we have that

⟨Zt
h − Zt

h, Et⟩ ⩽
∑

(i∼j)∈Eh

∥zt
i − zt

j∥2
(
∥zt

i − zt
j∥2 − τ t

)
+ + τ t∆∞

∑
(i∼j)∈Eh

∥zt
i − zt

j∥2

=
∑

(i∼j)∈Eh

∥zt
i − zt

j∥2
2 1∥zt

i
−zt

j
∥2>τt

− τ t

 ∑
(i∼j)∈Eh

∥zt
i − zt

j∥2 1∥zt
i
−zt

j
∥2>τt −∆∞

∑
(i∼j)∈Eh

∥zt
i − zt

j∥2
2

 .

Let’s consider any κt ∈ N such that

κt ∈

 ∑
(i∼j)∈Eh

1∥zt
i
−zt

j
∥2>τt ,

∑
(i∼j)∈Eh

1∥zt
i
−zt

j
∥2⩾τt −1

 .

Then, using
∥CT

h Zt
h∥p

p,κt :=
∑

(i∼j)∈Eh

κt largest

∥zt
i − zt

j∥p
2,

the previous inequality writes

⟨Zt
h − Zt

h, Et⟩ ⩽ ∥CT
h Zt

h∥2
2,κt − τ t

(
∥CT

h Zt
h∥1,κt − ∆∞∥CT

h Zt
h∥1
)

.

From this upper bound we could derive a clipping rule taking only into account the error induced by clipping
and Byzantine nodes on the variance. In this analysis, we will include the second error term induced by the
bias.
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2. Bias-induced error.
We consider the term ⟨Zt

h, Zt+1
h − Zt

h⟩. We remark that, using that Zt+1
h = (Ih − ChCT

h )Zt
h + ηEt, and

considering that 1T
nh

Ch = 0, using the definition of Et we get:

1T
nh

Zt+1
h = 1T

nh
Zt

h + ητ t1T
nh

CbU t
b =

t∑
s=0

ητs1T
nh

CbUs
b .

Using this, we remark that

η2∥Et∥2
2 = ∥Zt+1 − Zt∥2

2 =⇒ η2∥Et∥2
2 + ⟨Zt

h, Zt+1
h − Zt

h⟩ = ⟨Zt+1
h , Zt+1

h − Zt
h⟩.

Thus we get

⟨Zt+1
h , Zt+1

h − Zt
h⟩ =

〈
t∑

s=0
ητs 1

nh
1nh

1T
nh

CbUs
b , ητ t 1

nh
1nh

1T
nh

CbU t
b

〉

= τ tη2

nh

t∑
s=0

τs
〈
1T

nh
CbUs

b , 1T
nh

CbU t
b

〉
= τ tη2

nh

t∑
s=0

τs

〈∑
i∈Vh

Nb(i)us
i ,
∑
i∈Vh

Nb(i)ut
i

〉
.

Where ut
i is the mean vector of Byzantine neighbors of node i ∈ Vh, so that ∥ut

i∥2 ⩽ 1, thus we get

⟨Zt
h, Zt+1

h − Zt
h⟩ ⩽ τ tη2

nh

t∑
s=0

τs

(∑
i∈Vh

Nb(i)
)2

= η2τ t|Eb|2

nh

t∑
s=0

τs.

Now that we controlled both terms, we can mix both error terms:

⟨Zt
h − Zt

h, Et⟩ + η−1⟨Zt
h, Zt+1

h − Zt
h⟩

⩽ ∥CT
h Zt

h∥2
2,κt − τ t

(
∥CT

h Zt
h∥1,κt − ∆∞∥CT

h Zt
h∥1
)

+ τ t η|Eb|2

nh

t−1∑
s=0

τs

= ∥CT
h Zt

h∥2
2,κt − τ t

(
∥CT

h Zt
h∥1,κt − ∆∞∥CT

h Zt
h∥1 − η|Eb|2

nh

t∑
s=0

τs

)
.

Hence, as long as

∥CT
h Zt

h∥1,κt ⩾ ∆∞∥CT
h Zt

h∥1 + η|Eb|2

nh

t∑
s=0

τs, (13)

we have that
⟨Zt

h − Zt
h, Et⟩ + η−1⟨Zt+1

h , Zt+1
h − Zt

h⟩ ⩽ ∥CT
h Zt

h∥2
2,κt .

When Equation (13) cannot be enforced using κt ⩽ |Eh| − 1, then we take τ t = 0 (thus κt = |Eh|), everything
is clipped and nodes parameters don’t move anymore.

Lemma 6. (Control of first and 2nd order error terms together) Assume Definition 3 and that

η ⩽
1

µmax(Lh) ,

then by denoting the first and 2nd order error term, divided by η as

ζt := η∥LhZt
h − Et∥2 + 2⟨Zt

h − Zt
h, Et⟩ + 2η−1⟨Zt

h, Zt+1
h − Zt

h⟩.

We have the control:

ζt ⩽ ηµmax(Lh)
(
∥CT

h Zt
h∥2

2,−κt + (τ t)2 [κt(1 − 2∆∞) + ∆2
∞|Eh|

])
+ 2∥CT

h Zt
h∥2

2,κt .
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Proof. This part of the proof allows to compute the maximum stepsize usable. We want to control the
discretization term η2∥LhZt

h − Et∥2
2. If Et = 0 it would have been done using a step-size small enough. In

this case we will do the same, but we will monitor the interactions between the discretization and the control
of the error. Note that

Et − LhZt
h = Ch Clip(CT

h Zt
h; τ t) + τ tCbU t

b , (14)

and that at the first order ⟨Cg Clip(CT
g Zt

h; τ t), τ tCbU t
b⟩ ⩽ 0 if Byzantine aims at preventing the convergence.

Thus, we will include this second-order term in the proof of the Lemma 3.

We denote by µmax(Lh) the largest eigenvalue of Lh.

We denote the first and 2nd order error term, divided by η as

ζt := η∥LhZt
h − Et∥2 + 2⟨Zt

h − Zt
h, Et⟩ + 2η−1⟨Zt

h, Zt+1
h − Zt

h⟩.

Hence ∥Zt+1
h ∥2 ⩽ ∥Zt

h∥2 + ηζt − 2η∥CT
h Zt

h∥2.

Using

∥Et − LhZt
h∥ = ∥Ch(Clip(CT

h Zt
h; τ t) − τ tC†

hCbU t
b) + Et∥2

= ∥Ch(Clip(CT
h Zt

h; τ t) − τ tC†
hCbU t

b)∥2 + ∥Et∥2,

we have:

ζt = η∥Ch(Clip(CT
h Zt

h; τ t) − τ tC†
hCbU t

b)∥2
2 + η∥Et∥2

2

+ 2⟨Zt
h − Zt

h, Et⟩ + 2η−1⟨Zt
h, Zt+1

h − Zt
h⟩

⩽ ηµmax(Lh)
(

∥ Clip(CT
h Zt

h; τ t)∥2 + ∥τ tC†
hCbU t

b∥2
)

− 2ηµmax(Lh)⟨Clip(CT
h Zt

h) − CT
h Zt

h + CT
h Zt

h, τ tC†
hCbU t

b⟩

+ 2⟨CT
h Zt

h, τ tC†
hCbU t

b⟩ + 2⟨CT
h Zt

h, CT
h Zt

h − Clip(CT
h Zt

h; τ t)⟩ + 2η−1⟨Zt+1
h , Zt+1

h − Zt
h⟩

= ηµmax(Lh)
(

∥ Clip(CT
h Zt

h; τ t)∥2 + ∥τ tC†
hCbU t

b∥2
)

+ 2⟨CT
h Zt

h, CT
h Zt

h − Clip(CT
h Zt

h; τ t)⟩ + 2η−1⟨Zt+1
h , Zt+1

h − Zt
h⟩

+ 2(1 − ηµmax(Lh)) ⟨CT
h Zt

h, τ tC†
hCbU t

b⟩︸ ︷︷ ︸
⩽∥CT

h
Zt

h
∥1∆∞τt

+ 2ηµmax(Lh) ⟨CT
h Zt

h − Clip(CT
h Zt

h; τ t), τ tC†
hCbU t

b⟩︸ ︷︷ ︸
⩽∥CT

h
Zt

h
−Clip(CT

h
Zt

h
;τt)∥1∆∞τt

.

Then we use that
∥CT

h Zt
h − Clip(CT

h Zt
h; τ t)∥1 = ∥CT

h Zt
h∥1 − ∥ Clip(CT

h Zt
h; τ t)∥1,

to get, for η ⩽ µmax(Lh),

ζt ⩽ ηµmax(Lh)
(

∥ Clip(CT
h Zt

h; τ t)∥2 + ∥τ tC†
hCbU t

b∥2
)

+ 2⟨CT
h Zt

h, CT
h Zt

h − Clip(CT
h Zt

h; τ t)⟩ + 2η−1⟨Zt+1
h , Zt+1

h − Zt
h⟩

+ 2(1 − ηµmax(Lh))∥CT
h Zt

h∥1∆∞τ t + 2ηµmax(Lh)∥CT
h Zt

h∥1∆∞τ t

− 2ηµmax(Lh)∥ Clip(CT
h Zt

h; τ t)∥1∆∞τ t

⩽ ηµmax(Lh)
(

∥ Clip(CT
h Zt

h; τ t)∥2 + ∥τ tC†
hCbU t

b∥2 − 2∥ Clip(CT
h Zt

h; τ t)∥1∆∞τ t
)

+ 2⟨CT
h Zt

h, CT
h Zt

h − Clip(CT
h Zt

h; τ t)⟩ + 2∥CT
h Zt

h∥1∆∞τ t + 2η−1⟨Zt+1
h , Zt+1

h − Zt
h⟩.

16



Under review as submission to TMLR

Then, the second term is controlled using the proof of Lemma 5.

By denoting
∆2

2 := sup
∥Ut

b
∥∞,2⩽1

∥C†
hCbU t

b∥2
2,

we have that, under Definition 3

ζt ⩽ ηµmax(Lh)
(
∥CT

h Zt
h∥2

2,−κt + τ t
(
τ tκt + τ t∆2

2 − 2τ tκt∆∞ − 2∆∞∥CT
h Zt

h∥1,−κt

))
+ 2∥CT

h Zt
h∥2

2,κt

⩽ ηµmax(Lh)
(
(1 − ∆∞)∥CT

h Zt
h∥2

2,−κt + (τ t)2 [κt(1 − 2∆∞) + ∆2
2
])

+ 2∥CT
h Zt

h∥2
2,κt .

Eventually, leveraging that ∆2
2 ⩽ ∆2

∞|Eh|, we have

ζt ⩽ ηµmax(Lh)
(
∥CT

h Zt
h∥2

2,−κt + (τ t)2 [κt(1 − 2∆∞) + ∆2
∞|Eh|

])
+ 2∥CT

h Zt
h∥2

2,κt .

Theorem 2. Hence, under Definition 3, for

η ⩽
µmax(Lh)−1

1 + |Eh|(1 − ∆∞) ,

we have
∥Zt+1

h ∥2 ⩽ ∥Zt
h∥2 − η∥CT

h Zt
h∥2

2,−κt .

Proof. We start from Lemma 4 and use the majoration of the error from Lemma 6:

∥Zt+1
h ∥2 = ∥Zt

h∥2 − 2η∥CT
h Zt

h∥2 + η2∥LhZt
h − Et∥2 + 2η⟨Zt

h − Zt
h, Et⟩ + 2⟨Zt

h, Zt+1
h − Zt

h⟩
⩽ ∥Zt

h∥ − 2η∥CT
h Zt

h∥2
2 + +2η∥CT

h Zt
h∥2

2,κt

+ η2µmax(Lh)
(
∥CT

h Zt
h∥2

2,−κt + (τ t)2 [κt(1 − 2∆∞) + ∆2
∞|Eh|

])
= ∥Zt

h∥ − 2η∥CT
h Zt

h∥2
2,−κt

+ η2µmax(Lh)
(
∥CT

h Zt
h∥2

2,−κt + (τ t)2 [κt(1 − 2∆∞) + ∆2
∞|Eh|

])
⩽ ∥Zt

h∥ − η
[
2 − ηµmax(Lh)

(
1 + κt(1 − 2∆∞) + ∆2

∞|Eh|
)]

∥CT
h Zt

h∥2
2,−κt .

Where we used that, as κt ⩽
∑

(i∼j)∈Eh
1∥zt

i
−zt

j
∥⩾τt −1, the largest term in ∥CT

h Zt
h∥2

2,−κt is (τ t)2.

Hence, for

η ⩽
µmax(Lh)−1

1 + κt(1 − 2∆∞) + ∆2
∞|Eh|

,

or, using a simpler (and stricter) condition

η ⩽
µmax(Lh)−1

1 + |Eh|(1 − ∆∞) ,

we have

∥Zt+1
h ∥2 ⩽ ∥Zt

h∥2 − η∥CT
h Zt

h∥2
2,−κt .
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B.2.1 On the computation of ∆∞

We recall that
∆∞ := sup

Ub∈REb×d

∥Ub∥∞,2⩽1

∥C†
hCbUb∥∞,2.

Proposition 4. (Computing ∆∞) Consider a fully connected graph G, we have that

∆∞ ⩽ sup
(i∼j)∈Eh

2nb

nh

√
d ∧ |Eb|,

where nb is the number of Byzantines nodes and nh the number of honest nodes.

Proof. In a fully connected graph Lh = nhIh − 1h1T
h , thus C†

h = CT
h L†

h = 1
nh

CT
h . Using this, we compute:

∆∞ = sup
Ub∈REb×d

∥Ub∥∞,2⩽1

∥C†
hCbUb∥∞,2

= 1
nh

sup
Ub∈REb×d

∥Ub∥∞,2⩽1

sup
(i∼j)∈Eh

∥[CT
h CbUb](i∼j),:∥2.

For (i ∼ j) ∈ Eh,

sup
Ub∈REb×d

∥Ub∥∞,2⩽1

∥[CT
h CbUb](i∼j),:∥2

2 = sup
Ub∈REb×d

∥Ub∥∞,2⩽1

d∑
k=1

(
[CT

h Cb]T(i∼j),:[Ub]:,k
)2

= sup
Ub∈REb×d

∥Ub∥∞,2⩽1

d∑
k=1

(
[[Cb]i,: − [Cb]j,:]T [Ub]:,k

)2

⩽ sup
Ub∈REb×d

∥Ub∥∞,2⩽1

d∑
k=1

∥[[Cb]i,: − [Cb]j,:]∥2
1∥[Ub]:,k∥2

∞

⩽ (Nb(i) + Nb(j))2 sup
Ub∈REb×d

∥Ub∥∞,2⩽1

d∑
k=1

∥[Ub]:,k∥2
∞

⩽ (Nb(i) + Nb(j))2(d ∧ |Eb|).

Hence, we get:
∆∞ ⩽ sup

(i∼j)∈Eh

Nb(i) + Nb(j)
nh

√
d ∧ |Eb|.

Thus, assuming that, as we are in a fully-connected graph, every honest node is connected to nb Byzantine
node, we get the result.

B.3 A simplified global clipping rule

The following proposition provides a sufficient condition for being a GCR that only requires κt to be large
enough, without any dependence on Xt.
Proposition 5 (Simplified GCR). If (τ t)t⩾0 is such that: for all t ⩾ 0, either τ t = 0 or

κt ⩾ ∆∞|Eh| + η
|Eb|2

nh

∑
s⩽t

τs

τ t
, (15)

then (τs)s⩾0 satisfies the GCR.
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This result reads as a lower bound on the fraction κt/|Eh| of edges that are clipped.

Proof. (GCR), i.e Equation (13) writes

∥CT
h Zt

h∥1,κt ⩾ ∆∞∥CT
h Zt

h∥1 + η|Eb|2

nh

t∑
s=0

τs.

We leverage that ∥CT
h Zt

h∥1,κt ⩾ τ tκt and that ∥CT
h Zt

h∥1,−κt ⩽ τ t(|Eh| − κt) to write

∥CT
h Zt

h∥1,κt ⩾ ∆∞∥CT
h Zt

h∥1 + η|Eb|2

nh

t∑
s=0

τs

⇐⇒ (1 − ∆∞)∥CT
h Zt

h∥1,κt ⩾ ∆∞∥CT
h Zt

h∥1,−κt + η|Eb|2

nh

t∑
s=0

τs

⇐= (1 − ∆∞)κtτ t ⩾ ∆∞τ t(|Eh| − κt) + η|Eb|2

nh

t∑
s=0

τs

⇐⇒ κtτ t ⩾ ∆∞τ t|Eh| + η|Eb|2

nh

t∑
s=0

τs

⇐⇒ κt ⩾ ∆∞|Eh| + η|Eb|2

nh

t∑
s=0

τs

τ t
.
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