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Abstract

We introduce BikeBench, an engineering design benchmark for evaluating gen-
erative models on problems with multiple real-world objectives and constraints.
As generative AI’s reach continues to grow, evaluating its capability to understand
physical laws, human guidelines, and hard constraints grows increasingly important.
Engineering product design lies at the intersection of these difficult tasks, providing
new challenges for AI capabilities. BikeBench evaluates AI models’ capabilities
to generate bicycle designs that not only resemble the dataset, but meet specific
performance objectives and constraints. To do so, BikeBench quantifies a variety
of human-centered and multiphysics performance characteristics, such as aerody-
namics, ergonomics, structural mechanics, human-rated usability, and similarity to
subjective text or image prompts. Supporting the benchmark are several datasets of
simulation results, a dataset of 10,000 human-rated bicycle assessments, and a syn-
thetically generated dataset of 1.6M designs, each with a parametric, CAD/XML,
SVG, and PNG representation. BikeBench is uniquely configured to evaluate tabu-
lar generative models, large language models (LLMs), design optimization, and
hybrid algorithms side-by-side. Our experiments indicate that LLMs and tabular
generative models fall short of hybrid GenAI+optimization algorithms in design
quality, constraint satisfaction, and similarity scores, suggesting significant room
for improvement. We hope that BikeBench, a first-of-its-kind benchmark, will
help catalyze progress in generative AI for constrained multi-objective engineering
design problems. We provide code, data, an interactive leaderboard, and other
resources at https://github.com/Lyleregenwetter/BikeBench.

1 Introduction

Generative AI has recently captured widespread attention for its general-purpose problem-solving
capabilities [1, 2, 3]. Despite a wealth of exploratory work [4, 5, 6, 7], generative AI has not seen
widespread adoption [8] in the trillion-dollar engineering design industry [9, 10]. Engineering design
can be generally characterized as the methodical decision-making process needed for the physical
realization of products, systems, or other real-world solutions [11, 12, 13]. Many of engineering de-
sign’s requisite skills pose significant challenges for current generative AI models [14, 15], including
exact constraint satisfaction, adherence to quantitative and qualitative design guidelines, and intimate
knowledge of multidisciplinary physical laws. In ship hull design, for example, generative models
have been found to extensively violate geometric, performance, and safety constraints, sometimes
over 95% of the time [16]. In large language model (LLM) benchmarks, models fail to extract precise
design regulations from engineering standards [17]. Finally, in free-form structural design, generative
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models fall far short of optimization algorithms [18] due to their inability to learn generalizable
physics rules. To maximally leverage generative AI for engineering design, practitioners need models
that can precisely achieve constraints, understand both objective and subjective design guidelines,
and adhere to physical laws. To help the community assess progression, we introduce a benchmark
(Figure 1) focused on bicycle design, a problem that prominently features each of these challenges.

Figure 1: BikeBench is a set of evaluators, metrics, and datasets—built to benchmark generative
models’ capability to synthesize parametric bicycle designs satisfying a variety of objectives and
constraints.

As a constrained, multiphysics-guided, and human-centered design benchmark, BikeBench fills
several important voids in the existing space of generative modeling benchmarks. Unlike many image,
sketch, or 3D model-based benchmarks [19, 20] used for design, BikeBench evaluates exclusively
parametric designs. This forces benchmarked models to synthesize designs with an exact mapping
to a Computer-Aided-Design (CAD) file, essentially guaranteeing a precise, ready-to-manufacture
bicycle model, rather than a more abstract image, sketch, or point cloud with less-clear downstream
value. BikeBench also differs from CAD datasets, which rarely have features to evaluate multiphysics
objectives, hard constraints, or human-centered preferences [21, 22, 23]. In contrast, BikeBench is
composed of 10 multidisciplinary design objectives and 40 design constraints, all of which revolve
around a rich set of design evaluators. These evaluators leverage datasets of physics simulations, a
geometry engine and renderer, and even a dataset of real human-sourced design assessments.

Unlike classic generative modeling benchmarks, BikeBench is more than just an exercise in the
maximization of distributional similarity. To measure the practical design capabilities of a generative
model, BikeBench also calculates design quality, constraint violation, and diversity scores over
sample sets—metrics that are frequently overlooked, despite their outsized importance in engineering
design [24]. For a model to simultaneously succeed in all of BikeBench’s metrics, it must strategically
deviate from the data manifold to improve performance and constraint satisfaction in targeted
ways. BikeBench supports tabular models, LLMs, direct design optimization algorithms, and
hybrid algorithms, providing a unique opportunity to benchmark previously disparate algorithms
side-by-side. Our benchmarking results suggest that hybrid GenAI+optimization algorithms are
current frontrunners, while LLMs have extensive room for growth and improvement in constrained
engineering design problems. Key contributions of this paper are summarized as follows:

• We introduce a synthetic dataset of 1.6M bicycle designs represented as tabular data, SVG,
PNG, and XML files for Computer-Aided-Design (CAD) software. This dataset supports a
variety of design generation tasks such as text-to-CAD, image-to-CAD, and parametric-to-
image generation.

• We introduce a dataset of 10,000 human-sourced ratings of bicycle designs. These ratings
model subjective human assessments of designs’ usability.

• We introduce BikeBench, a benchmark evaluating design quality, constraint satisfaction,
similarity, and diversity of generative-model-synthesized bicycle designs. The benchmark
features 50 design evaluations spanning aerodynamics, structural mechanics, ergonomics,
aesthetics, geometric feasibility, and human perception of usability.
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• We benchmark a variety of design generation techniques, including GPT-5-high, multiple
tabular generative models, optimization-augmented generative models, and both gradient-
based and heuristic design optimization algorithms.

2 Background

We provide a brief overview of engineering design benchmarks for generative models, as well as
benchmarks constructed to evaluate multiple classes of algorithms. A background on data-driven
bicycle design is included in Appendix B.1, as well as a motivation for the selection of bicycle design
as a benchmark problem.

Engineering Design Benchmarks for Generative Models: BikeBench joins a limited set of
engineering design benchmarks for the evaluation and comparison of generative models. Some
benchmarks evaluate question-answering capability for engineering standards [17], simulations [25],
or larger taxonomies of engineering knowledge [26], but these fall short of benchmarking design
synthesis capabilities. Engineering design is highly data-scarce [27], and most datasets are not
configured as design synthesis benchmarks [28]. Regardless, several engineering design datasets can
be configured to support performance-aware generative model training [29, 30, 31, 32]. While a few of
these datasets feature numerous objectives and constraints [33, 34], most lack standardized evaluation
criteria. Dedicated benchmarks for GenAI-based design synthesis have also been introduced, but
primarily support just parametric GenAI models [35]. BikeBench is the first design synthesis
benchmark with numerous multidisciplinary objectives and constraints to compare many classes of
algorithms against various types of GenAI.

Benchmarks for multiple classes of algorithms: Few benchmarks directly compare generative
models to entirely different classes of algorithms, because such comparisons may superficially seem
‘unfair.’ For example, even though generative models more and more frequently compete with
optimization algorithms [36], the comparison may not seem fair because optimization algorithms are
allowed to call evaluators, while purely data-driven models must infer from datasets. We contend that
such comparisons are rigorous, important, and particularly timely. In practice, generative AI models
are regularly placed in direct competition with other classes of algorithms. Direct competition across
classes of models can be easily appreciated in the historical development of deep-learning-based
computer vision over algorithmic methods [37] or LLMs over classical language models [38, 39].
Benchmarks that embrace this direct competition will help practitioners understand shortcomings
and capacity for growth. Such benchmarking is gaining traction [40], particularly in fields like
engineering design [41], where the adoption of generative AI has faced considerable resistance due
to the strength of alternative methods [18]. BikeBench helps fill this need for engineering design
benchmarks that accommodate different classes of algorithms.

3 Datasets

BikeBench introduces several new datasets, many of which are used to train the predictive models
that BikeBench uses to evaluate many facets of bicycle design. BikeBench also consolidates and
adapts two existing datasets. The BIKED dataset [42], comprised of 4,500 human-design bikes,
serves as the basis for BikeBench’s distribution-modeling component. BikeBench uses a custom
64-parameter subset of salient design features from BIKED’s full representation, which are described
in Appendix B.5. It also uses a more selective curation and deduplication process, resulting in 3,795
designs. The FRAMED dataset [43], focusing on structural mechanics of bike frames, features
nearly 15,000 designs simulated using Finite Element Analysis (FEA) under multiple loading cases.
FRAMED supports BikeBench’s structural mechanics evaluators and frame validity analysis. We
refer readers to the respective papers for more details on BIKED and FRAMED.

3.1 Dataset: 1.6M Synthetically Generated Bicycle Designs

We introduce a new dataset of 1.6 million synthetically generated bicycle designs. For each design,
we provide parametric data, images, XML files, and, for convenience, CLIP embeddings of the
images. We generate this dataset using a customized renderer running parallelized bare-bones
instances of the BikeCAD software.
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Figure 2: Overview of the synthetic data generation pipeline.

Half of the synthetic datapoints are generated to be ‘realistic’ using CTGAN [44], a tabular GAN
model specializing in realistic synthetic data generation. The other half are generated to be ‘random’
using uniform random sampling from the dataset’s most extreme bounds. Each design is procedurally
mapped to a Computer-Aided-Design (CAD) file. Though CAD file structure varies widely from
software to software, BikeCAD files adopt an XML format and typically consist of several thousand
key-value pairs. Our custom renderer is then invoked to render the CAD-XML files into Scalable
Vector Graphic (SVG) files, which are then converted to rasterized Portable Network Graphics
(PNG) images. Finally, we calculate the CLIP embedding for each generated image using OpenAI’s
‘clip-vit-base-patch32’, a ViT-B/32 model provided by HuggingFace. The intermediates (XML, SVG,
PNG) are retained and included in the dataset. BikeBench primarily uses this dataset to train a
direct embedding model from BikeBench’s parametric design space to the CLIP embedding space,
allowing for aesthetics-based design evaluation. However, the dataset has broad utility outside of the
benchmarking context. It can support a wide variety of predictive modeling and design generation
tasks, such as text-to-CAD, image-to-CAD, parametric-to-image, etc. Using the parallelized pipeline,
the full 1.6M designs took approximately four days to generate on an ordinary workstation and
occupy approximately 750GB of storage, compressed. Users can easily run our pipeline to generate
more data at their discretion.

3.2 Dataset: 10,000 Human-Sourced Bicycle Ratings

We also introduce a dataset of 10,350 human ratings of perceived bicycle usability. These ratings
were collected through a rigorous selection procedure. Rather than spreading ratings evenly across
the 4500 designs in BIKED, we instead opted to focus on a representative subset of 200 designs and
collect approximately 50 ratings per bike, allowing us to more easily perform statistical significance
tests and calculate rater agreement. This selection process for the 200 designs aimed to achieve a
uniform distribution across BikeBench’s 64 key parameters. To target users with cycling experience
and familiarity with bike usability, only countries with at least a 35% weekly riding frequency were
included, limiting eligibility to 14 countries based on a survey across 28 countries in 2022 [45].
Prolific was used to crowdsource participants. These participants answered “Yes” or “No” to the
question: “Does this bicycle look easy to use?”. Binary (yes/no) assessments were selected to avoid
the flaws of continuous ratings [46]. The 200 sampled bikes were divided into four groups of 50,
ensuring diversity within each group. This reduced rater fatigue and helped maintain consistent rating
quality throughout the session. After the completion of the rating process, a minimum rating time
threshold of 90 seconds was set to remove participants who swiped too quickly, giving little time
to fully evaluate each bike design. This reduced the number of valid respondents to an average of
50.75 per group, resulting in 10,350 valid ratings. BikeBench configures this dataset as a regression
problem (predicting the proportion of raters who would consider a bike ‘easy to use’). However,
a classification dataset of consensus assessments was also extracted through statistical testing, as
described in Appendix B.2.2. Information on data collection from human subjects is included in
Appendix B.2.1.

3.3 Dataset: 4K Cyclist Aerodynamics Simulations

We finally introduce a new dataset composed of 4,000 simulations of 3D cyclist models in various
poses. The dataset reports steady-state drag force under a 10,m/s relative headwind, as evaluated
by a computational fluid dynamics (CFD) analysis. The 3D cyclist models are parameterized by six
anthropometric measurements sampled from an approximate model of published population statistics
[47, 48, 49, 50, 51], and five parameters defining the interface points between the cyclist and the bike,
which are sampled from BIKED.
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4 Evaluation Criteria

In this section, we discuss BikeBench’s design evaluation criteria. Design problems almost always
feature competing objectives. Befittingly, BikeBench’s many objectives and constraints are chal-
lenging to optimize simultaneously. For example, the most trivial ways to optimize performance
objectives will typically involve violating constraints. In this section, we discuss how BikeBench’s
various datasets and tools are combined to evaluate a medley of functional attributes for bicycle
design.

Geometric Feasibility: In data-driven parametric design, highly expressive parametrization
schemes often have a drawback in ‘allowing’ invalid configurations. BikeBench’s 64 design parame-
ters enable considerable expressive flexibility, but can be selected or generated in ways that result in a
variety of geometrically infeasible designs—a common pattern among generative models trained on
BIKED [52]. These designs commonly feature overlapping or disconnected components, parts with
negative dimensions, and frames that violate the triangle inequality, for example. This infeasibility
must therefore be identified and evaluated through constraint checks. We have compiled a set of
31 closed-form geometric constraint checks (listed in full in Appendix B.4), which is significantly
expanded from a set released in BIKED [42]. We supplement these closed-form checks with a
data-driven feasibility predictor trained on FRAMED’s binary classification data to identify bike
frames with more complex geometric issues.

Structural Soundness: The structural soundness of a bike’s frame plays an important role in
its comfort, power-efficiency, and safety. Bike frames are generally preferred to be as rigid as
possible, which limits dissipation of energy due to the flexure of the frame when pedaling [53]. We
calculate several ‘composite’ structural performance indicators—planar, transverse, and eccentric
compliance, as well as frame weight—which are all considered objectives to minimize. We also
calculate planar and eccentric safety factor constraints, stating that the yield stress of the frame
material must exceed the maximum stress incurred during planar or eccentric loads. We use a model
trained on FRAMED [43] to predict these structural attributes. Similar predictive models trained on
FRAMED have been shown to closely align with real-world experimental simulations [43].

Aerodynamics: Aerodynamic drag reduction is a principal consideration in competitive cycling,
but is generally beneficial in all cycling settings. In general, the drag force directly incurred by
the bicycle is much smaller than the drag incurred by the cyclist’s body. Thus, drag is primarily
minimized through repositioning of the cyclist, which is a function of the rider’s anatomical geometry
and the positioning of bicycle components that the rider interfaces with (saddle, handlebars, and
pedals). Therefore, aerodynamic performance is a factor of both a bicycle and an associated rider. To
quantify aerodynamics, we first calculate the interface points between the bike and the cyclist, then
call a predictive model trained on the aerodynamics data for a drag force estimate.

Ergonomics: In addition to playing a significant role in aerodynamics, cyclist geometry also plays
an important role in ergonomics. Examining the range of angles experienced by certain key joints
during regular cycling activity [54] is a simple indicator for ergonomic fit. We develop a kinematics
solver which calculates a rider’s maximum knee angle, hip angle, and shoulder angle and compares
them to published target values for various types of cycling [54]. This solver yields six validity
constraints and three ergonomic objective scores which are calculated as a function of the bicycle
design, the cyclist’s anthropometric measurements, and the cyclist’s use case (road biking, mountain
biking, or commuting).

Human Perception of Usability: Consumers frequently use subjective criteria to evaluate products.
Increasingly, products are marketed as ‘user-friendly,’ with usability transitioning from a historic
perception as a ‘bonus’ feature to a requisite expectation for many modern products [55]. Additionally,
manufacturers emphasize their products as ‘people-oriented,’ particularly for items that involve direct
body contact or require manual operation [56]. Thus, it is important to focus not only on the
performance of the bicycle but also on its perceived usability. Accounting for human-centered criteria
allows insights gathered from a broad population to help align bicycles design with growing consumer
expectations. We evaluate the perceived usability of bikes using a regression model trained on our
new dataset of 10,000 human-sourced usability scores.

Aesthetics: Bicycles are regularly used for fashion, lifestyle, and other cultural statements, el-
evating the bicycle from a mere transportation product to a versatile tool for nuanced individual
expression [57]. As such, the bicycle design industry is heavily influenced by aesthetics, individual
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preferences, and customization. Because individualized design customization requires significant
design throughput, customization is an area where data-driven design methods can particularly excel.
Thus, generative models would ideally be able to conditionally generate designs that are customized
for an individual user’s aesthetic preferences, as communicated through a reference image or a text
prompt. To enable this sort of conditioning, we train a predictive model to directly estimate CLIP
embeddings of parametric bicycle designs using our dataset of 1.6M synthetic bike designs. By
calculating CLIP embeddings for parametric designs, we can quickly evaluate their similarity to text
prompts or reference images.

5 Benchmarking Metrics and Procedure

The design objectives detailed above yield a set of 10 design objectives and 40 design constraints,
which are explained in detail in the Appendix B.4. However, to compare the performance of different
generative models, we desire a concise set of summary metrics to evaluate sample sets. BikeBench’s
metrics and general benchmarking procedure are introduced in Figure 3, and described in detail in
this section.

Figure 3: High-level overview of the benchmarking procedure.

5.1 Metrics

Though there are countless possibilities for generative model evaluation metrics [24], we select four
principal metrics: design quality, constraint violation, similarity to data, and design diversity, which
we describe below. Unlike other benchmarks with singular objectives, models benchmarked on
BikeBench should be compared across all four scoring metrics. We also evaluate a few auxiliary
bonus objectives, as discussed in Appendix B.3.1.

Design Quality (Hypervolume Metric): High-quality design tools should generate high-quality
designs. To quantify design quality, we calculate the hypervolume metric over any designs that
simultaneously satisfy all constraints. The hypervolume metric is a staple of multi-objective optimiza-
tion literature which calculates the overall multi-objective optimality of a set of designs. Because
hypervolume directly benefits from constraint satisfaction and diversity, hypervolume can be seen
as the best single metric to indicate design utility. More details on the hypervolume metric and its
calculation are included in the Appendix B.3.1.

Constraint Violation: Effective design synthesis tools can reliably navigate design constraints. We
measure the mean number of constraints that the model violates per design.

Similarity to Data (Maximum Mean Discrepancy): Basing new designs on existing ones can
be an effective method to minimize risk and maximize feasibility. To capture a model’s ability
to match the manifold of existing designs, we evaluate distributional similarity to a subset of 759
designs withheld from the model during training. We select Maximum Mean Discrepancy, a common
kernel-based statistical discrepancy measure used to compare sets of samples. Statistical similarity
serves to enforce two desirable attributes in generative models for design [24]. The first is ‘design
realism’—what does it mean to be a bike and not something entirely different, say, a wheelbarrow?
The second desirable attribute is ‘design space coverage,’ encouraging models to learn more than just
a small, niche subspace of the overall breadth of bicycle designs, expanding their utility.
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Design Diversity (DPP Diversity): Tools that create a diverse set of design solutions offer the most
selection to human users. To capture the diversity of generated designs, we measure a Determinantal
Point Process (DPP)-based diversity score, as described in [24]. More details on DPP diversity are
included in Appendix B.3.2.

5.2 Benchmarking Procedure

BikeBench’s benchmarking procedure evaluates 100 designs for each of 100 fixed conditional
cases (text prompt, rider anthropometric dimensions, use case). Distributional similarity, constraint
satisfaction rate over all 40 constraints, and hypervolume metric over all 10 evaluation objectives
are evaluated for each set of 100 bikes, and the mean over the 100 conditions is reported as the final
summary score for each metric.

To avoid bias, models are trained only on the 3036 training samples from the original 3798 human-
designed bicycles, and not on synthetically generated designs (the synthetic dataset is used exclusively
for evaluation of aesthetics scores). Models are allowed to train on either a mixed-datatype or
continuous version of the data. Designs generated by models trained on continuous data are mapped
back to a mixed-datatype representation prior to evaluation—booleans are decided using rounding,
while one-hot categorical data is decided using argmax.

5.3 Benchmark Settings

BikeBench is configurable to provide benchmarking scenarios that accommodate a variety of real-
world application cases. This configurability is described below:

Conditional Generation: In the conditional generation setting, the test-set conditions can only be
accessed after all evaluator calls are complete, forcing the method to have conditional generation
capabilities (zero-shot generation on new conditions).

Gradient-Free Evaluation: Although all of BikeBench’s evaluators offer gradients, gradients can
be turned off to benchmark gradient-free methods.

Masked Constraints: To assess models’ ability to infer constraints implicitly from data, we offer a
benchmarking case where all but six of the 32 geometric validity constraints are masked to the model.
The six retained are the constraints that are violated by at least 5% of the dataset, where the dataset
wouldn’t be a good baseline for inferring them.

Evaluation Limits: Since design evaluation can be costly, design synthesis methods typically try
to minimize the number of evaluation calls. BikeBench tallies the number of design evaluations used
by each model. Note that for unconditional methods like optimization, evaluations will be summed
across all test conditions. To standardize methods, we provide a few max-evaluation brackets: 0, 1K,
1M, 1B, and unlimited.

We establish the “standard” BikeBench settings as follows: Models can call at most 1M gradient-
supporting evaluations and will receive completely unmasked scores. However, our leaderboard
will support easy filtering of methods and a few preset alternative configurations so that users can
easily compare and report scores on non-standard tasks. We request that users who make comparative
performance claims on non-standard benchmarks clearly report the BikeBench settings under which
they are making these claims. Our benchmark also includes standardized scorecards that showcase
key model scores, objective distributions, and constraint satisfaction rates, as shown in Figure 4.

Figure 4: Example scorecard. The scorecard shows key model performance metrics at the top,
objective score distributions in the middle, and constraint violation rates at the bottom.
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6 Models Benchmarked

Our principal goal in the benchmarking of baselines is to span a variety of types of design generation
procedures ranging from LLMs to tabular generative models to optimization algorithms. Because we
do not focus on extensively comparing methods within specific classes, we limit our benchmarking
to just one or a few methods per class. The various features and attributes of the models tested are
summarized in Appendix B.3.

Baselines: Our benchmarking starts with two simple baselines. The first is pure random sampling
from the dataset, which is completely agnostic to design quality. The second is rejection sampling
from the dataset based on evaluated validity scores.

Large Language Models: To gauge the general performance of Large Language Models on
BikeBench, we provide an LLM interface with prompts, text descriptions of design parameters
and objectives, and a data loader, as described in Appendix B.3.3. We benchmarked OpenAI’s
GPT-5-high. At the time of benchmarking (October 20, 2025) this was the highest performing
model on ArtificialAnalysis’s LLM intelligence index, a blended evaluation suite of seven individual
evaluations [58, 59, 60, 61, 62, 63]. To comply with the model’s context window, we exposed
it to examples of 25 valid designs and 25 invalid designs, their associated conditions, and their
corresponding evaluation scores resulting from the condition–design pairs. The model was then
provided one new condition and asked to generate a CSV file with the 100 solution designs. This
was repeated for the 100 conditions. In the conditional case, the examples provided are for the same
condition that the model is generating for.

Tabular Generative Models: BikeBench, like many tabular data problems, contains ordinal,
boolean, and categorical features. Training deep learning models directly on categorical data generally
requires special modifications, particularly in categorical data generation settings where gradients
must be propagated through this discretization. Several generative modeling formulations have been
proposed to generate mixed continuous and categorical data. We benchmark two popular models,
CTGAN and TVAE, proposed in [44]. These models do not consider design performance, and are
benchmarked principally for their distribution-learning capabilities. Since these models do not utilize
the design evaluation budget during training, the budget is spent on rejection sampling of generated
designs.

Optimization-Augmented Generative Models: Performance-augmented training is a popular
approach to train generative AI models to synthesize high-quality designs. One method involves
calling the design evaluation function during the training process, effectively realizing an optimization-
augmented generative model. To balance a tendency toward mode collapse, a diversity-based
auxiliary loss can encourage diverse generation of high-performing designs [64]. This technique has
subsequently been extended to handle multiple objectives and constraints [52]. We benchmark this
optimization-augmented training formulation using a GAN, VAE, and DDPM as base models. We
also test a DDPM variant where the auxiliary objective is instead applied during guidance (labeled
with -G). All optimization-augmented benchmarks are labeled with the OA- prefix in our benchmarks.
More details on our implementation are included in Appendix B.3.2.

Optimization: We benchmark both gradient-based and heuristic optimization. We test plain
aggregation-based gradient descent [65], implemented in the LibMoon optimization library [66].
Gradient descent is applied to one-hot encoded data with constraints enforced using a 1000x weighted
penalization function. We also benchmark a mixed-variable adaptation of the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [67], a staple evolutionary optimization algorithm, as implemented
in pymoo [68]. Whereas the gradient-based algorithms benefit from the efficiency of gradient infor-
mation, the mixed-variable NSGA-II operates directly on the mixed-variable data without obfuscation
caused by one-hot encoding or continuous relaxation of constraints. All optimization algorithms
are run once for each of the 100 test conditions, splitting the evaluation budget. Optimization is
initialized per-condition using valid designs from the dataset.

7 Benchmarking Results

In this section, we present and analyze the benchmarking results using the aforementioned “standard”
evaluation procedure: unmasked constraints, gradients, and a 1M evaluation budget. Results in both
unconditional and conditional generation are compiled in Table 1. All models are evaluated on design
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quality, constraint violation, similarity to dataset, and diversity. Detailed scorecards for all tested
models are included in Appendix A.1.

Table 1: Design quality, constraint violation, similarity to dataset, and design diversity scores for
unconditional and conditional benchmarking cases. Models are separated by class (LLM / Tabular-
GM / OA-GM / Optimizer). The best non-baseline scores in each metric are bolded. Models are
benchmarked on unmasked constraints with an evaluation budget of 1M.

Unconditional Generation Conditional Generation

Qual. (↑) Viol. (↓) Sim. (↓) Div. (↓) Qual. (↑) Viol. (↓) Sim. (↓) Div. (↓)

Dataset 0.0035 2.699 0.005 12.72 0.0035 2.699 0.005 12.72
Data subset 0.0151 0.000 0.081 12.28 0.0151 0.112 0.079 12.43

GPT-5-high 0.0086 0.448 0.363 14.08 0.0049 1.288 0.631 14.70

CTGAN 0.0087 0.000 0.147 7.10 0.0148 0.318 0.082 11.93
TVAE 0.0160 0.000 0.163 13.55 0.0161 0.053 0.153 13.55

OA-GAN 0.0137 0.000 0.308 14.44 0.0109 2.579 0.079 14.04
OA-VAE 0.0181 0.000 0.301 14.96 0.0186 0.001 0.348 14.97
OA-DDPM 0.0168 0.000 0.077 12.55 0.0165 0.042 0.084 12.82
OA-DDPM-G 0.0195 0.000 0.037 13.03 - - - -

Grad. Descent 0.0164 0.092 0.266 12.04 - - - -
NSGA-II 0.0102 0.000 0.622 11.88 - - - -

7.1 Discussion

Baselines: The relatively high constraint violation of the dataset baseline (avg. 2.7 constraints per
design) may initially seem surprising. The structural safety factor is a key driver of this low validity:
95% and 80% of dataset designs fail the planar and eccentric safety factor constraints, respectively.
This systematic under-engineering is one of the main sources of bias in the BIKED dataset, arising
from the fact that many designers never adjust tube thickness parameters, since they are not visually
prominent in the BikeCAD user interface [43]. This presents an interesting test for generative models,
which, to satisfy structural constraints, generally have to deviate from the norms of the dataset to
systematically thicken certain tubes. This exemplifies the principal challenge of BikeBench: To
simultaneously succeed across metrics, models must subtly but strategically deviate from the
distribution of the dataset to achieve design goals. Although sampling only valid designs from the
dataset is a fairly strong baseline, strong models should be able to outperform it.

Large Language Model: The rich history of bicycle design has extensive textual documentation
and almost certainly appears in common LLM training datasets. Consequently, LLMs can theoreti-
cally leverage contextual knowledge of the design parameters and the evaluation criteria to gain an
edge over other classes of models. However, they must overcome key disadvantages in their lack of
specialization for tabular data, as well as limited context windows, which may prevent them from
observing the full dataset. OpenAI’s GPT-5-high, the lone LLM tested, was a clear underperformer
across all metrics, ranking in the bottom three methods for each objective. This indicates, unsurpris-
ingly, that LLMs have substantial room for growth in constrained engineering design problems and
tabular-data domains.

Tabular Generative Models: The tabular generative models trained were unconditional and
agnostic to design constraints and objectives. The evaluations were only invoked to sample subsets of
generated designs. Across the board, their design quality, constraint violation, and similarity to data
were generally equal to or worse than the simple baseline of dataset subsampling. However, CTGAN
was a notable frontrunner in diversity score. These benchmarking results highlight the importance
of performance-aware training, compared to subsampling of pure performance-agnostic generated
samples.

Optimization-Augmented Generative Models: Optimization-Augmented Generative Models
achieved the best quality, constraint violation, and similarity scores in both unconditional and
conditional generation. While the guided DDPM was especially dominant in the unconditional
setting, the standard DDPM was a strong performer across the board. The VAE was a strong
performer in quality but its similarity and diversity scores were much worse than the DDPMs. Finally,
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the GAN underperformed its optimization-augmented counterparts in most metrics. In general, the
OA-GMs achieved strong balanced scores with standout performance from optimization-augmented
DDPM models.

Optimization: Classic optimization algorithms were relatively unimpressive performers on
BikeBench. However, their diversity scores were notably strong, indicating a capability to maintain a
wider variety of high-quality solutions compared to competing methods. Interestingly, the diversity
of AI-generated design sets is often one of their selling points over classically-optimized design
sets. BikeBench’s results indicate that excessive fixation on design quality can cause AI-generated
designs to be less diverse than classically-optimized designs. Gradient-based optimization achieved
reasonably strong design quality scores with decent similarity. NSGA-II struggled in both design
quality and dataset similarity. The performance of these classic optimization algorithms highlights
a major shortcoming: Even when amortizing evaluation budget over just 100 designs, generative
models outperform optimization in classic optimization metrics. This suggests considerable room for
growth, perhaps using approaches that would amortize learning across conditional cases.

8 Conclusion and Future Directions

We proposed BikeBench, a constrained engineering design benchmark for generative models, com-
prising 10 multiphysics and human-centered objectives and 40 geometric, ergonomic, and safety
constraints. We benchmarked a variety of design generation procedures, including an LLM, tabular
generative models, optimization algorithms, and optimization-augmented generative models. Our
benchmarking results suggest optimization-augmented models achieve well-rounded performance,
optimization and tabular generative models achieve mixed results, and LLMs generally underperform.

We encourage further benchmarks of generative models, optimization algorithms, and design gen-
eration procedures that transcend boundaries. LLMs with larger context windows or tabular data
adapters, foundation models for tabular generation, cross-conditional amortization of optimization,
and optimization-augmented, mixed-variable models may be of particular interest. Lastly, we advo-
cate for the development of more multimodal engineering design benchmarks of complex systems.
Alongside BikeBench, such benchmarks will help expand the frontier of generative AI in engineering
design and beyond.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have accurately summarized the scope of the paper in the abstract and
introduction without hyperbole.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Key limitations are acknowledged in dedicated sections in the Appendix.
These limitations discuss both assumptions with evaluation criteria and inaccuracies from
surrogates, and other risks.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not introduce new theoretical concepts or proofs.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Although extensive training details are not provided in the paper, the public
codebase contains all components needed for reproducibility. The authors acknowledge that
results for the closed-source GPT-5 model may not be fully reproducible, depending on the
availability of this model in OpenAI’s API.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and code are available. The code is comprehensive enough to fully
replicate all experimental results, except the exact GPT-5 results. However, raw outputs
from our GPT-5 experiments are included for verification.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: Many models were trained (5 supervised models, 6 generative models, 2
optimization algorithms) and the detailed training setting were deemed too extensive for
inclusion in the paper. They are easily available in the codebase, for reference.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: Much of our benchmarking is time and cost-constrained, such as the LLM
benchmarking. Repeating experiments many times to meaningly report error bars would
exceed our time and budget constraints.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources and the cost of API calls are mentioned in the appendix.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research has striven towards the highest ethical standards.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We extensively discuss the possible impacts of data-driven design benchmarks
on the improvement and progression of generative AI models. Advancement of generative
AI has numerous positive and negative societal impacts, however, none of these impacts are
uniquely relevant to this benchmark. Regardless, we include a short ethics statement in the
Appendix.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: In the appendix, we encourage practitioners using models trained on
BikeBench’s data or using BikeBench’s design evaluation tools for real-world bicycle
design to undertake additional validation and verification steps.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators of code, data, and models are properly attributed. and assets are used
according to their licensing.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The data and code are organized and documented.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
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Justification: This is discussed in a dedicated section in the appendix. Participants were paid
9 GBP per hour. The text instruction is included in the main paper. The designs shown are
included in the dataset.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: This study received IRB approval. Participants did not incur significant risks.
They consented to their data being used for the training and evaluation of ML models. This
is described in a dedicated section in the Appendix.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Aside from the LLM benchmarks as a core component of the paper, LLMs did
not impact the core methodology, scientific rigorousness, or originality of the research.
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A Appendix A: Extended Results

A.1 Scorecards for Main Paper Results

We include scorecards for all models benchmarked in the full paper. First, we show unconditional
generation in Figures 5 and 6. Next, we include conditional generation scorecards in Figures 7 and 8.

Figure 5: Scorecards for unconditional benchmarking results (part 1)
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Figure 6: Scorecards for unconditional benchmarking results (part 2)
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Figure 7: Scorecards for conditional benchmarking results (part 1)
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Figure 8: Scorecards for conditional benchmarking results (part 2)

A.2 Generation Under Masked Constraints

We include benchmarking results for the masked constraint case under both conditional and uncon-
ditional generation in Table 2. GPT-5-high is excluded here due to time and budgetary constraints.
In general, models with lower similarity scores struggle more to infer constraints from data. These
models therefore tend to suffer a larger reduction in design quality and increase in constraint vio-
lation compared to the unmasked generation case. Few methods compete with the simple dataset
subsampling baseline. This broadly suggests significant room for improvement of design synthesis
algorithms in implicit constraint satisfaction.

Table 2: Design quality, constraint violation, similarity to dataset, and design diversity scores for
unconditional and conditional benchmarking cases with masked constraints. Models are separated
by class (LLM / Tabular-GM / OA-GM / Optimizer). The best non-baseline scores in each metric are
bolded. Models are benchmarked with an evaluation budget of 1M.

Masked Generation Conditional + Masked Generation

Qual. (↑) Viol. (↓) Sim. (↓) Div. (↓) Qual. (↑) Viol. (↓) Sim. (↓) Div. (↓)

Dataset 0.0035 2.699 0.005 12.72 0.0035 2.699 0.005 12.72
Data subset 0.0151 0.123 0.082 12.41 0.0151 0.216 0.076 12.51

CTGAN 0.0079 1.046 0.123 9.94 0.0109 1.301 0.098 11.65
TVAE 0.0150 0.616 0.164 13.55 0.0151 0.428 0.154 13.54

OA-GAN 0.0128 0.505 0.196 14.02 0.0111 2.390 0.105 14.12
OA-VAE 0.0142 0.971 0.341 14.99 0.0157 1.062 0.284 14.92
OA-DDPM 0.0087 1.541 0.101 11.06 0.0007 2.495 0.201 12.93

Grad. Descent 0.0161 0.683 0.279 12.09 - - - -
NSGA-II 0.0011 3.566 0.606 11.59 - - - -
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B Details on Background, Datasets, Evaluation Criteria, Metrics, and Models

B.1 Background: Data-Driven Bicycle Design

Bicycle design is a complex engineering problem with a rich history of optimization through scientific
and engineering innovation [69]. Bicycle design catalyzed numerous significant advancements in
mechanical engineering and remains a significant research field to this day. Bicycles themselves
revolutionized transportation and remain ubiquitous in today’s society. In 2015, at least 42% of
households globally owned a bike [70] and 35% of adults surveyed across 28 countries in 2022 rode
a bike at least once a week [45]. Thanks to this history, the widespread continued use, and the hugely
varied use cases and subjective preferences among users, the bicycle design space is rich and vibrant –
ideal for data-driven methods.

Data and computation have played an increasingly important role in bicycle design science [71],
predominantly focusing on computational simulation and optimization [72, 73, 74]. However, little
published research had explored bicycle design-space exploration or big-data applications before the
BIKED [42] dataset was released in 2021. BIKED demonstrated some of the first applications of
design-space modeling, deep learning, and generative AI in bicycle design.

Data-driven tools are well-positioned to continue the legacy of innovation in bicycle design science.
Indeed, data-driven design tools stemming from BIKED have already been integrated into professional
bicycle design software (see www.bikecad.ca/ai). Thanks to the continued ubiquity of the bicycle in
modern society, design innovation may yield more optimal or better-customized bikes, potentially
increasing ridership. Such an increase in ridership could subsequently impart further societal impact
by improving public health [75], traffic congestion [76], and climate change [77].

B.2 Datasets and Evaluation Criteria

B.2.1 Details on Data Collection from Human Subjects

All participants in our human subject data collection were adults (aged 18 or older), paid an hourly rate
of 9 GBP. All participants were informed that their data may be used for the training and evaluation
of ML/AI models and consented to this. The study passed relevant institutional review procedures
without issue.

B.2.2 Building a Classification Dataset for Usability

BikeBench uses the binary (yes/no) ratings collected from human raters to predict the proportion
of raters that would consider a design ‘easy to use.’ Rather than averaging the scores for each bike,
yielding the distribution of scores shown in Figure 9, ratings can alternatively be aggregated to
form a simple classification dataset. To assess the overall consensus, factoring in a margin of error
resulting from potential sampling inaccuracies, we can use a two-sided binomial test. Taking the
population size of the group with the smallest number of valid users (46), we evaluate the 99%
confidence interval to be approximately 20%. Thus, for any design with at least 70% consensus
among respondents, we can be 99% confident in the consensus value. In other words, an average
score of at least 0.7 confidently indicates that more than half of raters would consider the bike usable,
whereas an average of at most 0.3 indicates that less than half of raters would consider the bike usable.
Following these thresholds, 49 bikes are identified as usable and 51 as unusable, resulting in a total of
100 confident classification labels.

B.2.3 Limitations and Assumptions of Datasets and Evaluators

BikeBench makes numerous key assumptions that may cause significant inaccuracies in design
evaluation. A few key assumptions and limitations are listed below, but this is not a comprehensive
list. We encourage practitioners using models trained on BikeBench’s data or using BikeBench’s
design evaluation tools for real-world bicycle design to undertake additional validation and verification
steps.

• Design representation: BikeBench’s design representation is expressive enough to cover a
wide variety of designs adhering to a ‘conventional’ diamond-frame bike. It does not span
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Figure 9: Distribution of average usability scores in BikeBench’s human-sourced dataset.

entirely different topological layouts of bicycles, such as recumbent bikes, nor does it model
complex suspension systems, such as mountain bike rear suspensions.

• Dataset bias: The original dataset of 4500 human-design bikes features certain biases,
particularly in less visually-prominent features like tube thickness values. We refer readers
to BIKED [42] and FRAMED [43] for more in-depth discussion.

• Surrogate model robustness: To keep BikeBench fast and portable, we resorted to surrogate
models for many of the evaluations. These may lack robustness outside of the support of
their data.

• Geometric Feasibility: Our set of closed-form geometric checks is not comprehensive, and
primarily covers commonly-seen ‘mistakes’ made by generative models. It is not a guarantee
of feasibility.

• Structural evaluation: BIKED includes non-isotropic materials (bamboo, carbon, other)
which are difficult to simulate without extensive assumptions. We substitute these materials
with aluminum (or steel for carbon fiber) in BikeBench. Real metal tubes nonetheless display
some anisotropic properties, causing inaccuracies. Simulations are based on a simplified 3D
frame model which approximates tube joints and does not incorporate certain frame features,
such as wheel cutouts. Detailed discussion and comparisons to experimental validation are
included in FRAMED [43].

• Aerodynamics: The assessment of aerodynamic drag in a constant direct headwind and
based on a basic cyclist model is a simplified assessment of bicycle aerodynamics. Real
cycling undergoes a variety of different wind speeds at different angles, causing aerodynamic
interactions in different flow regimes.

• Aesthetics: Although the trained parametric-to-CLIP embedding model suffices to capture
subjective details (e.g. ‘jet-black triathlon bike’) [78], it struggles to capture technical details
of bicycle components (e.g. number of chainrings or fork style).

While these inaccuracies may limit BikeBench’s robustness and utility for users interested in
physically constructing the bicycles they design, their impact on BikeBench’s primary objective—
benchmarking—should be minor.

B.2.4 Visualization of geometrically infeasible bikes

To give readers some intuition regarding the nature of geometric infeasibility, a few geometrically
infeasible bikes are visualized in Figure 10.

Figure 10: BikeBench features numerous closed-form constraint checks to identify common geometric
infeasibilities such as disconnected or colliding components (left 3). Less common infeasibilities in
frame geometry are flagged if the design causes errors during 3D reconstruction (right 3).
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B.3 Models and metrics

B.3.1 Additional Metrics and Metric Implementation Details

Details of Hypervolume Calculation: In multi-objective design optimization, designs are often
compared in the objective space—the space comprising the set of all objective scores. One design
“dominates” the other if it is superior in every single objective. To calculate the hypervolume metric of
a sample set, we measure the hypervolume of the region in the objective space where a corresponding
design would be dominated by any design in the sample set. To keep hypervolume bounded, it is
typically calculated with respect to some reference point, which we select to be the combination of
maximum (worst) objective scores in every unique objective with a small additional margin. Scores
are calculated by evaluating every design in BIKED with a random conditional configuration.

Novelty: BikeBench also evaluates mean design novelty. We estimate the novelty of any given
design as the Euclidean distance to nearest test-set design after scaling designs by test-set per-
parameter variance.

Binary Validity: While examining overall constraint violation is insightful, designs are ultimately
invalid if they violate even a single constraint. Thus, we also evaluate the fraction of designs that
simultaneously satisfy all design constraints.

The public leaderboard will feature these extended scores, in addition to the primary four metrics
discussed in the main paper.

B.3.2 Details on optimization-augmented model training

This section presents a detailed discussion of the optimization-augmented generative model training
process, with a visual overview in Figure 11.

Figure 11: Overview of the optimization-augmented generative model training process.

The DPP-based auxiliary loss proposed in PaDGAN [64] uses a single aggregate design quality
metric. To condense BikeBench’s many objectives and constraints into a differentiable aggregate
quality metric, we propose the following aggregation scheme:

s(x) =

no∑
i=1

oi(x)

woi

+

nc∑
i=1

g(
ci(x)

wci

) (1)

All no objectives, oi, and nc constraints, ci, are scaled by weighting parameters, woi and wci . Each
parameter is set automatically based on the mean absolute value of the scores observed from random
pairings of the nD points in the dataset, D, with randomly sampled conditions, Cj :

woi =

∑nD

i=0(|oi(Dj , Cj)|)
nD

, wci =

∑nD

i=0(|ci(Dj , Cj)|)
nD

(2)
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Constraints are additionally fed through a nonlinear scaling function to push them across the constraint
boundary and a safe margin away, without rewarding extreme constraint satisfaction:

g(x) =

{
αeβx

β x ≤ 0

α(x+ 1
β ) x ≥ 0

(3)

This continuous penalty function linearly increases for x > 0, and morphs into an increasingly
gradual decay for x < 0, and also features a continuous first derivative. We use α = 100 and β = 10
in our benchmarking. Modulating these terms can encourage a model to focus more on objectives or
constraints. For details on the DPP-based loss, given an aggregate quality function, we refer readers
to [64].

In the unconditional benchmarks, a small portion of the evaluation budget is held out during training
to perform a final rejection sampling pass on a few hundred designs. This (generally) ensures a
perfectly valid set. Due to relatively high raw validity rates, relatively few designs have to be passed
through the rejection sampling step, making its cost very small (under 10% of the total evaluation
budget).

The guided DDPM is only applied to the unconditional case, as it directly calls the evaluators on the
test-set conditions. The evaluation budget is not high enough to invoke evaluator-based guidance at
every denoising step. Instead, the guidance is invoked in a scheduled manner at only certain time
steps.

We refer users interested in detailed training parameters for the OA-GMs to the repository linked in
the abstract.

B.3.3 LLM Prompts

A series of prompts is given to the LLM model. These prompts are listed below, excepting a few of
the longer subcomponents which are substantiated later in the appendix.

Full-Stack LLM Prompts:

• (System Prompt) “You are a large language model who will be assisting with a compu-
tational bicycle design task. The user will give you some examples of bicycle designs
then ask you to create new ones. This is a challenging design task because the designs
are represented using csv tables. You’ll have to keep good track of the order of the
bicycle parameters to make sure you dont forget any or mix any up. The user will also
give you some performance metrics for the existing bicycle designs. You will have to
use your knowledge of physics and design principles to try to ensure that the designs
you generate are valid. Importantly, the user does not want any sort of feedback. They
only want the raw final designs in csv format. You’ll task is to figure out how to design
them to try to meet the design constraints and give them cleanly to the user in csv
format. ”

• “I will ask you to create some bicycle designs. The bicycle designs are subject to a set of
conditions: a text prompt, some rider dimensions, and a use case. Each design is defined
by 64 variables, which I will describe. Some of these are categorical variables, and I
will provide you with the possible values for these variables. Others are continuous or
boolean. I will describe the design variables shortly. Designs are evaluated according
to a set of 50 criteria. 10 of these are objectives and 40 are constraints. Here are the
descriptions of the design variables and the evaluation criteria:”

• Dataset descriptions (see Sec. B.5).
• Evaluation criterion descriptions (see Sec. B.4).
• “Before asking you to design the bikes, I will provide a dataset of existing bicycle

designs to reference. These are useful as a reference point, because it may be difficult
to satisfy constraints and objectives if you deviate too far from the space of existing
designs. I will also provide a set of objective scores for these bicycle designs. Here are
the 25 conditional inputs for the bicycle generation task:”

• Conditional inputs (see Sec. B.6).
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• “Here is a csv file with 25 examples of bikes that satisfy the constraints. The csv has 25
rows (bikes) plus a header row and exactly 64 columns (parameters):”

• CSV file of valid designs

• “Next, here are the corresponding scores for those 25 bikes in a csv file of 25 designs
(rows) plus a header row by 50 scores (columns). You can see that all constraint scores
are less or equal to zero:”

• CSV file of valid designs’ scores

• “Now that you have seen some example designs that satisfy the constraints, as well as
their scores, here is a csv file with 25 examples of bikes that violate the constraints. This
csv also has 25 rows (bikes) plus a header row and exactly 64 columns (parameters):”

• CSV file of invalid designs

• “Finally, here are the corresponding scores for those 25 invalid bikes in a csv file of 25
designs (rows) plus a header row by 50 scores (columns). You can see that at least one
constraint score is positive for each:”

• CSV file of invalid designs’ scores

• “Having examined 25 valid and 25 invalid designs and the evaluation of these designs,
I hope you have gained an understanding of the design space and design objectives.
Please deliberate on a strategy for creating high-performing designs that satisfy the
constraints and objectives. Your goal is to create designs that will minimize the objective
scores while ensuring every constraint score is less or equal to zero. Here is the prompt
for which you will be generating designs:”

• String with the test-set condition

• “You must create 100 unique bicycle design that satisfy the constraints and objectives.
Important: You are not allowed to generate the same bike 100 times. Each design
must be unique! You are also encouraged to improve over the valid designs given to
you, which may not be very optimal. Please provide the designs in a 100 x 64 csv
file with one extra column for the index and one extra row for the column hearers.
Please count up from 1-100 in the indices. For the column headers, we recommend you
use the parameter names described to help you keep track of what parameter is what.
Remember! Every design must be unique. Your final output must be only the csv itself,
nothing more. Generate the csv file now.”

B.4 Summary of Constraints and Objectives

This section summarizes BikeBench’s 50 unique constraints and objectives. An overview is presented
in Table 3, which includes the types of evaluators and the inputs to the evaluation functions.

Table 3: Summary of BikeBench’s evaluation functions, classified as objectives or constraints. Inputs
and evaluator type are also specified.

Category Objectives Constraints Evaluator Inputs

Geometric Feasibility 0 32 Closed-Form + Predictor Bike
Structural Soundness 4 2 Predictor Bike
Aerodynamics 1 0 Predictor Bike + Rider
Ergonomics 3 6 Closed-Form Bike + Rider + Use case
Human-Centered Usability 1 0 Predictor Bike
Aesthetics 1 0 Predictor Bike + Text/Image/Embedding

The following is the description of the constraints and objectives given to the LLM, which is also a
helpful human-interpretable reference:
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Constraint and Objective Description Prompt:

“Descriptions of all objectives and constraints in the standard BikeBench multi-objective engi-
neering design benchmark. Some evaluation criteria are contingent on only the bike design,
while others are also contingent on the conditional information. By convention, objectives
are minimized at 0, with lower values being better. Constraints are also minimized, with 0
being the critical value. Larger positive values indicate more extreme constraint violation and
larger magnitude negative values are more constraint-satisfying. In general, once a constraint is
satisfied, we no longer care about further minimizing the value. However, achieving constraints
is critical because designs that violate constraints are invalid. Thus, we must attempt to ensure
that all constraints are simultaneously below zero.
The 50 objectives and constraints are described as follows:

• Usability Score [Objective]: The predicted ’usability,’ as rated by a human, with 0
being the most usable and 1 being the least usable. Predicted by a regression model
trained on human-collected ratings.

• Drag Force (N) [Objective]: The predicted drag force in N incurred by the cyclist in a
10 m/s headwind, as predicted by a regression model trained on computational fluid
dynamics simulation data.

• Knee Angle Error (deg.) [Objective]: The difference between the minimum knee angle
of the cyclist and the optimal reference range. May include a penalty term if the rider’s
geometry is completely incompatible with the bike.

• Hip Angle Error (deg.) [Objective]: The difference between the torso-to-upper-leg
angle of the cyclist and the optimal reference range. May include a penalty term if the
rider’s geometry is completely incompatible with the bike.

• Arm Angle Error (deg.) [Objective]: The difference between the torso-to-arm angle of
the cyclist and the optimal reference range. May include a penalty term if the rider’s
geometry is completely incompatible with the bike.

• Arm Too Long for Bike [Constraint]: Constraint indicating that the length of the rider’s
arm is longer than the length of the rider’s torso plus the distance from the saddle to the
handlebars. Means the saddle is too close to the handlebars.

• Saddle Too Far From Handle [Constraint]: Constraint indicating that the distance from
the saddle to the handlebars is longer than the length of the rider’s torso plus the length
of the rider’s arm. Means the saddle is too far from the handlebars.

• Torso Too Long for Bike [Constraint]: Constraint indicating that the length of the rider’s
torso is longer than the length of the rider’s arm plus the distance from the saddle to the
handlebars. Means the saddle is too close to the handlebars.

• Saddle Too Far From Crank [Constraint]: Constraint indicating that the distance from
the saddle to the pedals in the far position is longer than the length of the rider’s upper
leg plus the length of the rider’s lower leg. Means the saddle is too far from the pedals.

• Upper Leg Too Long for Bike [Constraint]: Constraint indicating that the length of
the rider’s upper leg is longer than the distance from the saddle to the pedals in the far
position plus the length of the rider’s lower leg. Means the saddle is too close to the
pedals.

• Lower Leg Too Long for Bike [Constraint]: Constraint indicating that the length of
the rider’s lower leg is longer than the distance from the saddle to the pedals in the far
position plus the length of the rider’s upper leg. Means the saddle is too close to the
pedals.

• Cosine Distance To Embedding [Objective]: The cosine distance in the CLIP embedding
space between the rendered bike image and the target text or image embedding.

• Mass (kg) [Objective]: The mass in kg of the bike frame, as predicted by a regression
model trained on finite element analysis data.

• Planar Compliance Score [Objective]: A composite planar compliance score for the
bike frame, as predicted by a regression model trained on finite element analysis data.
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• Transverse Compliance Score [Objective]: A composite transverse compliance score
for the bike frame, as predicted by a regression model trained on finite element analysis
data.

• Eccentric Compliance Score [Objective]: A composite eccentric compliance score for
the bike frame, as predicted by a regression model trained on finite element analysis
data.

• Planar Safety Factor [Constraint]: Constraint quantified as 1.5 minus the safety factor
under planar loading, as predicted by a regression model trained on finite element
analysis data. Means the frame fails under planar loading.

• Eccentric Safety Factor [Constraint]: Constraint quantified as 1.5 minus the safety
factor under eccentric loading, as predicted by a regression model trained on finite
element analysis data. Means the frame fails under eccentric loading.

• Predicted Frame Validity [Constraint]: Constraint indicating some abstract issue with
the frame, as predicted by a classification model trained to identify CAD models that
failed to regenerate. Means the frame is invalid in an unspecified way.

• Saddle Height Too Small [Constraint]: Constraint indicating that the saddle height is
too low to be functional.

• Saddle Collides With Seat Tube [Constraint]: Constraint indicating that the saddle
height is so low that it collides with the top of the seat tube.

• Saddle Too Short [Constraint]: Constraint indicating that the length of the saddle is too
short.

• Head Angle Over Limit [Constraint]: Constraint indicating that the head angle is over
180 degrees.

• Seat Angle Over Limit [Constraint]: Constraint indicating that the seat angle is over
180 degrees.

• Seat Post Too Short [Constraint]: Constraint indicating that the seat post doesn’t reach
the seat tube given the prescribed saddle height.

• Seat Post Too Long [Constraint]: Constraint indicating that the seat post is so long that
it hits the bottom bracket given the prescribed saddle height.

• Rear Wheel Inner Diameter Too Small [Constraint]: Constraint indicating that the rear
wheel’s inner diameter is too small to be functional.

• Front Wheel Inner Diameter Too Small [Constraint]: Constraint indicating that the
front wheel’s inner diameter is too small to be functional.

• Seat Tube Extension Longer Than Seat Tube [Constraint]: Constraint indicating that
the distance from the top of the seat tube to the top tube junction is longer than the seat
tube itself.

• Head Tube Upper Extension And Lower Extension Overlap [Constraint]: Constraint
indicating that the top tube and down tubes intersect before their junctions with the
head tube.

• Seat Stay Junction Longer Than Seat Tube [Constraint]: Constraint indicating that the
distance from the top of the seat tube to the seat stay junction is longer than the seat
tube itself.

• Non-negative Parameter Is Negative [Constraint]: Constraint indicating that at least one
parameter that should be strictly positive is negative.

• Chain Stay Smaller Than Rear Wheel Radius [Constraint]: Constraint indicating that
the chain stay length is smaller than the wheel radius, creating a collision.

• Chain Stay Shorter Than BB Drop [Constraint]: Constraint indicating that the vertical
drop from the rear axle to the bottom bracket is greater than the chain stay length,
creating an impossibility.

• Seat Stay Smaller Than Rear Wheel Radius [Constraint]: Constraint indicating that the
seat stay length is smaller than the wheel radius, creating a collision.
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• Seat Tube Collides With Rear Wheel [Constraint]: Constraint indicating that the seat
tube collides with the rear wheel.

• Down Tube Can’t Reach Head Tube [Constraint]: Constraint indicating that the down
tube isn’t long enough to reach the head tube, creating an impossibility.

• Rear Wheel Cutout Severs Seat Tube [Constraint]: Constraint indicating that the
diameter of the aero tube cutout of the seat tube is so large such that it is completely
severing the seat tube.

• Foot Collides With Front Wheel [Constraint]: Constraint indicating that the foot would
collide with the pedal in its forward position, causing a collision when turning.

• Crank Hits Ground In Lowest Position [Constraint]: Constraint indicating that the crank
hits the ground during its rotation.

• RGB Value Greater Than 255 [Constraint]: Constraint indicating that one or more
frame RGB values exceed 255.

• Chain Stays Collide [Constraint]: Constraint indicating that the chain stays collide with
each other before reaching the bottom bracket.

• Tube Wall Thickness Exceeds Radius [Constraint]: Constraint indicating that some
tubes’ wall thickness exceeds their radius, creating an impossibility.

• Seat Tube Too Narrow For Seat Post [Constraint]: Constraint indicating that the seat
post’s outer diameter is wider than the seat tube’s inner diameter, creating a collision.

• Down Tube Improperly Joins Head Tube [Constraint]: Constraint indicating that the
down tube is partially disconnected from the bottom of the head tube.

• Top Tube Improperly Joins Head Tube [Constraint]: Constraint indicating that the top
tube is partially disconnected from the top of the head tube.

• Top Tube Improperly Joins Seat Tube [Constraint]: Constraint indicating that the top
tube is partially disconnected from the top of the seat tube.

• Down Tube Collides With Front Wheel [Constraint]: Constraint indicating that the
down tube collides with the front wheel.

• Saddle Hits Top Tube [Constraint]: Constraint indicating that the saddle collides with
the top tube.

• Saddle Hits Head Tube [Constraint]: Constraint indicating that the saddle collides with
the head tube.”

B.5 Summary of Design Variables

This section contains details on BikeBench’s parametric design representation. The following is the
description of the design variables given to the LLM, which is also a helpful human-interpretable
reference:

Dataset Description Prompt:

“Descriptions of all parameters in the standard BikeBench design representation scheme. General
notes: All lengths are measured in mm. All angles are measured in degrees.
The 64 variables are described as follows:

1. ’Seatpost LENGTH’ [Continuous]: The length of the seat post.
2. ’CS textfield’ [Continuous]: The length of the chain stay tubes.
3. ’BB textfield’ [Continuous]: Bottom bracket drop, measured as the vertical drop from

the rear axle to the center of the bottom bracket. By convention, positive values imply
the bottom bracket lies below the axle.

4. ’Stack’ [Continuous]: The vertical distance from the top of the head tube to the bottom
bracket.
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5. ’Head angle’ [Continuous]: The angle of the head tube clockwise from horizontal, in
degrees.

6. ’Head tube length textfield’ [Continuous]: The length of the head tube.
7. ’Seat stay junction0’ [Continuous]: The length along the seat tube from the top of the

seat tube to the junction with the seat stays. By convention, this is measured to the
center of the seat stays.

8. ’Seat tube length’ [Continuous]: The length of the seat tube.
9. ’Seat angle’ [Continuous]: The angle of the seat tube clockwise from horizontal.

10. ’DT Length’ [Continuous]: The length of the down tube.
11. ’FORK0R’ [Continuous]: Fork offset, measured as the perpendicular distance from the

front axle to the head tube axis.
12. ’BB diameter’ [Continuous]: The diameter of the bottom bracket.
13. ’ttd’ [Continuous]: Top tube outer diameter.
14. ’dtd’ [Continuous]: Down tube outer diameter.
15. ’csd’ [Continuous]: Chain stay outer diameter.
16. ’std’ [Continuous]: Seat tube outer diameter.
17. ’htd’ [Continuous]: Head tube outer diameter.
18. ’ssd’ [Continuous]: Seat stay outer diameter.
19. ’Chain stay position on BB’ [Continuous]: The distance along the length of the bottom

bracket from its edge to the center of the chain stay tubes.
20. ’SSTopZOFFSET’ [Continuous]: The offset from the center plane of the bike of the

joints connecting the seat stays to the seat tube.
21. ’MATERIAL’ [Categorical]: The material of the bike frame. Possible values are:

’ALUMINIUM’, ’STEEL’, ’TITANIUM’.
22. ’Head tube upper extension2’ [Continuous]: The length from the top of the head tube to

the junction with the top tube. By convention, this is measured to the center of the top
tube.

23. ’Seat tube extension2’ [Continuous]: The length from the top of the seat tube to the
junction with the top tube. By convention, this is measured to the center of the top tube.

24. ’Head tube lower extension2’ [Continuous]: The length from the bottom of the head
tube to the junction with the down tube. By convention, this is measured to the center
of the down tube.

25. ’SEATSTAYbrdgshift’ [Continuous]: The distance along the center plane of the bike
from the seat stay and seat tube junction to the seat stay bridge, if present on the bike.

26. ’CHAINSTAYbrdgshift’ [Continuous]: The distance along the center plane of the bike
from the outer edge of the bottom bracket to the chain stay bridge, if present on the
bike.

27. ’SEATSTAYbrdgdia1’ [Continuous]: The diameter of the seat stay bridge, if present on
the bike.

28. ’CHAINSTAYbrdgdia1’ [Continuous]: The diameter of the chain stay bridge, if present
on the bike.

29. ’SEATSTAYbrdgCheck’ [Boolean]: A boolean value indicating whether the seat stay
bridge is present on the bike.

30. ’CHAINSTAYbrdgCheck’ [Boolean]: A boolean value indicating whether the chain
stay bridge is present on the bike.

31. ’Dropout spacing’ [Continuous]: The distance between the rear dropouts.
32. ’Wall thickness Bottom Bracket’ [Continuous]: The tube wall thickness of the bottom

bracket.
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33. ’Wall thickness Top tube’ [Continuous]: The tube wall thickness of the top tube.
34. ’Wall thickness Head tube’ [Continuous]: The tube wall thickness of the head tube.
35. ’Wall thickness Down tube’ [Continuous]: The tube wall thickness of the down tube.
36. ’Wall thickness Chain stay’ [Continuous]: The tube wall thickness of the chain stay.
37. ’Wall thickness Seat stay’ [Continuous]: The tube wall thickness of the seat stay.
38. ’Wall thickness Seat tube’ [Continuous]: The tube wall thickness of the seat tube.
39. ’Wheel diameter front’ [Continuous]: The outer diameter of the front wheel.
40. ’RDBSD’ [Continuous]: The difference between rear wheel outer diameter and bead

seat diameter, roughly approximating the tire thickness.
41. ’Wheel diameter rear’ [Continuous]: The outer diameter of the rear wheel.
42. ’FDBSD’ [Continuous]: The difference between front wheel outer diameter and bead

seat diameter, roughly approximating the tire thickness.
43. ’Fork type’ [Categorical]: The style of fork. Possible values are: ’0’, ’1’, ’2’. 0 is a

rigid fork, 1 is a single crown fork, 2 is a double crown fork.
44. ’Stem kind’ [Categorical]: The style of stem. Possible values are: ’0’, ’1’, ’2’. 0 is a

stem that features a sharp and immediate angle away from the head tube. 1 is a stem
that features a sharp angle some distance away from the head tube. 2 is a stem that
features a gradual angle away from the head tube after initially extending in line with
the head tube.

45. ’Handlebar style’ [Categorical]: The style of the handlebars. Possible values are: ’0’,
’1’, ’2’. 0 is a drop bar, 1 is a mountain bike bar, 2 is a bullhorn bar.

46. ’BB length’ [Continuous]: The length of the bottom bracket.
47. ’Wheel cut’ [Continuous]: The diameter of the cutout of the seat tube for the rear wheel,

if using an aerodynamic tube type.
48. ’BELTorCHAIN’ [Boolean]: A boolean value indicating whether the bike has a chain

(True) as opposed to a belt.
49. ’Number of cogs’ [Integer]: The number of cogs on the rear wheel.
50. ’Number of chainrings’ [Integer]: The number of chainrings attached to the crank.
51. ’FIRST color R_RGB’ [Continuous]: The red component of the primary paint color of

the bike.
52. ’FIRST color G_RGB’ [Continuous]: The green component of the primary paint color

of the bike.
53. ’FIRST color B_RGB’ [Continuous]: The blue component of the primary paint color of

the bike.
54. ’RIM_STYLE front’ [Categorical]: The style of the front rim. Possible values are:

’DISC’, ’SPOKED’, ’TRISPOKE’. Despite the name, trispoke class implies composite
spokes but does not necessarily imply three composite spokes.

55. ’RIM_STYLE rear’ [Categorical]: The style of the rear rim. Possible values are: ’DISC’,
’SPOKED’, ’TRISPOKE’. Despite the name, trispoke class implies composite spokes
but does not necessarily imply three composite spokes.

56. ’SPOKES composite front’ [Integer]: If applicable, the number of composite spokes in
the front wheel minus two (a value of 1 is a trispoke wheel).

57. ’SPOKES composite rear’ [Integer]: If applicable, the number of composite spokes in
the rear wheel minus two (a value of 1 is a trispoke wheel).

58. ’SBLADEW front’ [Continuous]: If applicable, the width of the front wheel composite
spokes.

59. ’SBLADEW rear’ [Continuous]: If applicable, the width of the rear wheel composite
spokes.
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60. ’Saddle length’ [Continuous]: The length of the saddle.
61. ’Saddle height’ [Continuous]: The vertical distance from the saddle to the bottom

bracket.
62. ’Seat tube type’ [Categorical]: The style of seat tube. Possible values are: ’0’, ’1’, ’2’.

0 is aerodynamic, while 1 and 2 are standard round tubes with no distinction in this
representation scheme.

63. ’Head tube type’ [Categorical]: The style of head tube. Possible values are: ’0’, ’1’, ’2’,
’3’. 0 is aerodynamic, while 1 and 2 are standard round tubes with no distinction in this
representation scheme. 3 is a tapered head tube.

64. ’Down tube type’ [Categorical]: The style of down tube. Possible values are: ’0’, ’1’,
’2’. 0 is aerodynamic, while 1 and 2 are standard round tubes with no distinction in this
representation scheme. ”

B.6 Conditional Tasks

Conditional information is concatenated for the LLM into a text string of the form: ‘Rider Body
Dimensions: Upper leg length - [ULL], Lower leg length - [LLL], Arm length - [AL], Torso length
- [TL], Neck and head length - [HNL], Torso width - [TW]. Use Case: [Road Biking/Mountain
Biking/Commuting]. Bike Description: [Text Prompt]’.

An example condition from the test set is included below:

Example Test Set Condition in Text String Representation:

“Rider Body Dimensions: Upper leg length - 0.3772640228, Lower leg length - 0.5058981180,
Arm length - 0.6180832386, Torso length - 0.4945643246, Neck and head length - 0.3314186633,
Torso width - 0.3427633643. Use Case: Road Biking. Bike Description: Track training bike
with fixed gear, deep-section rims, and a stiff frame designed to transfer power effectively to the
track.”

B.7 Computing Resources and Cost

All experiments were carried out on a workstation with an RTX 3090Ti GPU and a Ryzen 5900x
CPU. No model training or optimization took more than 4 hours. API calls for GPT-5 queries were
divided over the 100 test conditions and parallelized across 20 processes. Each LLM benchmark took
approximately 1 hour to complete and cost approximately 40 USD.

B.8 Ethics and Societal Impact

BikeBench aims to advance the capabilities of generative AI models for engineering design. In
general, AI has many positives and negatives, most of which are not particularly pertinent to this
work. However, we would like to acknowledge some of the pros and cons of generative models for
engineering design. A principal risk of AI in engineering, particularly generative models, is safety.
Generative models are usually probabilistic. When human safety is in question, even small chances
of failure are unacceptable. Designs and design decisions created by AI must be held to the same (or
higher) engineering standards as human designs. Engineering design AI also stands poised to deliver
notable societal benefits. By lowering the barrier of entry to design, it may democratize design,
allowing individuals without formal training to participate in the design process. By increasing design
throughput, it may realize better products, more efficient design, and greater design customization for
individuals. We advocate for the careful and ethical use of AI in engineering design and beyond.
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