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Abstract
Time series pre-training has recently garnered
wide attention for its potential to reduce labeling
expenses and benefit various downstream tasks.
Prior methods are mainly based on pre-training
techniques well-acknowledged in vision or lan-
guage, such as masked modeling and contrastive
learning. However, randomly masking time se-
ries or calculating series-wise similarity will dis-
tort or neglect inherent temporal correlations cru-
cial in time series data. To emphasize temporal
correlation modeling, this paper proposes Time-
Siam as a simple but effective self-supervised
pre-training framework for Time series based on
Siamese networks. Concretely, TimeSiam pre-
trains Siamese encoders to capture intrinsic tem-
poral correlations between randomly sampled past
and current subseries. With a simple data augmen-
tation method (e.g. masking), TimeSiam can ben-
efit from diverse augmented subseries and learn
internal time-dependent representations through
a past-to-current reconstruction. Moreover, learn-
able lineage embeddings are also introduced to
distinguish temporal distance between sampled se-
ries and further foster the learning of diverse tem-
poral correlations. TimeSiam consistently outper-
forms extensive advanced pre-training baselines,
demonstrating superior forecasting and classifica-
tion capabilities across 13 standard benchmarks
in both intra- and cross-domain scenarios. Code is
available at https://github.com/thuml/TimeSiam.

1. Introduction
Time series, a critical form of real-world data, finds wide
applications in various domains, including energy, traffic,
economics, weather, medicine, etc (Wu et al., 2021; Zhang
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Figure 1. Comparison on time series pre-training frameworks. (a)
Masked modeling: reconstruct the masked series. (b) Contrastive
learning: Repulse different series (negative pairs) while attract-
ing two augmentations from the same series (positive pairs). (c)
TimeSiam: reconstruct masked current series xcurr from randomly
sampled past observation xpast.

et al., 2022; Wu et al., 2023b). In the real world, an enor-
mous volume of time series data is incrementally collected
through the Internet of Things (IoT) from industrial sensors
and wearable devices. To utilize these large amounts of data,
time series self-supervised pre-training has recently gained
significant attention, which can extract valuable knowledge
from unlabeled data and further boost the performance of
various downstream tasks (Dong et al., 2023). This paper
focuses on this promising area and proposes a novel and
practical self-supervised pre-training method for time series.

Previous pre-training methods can be roughly categorized
into the following two paradigms. As presented in Figure
1, the first one, named masked modeling, enables represen-
tation learning by optimizing the model to reconstruct the
masked part using the visible context, which has been com-
monly used in natural language processing (Devlin et al.,
2018; Raffel et al., 2020) and computer vision (He et al.,
2022; Xie et al., 2022; Li et al., 2023a). However, Dong et al.
(2023) found that randomly masking a portion of time points
will seriously distort vital temporal correlations of time se-
ries, making the reconstruction task too difficult to guide
representation learning. The other paradigm, contrastive
learning, excels in instance-level representation learning,
which optimizes the model to identify positive samples from
negative ones (Tang et al., 2020). A significant criticism
of these contrastive approaches is their reliance on careful
augmentations selection to learn useful invariances (Xiao
et al., 2021), which is even harder in time series due to the
scarcity of widely accepted and effective data augmenta-
tion methods (Wen et al., 2020). Also, the instance-level
modeling design may fail in capturing fine-grained temporal
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variations, limiting their practicality to downstream tasks.

We note a crucial distinction of time series from images or
languages, as each time step consists of only a finite number
of scalar values. This implies that the most vital information
in time series is preserved in the temporal correlations, high-
lighting the importance of temporal modeling (Nie et al.,
2023; Wu et al., 2023a). Therefore, the critical point of time
series pre-training is optimizing encoders to accurately cap-
ture temporal correlations, which has not been adequately
addressed in previous masking or contrastive methods.

To address the insufficiency in temporal modeling, we
present TimeSiam, a simple yet effective self-supervised
pre-training framework. Unlike prior, as shown in Figure
1, TimeSiam proposes to sample pairs of subseries across
different timestamps from the same time series, termed
“Siamese subseries”. Then, it leverages Siamese networks
as encoders to capture correlations between temporally dis-
tanced subseries. With simple data augmentation such as
masking, TimeSiam further improves the diversity and dis-
tinctiveness of Siamese subseries, which natively derives
a past-to-current reconstruction task, thereby enforcing the
encoder to learn temporally related information and cap-
ture correlations among past and current series. Besides,
to cover different distanced Siamese subseries, we propose
learnable lineage embeddings to enhance the encoder ca-
pacity for learning diverse time-dependent representations.
Eventually, a decoder that integrates cross-attention and
self-attention mechanisms is applied to ensure a precise
reconstruction of the (masked) Siamese subseries.

Importantly, TimeSiam is not constrained by proximity in-
formation in the time series. Instead, benefiting from our
Siamese subseries sampling procedure, it can effectively
model the correlation among distanced subseries, which
empowers the model with a more thorough understanding
of the whole time series. With the above designs, Time-
Siam remains simple but achieves consistent state-of-the-art
against prior time series pre-training methods across vari-
ous downstream tasks, including time series forecasting and
classification, covering both in- and cross-domain settings.
Overall, our contributions are summarized as follows:

• In the spirit of learning temporal correlations, we pro-
pose TimeSiam, a simple but effective pre-training
framework that leverages Siamese networks to capture
correlations among temporally distanced subseries.

• With Siamese encoders to reconstruct current masked
subseries based on past observation and lineage em-
beddings to capture subseries disparity, TimeSiam can
learn diverse time-dependent representations.

• TimeSiam achieves consistent state-of-the-art fine-
tuning performance across thirteen standard bench-
marks, excelling in various time series analysis tasks.

2. Related Work
2.1. Time Series Self-supervised Pre-training

Self-supervised pre-training has demonstrated its ability to
learn valuable and generalizable representations from large-
scale unlabeled datasets in various domains, such as natural
language processing (NLP) (Devlin et al., 2018; Radford
et al., 2019; Raffel et al., 2020; Brown et al., 2020; Gao
et al., 2020) and computer vision (CV) (He et al., 2020; Liu
et al., 2021; Xie et al., 2022; He et al., 2022), which can
significantly reduce labeling expenses and benefit diverse
downstream tasks. Recently, self-supervised pre-training
has empowered many breakthroughs in time series analysis
by introducing well-established techniques into time series,
such as masked modeling and contrastive learning.

Masked Modeling As a fundamental technique in self-
supervised pre-training methods, masked modeling enables
deep models to learn essential representations by recon-
structing masked parts from the visible context. Drawing
inspiration from notable advances in NLP and CV, exten-
sive time series pre-training approaches focus on time series
masked modeling, which helps the model learn effective
time series representations to facilitate various downstream
analysis tasks. For instance, TST (Zerveas et al., 2021) and
Ti-MAE (Li et al., 2023b) propose to randomly mask seg-
ments and points in time series and pre-train the model with
the reconstruction task. PatchTST (Nie et al., 2023) divides
the temporal dimension into multiple patches and treats time
series as independent variates. Additionally, it incorporates
a non-overlapping patch-level masked self-supervised strat-
egy for temporal representation learning. HiMTM (Zhao
et al., 2024) proposes a novel hierarchical masked time se-
ries pre-training method to capture the multi-scale nature
of time series. Additionally, SimMTM (Dong et al., 2023)
introduces a multi-masking modeling paradigm, which re-
constructs original time series through the weighted aggrega-
tion of multiple masked time series, thus being able to learn
both points-wise and series-wise temporal representations.
Despite these advances, all of these approaches solely focus
on the modeling of one individual time series, disregarding
the intrinsic temporal correlations and dynamical variations
of the whole time series. In contrast, TimeSiam proposes
to reconstruct the current sub-series based on past obser-
vations, which can naturally integrate the time-dependent
information during reconstruction pre-training.

Contrastive Learning Unlike masked modeling, this ap-
proach enables model pre-training by optimizing the sim-
ilarity among instance-level representations. It leverages
different data augmentations to construct positive and neg-
ative pairs from data, where positive pairs are optimized
to be close to each other and negative pairs are encour-
aged to be distant from each other during pre-training (Tang
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et al., 2020; He et al., 2020; Chen & He, 2021; Gao et al.,
2021). Current time series contrastive learning methods
are mainly based on diverse data augmentations tailored
to the domain-specific characteristics of time series. CPC
(Oord et al., 2018) introduced contrastive predictive coding,
which uses model-predicted timesteps as positive samples
and randomly-sampled timesteps as negative samples to
obtain advantageous time series representations for down-
stream tasks. Franceschi et al. (2019) combined a causal
dilated convolutions-based encoder with a novel triplet loss
that employs time-based negative sampling. TNC (Tonek-
aboni et al., 2021) learns the representations by ensuring
that signals from within a neighborhood are distinguish-
able from the distribution of non-neighboring signals in
the latent space using a debiased contrastive loss. TS2Vec
(Yue et al., 2022) divides time series into patches, defin-
ing contrastive tasks at both the individual instance and
patch levels. Mixing-up (Wickstrøm et al., 2022) exploits a
data augmentation scheme in which new samples are gen-
erated by mixing two data samples. LaST (Wang et al.,
2022) aims to separate seasonal and trend components in
time series data within the latent space. Additionally, CoST
(Woo et al., 2022) utilizes contrastive losses in both time
and frequency domains to learn distinct seasonal and trend
representations. Furthermore, TF-C (Zhang et al., 2022)
introduces a novel time-frequency consistency architecture,
optimizing for proximity between time-based and frequency-
based representations of the same data sample. However,
existing contrastive learning methods for time series heavily
rely on intricate data augmentation techniques to generate
diverse views of the original data for self-supervision. Also,
the instance-level representation learning may fall short in
downstream low-level tasks. In TimeSiam, we utilize the na-
tive temporally distanced subseries to build reconstruction
tasks, thereby freeing from complex augmentation tech-
niques and also considering the low-level representation.

2.2. Siamese Networks

Siamese networks (Bromley et al., 1993) are particular neu-
ral network architectures with shared model parameters.
This design makes Siamese networks well-suited for com-
paring and distinguishing two input samples based on a
single neural network. They have been widely used in con-
trastive learning to model the relationship between paired
samples (Chen & He, 2021). The combination of Siamese
networks and contrastive learning has been widely used in
many applications, particularly in tasks requiring instance-
level representations (Chen et al., 2020; He et al., 2020;
Wang et al., 2023). However, in the field of time series
pre-training, this combination generally focuses on recog-
nizing subtle differences between various augmented views
of the series itself, overlooking the essence of time series,
that is temporal correlation modeling. In this paper, we

explore using shared-weight Siamese autoencoders to estab-
lish correlations between past and current subseries. This
methodology enables a more efficient understanding of tem-
poral relations in time series and enforces the model to learn
time-dependent representations.

3. TimeSiam
To enhance the time-dependent representation learning,
TimeSiam is designed to capture correlations between tem-
porally distant subseries based on Siamese networks. This
framework can natively derive a past-to-current reconstruc-
tion task with simple masked augmentation. In addition,
learnable lineage embeddings are incorporated to dynami-
cally capture the disparity among different distanced sub-
series pairs, which can enhance the model’s capacity to
cover different temporal correlations. Hereafter, we will
detail the pre-training and fine-tuning stages in TimeSiam.

3.1. Pre-training

TimeSiam pre-training involves the following two modules:
Siamese subseries sampling and Siamese modeling.

Siamese Subseries Sampling Typically, previous time
series pre-training approaches focus solely on modeling the
individual series itself, neglecting the inherent correlations
among temporally related time series. This deficiency in the
pre-training phase will lead to insufficient extraction of gen-
eralizable time-dependent representations. In contrast, our
TimeSiam is designed to focus on modeling temporal corre-
lations of subseries across different timestamps, capturing
the intrinsic time-correlated information of time series.

As shown in Figure 2, we construct Siamese subseries pairs
by randomly sampling a past sample xpast preceding the
current sample xcurr in the same time series. Each sample
in a Siamese pair, termed “Siamese subseries” each other,
contains T timestamps and C observed variables. Notably,
one xcurr can correspond to multiple xpast subseries due
to the random sampling process. We focus on construct-
ing correlations and capturing temporal variations between
these Siamese subseries, which benefits intrinsically time-
dependent representation learning during pre-training. The
relative distance between the past and current subseries, de-
noted as d, is crucial in representing the correlation and dis-
parities between Siamese subseries. Furthermore, we adopt
a simple masking augmentation to generate augmented cur-
rent subseries x̃curr that further improves the diversity and
the disparity of Siamese subseries pairs, ensuring a more
robust and sufficient pre-training phase. The above process
can be formalized as follows:

(xpast, x̃curr) = Mask-Augment
(
(xpast,xcurr)

)
. (1)
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Figure 2. The overall design of TimeSiam, which establishes correlations between subseries randomly sampled from different timestamps
using Siamese encoders. It integrates learnable lineage embeddings to enhance the capacity for temporal-related representation learning.

Siamese Modeling After constructing mask-augmented
Siamese pairs, as shown in Figure 2, we further integrate
learnable lineage embeddings during pre-training to effec-
tively capture the disparity among different Siamese pairs.
This design can enhance the model’s capacity to extract
diverse temporal-related representations. Given N learn-
able lineage embeddings {elineage

i }Ni=1, e
lineage
i ∈ R1×D and

D represents the dimension of lineage embeddings. For
the past sample xpast, we apply the LineageMatching(·)
function to dynamically match a certain lineage embedding
based on its temporal distance d to the current series. As for
the current sample x̃curr, we use a special lineage embedding
to represent a degeneration situation as d = 0:

elineage
i = LineageMatching(d)

zpast = Embed(xpast)⊕ elineage
i

z̃curr = Embed(x̃curr)⊕ elineage
0 ,

(2)

where elineage
0 ∈ R1×D is the specific embedding for cur-

rent subseries and zpast, z̃curr ∈ RT×D denote the embed-
ded Siamese features. Different base models correspond
to different Embed(·). Regarding PatchTST (Nie et al.,
2023), the patch-wise embedding function PatchEmbed(·)
is used to divide each variable into several patches and
each patch is mapped to a patch token. As for iTrans-
former (Liu et al., 2024), it uses the variable-wise embed-
ding VariateEmbed(·) and maps the entire variable into a
temporal token. Note that lineage embeddings are used to
identify the temporal distance between Siamese subseries.
It is shared along the time dimension when being added to
Siamese subseries features. Here, ⊕ represents the addition
operation with the temporal dimension broadcast.

Next, TimeSiam utilizes Siamese encoders to process pairs
of Siamese pair features, which can be instantiated as ad-
vanced time series models, e.g. PatchTST (Nie et al., 2023)
or iTransformer (Liu et al., 2024). After the Siamese en-
coder layer, we can obtain pairs of representations of past

and masked current subseries as follows:

hpast
e = Encoder(zpast), h̃curr

e = Encoder(z̃curr), (3)

where hpast
e , h̃curr

e ∈ RT×D are from the Siamese encoder.

Note that our Siamese sampling strategy natively derives a
past-to-current reconstruction task. As shown in Figure 2,
we use a decoder that integrates cross-attention and self-
attention mechanisms (Vaswani et al., 2017) to incorporate
past information into the current subseries for reconstruc-
tion, which can inherently capture the temporal correlations.
Besides, this design can also enrich the limited context of
masked current series to ensure accurate reconstruction for
representation learning. Concretely, h̃curr

e serves as the query,
and hpast

e acts as both the key and value, generating the de-
coder representation of the current time subseries, denotes
as ĥd. This representation undergoes further refinement
through a self-attention layer and a Feed-Forward Network
(FFN). We formalize the decoder process as follows:

ĥd = LayerNorm
(
h̃curr
e +Cross-Attn

(
h̃curr
e ,hpast

e ,hpast
e

))
h′
d = LayerNorm

(
ĥd + Self-Attn

(
ĥd, ĥd, ĥd

)
hd = LayerNorm

(
h′
d + FFN

(
h′
d

))
.

(4)
We summarize this process as hd = Decoder(h̃curr

e ,hpast
e

)
.

Finally, the output of the decoder hd ∈ RT×D is used to
reconstruct the masked current subseries through a linear
projection layer, which can be formalized as:

x̂curr = Projector(hd). (5)

Benefiting from our design, TimeSiam can be supervised by
a simple reconstruction loss function and inherently learn
time-dependent representations by past-to-current temporal
correlation modeling. The loss for each Siamese pair is

Lreconstruction = ∥xcurr − x̂curr∥22. (6)
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3.2. Fine-tuning

Under the cooperation of lineage embeddings, the pre-
trained Siamese encoder can capture diverse temporal-
related representations under different lineage embeddings.
As demonstrated in Figure 2(b), this advantage can further
derive two types of fine-tuning paradigms, covering both
fixed and extended input series settings.

Fixed-Input-Multiple-Lineages In a standard fine-tuning
scenario, a sample typically generates only one type of
representation, which seriously limits the capacity of the
pre-trained encoder. In contrast, TimeSiam innovatively pre-
trains Siamese encoders with diverse lineage embeddings
to capture different distanced temporal correlations, which
allows TimeSiam to derive diverse representations with dif-
ferent lineages for the same input series. This procedure
subtly releases the capacity of the pre-trained model and
enhances the diversity of extracted representations. Given
an input series x ∈ RT×C , this process can be written as

he = Average (he,0,he,1, ...he,n) ,

where he,i = Encoder
(
Embed(x)⊕ elineage

i

)
.

(7)

The final output he ∈ RT×D is an ensemble of a set of
temporal representations derived from the same input series
x but with different lineage embeddings elineage

i , which can
cover diverse temporal-related information of input series.

Extended-Input-Multiple-Lineages Note that in the fine-
tuning stage, the model may receive longer records than
the pre-training series. Given a (k + 1)T -length input
(xk, · · · ,x1,x0),xi ∈ RT×C , previous time series pre-
training methods have to adopt the same encoder to different
segments, which clearly overlooks the chronological order
of extended series. Desirably, in TimeSiam, we can leverage
multiple lineage embeddings trained under different tempo-
ral distanced pairs to different segments, which can natively
conserve the temporal order of different segments. This
advantage is achieved by associating each segment with its
respective lineage embedding:

he = Concat (he,0,he,1, . . . ,he,k) ,

where he,i = Encoder
(
Embed(xi)⊕ elineage

LineageMatching(iT )

)
.

(8)

Here he ∈ R(k+1)T×D denotes the extracted representation
for extended input series.

To align the experiment setting with previous work (Dong
et al., 2023), our experiments are based on the Fixed-Input-
Multiple-Lineages setting except for special clarification.

4. Experiments
We perform extensive experiments across two mainstream
time series analysis tasks: forecasting and classification,
covering both in- and cross-domain settings.

4.1. Experimental Setup

Datasets We summarize the experimental benchmarks in
Table 1, encompassing eleven well-established datasets and
two newly constructed datasets, which cover two primary
tasks in time series analysis: forecasting and classification.
It is worth noting that to further demonstrate the pre-training
benefits under large and diverse data, we employ the TSLD
dataset, which is constructed by merging time series datasets
from multiple domains that are nonoverlapping with the
other datasets. This allows us to explore cross-domain trans-
fer scenarios with large-scale pre-training data. Please refer
to Appendix B for a more comprehensive description.

Table 1. Summary of experiment benchmarks, where TSLD-500M
and TSLD-1G are newly constructed from diverse domains.

TASKS DATASETS DOMAIN EXAMPLES

Forecasting

ETT (4 subsets) Electricity 14.3K
Weather Weather 52.7K
Electricity Electricity 26.3K
Traffic Transportation 17.5K
Exchange Finance 7.6K

TSLD-500M Multiple 412.6K
TSLD-1G Multiple 13.9M

Classification
AD EEG 5.97K
TDBrain EEG 11.9K
PTB ECG 62.4K

Backbone We use the advanced time series models across
various tasks as Siamese encoders to evaluate the efficacy of
our pre-training methods. In particular, we utilized iTrans-
former (Liu et al., 2024) and PatchTST (Nie et al., 2023)
as the encoder for time series forecasting following their
original configurations. The patch length and stride were
both set to 12 without any overlap. TCN (Bai et al., 2018) is
used as the backbone for the classification task (Wang et al.,
2023). Note that to ensure a fair comparison, we unify the
encoder backbone of our model and all the baselines. The
results with a unified encoder generally surpass the results
reported by themselves across all baselines.

Baselines We compare our TimeSiam with eight advanced
self-supervised time series pre-training baselines under the
in-domain setting, including contrastive learning methods:
COMET (2023), TF-C (2022), LaST (2022), CoST (2022),
TS2Vec (2022), TNC (2021), CPC (2018) and masked mod-
eling methods: SimMTM (2023), Ti-MAE (2023b), TST
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Table 2. In-domain fine-tuning for time series forecasting. Siamese encoders are both pre-trained and fine-tuned on the same dataset.
Results are the average Mean Squared Error (MSE), calculated from forecasts made for four future lengths O ∈ {96, 192, 336, 720},
based on the past 96 time points. A smaller MSE indicates a better prediction. Full results are presented in Appendix G.

ENCODER METHOD ETTH1 ETTH2 ETTM1 ETTM2 WEATHER EXCHANGE ECL TRAFFIC

PATCHTST

RANDOM INIT. 0.473 0.385 0.390 0.285 0.259 0.367 0.216 0.490

CPC (2018) 0.440 0.401 0.389 0.290 0.272 0.368 0.220 0.504
TNC (2021) 0.445 0.379 0.386 0.287 0.270 0.362 0.212 0.501
TS2VEC (2022) 0.456 0.376 0.393 0.289 0.256 0.363 0.199 0.472
COST (2022) 0.457 0.374 0.395 0.286 0.253 0.364 0.203 0.480
LAST (2022) 0.479 0.385 0.398 0.285 0.252 0.433 0.207 0.520
TF-C (2022) 0.453 0.378 0.389 0.281 0.257 0.362 0.202 0.487
TST (2021) 0.452 0.383 0.380 0.288 0.259 0.385 0.197 0.486
TI-MAE (2023B) 0.448 0.379 0.384 0.279 0.257 0.370 0.196 0.481
PATCHTST† (2023) 0.442 0.381 0.379 0.285 0.267 0.358 0.200 0.484
SIMMTM (2023) 0.440 0.382 0.377 0.285 0.256 0.361 0.192 0.466

TIMESIAM 0.429 0.373 0.374 0.279 0.252 0.353 0.189 0.453

ITRANSFORMER

RANDOM INIT. 0.454 0.383 0.407 0.288 0.258 0.365 0.178 0.428

TS2VEC (2022) 0.474 0.379 0.411 0.290 0.264 0.364 0.246 0.485
COST (2022) 0.472 0.386 0.411 0.294 0.269 0.366 0.252 0.529
LAST (2022) 0.465 0.386 0.400 0.302 0.262 0.386 0.237 0.477
TF-C (2022) 0.450 0.379 0.403 0.292 0.265 0.372 0.222 0.432
TST (2021) 0.447 0.376 0.399 0.291 0.261 0.363 0.228 0.438
TI-MAE (2023B) 0.448 0.378 0.399 0.289 0.257 0.366 0.217 0.430
SIMMTM (2023) 0.445 0.376 0.397 0.286 0.259 0.358 0.179 0.426

TIMESIAM 0.440 0.371 0.390 0.284 0.256 0.355 0.175 0.420

(2021), and a patch-wise self-surpervised masked modeling
method, PatchTST, proposed by (Nie et al., 2023).

It should be noted that some baselines such as CPC (Oord
et al., 2018), TNC (Tonekaboni et al., 2021), etc. are not val-
idated in the iTransformer backbone because their specific
design based on internal modeling of series is not applica-
ble to iTransformer (Liu et al., 2024), which models the
entire sequence as a whole temporal token and focuses on
modeling relationships between different variables. In the
cross-domain setting, due to the large-scale dataset TSLD
will bring huge experiment costs, we only select part of
the baselines (the efficient ones) for comparisons. Besides,
COMET (2023) is specifically designed for medical time
series and we also exclude it from cross-domain evaluation.
More implementation details can be found in Appendix A.

4.2. Main Results

As shown in Figure 3,we summarize the performance of our
TimeSiam in both in- and cross-domain scenarios for two
mainstream time series analysis tasks: time series forecast-
ing (x-axis) and classification (y-axis). For each scenario,
TimeSiam exhibits significant improvement over other es-
tablished strong self-supervised baselines for time series.
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Figure 3. Comparison of time series pre-training baselines for fore-
casting (MSE ↓) and classification (Accuracy ↑) tasks. This com-
parison included both contrastive-based and masking-based meth-
ods, covering both in- (left) and cross-domain (right) settings.

4.3. Forecasting

In-domain We investigate the effectiveness of TimeSiam
by integrating it with state-of-the-art time series forecasting
models: PatchTST (Nie et al., 2023) and iTransformer (Liu
et al., 2024). As shown in Table 2, TimeSiam can further
enhance model performance, achieving an average MSE
reduction of 5.7% and 2.5% across all forecasting bench-
marks, even though these advanced models already exhibit
excellent forecasting capabilities from random initializa-
tion. Significantly, it is evident that the masked modeling-
based approach overall outperforms the contrastive-based
approach in the forecasting task. This can be attributed
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Table 3. Cross-domain fine-tuning for time series forecasting. Siamese encoders are pre-trained on the TSLD-1G dataset and fine-tuned
on various target datasets. Results are the average Mean Squared Error (MSE) for four future lengths O ∈ {96, 192, 336, 720}, based on
the past 96 time points. A smaller MSE indicates a better prediction. Full results are detailed in Appendix G.

ENCODER METHOD ETTH1 ETTH2 ETTM1 ETTM2 WEATHER EXCHANGE ECL TRAFFIC

PATCHTST

RANDOM INIT. 0.473 0.385 0.390 0.285 0.259 0.367 0.216 0.490

TS2VEC (2022) 0.441 0.375 0.380 0.291 0.256 0.365 0.217 0.528
TF-C (2022) 0.437 0.378 0.386 0.282 0.264 0.360 0.218 0.543
TST (2021) 0.434 0.384 0.387 0.303 0.263 0.365 0.220 0.514
TI-MAE (2023B) 0.435 0.374 0.380 0.294 0.256 0.362 0.218 0.515
SIMMTM (2023) 0.429 0.380 0.375 0.287 0.252 0.365 0.213 0.459

TIMESIAM 0.425 0.374 0.371 0.286 0.251 0.360 0.188 0.454

to the advantages gained through series reconstruction to
learn low-level temporal representation. However, our Time-
Siam still performs the best forecasting capability among all
existing state-of-the-art self-supervised baseline methods.

Cross-domain As shown in Table 3, we use the TSLD-1G
dataset, which contains larger scale time series samples from
diverse domains, to validate the effectiveness of TimeSiam
in a cross-domain transfer setting. Note that this setting
not only requires pre-training learning from large-scale data
but also poses thorny challenges in handling mismatched
data distribution. The results consistently demonstrate that
our TimeSiam significantly enhances the performance over
training from random initialization covering all forecasting
benchmarks, achieves comparable results in the in-domain
setting, and consistently outperforms other baseline meth-
ods. It is worth noting that the transfer results even show
superior performance compared to the in-domain scenario
in some datasets, such as TSLD-1G → {ETTh1, ETTm1}.
This confirms the essential significance of using more large-
scale and varied data for time series pre-training.

4.4. Classification

In-domain To further investigate the generalizability of
the representations learned by TimeSiam, we examined
the impact of in-domain pre-training on classification tasks
within the medical domain, following the setup in (Wang
et al., 2023). Results in Table 4 demonstrate competitive
outcomes achieved by both COMET (Wang et al., 2023)
and SimMTM (Dong et al., 2023). This can be attributed to
the elaborative designs of their approaches, where COMET
incorporates domain-specific knowledge into its design and
SimMTM models both high-level and low-level temporal
representations. Compared with these competitive baselines,
our TimeSiam, characterized by its simplicity and generality,
consistently achieves remarkable results. In all classification
benchmarks, our proposed TimeSiam consistently enhances
the average classification accuracy by 11.5% compared to
random initialization, surpassing other baseline methods.

Table 4. In-domain fine-tuning for time series classification. The
model is pre-trained on two EEG datasets: AD and TDBrain, and
an ECG dataset: PTB, and then fine-tuned on the same dataset.
Accuracy (%) is recorded. See Appendix G for more details.

METHOD AD TDBRAIN PTB

RANDOM INIT. 80.62 79.08 84.19

CPC (2018) 77.40 85.19 88.30
TNC (2021) 78.58 85.21 90.53
TS2VEC (2022) 81.26 80.21 85.14
COST (2022) 73.87 83.86 88.61
LAST (2022) 72.63 85.13 89.22
TF-C (2022) 75.31 66.62 87.50
COMET (2023) 84.50 85.47 87.84
TST (2021) 81.50 83.22 84.25
TI-MAE (2023B) 80.70 88.16 88.39
SIMMTM (2023) 86.19 84.81 90.04

TIMESIAM 89.93 90.67 91.32

Table 5. Cross-domain fine-tuning for time series classification.
The model is pre-trained on TSLD-1G dataset and fine-tuned on
EEG dataset AD, TDBrain and ECG dataset PTB. Accuracy (%)
is recorded and further details can be found in Appendix G.

METHOD AD TDBRAIN PTB

RANDOM INIT. 80.62 79.08 84.19

TS2VEC (2022) 80.59 85.58 89.23
TF-C (2022) 87.98 82.84 89.18
TST (2021) 82.60 83.65 85.81
TI-MAE (2023B) 80.40 85.22 86.67
SIMMTM (2023) 87.74 85.29 85.64

TIMESIAM 90.47 86.26 90.45

Cross-domain Furtherly, we investigated the impact of us-
ing larger and more diverse pre-training datasets on time se-
ries classification tasks: TSLD-1G →{AD, TDBrain, PTB}.
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Table 6. Ablations on the Traffic benchmark, which are conducted under the in-domain forecasting setting. The length of the input
series was fixed at 96 time points. The default setting is indicated by a grey bold marking. MSE averaged from 4 forecasting horizons
{96, 192, 336, 720} is reported. The (c) notation in masking rules refers to channel-wise masking. More results can be found in Table 20.

(a) SIAMESE SAMPLING (b) SUBSERIES RECONSTRUCTION

Sampling range (max d) Lineage types N Masking rules Masked ratio

w/o 0.462 w/o 0.457 binomial 0.459 w/o 0.460
1 0.454 2 0.456 continuous 0.459 15% 0.459
3 0.454 3 0.453 mask last 0.461 25% 0.453
6 0.453 6 0.455 binomial (c) 0.457 50% 0.455
12 0.455 continuous (c) 0.453 75% 0.457

Generally, as shown in Table 5, pre-training will bring con-
sistent promotion w.r.t. random initialization. However, it
is also observed that employing larger datasets from more
diverse domains does not definitively show an advantage
over the in-domain pre-trained models. This result may
come from the inherent differences between the domains of
pre-training and fine-tuning under the cross-domain setting.
Notably, even in this tough cross-domain setting, TimeSiam
still surpasses the other baselines, demonstrating its capabil-
ity to handle shifted data distributions.

4.5. Ablation Studies

We conduct extensive ablation studies to evaluate the effec-
tiveness of various designs in TimeSiam, including Siamese
sampling and subseries reconstruction.

Siamese Sampling We explore the key hyper-parameters
of Siamese modeling: the maximum sampling distance be-
tween the past and current Siamese subseries (Sampling
range max d) and the size of the lineage embedding set
(Lineage types N ). The maximum sampling range is de-
termined by the length of the subseries (T ) and a hyperpa-
rameter (r), resulting in max d = T × r. Table 6(a) demon-
strates that integrating past-to-current Siamese modeling
outperforms self-reconstruction modeling in time series pre-
training. Furthermore, expanding the sampling range of
Siamese subseries reasonably significantly enhances perfor-
mance, underscoring the critical role of Siamese modeling
in achieving optimal fine-tuning results.

Subseries Reconstruction For subseries reconstruction,
results in Table 6(b) indicate that channel-wise masking
significantly benefits Siamese modeling, especially when
comparing the continuous to channel-wise continuous (c).
Both random and continuous masking work well, achieving
lower mean squared error in the process. As for the masking
ratio, we find that a high masking ratio of 75% will sig-
nificantly distort temporal variations, whereas a low mask
ratio of 15% overly simplifies the task, hindering effective
temporal representation learning. Therefore, we adopt a
default masking ratio of 25%, same as (Devlin et al., 2018).

Table 7. Fine-tuning performance of TimeSiam under different pre-
training data and model sizes. Relative improvement over random
initialization (%) is marked in green. See Appendix A.3 for details.

PRE-TRAIN TRAFFIC ECL

Random initiation 0.490 0.216
TimeSiam in-domain 0.453 0.189

TimeSiamBase TSLD500M 0.462 (+5.7) 0.189 (+12.5)
TimeSiamBase TSLD1G 0.454 (+7.4) 0.188 (+12.5)
TimeSiamLarge TSLD1G 0.433 (+11.6) 0.185 (+14.4)

Lineage embeddings As shown in Table 8, we can ob-
serve that lineage embeddings play a vital role in enhancing
forecasting performance. This comes from the inherent abil-
ity of lineage embeddings to distinguish temporal distances
between subseries during the pre-training phase. As a result,
they facilitate the learning of diverse temporal correlations.
Consequently, the inclusion of lineage embeddings has been
shown to be effective in improving performance when fine-
tuning models for a variety of downstream tasks.

Table 8. Ablations on lineage embeddings. The MSE averaged
from 4 forecasting horizons {96, 192, 336, 720} is reported here.

DATASETS RANDOM INIT. TIMESIAM W/O LINEAGE

ETTh1 0.473 0.429 0.433 ↓
ETTm1 0.390 0.374 0.378 ↓
Weather 0.259 0.252 0.256 ↓
Traffic 0.490 0.453 0.457 ↓
Exchange 0.36 0.353 0.365 ↓

4.6. Analysis Experiment

Data Scale and Model Capacity One of the bottlenecks
that block the development of time series pre-training is the
lack of large-scale and diverse data for pre-training (Zhou
et al., 2023). To investigate the influence of data scale on
TimeSiam, we employed TimeSiam for pre-training on a
larger dataset TSLD-{0.5G, 1G} along with different model
sizes, followed by applying it to downstream time-series pre-
diction tasks to assess fine-tuning effects. Results, illustrated
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ETTh1 Weather ECL Traffic

M
SE
（
A
vg
）

M
SE
（
A
vg
）

M
SE
（
A
vg
）

M
SE
（
A
vg
）

0.175

0.159

0.420

0.369

0.256

0.238

0.440

0.428

Figure 4. Fine-tuning the pre-trained model to the inputs with extended length {96, 192, 288, 384, 576} based on iTransformer (Liu et al.,
2024). The MSE averaged from all predicted horizons {96, 192, 336, 720} is reported. Additional results are in the Appendix F.

in Table 7, reveal that the model performance is promoted
significantly, empowering by TimeSiam pre-training (Time-
Siam vs. random init.). Furthermore, although TSLD500M
does not exhibit a significant advantage over TimeSiam un-
der the in-domain setting initially, we observed a marked
enhancement in performance as the dataset size increased
(TSLD1G vs. TSLD500M), and TimeSiamLarge significantly
outperforms TimeSiamBase in the TSLD1G finetuning scenar-
ios, especially in the Traffic benchmark. This observation
highlights the efficacy of TimeSiam and the positive corre-
lation between data-model size and the final performance.

Adapt to Extended-Length Input As illustrated in
Eq. (8), TimeSiam can natively adapt to longer inputs. Fig-
ure 4 shows that the standard prediction framework may
degenerate under extended input length, which may be be-
cause of the noises in longer series. Contrarily, benefiting
from an ingenious integration of Siamese modeling and
lineage embeddings, TimeSiam achieves more accurate pre-
dictions, even when predicting from extended input series.

Linear Probing As an important finetuning setting, we
also experiment with the linear probing, where we fix the
pre-trained encoder and only finetune the newly added pro-
jector at the end of the model. Figure 5 illustrates that Time-
Siam demonstrates superior performance compared to other
baselines in terms of overall linear probing performance.
Interestingly, by only fine-tuning the model head, the aver-
age forecasting performance across the four ETT subsets is
already comparable with the results obtained through full
fine-tuning, and significantly outperforms training from ran-
dom initialization (MSE: 0.365 vs. 0.383). This finding
further validates the effectiveness of TimeSiam in learning
generalizable representations for various downstream tasks.

Embedding Effectiveness To elucidate the advantages of
employing varying numbers of lineage embeddings within a
fixed sampling range for prediction, as illustrated in Figure 6,
our findings consistently demonstrate that the incorporation
of lineage embeddings enhances prediction performance.
Furthermore, augmenting the number of embeddings to en-
compass a greater extent of lineage within reasonable limits
reinforces the efficacy of long-term prediction. Experimen-
tal results validate that lineage embeddings introduce more

Traffic

ECLExchange

We
ath
er

ETT

0.502

0.365

0.263

0.357 0.199

0.757

0.396

0.271

0.391

0.257
TS2Vec
TF-C
TST
Ti-MAE

SimMTM

TimeSiam

Figure 5. Linear probing on in-domain forecasting setting. Aver-
age results (MSE) are reported. Full results are shown in Table 17.

diverse temporal semantic information, enabling discrimina-
tion between different temporally distanced Siamese series,
thereby boosting long-term prediction outcomes.

ECL Traffic

M
SE

Figure 6. Increasing number of lineage embeddings on the ECL
and Traffic. All results are under the “input-96” in-domain setting.

5. Conclusion
This paper proposes a simple, effective self-supervised pre-
training framework named TimeSiam, uniquely focusing on
temporal correlation modeling. TimeSiam employs Siamese
networks as share encoders for randomly sampled past and
current Siamese subseries. It further enhances data diversity
through masking augmentation, which can also foster time-
dependent representation learning by reconstructing current
subseries from past observations. Additionally, we imple-
ment learnable lineage embeddings that efficiently capture
disparities among Siamese subseries under different dis-
tances, enhancing the model’s ability to cover diverse tem-
poral correlations. Experimentally, TimeSiam demonstrated
remarkable performance on various time series analysis
tasks, consistently outperforming existing state-of-the-art
baselines in both in- and cross-domain scenarios.
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L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS,
2019.

PeMS. Traffic Dataset. http://pems.dot.ca.gov/.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. In OpenAI blog, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21(1):5485–5551, 2020.

Tang, C. I., Perez-Pozuelo, I., Spathis, D., and Mascolo, C.
Exploring contrastive learning in human activity recogni-
tion for healthcare. In NeurIPS, 2020.

Tonekaboni, S., Eytan, D., and Goldenberg, A. Unsuper-
vised representation learning for time series with temporal
neighborhood coding. arXiv preprint arXiv:2106.00750,
2021.

UCI. UCI Electricity Load Time Series Dataset. https:
//archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014.

Van Dijk, H., Van Wingen, G., Denys, D., Olbrich, S.,
Van Ruth, R., and Arns, M. The two decades brainclinics
research archive for insights in neurophysiology (tdbrain)
database. Scientific data, 9(1):333, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In NeurIPS, 2017.

Wang, Y., Han, Y., Wang, H., and Zhang, X. Contrast every-
thing: A hierarchical contrastive framework for medical
time-series. In NeurIPS, 2023.

Wang, Z., Xu, X., Zhang, W., Trajcevski, G., Zhong, T., and
Zhou, F. Learning latent seasonal-trend representations
for time series forecasting. In NeurIPS, 2022.

Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., and
Xu, H. Time series data augmentation for deep learning:
A survey. arXiv preprint arXiv:2002.12478, 2020.

Wetterstation. Weather Dataset. https://www.
bgc-jena.mpg.de/wetter/.

Wickstrøm, K., Kampffmeyer, M., Mikalsen, K. Ø., and
Jenssen, R. Mixing up contrastive learning: Self-
supervised representation learning for time series. PRL,
2022.

Woo, G., Liu, C., Sahoo, D., Kumar, A., and Hoi, S. Cost:
Contrastive learning of disentangled seasonal-trend rep-
resentations for time series forecasting. In ICLR, 2022.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. In NeurIPS, 2021.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M.
Timesnet: Temporal 2d-variation modeling for general
time series analysis. In ICLR, 2023a.

Wu, H., Zhou, H., Long, M., and Wang, J. Interpretable
weather forecasting for worldwide stations with a unified
deep model. Nature Machine Intelligence, 2023b.

Xiao, T., Wang, X., Efros, A. A., and Darrell, T. What
should not be contrastive in contrastive learning. In ICLR,
2021.

Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q.,
and Hu, H. Simmim: A simple framework for masked
image modeling. In CVPR, 2022.

Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y.,
and Xu, B. TS2Vec: Towards Universal Representation
of Time Series. In AAAI, 2022.

Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., and
Eickhoff, C. A transformer-based framework for multi-
variate time series representation learning. In SIGKDD,
2021.

Zhang, X., Zhao, Z., Tsiligkaridis, T., and Zitnik, M. Self-
supervised contrastive pre-training for time series via
time-frequency consistency. In NeurIPS, 2022.

Zhao, S., Jin, M., Hou, Z., Yang, C., Li, Z., Wen, Q., and
Wang, Y. Himtm: Hierarchical multi-scale masked time
series modeling for long-term forecasting. arXiv preprint
arXiv:2401.05012, 2024.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In AAAI, 2021.

Zhou, T., Niu, P., Wang, X., Sun, L., and Jin, R. One fits all:
Power general time series analysis by pretrained lm. In
NeurIPS, 2023.

11

http://pems.dot.ca.gov/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.bgc-jena.mpg.de/wetter/
https://www.bgc-jena.mpg.de/wetter/


TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling

A. Implementation Details
In this paper, all experiments were conducted on a single NVIDIA A100 SXM4 80GB GPU and implemented using the
PyTorch framework (Paszke et al., 2019) for five repetitions. We evaluated performance using Mean Square Error (MSE)
and Mean Absolute Error (MAE) for time series forecasting. For classification tasks, we comprehensively assessed model
performance by measuring accuracy, precision, recall, F1 score, AUROC, and AUPRC.

A.1. Baseline Implementation

We have followed and compared the official implementations of all baselines to our approach. We have maintained the
original configurations outlined in these papers to ensure a fair comparison. Note that we utilized an unofficial coding
version of Ti-MAE (Li et al., 2023b) due to the unavailability of its official open-source implementation.

Table 9. Categories and open-source implementations of all baselines.

CATEGORIES METHODS OFFICIAL CODE LINK

Contrastive Learning

TS2VEC (Yue et al., 2022) https://github.com/yuezhihan/ts2vec

COST (Woo et al., 2022) https://github.com/salesforce/CoST

LAST (Wang et al., 2022) https://github.com/zhycs/LaST

TF-C (Zhang et al., 2022) https://github.com/ mims-harvard/TFC-pretraining

COMET (Wang et al., 2023) https://github.com/DL4mHealth/COMET

Masked Modeling

TST (Zerveas et al., 2021) https://github.com/gzerveas/mvts transformer

TI-MAE (Li et al., 2023b) https://github.com/asmodaay/ti-mae

PATCHTST (Nie et al., 2023) https://github.com/yuqinie98/PatchTST

SIMMTM (Xie et al., 2022) https://github.com/thuml/simmtm

A.2. Training Configuration

We construct two types of pre-training and fine-tuning scenarios, in-domain and cross-domain, based on benchmarks for
prediction and classification tasks to compare the effectiveness of our method with other time series pre-training methods.
In the pre-training phase, we pre-train the model with different learning rates and batch sizes based on the pre-trained
dataset. We then fine-tune it for downstream prediction and classification tasks supervised by L2 and Cross-Entropy loss,
respectively. The configuration details are in Table A.3. Also, considering the size of the fine-tuned dataset and consistency
with existing works, we fine-tune the model for 10 epochs for the prediction task and 50 epochs for the classification task.

Table 10. Pre-training and fine-tuning configurations in forecasting and classification tasks.

TASKS
PRE-TRAINING FINE-TUNING

learning rate batch size epochs learning rate loss function batch size epochs

Forecasting 1e-4 32 50 1e-4 L2 {8, 16, 32} 10

Classification 1e-4 256 100 1e-4 Cross-Entropy {32, 64, 128} 50
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A.3. Model Configuration

We compare TimeSiam against eight state-of-the-art baselines for an unbiased and comprehensive comparison. To ensure the
fairness of the evaluation, we choose state-of-the-art time series analysis models as a unified backbone for these pre-trained
methods. Specifically, PatchTST (Nie et al., 2023) and iTransformer (Liu et al., 2024) are adopted for forecasting and
employ Temporal Convolution Network (TCN) (Bai et al., 2018) for classification following the setup in (Wang et al., 2023).

In addition, we performed a hyperparameter search for all baselines, adhering to their official configuration in the in-domain
setting. For Siamese encoders, we explored various configurations by adjusting the number of encoder layers (elayers)
and decoder layers (dlayers) from {1, 2, 3, 4}, selecting hidden dimensions (dmodel) from {16, 32, 64, 128, 256, 512} and
attention heads (nheads) from {8, 16, 32}. In the case of TCN models, we investigated different numbers of residual blocks,
considering configurations of {5, 8, 10}. During the fine-tuning stage, we carefully consider the learning rate (lr) from
{1e-3, 5e-4, 1e-4, 1e-5}, and head dropout (dropout) from {0, 0.1, 0.2, 0.3} in order to enhance the adaptability of our
pretrained model to diverse datasets.

Primarily, two model configurations with different sizes are explored in the cross-domain forecasting setting, that is
TimeSiam-Base and TimeSiam-Large. These two models are used to evaluate the impact of model capacity on forecasting
performance, specifically in the context of cross-domain pre-training and fine-tuning on large-scale data.

Table 11. Two experimental configurations of TimeSiam with different model sizes.

TYPES
CONFIGURATION

PARAMETERS

elayers dlayers dmodel dff nheads

TimeSiamBase 3 1 128 256 8 709,344

TimeSiamLarge 5 2 128 1024 16 2,554,720

B. Dataset Description
We conduct experiments on eleven well-established datasets and two newly constructed datasets covering two primary tasks
in time series analysis: forecasting and classification. These datasets cover a variety of application scenarios, different types
of signals, multivariate channel dimensions, varying time series lengths, large-span sampling frequencies, and different data
sizes. The detailed descriptions of these datasets are summarized in Table 12.

B.1. Forecasting Datasets

(1) ETT (4 subsets) (Zhou et al., 2021) contains a group of four subsets oil temperature and power load collected by
electricity transformers from July 2016 to July 2018 with minutes or hourly recorded frequence.

(2) Weather (Wetterstation) includes meteorological time series with 21 weather indicators collected every 10 minutes
from the Weather Station of the Max Planck Biogeochemistry Institute in 2020.

(3) Electricity (UCI) records the hourly electricity consumption of 321 clients from 2012 to 2014.

(4) Traffic (PeMS) encompasses the hourly measures of road occupancy rates obtained from 862 sensors situated in the San
Francisco Bay area freeways between January 2015 and December 2016.

(5) Exchange (Lai et al., 2018) records the daily exchange rates of eight different countries ranging from 1990 to 2016.

B.2. Classification Datasets

(1) AD (Escudero et al., 2006) has electroencephalography (EEG) recordings from 12 Alzheimer’s patients and 11 healthy
controls. Each patient has around 30 trials, each lasting for 5 seconds with 1280 timestamps (sampled at 256Hz) and
includes 16 channels.
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Table 12. Dataset descriptions. Samples are organized in (Train/Validation/Test).

TASKS DATASETS CHANNELS SERIES LENGTH SAMPLES CLASSES INFORMATION FREQUENCY

Fo
re

ca
st

in
g

ETTh1,ETTh2 7 {96,192,336,720} 8,545/2,881/2,881 - Electricity Hourly

ETTm1,ETTm2 7 {96,192,336,720} 34,465/11,521/11,521 - Electricity 15 Mins

Weather 21 {96,192,336,720} 36,792/5,271/10,540 - Weather 10 Mins

Exchange 8 {96,192,336,720} 5,120/665/1,422 - Exchange rate Daily

Electricity 321 {96,192,336,720} 18,317/2,633/5261 - Electricity Hourly

Traffic 862 {96,192,336,720} 12,185/1,757/3,509 - Transportation Hourly

TSLD-500M 1 {96,192,336,720} 369,030/31,872/- - Multi-domain Mixing

TSLD-1G 1 {96,192,336,720} 13,984,175/1,061,806/- - Multi-domain Mixing

C
la

ss
ifi

ca
tio

n

AD 16 256 4,329/891/747 3 EEG 256 Hz

TDBrain 33 256 8,208/1,824/1,824 3 EEG 500 Hz

PTB 15 300 53,950/3,400/5,020 3 ECG 1000 Hz

(2) PTB (Goldberger et al., 2000) has electrocardiogram (ECG) recordings from 290 patients with 15 channels sampled at
1000 Hz. This paper focuses on a subset of the dataset that includes 198 patients with heart diseases: Myocardial infarction
and healthy controls.

(3) TDBrain (Van Dijk et al., 2022) monitors brain signals of 1274 patients with 33 channels during EC (Eye closed) and
EO (Eye open) tasks. It includes 60 types of diseases, but this paper focuses on a subset of 25 Parkinson’s disease patients
and 25 healthy controls. Only the EC task trials are used for representation learning.

B.3. Merged Large Scale Datasets

To further substantiate the significance of time series pre-training on large-scale data and showcase its benefits in diverse and
extensive datasets, we have amalgamated multiple non-overlapping time series datasets from various domains to construct
the Time Series Large Datasets (TSLD). In this paper, we present two versions of TSLD to valid our approach.

(1) TSLD-500M is a composite dataset comprising 400,902 samples from 12 time series datasets across the domains of
Electricity, Transport, Energy, Climate, and others.

(2) TSLD-1G, building upon the TSLD-500M dataset, incorporates additional diverse datasets from domains such as
Society, IoT, and Web. With an impressive sample count of 15,045,981 observations, TSLD-1G surpasses the size of datasets
commonly used in time series analysis and provides greater diversity.

C. Masking Strategy
In this paper, we explored five different mask rules: binomial, channel binomial, continuous, channel continuous, and only
masking the last to assess their impact on TimeSiam, illustrated in Figure 7.

(1) Binomial masking: Generate a mask by employing a binomial distribution across all channels within a given sample.

(2) Channel binomial masking: Generate a mask based on a binomial distribution that selectively masks individual
channels at different timestamps within the sample.
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Figure 7. Showcases of various masking rules (75% masked ratio). The x-axis shows the channels and the y-axis represents the sequence
length of the time series. Blue blocks indicate unmasked time stamps while white blocks represent masked ones.

(3) Continuous masking: Generate a mask by employing a geometric distribution across all channels within a given sample.

(4) Channel continuous masking: Generate a mask based on a geometric distribution that selectively masks individual
channels at different timestamps within the sample.

(5) Masking last: Only mask the tail of time series in all channels.

D. Linear Probing and Full Fine-tuning
The results depicted in Figure 8 unequivocally demonstrate that both fine-tuning and linear probing methodologies utilizing
TimeSiam outperform fully supervised learning from random initiation. Moreover, the findings suggest that full fine-tuning
consistently yields superior results compared to linear probing across most datasets, with ETTh2 being a notable exception,
where both approaches exhibit comparable performance.

ETTh1 ETTh2 ETTm1 ETTm2

Exchange ECL TrafficWeather

Figure 8. Comparison is made between the performance of linear probing pre-trained from TSLD-1G on various datasets and pre-training
followed by fine-tuning on the same dataset. The mean squared error (MSE) is computed across all prediction lengths and serves as a
measure of performance. A lower averaged MSE indicates superior predictive capability.
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E. Multiple Lineages Representation Visualization
We employ Principal Components Analysis (PCA) to elucidate the distribution of temporal representations on the ECL
dataset. We will only train the learned lineage embeddings during the pre-training phase. However, during downstream
fine-tuning or linear probing, we will keep them fixed and not update them. It is worth noting that the embedded feature will
be the same without different lineage embeddings. However, when time series is fed into a pre-trained Siamese network
with different lineage embeddings, the model generates divergent temporal representations that representations derived from
the same lineage embeddings tend to be closely clustered together, while representations from different lineage embeddings
exhibit significant dissimilarity. Upon visual analysis, we have observed that the representations generated based on the
same data but with different lineage embeddings exhibit a high level of diversity. This observation effectively validates
the effectiveness of combining a pre-trained Siamese network with different lineage embeddings, which can enlarge the
representation diversity.

Figure 9. Visualizing the effect of temporal shift representations. (a) Visualization of test distribution under three types of lineage
embeddings for ECL. (b) Visualization of test distribution under six types of lineage embeddings for ECL.

F. Adapt Extended Input Length
To facilitate the performance of Timesiam on fine-tuning scenarios with extended input lengths, we choose the input length
to be an integral multiple of the pre-training length. In practice, the series length is not restricted to be an integral multiple
of the pre-training length. TimeSiam can handle flexible input lengths, as different lineage embeddings can be shared across
different time segments.

ETTh1 ETTm1ETTh2 ETTm2

Weather ECL TrafficExchange

M
SE
（
A
vg
）

Figure 10. Full results for fine-tuning the pre-trained model with extended input length, where the input length is selected from {96, 192,
288, 384, 576}. The MSE averaged from four future lengths O ∈ {96, 192, 336, 720} is reported.
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G. Full Results
Due to the limited length of the text, we summarize the main experiments as follows:

Table 13. The main results for time series forecasting and classification tasks.

EXPERIMENTS CATEGORIES TASKS EVALUATION TABELS NAME

The main experiment

Forecasting
In-domain Table 14, 15

Cross-domain Table 16

Classification
In-domain Table 18

Cross-domain Table 19

H. ShowCases
H.1. Different Masked Ratios

To investigate the reconstruction process of TimeSiam, we visually represent past time series, masked current time series,
and reconstructed current time series with varying mask ratios using validation data from diverse datasets. Figure 11
demonstrates the reconstruction effects of TimeSiam at different mask ratios applied to the current time series. The context
information is obtained by random sampling based on the current series, and the reconstruction becomes more challenging as
the mask ratio increases due to the limited available information. Nevertheless, our TimeSiam model consistently achieves
accurate reconstruction of masked current time series despite the scarcity of data and significant variation in temporal
dimension between past and present. This accomplishment highlights the effectiveness of our approach in learning internal
time-dependent representations through a past-to-current reconstruction.
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Figure 11. Showcases of TimeSiam in reconstructing time series with different masked ratios from Traffic.

H.2. Different Datasets

We further demonstrate the reconstruction effect across various datasets with different data distributions, as detailed below.
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Figure 12. Showcases of TimeSiam in reconstructing time series from different datasets with 25% masked raito.
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Table 14. Full results for the in-domain setting of forecasting using PatchTST. Pre-training and fine-tuning are performed on the same
datasets. The standard deviations are within 0.005 for MSE and within 0.004 for MAE.

METHODS RANDOM INIT. CPC TNC TS2VEC COST LAST TFC TST TI-MAE SIMMTM TIMESIAME
METRIC MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
H

1

96 0.420 0.423 0.380 0.401 0.377 0.397 0.381 0.400 0.383 0.405 0.396 0.413 0.399 0.420 0.377 0.401 0.396 0.415 0.367 0.389 0.378 0.401
192 0.465 0.449 0.426 0.429 0.423 0.427 0.421 0.427 0.434 0.437 0.457 0.451 0.444 0.449 0.432 0.436 0.440 0.443 0.424 0.423 0.422 0.430
336 0.504 0.470 0.465 0.451 0.471 0.453 0.468 0.452 0.474 0.460 0.507 0.478 0.479 0.467 0.475 0.461 0.481 0.462 0.473 0.456 0.459 0.452
720 0.502 0.492 0.488 0.479 0.508 0.485 0.553 0.507 0.535 0.509 0.516 0.508 0.491 0.490 0.525 0.500 0.475 0.481 0.494 0.493 0.459 0.466

AVG 0.473 0.458 0.440 0.440 0.445 0.441 0.456 0.447 0.457 0.453 0.469 0.463 0.453 0.457 0.452 0.450 0.448 0.450 0.440 0.440 0.429 0.437

E
T

T
H

2

96 0.297 0.345 0.313 0.364 0.291 0.343 0.297 0.343 0.288 0.342 0.294 0.345 0.302 0.345 0.304 0.358 0.300 0.353 0.299 0.352 0.293 0.345
192 0.388 0.400 0.392 0.412 0.366 0.393 0.366 0.392 0.367 0.392 0.379 0.395 0.369 0.392 0.379 0.403 0.372 0.396 0.380 0.398 0.370 0.392
336 0.426 0.434 0.438 0.449 0.427 0.438 0.416 0.430 0.413 0.429 0.423 0.436 0.412 0.428 0.412 0.432 0.418 0.431 0.422 0.432 0.410 0.424
720 0.431 0.446 0.460 0.470 0.433 0.451 0.424 0.447 0.428 0.446 0.445 0.460 0.428 0.446 0.438 0.457 0.427 0.447 0.428 0.449 0.418 0.440

AVG 0.385 0.406 0.401 0.424 0.379 0.406 0.376 0.403 0.374 0.402 0.385 0.409 0.378 0.403 0.383 0.413 0.379 0.407 0.382 0.408 0.373 0.400

E
T

T
M

1

96 0.330 0.368 0.324 0.361 0.323 0.361 0.325 0.364 0.348 0.377 0.345 0.381 0.353 0.378 0.319 0.360 0.325 0.363 0.317 0.356 0.319 0.360
192 0.369 0.385 0.368 0.382 0.366 0.383 0.370 0.389 0.367 0.387 0.372 0.391 0.361 0.384 0.360 0.387 0.363 0.385 0.362 0.387 0.353 0.379
336 0.400 0.407 0.403 0.405 0.399 0.405 0.405 0.415 0.404 0.414 0.412 0.420 0.392 0.406 0.391 0.408 0.396 0.409 0.387 0.405 0.383 0.402
720 0.460 0.439 0.461 0.439 0.457 0.439 0.471 0.452 0.460 0.447 0.462 0.448 0.448 0.440 0.449 0.445 0.452 0.438 0.443 0.438 0.440 0.436

AVG 0.390 0.400 0.389 0.397 0.386 0.397 0.393 0.405 0.395 0.406 0.398 0.410 0.389 0.402 0.380 0.400 0.384 0.399 0.377 0.397 0.374 0.394

E
T

T
M

2

96 0.175 0.258 0.196 0.281 0.187 0.261 0.174 0.261 0.181 0.269 0.177 0.258 0.281 0.327 0.181 0.265 0.175 0.261 0.175 0.262 0.175 0.261
192 0.247 0.307 0.261 0.323 0.241 0.302 0.247 0.306 0.247 0.312 0.252 0.309 0.241 0.302 0.247 0.309 0.241 0.303 0.244 0.307 0.241 0.303
336 0.309 0.345 0.302 0.343 0.313 0.363 0.306 0.345 0.309 0.348 0.307 0.344 0.304 0.343 0.314 0.354 0.301 0.341 0.312 0.351 0.300 0.341
720 0.408 0.403 0.399 0.397 0.408 0.407 0.427 0.415 0.408 0.406 0.404 0.402 0.404 0.403 0.408 0.407 0.398 0.397 0.410 0.408 0.399 0.398

AVG 0.285 0.328 0.290 0.336 0.287 0.333 0.289 0.332 0.286 0.334 0.285 0.328 0.281 0.327 0.288 0.334 0.279 0.326 0.285 0.332 0.279 0.326

W
E

A
T

H
E

R 96 0.177 0.218 0.193 0.230 0.191 0.231 0.174 0.216 0.171 0.214 0.170 0.212 0.177 0.218 0.177 0.221 0.175 0.218 0.184 0.220 0.171 0.213
192 0.225 0.259 0.238 0.267 0.237 0.267 0.220 0.257 0.218 0.255 0.215 0.253 0.222 0.257 0.223 0.260 0.222 0.256 0.217 0.255 0.217 0.253
336 0.278 0.297 0.292 0.306 0.292 0.305 0.276 0.297 0.273 0.295 0.272 0.295 0.277 0.296 0.279 0.301 0.278 0.299 0.273 0.296 0.272 0.293
720 0.354 0.348 0.364 0.352 0.361 0.349 0.352 0.346 0.350 0.344 0.349 0.344 0.353 0.346 0.355 0.350 0.353 0.346 0.348 0.344 0.348 0.343

AVG 0.259 0.281 0.272 0.289 0.270 0.288 0.256 0.279 0.253 0.277 0.252 0.276 0.257 0.279 0.259 0.283 0.257 0.280 0.256 0.279 0.252 0.276

E
X

C
H

A
N

G
E 96 0.084 0.201 0.085 0.197 0.086 0.203 0.084 0.201 0.090 0.208 0.096 0.220 0.083 0.201 0.098 0.218 0.083 0.200 0.083 0.202 0.084 0.203

192 0.187 0.307 0.187 0.308 0.180 0.301 0.185 0.306 0.179 0.301 0.190 0.313 0.173 0.296 0.187 0.308 0.186 0.307 0.182 0.303 0.176 0.300
336 0.337 0.422 0.332 0.422 0.329 0.416 0.328 0.415 0.332 0.416 0.409 0.455 0.332 0.418 0.330 0.418 0.327 0.415 0.346 0.427 0.310 0.404
720 0.858 0.695 0.867 0.694 0.851 0.694 0.856 0.696 0.854 0.698 1.035 0.749 0.860 0.698 0.925 0.731 0.882 0.708 0.831 0.689 0.842 0.690

AVG 0.367 0.406 0.368 0.405 0.362 0.404 0.363 0.405 0.364 0.406 0.433 0.434 0.362 0.403 0.385 0.419 0.370 0.408 0.361 0.405 0.353 0.399

E
C

L

96 0.193 0.291 0.190 0.287 0.190 0.277 0.175 0.268 0.178 0.269 0.183 0.275 0.171 0.263 0.171 0.267 0.181 0.271 0.164 0.255 0.164 0.245
192 0.199 0.297 0.204 0.290 0.194 0.283 0.183 0.275 0.185 0.275 0.190 0.281 0.188 0.277 0.181 0.276 0.197 0.277 0.178 0.268 0.173 0.256
336 0.216 0.312 0.227 0.300 0.211 0.299 0.199 0.292 0.202 0.292 0.205 0.296 0.205 0.291 0.197 0.291 0.200 0.293 0.190 0.280 0.189 0.275
720 0.257 0.345 0.257 0.347 0.254 0.334 0.240 0.324 0.245 0.326 0.248 0.330 0.244 0.322 0.237 0.325 0.205 0.326 0.235 0.318 0.229 0.310

AVG 0.216 0.311 0.220 0.306 0.212 0.298 0.199 0.290 0.203 0.291 0.207 0.296 0.202 0.288 0.197 0.290 0.196 0.292 0.192 0.280 0.189 0.272

T
R

A
FF

IC

96 0.472 0.305 0.449 0.487 0.483 0.309 0.309 0.291 0.458 0.294 0.506 0.330 0.465 0.301 0.478 0.292 0.463 0.295 0.442 0.285 0.429 0.279
192 0.474 0.304 0.505 0.315 0.495 0.311 0.457 0.293 0.465 0.297 0.503 0.326 0.470 0.311 0.469 0.316 0.470 0.299 0.452 0.305 0.442 0.282
336 0.491 0.331 0.514 0.343 0.504 0.333 0.474 0.301 0.480 0.304 0.517 0.332 0.498 0.320 0.482 0.323 0.486 0.321 0.473 0.322 0.456 0.288
720 0.523 0.327 0.511 0.351 0.521 0.341 0.509 0.319 0.515 0.321 0.552 0.349 0.514 0.326 0.516 0.327 0.504 0.337 0.497 0.331 0.486 0.307

AVG 0.490 0.317 0.504 0.330 0.501 0.324 0.472 0.301 0.480 0.304 0.520 0.334 0.487 0.315 0.486 0.315 0.481 0.313 0.466 0.311 0.453 0.289
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Table 15. Full results for the in-domain setting of forecasting using iTransformer. Pre-training and fine-tuning are performed on the same
datasets. The standard deviations are within 0.005 for MSE and within 0.004 for MAE.

METHODS RANDOM INIT. TS2VEC COST LAST TFC TST TI-MAE SIMMTM TIMESIAME
METRIC MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
H

1

96 0.386 0.405 0.404 0.417 0.404 0.416 0.397 0.414 0.384 0.402 0.383 0.402 0.384 0.400 0.382 0.397 0.378 0.399
192 0.441 0.436 0.459 0.448 0.457 0.447 0.449 0.444 0.439 0.432 0.436 0.433 0.436 0.430 0.435 0.427 0.429 0.428
336 0.487 0.458 0.502 0.427 0.503 0.472 0.493 0.468 0.482 0.454 0.478 0.456 0.481 0.456 0.477 0.450 0.471 0.451
720 0.503 0.491 0.531 0.509 0.523 0.502 0.520 0.501 0.496 0.484 0.492 0.489 0.492 0.486 0.485 0.476 0.483 0.481

AVG 0.454 0.447 0.474 0.462 0.472 0.459 0.465 0.457 0.450 0.443 0.447 0.445 0.448 0.443 0.445 0.438 0.440 0.440

E
T

T
H

2

96 0.297 0.349 0.299 0.350 0.298 0.348 0.303 0.354 0.301 0.351 0.293 0.347 0.298 0.349 0.295 0.348 0.289 0.342
192 0.380 0.400 0.384 0.403 0.382 0.400 0.381 0.402 0.377 0.396 0.375 0.398 0.378 0.397 0.374 0.397 0.367 0.390
336 0.428 0.432 0.415 0.428 0.425 0.436 0.423 0.434 0.418 0.430 0.413 0.430 0.414 0.429 0.413 0.430 0.408 0.422
720 0.427 0.445 0.419 0.442 0.440 0.454 0.438 0.451 0.420 0.441 0.421 0.443 0.420 0.441 0.420 0.443 0.418 0.440

AVG 0.383 0.407 0.379 0.406 0.386 0.410 0.386 0.410 0.379 0.405 0.376 0.405 0.378 0.404 0.376 0.405 0.371 0.398

E
T

T
M

1

96 0.334 0.368 0.349 0.379 0.348 0.378 0.333 0.369 0.335 0.368 0.334 0.373 0.339 0.374 0.327 0.364 0.329 0.366
192 0.377 0.391 0.387 0.396 0.388 0.397 0.377 0.392 0.378 0.390 0.377 00.396 0.375 0.391 0.372 0.386 0.368 0.386
336 0.426 0.420 0.422 0.418 0.422 0.418 0.413 0.414 0.413 0.412 0.410 0.417 0.410 0.412 0.410 0.410 0.403 0.408
720 0.491 0.459 0.485 0.454 0.487 0.455 0.477 0.451 0.485 0.452 0.475 0.455 0.471 0.446 0.478 0.450 0.466 0.445

AVG 0.407 0.410 0.411 0.412 0.411 0.412 0.400 0.407 0.403 0.406 0.399 0.410 0.399 0.406 0.397 0.403 0.392 0.401

E
T

T
M

2

96 0.180 0.264 0.186 0.272 0.191 0.273 0.184 0.268 0.180 0.264 0.186 0.270 0.182 0.265 0.180 0.264 0.179 0.263
192 0.250 0.309 0.251 0.312 0.254 0.312 0.268 0.317 0.251 0.308 0.252 0.312 0.248 0.308 0.246 0.307 0.245 0.306
336 0.311 0.348 0.313 0.351 0.315 0.350 0.327 0.359 0.320 0.352 0.313 0.350 0.310 0.348 0.307 0.347 0.306 0.345
720 0.412 0.407 0.409 0.403 0.416 0.407 0.427 0.414 0.416 0.407 0.411 0.407 0.415 0.407 0.409 0.405 0.405 0.401

AVG 0.288 0.332 0.290 0.335 0.294 0.336 0.302 0.340 0.292 0.333 0.291 0.335 0.289 0.332 0.286 0.331 0.284 0.329

W
E

A
T

H
E

R 96 0.174 0.214 0.183 0.226 0.189 0.231 0.180 0.223 0.173 0.213 0.179 0.221 0.173 0.212 0.173 0.212 0.174 0.217
192 0.221 0.254 0.231 0.266 0.236 0.269 0.228 0.262 0.222 0.257 0.225 0.261 0.221 0.256 0.225 0.258 0.222 0.256
336 0.278 0.296 0.284 0.303 0.288 0.306 0.282 0.301 0.289 0.298 0.282 0.303 0.278 0.297 0.278 0.298 0.275 0.295
720 0.358 0.349 0.359 0.351 0.363 0.354 0.358 0.350 0.377 0.350 0.358 0.352 0.357 0.349 0.359 0.349 0.350 0.346

AVG 0.258 0.278 0.264 0.287 0.269 0.290 0.262 0.284 0.265 0.280 0.261 0.284 0.257 0.279 0.259 0.279 0.255 0.279

E
X

C
H

A
N

G
E 96 0.086 0.206 0.088 0.208 0.090 0.213 0.091 0.212 0.087 0.208 0.090 0.211 0.087 0.208 0.087 0.211 0.092 0.215

192 0.177 0.299 0.180 0.302 0.183 0.306 0.187 0.310 0.176 0.300 0.182 0.305 0.180 0.303 0.182 0.304 0.182 0.306
336 0.331 0.417 0.332 0.418 0.335 0.420 0.333 0.421 0.347 0.428 0.332 0.419 0.333 0.418 0.330 0.411 0.341 0.426
720 0.847 0.691 0.854 0.697 0.856 0.699 0.933 0.736 0.877 0.709 0.849 0.699 0.865 0.703 0.833 0.669 0.805 0.679

AVG 0.360 0.403 0.364 0.406 0.366 0.410 0.386 0.420 0.372 0.411 0.363 0.409 0.366 0.408 0.358 0.399 0.355 0.407

E
C

L

96 0.148 0.240 0.214 0.310 0.225 0.318 0.202 0.296 0.191 0.278 0.196 0.292 0.185 0.281 0.145 0.236 0.147 0.239
192 0.162 0.253 0.228 0.324 0.234 0.328 0.217 0.312 0.202 0.291 0.208 0.304 0.197 0.293 0.169 0.259 0.162 0.253
336 0.178 0.269 0.247 0.340 0.253 0.344 0.239 0.331 0.222 0.310 0.230 0.323 0.219 0.312 0.176 0.267 0.175 0.269
720 0.225 0.317 0.294 0.375 0.297 0.376 0.288 0.368 0.267 0.346 0.276 0.358 0.265 0.347 0.225 0.310 0.215 0.304

AVG 0.178 0.270 0.246 0.337 0.252 0.342 0.237 0.327 0.222 0.306 0.228 0.319 0.217 0.308 0.179 0.268 0.175 0.266

T
R

A
FF

IC

96 0.395 0.268 0.450 0.313 0.504 0.352 0.439 0.304 0.389 0.286 0.394 0.282 0.398 0.280 0.400 0.273 0.386 0.262
192 0.417 0.276 0.469 0.321 0.509 0.352 0.462 0.315 0.398 0.297 0.403 0.301 0.405 0.294 0.412 0.280 0.411 0.272
336 0.433 0.283 0.491 0.331 0.529 0.362 0.484 0.325 0.435 0.314 0.440 0.310 0.433 0.304 0.426 0.288 0.425 0.278
720 0.467 0.302 0.531 0.352 0.572 0.383 0.523 0.347 0.504 0.344 0.514 0.343 0.483 0.333 0.466 0.307 0.458 0.297

AVG 0.428 0.282 0.485 0.329 0.529 0.362 0.477 0.323 0.432 0.310 0.438 0.309 0.430 0.303 0.426 0.287 0.420 0.277
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Table 16. Full results for the cross-domain setting of forecasting using PatchTST. Pre-training on the TSLD-1G dataset and fine-tune it on
various target dataset. The standard deviations are within 0.005 for MSE and within 0.004 for MAE.

METHODS RANDOM INIT. TS2VEC TFC TST TI-MAE SIMMTM TIMESIAME
METRIC MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
H

1

96 0.420 0.423 0.384 0.407 0.384 0.405 0.391 0.412 0.384 0.405 0.376 0.402 0.371 0.398
192 0.465 0.449 0.436 0.439 0.426 0.432 0.433 0.436 0.437 0.437 0.421 0.432 0.417 0.427
336 0.504 0.470 0.462 0.456 0.463 0.453 0.458 0.450 0.462 0.454 0.454 0.455 0.448 0.447
720 0.502 0.492 0.481 0.483 0.473 0.476 0.455 0.469 0.458 0.469 0.466 0.479 0.463 0.473

AVG 0.473 0.458 0.441 0.446 0.437 0.442 0.434 0.442 0.435 0.441 0.429 0.442 0.425 0.436

E
T

T
H

2

96 0.297 0.345 0.295 0.347 0.296 0.347 0.298 0.346 0.287 0..342 0.293 0.347 0.292 0.345
192 0.388 0.400 0.366 0.392 0.368 0.392 0.383 0.401 0.367 0.391 0.387 0.409 0.370 0.394
336 0.426 0.434 0.413 0.426 0.421 0.433 0.428 0.435 0.409 0.425 0.421 0.428 0.410 0.427
720 0.431 0.446 0.427 0.450 0.426 0.445 0.427 0.446 0.424 0.444 0.418 0.443 0.423 0.444

AVG 0.385 0.406 0.375 0.404 0.378 0.404 0.384 0.407 0.374 0.403 0.380 0.407 0.374 0.403

E
T

T
M

1

96 0.330 0.368 0.320 0.360 0.325 0.363 0.326 0.364 0.319 0.360 0.316 0.357 0.309 0.352
192 0.369 0.385 0.359 0.382 0.366 0.385 0.369 0.385 0.358 0.383 0.355 0.380 0.350 0.378
336 0.400 0.407 0.395 0.407 0.398 0.408 0.399 0.407 0.398 0.411 0.386 0.400 0.383 0.402
720 0.460 0.439 0.446 0.435 0.455 0.440 0.454 0.438 0.398 0.411 0.443 0.436 0.442 0.437

AVG 0.390 0.400 0.380 0.396 0.386 0.399 0.387 0.399 0.380 0.398 0.375 0.393 0.371 0.392

E
T

T
M

2

96 0.175 0.258 0.176 0.261 0.176 0.259 0.188 0.271 0.179 0.265 0.177 0.264 0.182 0.268
192 0.247 0.307 0.245 0.306 0.243 0.303 0.258 0.318 0.256 0.316 0.247 0.308 0.243 0.311
336 0.309 0.345 0.310 0.347 0.303 0.342 0.334 0.361 0.325 0.359 0.309 0.348 0.314 0.351
720 0.408 0.403 0.432 0.419 0.407 0.403 0.431 0.417 0.415 0.406 0.416 0.412 0.406 0.405

AVG 0.285 0.328 0.291 0.333 0.282 0.327 0.303 0.342 0.294 0.337 0.287 0.333 0.286 0.334

W
E

A
T

H
E

R 96 0.177 0.218 0.174 0.216 0.184 0.222 0.188 0.231 0.175 0.216 0.170 0.214 0.170 0.214
192 0.225 0.259 0.220 0.256 0.229 0.261 0.229 0.266 0.220 0.256 0.217 0.254 0.217 0.255
336 0.278 0.297 0.277 0.297 0.284 0.300 0.281 0.303 0.276 0.296 0.273 0.295 0.270 0.295
720 0.354 0.348 0.352 0.346 0.360 0.348 0.355 0.350 0.351 0.345 0.349 0.344 0.348 0.345

AVG 0.259 0.281 0.256 0.279 0.264 0.283 0.263 0.288 0.256 0.278 0.252 0.277 0.251 0.277

E
X

C
H

A
N

G
E 96 0.084 0.201 0.083 0.201 0.082 0.200 0.084 0.202 0.085 0.203 0.090 0.209 0.086 0.204

192 0.187 0.307 0.176 0.298 0.174 0.297 0.178 0.299 0.179 0.302 0.171 0.297 0.179 0.301
336 0.337 0.422 0.332 0.416 0.330 0.416 0.332 0.417 0.331 0.417 0.335 0.419 0.329 0.416
720 0.858 0.695 0.867 0.700 0.853 0.696 0.867 0.698 0.851 0.696 0.862 0.690 0.849 0.694

AVG 0.367 0.406 0.365 0.404 0.360 0.402 0.365 0.404 0.362 0.405 0.365 0.404 0.360 0.404

E
C

L

96 0.193 0.291 0.194 0.285 0.196 0.285 0.200 0.289 0.195 0.288 0.189 0.283 0.162 0.249
192 0.199 0.297 0.199 0.291 0.200 0.291 0.202 0.292 0.201 0.294 0.196 0.289 0.172 0.259
336 0.216 0.312 0.216 0.307 0.216 0.306 0.218 0.307 0.217 0.309 0.212 0.304 0.189 0.276
720 0.257 0.345 0.257 0.339 0.258 0.339 0.259 0.338 0.258 0.341 0.254 0.337 0.227 0.309

AVG 0.216 0.331 0.257 0.339 0.218 0.305 0.220 0.307 0.218 0.308 0.213 0.303 0.188 0.273

T
R

A
FF

IC

96 0.472 0.305 0.513 0.340 0.532 0.354 0.514 0.329 0.499 0.328 0.437 0.280 0.430 0.277
192 0.474 0.304 0.512 0.338 0.526 0.349 0.497 0.328 0.500 0.328 0.447 0.283 0.443 0.280
336 0.491 0.331 0.525 0.342 0.539 0.354 0.504 0.328 0.512 0.332 0.460 0.289 0.456 0.286
720 0.523 0.327 0.560 0.359 0.576 0.372 0.540 0.335 0.547 0.350 0.492 0.307 0.488 0.304

AVG 0.490 0.317 0.528 0.345 0.543 0.357 0.514 0.330 0.515 0.335 0.459 0.290 0.454 0.287
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Table 17. Full results for the in-domain setting of forecasting based on PatchTST. Pre-training and linear probing on the same dataset. The
standard deviations are within 0.005 for MSE and within 0.004 for MAE. Note that the Random init. here refers to the train-from-scratch
model, which will optimize the whole model. Thus, the Random init. is in the different setting w.r.t. other pre-training methods, where the
latters are from linear probing.

METHODS RANDOM INIT. TS2VEC TFC TST TI-MAE SIMMTM TIMESIAME
METRIC MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
H

1

96 0.420 0.423 0.390 0.399 0.386 0.402 0.371 0.396 0.392 0.403 0.379 0.400 0.379 0.401
192 0.465 0.449 0.444 0.431 0.433 0.429 0.421 0.424 0.441 0.431 0.427 0.428 0.429 0.432
336 0.504 0.470 0.483 0.451 0.427 0.470 0.454 0.443 0.483 0.453 0.465 0.447 0.449 0.460
720 0.502 0.492 0.486 0.477 0.470 0.472 0.474 0.462 0.484 0.477 0.460 0.462 0.468 0.460

AVG 0.473 0.458 0.451 0.440 0.440 0.443 0.430 0.431 0.450 0.441 0.433 0.434 0.431 0.438

E
T

T
H

2

96 0.297 0.345 0.290 0.341 0.291 0.341 0.287 0.340 0.324 0.368 0.299 0.351 0.281 0.336
192 0.388 0.400 0.371 0.390 0.369 0.389 0.389 0.391 0.405 0.415 0.377 0.400 0.362 0.387
336 0.426 0.434 0.428 0.437 0.418 0.430 0.411 0.426 0.442 0.447 0.420 0.433 0.406 0.423
720 0.431 0.446 0.430 0.446 0.423 0.443 0.421 0.442 0.463 0.467 0.422 0.446 0.418 0.441

AVG 0.385 0.406 0.380 0.404 0.375 0.401 0.372 0.400 0.409 0.424 0.380 0.408 0.367 0.397

E
T

T
M

1

96 0.330 0.368 0.329 0.365 0.341 0.375 0.325 0.362 0.372 0.388 0.325 0.363 0.320 0.361
192 0.369 0.385 0.370 0.385 0.382 0.393 0.366 0.383 0.408 0.406 0.368 0.383 0.361 0.383
336 0.400 0.407 0.403 0.408 0.415 0.413 0.398 0.403 0.439 0.426 0.399 0.404 0.392 0.403
720 0.460 0.439 0.459 0.438 0.470 0.444 0.459 0.436 0.496 0.458 0.462 0.439 0.453 0.438

AVG 0.390 0.400 0.390 0.399 0.402 0.406 0.387 0.396 0.429 0.420 0.389 0.397 0.382 0.396

E
T

T
M

2

96 0.175 0.258 0.177 0.264 0.180 0.268 0.181 0.269 0.192 0.276 0.179 0.267 0.178 0.265
192 0.247 0.307 0.241 0.304 0.245 0.309 0.244 0.308 0.255 0.314 0.244 0.307 0.243 0.305
336 0.309 0.345 0.300 0.342 0.303 0.346 0.303 0.345 0.319 0.354 0.304 0.346 0.303 0.343
720 0.408 0.403 0.398 0.398 0.399 0.401 0.402 0.400 0.416 0.406 0.402 0.401 0.400 0.399

AVG 0.285 0.328 0.279 0.327 0.282 0.331 0.283 0.331 0.296 0.338 0.282 0.330 0.281 0.328

W
E

A
T

H
E

R 96 0.177 0.218 0.192 0.23 0.192 0.230 0.187 0.229 0.194 0.234 0.181 0.223 0.184 0.227
192 0.225 0.259 0.237 0.267 0.237 0.267 0.231 0.265 0.237 0.268 0.227 0.261 0.230 0.264
336 0.278 0.297 0.291 0.304 0.291 0.304 0.284 0.302 0.292 0.307 0.280 0.299 0.283 0.300
720 0.354 0.348 0.365 0.353 0.365 0.353 0.358 0.348 0.362 0.351 0.354 0.346 0.356 0.348

AVG 0.259 0.281 0.271 0.289 0.271 0.289 0.265 0.286 0.271 0.290 0.261 0.282 0.263 0.285

E
X

C
H

A
N

G
E 96 0.084 0.201 0.191 0.309 0.178 0.300 0.176 0.297 0.190 0.308 0.175 0.297 0.177 0.300

192 0.187 0.307 0.328 0.413 0.328 0.414 0.327 0.413 0.336 0.418 0.336 0.420 0.325 0.413
336 0.337 9,422 0.853 0.696 0.864 0.700 0.850 0.696 0.945 0.741 0.842 0.692 0.842 0.691
720 0.858 0.695 0.853 0.696 0.864 0.700 0.850 0.696 0.945 0.741 0.842 0.692 0.842 0.691

AVG 0.367 0.406 0.365 0.406 0.364 0.404 0.359 0.402 0.391 0.420 0.359 0.403 0.357 0.403

E
C

L

96 0.193 0.291 0.239 0.329 0.218 0.305 0.183 0.273 0.211 0.297 0.180 0.270 0.177 0.262
192 0.199 0.297 0.238 0.331 0.218 0.307 0.187 0.279 0.212 0.300 0.177 0.272 0.183 0.268
336 0.216 0.312 0.254 0.345 0.232 0.321 0.203 0.294 0.227 0.314 0.201 0.284 0.198 0.283
720 0.257 0.345 0.295 0.373 0.273 0.351 0.244 0.327 0.269 0.345 0.243 0.322 0.239 0.317

AVG 0.216 0.311 0.257 0.345 0.235 0.321 0.204 0.293 0.230 0.314 0.200 0.287 0.199 0.283

T
R

A
FF

IC

96 0.472 0.305 0.778 0.474 0.703 0.427 0.600 0.386 0.724 0.438 0.550 0.353 0.491 0.325
192 0.474 0.304 0.730 0.455 0.651 0.408 0.573 0.375 0.677 0.420 0.563 0.365 0.486 0.317
336 0.491 0.331 0.741 0.460 0.659 0.410 0.583 0.378 0.685 0.423 0.587 0.368 0.498 0.321
720 0.523 0.327 0.780 0.475 0.699 0.427 0.619 0.395 0.724 0.439 0.602 0.385 0.532 0.338

AVG 0.490 0.317 0.757 0.466 0.678 0.418 0.594 0.384 0.703 0.430 0.576 0.368 0.502 0.325

22



TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling

Table 18. In-domain fine-tuning results for time series classification. The model was pre-trained on datasets AD, TDBrain, and PTB, then
fine-tuned on the same dataset. Accuracy (%), Precision (%), Recall (%), F1 score (%), AUROC (%), AUPRC (%) are recorded. We
perform the experiment five times for each outcome and present the mean and standard deviation as our reported findings.

DATASETS METHODS ACCURACY PRECISION RECALL F1 SCORE AUROC AUPRC

AD

RANDOM INIT. 80.62±2.17 80.51±2.24 80.48±2.18 80.48±2.19 86.60±1.60 86.48±1.74

CPC 77.40±7.28 79.91±4.35 78.52±6.18 77.09±7.65 89.81±2.98 89.49±3.20

TNC 78.58±6.21 81.10±4.09 79.97±5.50 78.43±6.35 92.26±2.38 92.10±2.60

TS2VEC 81.26±2.08 81.21±2.14 81.34±2.04 81.12±2.06 89.20±1.76 88.94±1.85

COST 73.87±4.35 77.22±2.36 75.51±3.70 73.60±4.65 89.28±2.07 88.78±2.23

LAST 72.63±5.58 75.82±0.71 73.66±3.50 72.06±5.87 84.97±4.00 84.22±4.57

TF-C 75.31±8.27 75.87±8.73 74.83±8.98 74.54±8.85 79.45±10.23 79.33±10.57

COMET 84.50±4.46 88.31±2.42 82.95±5.39 83.33±5.15 94.44±2.37 94.43±2.48

TST 81.50±2.16 82.23±2.12 82.35±2.16 81.49±2.16 90.41±2.06 89.67±2.42

TI-MAE 80.70±3.73 82.23±2.92 81.84±3.39 80.67±3.73 92.32±2.80 92.18±2.93

SIMMTM 86.19±1.12 87.08±1.42 85.41±1.03 85.89±1.11 91.99±0.83 92.04±0.84

TIMESIAM 89.93±1.68 90.23±1.39 89.46±1.90 89.72±1.78 95.31±1.95 95.25±2.19

TDBRAIN

RANDOM INIT. 79.08±2.33 80.15±2.16 79.08±2.33 78.93±2.39 89.17±1.94 89.48±1.90

CPC 85.19±2.99 85.35±2.88 85.19±2.99 85.17±3.01 93.50±2.55 93.68±2.50

TNC 85.21±1.92 86.49±1.86 85.21±1.92 85.08±1.95 95.77±1.30 95.95±1.25

TS2VEC 80.21±1.69 81.38±1.97 80.21±1.69 80.07±1.69 89.57±2.31 89.60±2.37

COST 83.86±3.71 85.00±3.00 83.86±3.71 83.70±3.89 94.58±1.90 94.79±1.79

LAST 85.13±1.85 85.79±1.54 85.13±1.85 85.06±1.90 94.88±8.26 95.10±0.81

TF-C 66.62±1.76 67.15±1.64 66.62±1.76 66.35±1.91 65.43±6.13 66.18±4.90

COMET 85.47±1.16 85.68±1.20 85.47±1.16 85.45±1.16 93.73±1.02 93.96±0.99

TST 83.22±1.91 84.86±1.08 83.22±1.91 83.01±2.03 93.86±1.10 94.03±0.99

TI-MAE 88.16±1.87 88.96±1.42 88.16±1.87 88.10±1.91 97.27±0.49 96.94±0.48

SIMMTM 84.81±1.54 86.43±1.07 84.81±1.54 84.54±1.67 94.18±1.57 89.51±1.52

TIMESIAM 90.67±1.24 91.08±1.13 90.67±1.24 90.64±1.25 96.96±0.80 96.82±0.82

PTB

RANDOM INIT. 84.19±1.29 83.35±1.68 78.46±2.50 80.33±2.02 89.55±1.83 83.61±2.68

CPC 88.30±3.07 88.90±1.00 81.54±6.51 83.75±5.67 89.86±3.87 88.68±2.89

TNC 90.53±2.92 89.01±2.87 87.06±5.22 87.82±4.13 93.12±2.21 91.01±1.55

TS2VEC 85.14±1.66 87.82±2.21 76.84±3.99 79.66±3.63 90.50±1.59 90.07±1.73

COST 88.61±1.36 87.75±1.23 80.23±2.39 83.81±2.33 93.79±2.36 93.01±2.37

LAST 89.22±3.10 89.12±2.71 83.32±5.54 85.45±4.66 94.91±1.13 91.79±4.25

TF-C 87.50±2.43 85.50±3.04 82.68±4.04 83.77±3.50 77.59±19.22 80.62±15.10

COMET 87.84±1.98 87.67±1.72 81.14±3.68 83.45±3.22 92.95±1.56 87.47±2.82

TST 84.25±3.29 84.05±3.95 74.83±5.49 77.45±5.59 90.44±3.05 85.74±3.25

TI-MAE 88.39±1.78 88.55±1.51 81.76±3.13 84.23±2.70 90.37±5.70 88.76±5.00

SIMMTM 90.04±1.23 89.09±1.33 85.52±2.57 87.05±2.38 92.68±1.23 90.14±3.01

TIMESIAM 91.32±2.92 89.97±2.89 88.02±4.93 88.84±4.12 96.42±1.51 94.33±2.09
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Table 19. Cross-domain fine-tuning results for time series classification. The model is pre-trained on the TSLD-1G dataset and fine-tuned
on AD, TDBrain, and PTB. Accuracy (%), Precision (%), Recall (%), F1 score (%), AUROC (%), AUPRC (%) are recorded. We perform
the experiment five times for each outcome and present the mean and standard deviation as our reported findings.

DATASETS METHODS ACCURACY PRECISION RECALL F1 SCORE AUROC AUPRC

AD

RANDOM INIT. 80.62±2.17 80.51±2.24 80.48±2.18 80.48±2.19 86.60±1.60 86.48±1.74

TS2VEC 80.59±6.45 81.77±8.72 81.61±9.20 80.53±9.55 90.31±6.38 90.00±7.94

TF-C 87.98±1.77 88.30±1.68 88.30±1.69 87.90±1.75 95.56±1.52 95.43±1.54

TST 82.60±3.71 83.81±2.63 83.35±3.02 82.51±3.66 93.05±2.17 92.75±2.50

TI-MAE 80.40±5.26 81.72±5.02 81.13±4.66 80.31±5.18 91.32±4.48 91.16±4.75

SIMMTM 87.74±1.78 87.66±1.91 87.78±1.78 87.63±1.78 94.73±1.32 94.71±1.36

TIMESIAM 90.47±2.04 90.50±2.01 90.21±2.13 90.32±2.09 96.34±1.36 96.41±1.39

TDBRAIN

RANDOM INIT. 79.08±2.33 80.15±2.16 79.08±2.33 78.93±2.39 89.17±1.94 89.48±1.90

TS2VEC 85.58±8.16 86.26±7.78 85.58±8.16 85.45±8.32 94.44±4.03 94.69±3.79

TF-C 82.84±2.57 83.22±2.58 82.84±2.57 82.79±2.58 92.13±2.17 92.28±2.11

TST 83.65±2.52 84.75±2.27 83.65±2.52 83.51±2.59 93.41±2.13 93.58±2.08

TI-MAE 85.22±2.40 82.85±2.01 82.42±2.47 82.38±2.53 90.25±1.39 90.26±1.36

SIMMTM 85.29±1.87 86.61±2.45 86.23±2.59 86.19±2.62 94.00±1.78 93.95±1.84

TIMESIAM 86.26±2.54 87.17±2.07 80.26±2.54 86.17±2.62 95.41±1.35 95.56±1.30

PTB

RANDOM INIT. 84.19±1.29 83.35±1.68 78.46±2.50 80.33±2.02 89.55±1.83 83.61±2.68

TS2VEC 89.23±7.76 89.58±7.15 89.23±7.76 89.17±7.88 96.13±3.82 96.27±3.63

TF-C 89.18±1.89 88.63±2.21 84.48±3.98 85.64±2.66 94.31±1.71 91.52±2.79

TST 85.81±5.92 85.80±4.96 77.40±1.02 79.32±1.07 92.04±2.89 86.27±4.97

TI-MAE 86.67±2.55 85.91±1.10 80.32±6.76 81.83±4.94 92.60±4.45 91.08±3.78

SIMMTM 85.64±1.68 85.94±1.58 77.01±3.00 79.80±2.78 92.93±0.68 88.03±2.31

TIMESIAM 90.45±1.98 89.58±1.53 86.11±3.75 87.53±2.83 93.13±2.32 89.94±3.10
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Table 20. Ablation studies were conducted on TimeSiam. “W/o Siamese” refers to solely focusing on modeling subseries itself, without
incorporating Siamese modeling. “W/o Masking” indicates the absence of mask augmentation in the current subseries.

INPUT-96 RANDOM INIT. W/O SIAMESE W/O MASKING TIMESIAM

PREDICT-O MSE MAE MSE MAE MSE MAE MSE MAE

ETTH1

96 0.420 0.423 0.377 0.401 0.381 0.403 0.378 0.401
192 0.465 0.449 0.423 0.430 0.430 0.431 0.422 0.430
336 0.504 0.470 0.458 0.451 0.466 0.452 0.459 0.452
720 0.502 0.492 0.471 0.478 0.470 0.474 0.459 0.437

AVG 0.473 0.458 0.432 0.440 0.437 0.440 0.429 0.437

ETTH2

96 0.297 0.345 0.291 0.346 0.289 0.339 0.293 0.345
192 0.388 0.400 0.375 0.396 0.378 0.393 0.370 0.392
336 0.426 0.434 0.416 0.432 0.412 0.426 0.410 0.424
720 0.431 0.446 0.421 0.446 0.420 0.441 0.418 0.440

AVG 0.385 0.406 0.376 0.405 0.375 0.400 0.373 0.400

ETTM1

96 0.330 0.368 0.317 0.359 0.333 0.368 0.319 0.360
192 0.369 0.385 0.363 0.387 0.367 0.385 0.353 0.379
336 0.400 0.407 0.385 0.403 0.400 0.409 0.383 0.402
720 0.460 0.439 0.444 0.438 0.459 0.442 0.440 0.436

AVG 0.390 0.400 0.377 0.397 0.390 0.410 0.374 0.394

ETTM2

96 0.175 0.258 0.177 0.262 0.177 0.261 0.175 0.261
192 0.247 0.307 0.241 0.303 0.243 0.303 0.241 0.303
336 0.309 0.345 0.302 0.343 0.307 0.347 0.300 0.341
720 0.408 0.403 0.398 0.398 0.405 0.404 0.399 0.398

AVG 0.285 0.328 0.280 0.327 0.283 0.329 0.279 0.326

WEATHER

96 0.177 0.218 0.174 0.219 0.176 0.219 0.171 0.213
192 0.225 0.259 0.221 0.258 0.224 0.259 0.217 0.253
336 0.278 0.297 0.275 0.296 0.279 0.299 0.272 0.293
720 0.354 0.384 0.353 0.345 0.356 0.350 0.348 0.343

AVG 0.259 0.281 0.256 0.280 0.259 0.282 0.252 0.276

EXCHANGE

96 0.084 0.201 0.089 0.209 0.083 0.201 0.084 0.203
192 0.187 0.307 0.196 0.314 0.173 0.297 0.176 0.300
336 0.337 0.422 0.334 0.419 0.341 0.424 0.310 0.404
720 0.858 0.695 0.856 0.700 0.856 0.698 0.842 0.690

AVG 0.367 0.406 0.369 0.411 0.363 0.405 0.353 0.399

ECL

96 0.193 0.291 0.164 0.250 0.165 0.253 0.164 0.245
192 0.199 0.297 0.175 0.261 0.177 0.258 0.173 0.256
336 0.216 0.312 0.191 0.278 0.190 0.274 0.189 0.275
720 0.257 0.345 0.230 0.312 0.232 0.311 0.229 0.310

AVG 0.216 0.331 0.190 0.275 0.191 0.274 0.189 0.272

TRAFFIC

96 0.472 0.305 0.433 0.281 0.438 0.283 0.429 0.279
192 0.474 0.304 0.446 0.287 0.447 0.287 0.442 0.282
336 0.491 0.331 0.459 0.288 0.459 0.289 0.456 0.288
720 0.523 0.327 0.490 0.306 0.494 0.307 0.486 0.307

AVG 0.490 0.317 0.457 0.291 0.460 0.292 0.453 0.289
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