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ABSTRACT

Graph Neural Networks (GNNs) have shown exceptional success in graph repre-
sentation learning and a wide range of real-world applications. However, scaling
deeper GNNs poses challenges due to the neighbor explosion problem when train-
ing on large-scale graphs. To mitigate this, a promising class of GNN training
algorithms utilizes historical embeddings to reduce computation and memory costs
while preserving the expressiveness of the model. These methods leverage his-
torical embeddings for out-of-batch nodes, effectively approximating full-batch
training without losing any neighbor information—a limitation found in tradi-
tional sampling methods. However, the staleness of these historical embeddings
often introduces significant bias, acting as a bottleneck that can adversely affect
model performance. In this paper, we propose a novel VersatIle Staleness-Aware
GNN, named VISAGNN, which dynamically and adaptively incorporates staleness
criteria into the large-scale GNN training process. By embedding staleness into
the message-passing mechanism, loss function, and historical embeddings during
training, our approach enables the model to adaptively mitigate the negative effects
of stale embeddings, thereby reducing estimation errors and enhancing downstream
accuracy. Comprehensive experiments demonstrate the effectiveness of our method
in overcoming the limitations of existing historical embedding techniques, high-
lighting its superior performance and efficiency on large-scale benchmarks, as well
as significantly accelerated convergence. We will make the code publicly available
upon acceptance of the work.

1 INTRODUCTION

Graph Neural Networks (GNNs) have proven to be highly effective tools for learning representations
from graph-structured data (Hamilton, 2020; Ma & Tang, 2021), excelling in tasks such as node
classification, link prediction, and graph classification (Kipf & Welling, 2016; Gasteiger et al.,
2019; Veličković et al., 2017; Wu et al., 2019). They have also been successfully applied in real-
world scenarios like recommendation systems, biological molecule modeling, and transportation
networks (Tang et al., 2020; Sankar et al., 2021; Fout et al., 2017; Wu et al., 2022). However, the
scalability of GNNs is challenged by their recursive message-passing process, which results in the
neighborhood explosion problem. This issue arises because the number of neighbors involved in mini-
batch computations grows exponentially with the number of GNN layers (Hamilton et al., 2017; Chen
et al., 2018; Han et al., 2023), making it difficult for deeper GNNs to capture long-range dependencies
on large graphs. Such long-range information is known to enhance GNN performance (Gasteiger
et al., 2018; Gu et al., 2020; Liu et al., 2020; Chen et al., 2020a; Li et al., 2021; Ma et al., 2020;
Pan et al., 2020; Zhu et al., 2021; Chen et al., 2020b), but the neighborhood explosion problem
limits the ability of GNNs to handle large-scale graphs within the constraints of GPU memory and
computational resources during training and inference. This bottleneck significantly hampers the
expressive power of GNNs and their applicability to large-scale graphs.

Various approaches have been developed to enhance the scalability of GNNs, including sampling
techniques (Hamilton et al., 2017; Chen et al., 2018; Chiang et al., 2019; Zeng et al., 2020), pre-
and post-computing strategies (Wu et al., 2019; Rossi et al., 2020; Sun et al., 2021; Huang et al.,
2020), and distributed learning (Chai et al., 2022; Shao et al., 2022). Among these, sampling
methods are widely used to address the neighborhood explosion problem in large-scale GNNs due to
their simplicity and promising results. However, sampling methods often discard information from

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

unsampled neighbors during training, and because nodes in a graph are interconnected and cannot
simply be treated as independent and identically distributed (iid), this leads to estimation variance in
embedding approximation and an inevitable loss of accurate graph information.

To address this issue, historical embedding methods have been proposed, such as VR-GCN (Chen
et al., 2017), MVS-GCN (Cong et al., 2020), GAS (Fey et al., 2021), GraphFM (Yu et al., 2022) and
Refresh (Huang et al., 2023). These methods use historical embeddings of unsampled neighbors
as approximations of their true aggregated embeddings. During each training iteration, they store
intermediate node embeddings at each GNN layer as historical embeddings, which are then utilized
in subsequent iterations. This approach effectively mitigates the neighbor explosion problem and
reduces the variance associated with sampling methods by preserving all neighbor information. The
historical embeddings can be stored offline on CPU memory or disk, conserving GPU memory.
These approaches avoid ignoring any nodes or edges, thereby reducing variance and maintaining the
expressiveness of the backbone GNNs while achieving strong scalability and efficiency.

While using historical embeddings can provide several benefits, their quality is a crucial determinant
of overall performance. Specifically, the discrepancy between a true node embedding and its
corresponding historical embedding, which we refer to as the staleness of the historical embeddings,
becomes a critical factor since the historical embedding serves as an approximation of the true one.
This phenomenon is particularly evident in large-scale datasets, as the update speed of historical
embeddings lags far behind that of model parameters. As a result, these historical embeddings
become highly stale and exhibit significant discrepancies from the true embeddings. Consequently,
historical embedding methods often suffer from substantial degradation in both prediction accuracy
and convergence speed when compared to vanilla sampling methods like GraphSAGE (Hamilton
et al., 2017), which do not rely on historical embeddings. Thus, staleness becomes the primary
bottleneck for these methods.

Motivated by our findings and analysis, effectively utilizing staleness to leverage fresh embeddings
while minimizing the impact of stale embeddings has become a critical issue. Therefore, we propose
a Versatile Staleness-Aware GNN (VISAGNN), which incorporates three key components: (1)
Dynamic Staleness Attention: We introduce a novel staleness-based weighted message-passing
mechanism that uses staleness scores as a metric to dynamically determine the importance of each
node during message passing; (2) Staleness-aware Loss: We design a regularization term based on
staleness criterion to be included in the loss function, explicitly reducing the influence of staleness on
the model; (3) Staleness-Augmented Embeddings: We offer a straightforward solution by directly
injecting staleness into the node embeddings. Our proposed framework is highly flexible, orthogonal,
and compatible with various sampling methods and historical embedding techniques. Comprehensive
experiments demonstrate that it further enhances existing historical embedding methods, accelerating
convergence while maintaining strong efficiency.

2 RELATED WORK

In this section, we summarize related works on the scalability of large-scale GNNs with a focus on
sampling methods.

Sampling methods. Sampling methods utilize mini-batch training strategies by selecting a subgraph
as a small batch, reducing computation and memory requirements. These methods fall into three
main categories: node-wise sampling, layer-wise sampling, and subgraph-wise sampling.

(1)Node-wise sampling: This approach samples a fixed number of neighbors per hop, as seen in
models like GraphSAGE (Hamilton et al., 2017), PinSAGE (Ying et al., 2018), and GraphFM-IB
(Yu et al., 2022). However, because it involves dropping unsampled nodes and edges, it introduces
bias and variance. Additionally, while it helps mitigate the neighbor explosion problem, it doesn’t
entirely solve it since the number of neighbors still grows exponentially.

(2)Layer-wise sampling: It addresses the neighbor explosion problem by fixing the number of sampled
neighbors per layer. For example, FastGCN (Chen et al., 2018) treats message passing from an
integral perspective, independently sampling nodes in each GNN layer using importance sampling.
LADIES (Zou et al., 2019) incorporates inter-layer correlations by restricting the sampled nodes to
those in the union of the neighbors of already sampled nodes. ASGCN (Huang et al., 2018) designs
the sampling probability of lower layers based on the upper layers. However, the adjacency matrix
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generated by layer-wise sampling tends to be sparser than that of other methods, often leading to
suboptimal performance.

(3)Subgraph sampling: It involves directly sampling subgraphs from the entire graph as mini-batches
and then performing message passing on these subgraphs. This method effectively addresses the
neighbor explosion problem, as the GNN operates only on the sampled subgraph during computation.
ClusterGCN (Chiang et al., 2019) pioneered this approach by clustering the graph into subgraphs,
with each mini-batch constructed from several clusters. GraphSaint (Zeng et al., 2020) extended
this by incorporating various samplers to construct subgraphs, reducing bias and using importance
sampling to minimize variance. However, these methods can still suffer from high variance due to the
ignored edges between subgraphs.

Historical embedding methods. While sampling methods effectively alleviate the neighbor ex-
plosion problem, they often suffer from performance degradation due to the variance introduced
by dropping nodes and edges. To address this issue, some approaches have started using historical
embeddings as an approximation for the true embeddings obtained from full-batch computation. This
allows them to avoid dropping any nodes or edges while still reducing memory costs by limiting
the number of sampled neighbors. VR-GCN(Chen et al., 2017) was the first to propose using his-
torical embeddings for out-of-batch nodes to reduce variance while limiting the number of sampled
neighbors per hop to reduce memory consumption. MVS-GCN(Cong et al., 2020) improved this
approach with a one-shot sampling strategy, eliminating the need for nodes to recursively explore
their neighborhoods in each layer. GNNAutoScale (Fey et al., 2021) restricts the receptive field to
direct one-hop neighbors, enabling constant GPU memory consumption while still preserving all
relevant neighbor information. GraphFM-OB(Yu et al., 2022) enhanced performance by incorporating
feature momentum. LMC (Shi et al., 2023) considered backward propagation, retrieving discarded
embeddings during backward passes, which improved performance and accelerated convergence.

Although these historical embedding approaches are promising due to their strong performance and
scalability, they are limited by approximation errors caused by the staleness of the historical embed-
dings. This issue becomes more pronounced with large-scale datasets. To address this, GAS (Fey
et al., 2021) utilizes graph clustering to reduce inter-connectivity, a proven factor contributing to
staleness, and applies regularization to limit significant changes in model parameters, thereby mitigat-
ing approximation errors. GraphFM-OB(Yu et al., 2022) compensates for staleness by leveraging
feature momentum for in-batch nodes nd out-of-batch nodes. Despite these efforts, these methods
only tackle the issue superficially, resulting in minimal performance improvements. Refresh (Huang
et al., 2023) introduces a staleness score, which quantifies the degree of staleness, and avoids using
stale embeddings to alleviate this issue. However, it may result in the loss of some direct neighbor
information, introducing significant bias.

Other scalable designs Pre-computing or post-computing methods aim to offload the computationally
intensive feature aggregation to the CPU. This can be achieved by pre-computing the message
passing before training (Wu et al., 2019; Rossi et al., 2020; Sun et al., 2021; Zhang et al., 2022;
Bojchevski et al., 2020), or through post-processing with label propagation, as demonstrated by
methods like (Huang et al., 2020). Despite their benefits, these approaches often lose the advantages
of end-to-end training. Additionally, distributed methods enhance scalability by distributing large
graphs across multiple GPUs to parallelize GNN training, as demonstrated in (Chiang et al., 2019;
Chai et al., 2022; Shao et al., 2022). However, they usually incur significant communication costs
between GPUs.

3 METHODOLOGY

In this section, we first mathematically formulate historical embedding methods and then theoretically
demonstrate that staleness is a key factor in the effectiveness of these methods. Then, we present a
novel VersatIle Staleness-Aware GNN (VISAGNN), that dynamically incorporates staleness into the
training process from multiple sensory perspectives, utilizing the staleness criterion as a metric to
prioritize fresher embeddings over stale ones.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 STALENESS OF HISTORICAL EMBEDDING METHODS

Sampling is used to generate mini-batches for message passing to address the scalability challenge in
large-scale graphs:

h
(l+1)
i = g

(l+1)
θ (hl

i, [h
l
j ]j∈N (i)) ≈ g

(l+1)
θ (hl

i, [h
l
j ]j∈N (i)∩B) (1)

Here, hl
i represent the feature embedding of the in-batch node i at the l-th layer, and g

(l+1)
θ denote

the message-passing update function at the l + 1-th layer with parameters θ. The set N (i) ∩ B
refers to the in-batch 1-hop neighborhood of node i. However, the large variance arises because the
out-of-batch neighbors [hl

j ]j∈N (i)\B are not considered during aggregation.

To address this issue, historical embedding methods utilize historical embeddings [h̄l
j ]j∈N (i)\B

to approximate the embeddings of out-of-batch nodes [hl
j ]j∈N (i)\B at each layer, providing an

approximation of full-batch aggregation. The feature memory is then updated for future use, using
only the in-batch node embeddings h̄l+1

i = hl+1
i . The message-passing process can be expressed as:
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in-batch neighbors

∪ [h̄l
j ]j∈N (i)\B)︸ ︷︷ ︸

historical embeddings

, (4)

While using historical embeddings as approximations helps retain information for out-of-batch nodes
and ensures constant memory usage (Fey et al., 2021), large approximation errors in certain stale
embeddings can significantly degrade model performance. To highlight this issue and motivate our
approach, we first present a theoretical analysis showing that the approximation error of the final
embeddings is upper bounded by the staleness. Our analysis adheres to the assumptions outlined in
previous work (Fey et al., 2021).

Theorem 1 (Embeddings Approximation Error). Assuming a L-layers GNN g
(l)
θ (h) with a Lipschitz

constant β(l) for each layer l = 1, . . . , L, and N (i) is the set of neighbor nodes of i, ∀i ∈ V .
∥h̄(l) − h(l)∥ represents the distance between the historical embeddings and the true embeddings,
which corresponds to the staleness. The approximation error of the final layer embeddings h̃(L)

i is
then upper bounded by:

||h̃(L)
i − h

(L)
i || ≤

L∑
k=1

(
L∏

l=k+1

β(l)|N (i)| ∗ || ˜̂Ai,|| ∗ ||h̄(k−1) − h(k−1)||).

The proof of the above theorem can be found in Appendix A. From the above theorem, we can
observe that the distance between the final layer’s embeddings produced by historical embedding
methods and full aggregations is bounded by a cumulative sum of the per-layer approximation error
||h̄(k−1)−h(k−1)||. To prevent the accumulation of staleness across layers from having a significantly
negative impact on the quality of the final embeddings, reducing the impact of staleness at each layer
becomes a crucial issue.

From Theorem 1, ||h̄(k−1) − h(k−1)|| directly measures the staleness which is the distance between
historical embeddings and true embeddings. However, it is impractical to recompute the true
embedding h(k−1) at every iteration due to the significantly higher computational overhead involved.
Hence, we adopt a lightweight approach from existing works (Huang et al., 2023) by using two
indicators to represent the staleness criterion si: the persistence time Ti and the gradient norm
criterion ||∇Lθ(hi)||. We cache these two indicators from each layer along with the corresponding
historical embeddings for use in our training framework.

The persistence Ti for a specific node i measures how many training iterations the historical embed-
ding remains unchanged before being updated again. Since the historical embedding of a specific
node is updated only once per epoch when it serves as a target node and remains the same in the cache
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Figure 1: Three key designs in VISAGNN. (1) Augmented Embeddings: VISAGNN offers two
ways to integrate staleness criterion into historical embeddings. (2) Dynamic Staleness Attention:
VISAGNN performs weighted message passing based on both feature embeddings and staleness
criterion. (3) Staleness-aware loss: A regularization term based on staleness is incorporated into the
loss function in VISAGNN.

for the rest of the iterations, while the model parameters continue to update throughout all training
iterations, Ti reflects the gap between the update frequencies of the historical embeddings and the
model parameters, directly capturing staleness in a straightforward manner. A high persistence value
indicates that the historical embedding has not been updated recently, leading to stronger feature
staleness.

In addition, the norm of the gradient metric ||∇Lθ(hi)|| reflects the extent of changes in the model
parameters, which can also indicate the staleness. A small gradient magnitude suggests that the
model parameters are not changing significantly, leading to stable node embeddings throughout the
training iterations. Consequently, the estimation error of the historical embeddings is likely to be
small, leading to minimal staleness.

3.2 DYNAMIC STALENESS ATTENTION

As introduced in Section 1, staleness becomes a bottleneck for existing historical embedding methods.
While existing works like Refresh (Huang et al., 2023) utilize staleness criteria as thresholds to evict
embeddings that have not been recently updated or are unstable, simply discarding these embeddings
based on staleness can introduce significant bias. This approach also makes the model overly sensitive
to the fixed staleness threshold, as the embeddings of any nodes with staleness exceeding the threshold
are discarded, even though their degrees of staleness may vary. Consequently, this motivates us to
investigate the dynamic integration of staleness into the training process, allowing us to consider
staleness while retaining essential graph features.

We propose a staleness-aware attention mechanism by incorporating the staleness criterion into
the traditional attention formulation. This mechanism adjusts attention coefficients based on both
the node’s current features and staleness. The attention coefficients for in-batch neighbors αin

ij and
out-of-batch neighbors αout

ij between node i and node j at epoch t are formulated as follows. We omit
the layer number L in α for simplicity:

αout
ij (t) =

exp
(
LeakyReLU

(
aT
[
Whi ∥ Wh̄j

])
− γ(t) · sj · σ(cj − cavg)

)∑
k∈N (i)\B exp

(
LeakyReLU

(
aT
[
Whi ∥ Wh̄k

])
− γ(t) · sk · σ(ck − cavg)

) (5)

αin
ij(t) = αout

ij (t)
∣∣
sj ,sk=0,h̄=h̃

(6)

h̃
(L)
i = ϕ

 ∑
j∈N (i)∩B

αL−1,in
ij Wh

(L−1)
j ,

∑
j∈N (i)\B

αL−1,out
ij Wh̄

(L−1)
j

 (7)
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where W is the weight matrix applied for each nodes for feature transformation, a is a learnable
weight vector used to compute the attention score between two nodes, similar as GAT. The operator
∥ denotes concatenation. The term sj represents the staleness criterion of node j, reflecting how
outdated the embedding of node j is. The function σ represents the nonlinear function, we specifically
utilize sigmoid function in this paper, defined as f(x) = 1

1+e−x . The value cj is a centrality measure
for node j, while cavg denotes the average centrality measure across the graph. In this paper, we
use node degree as centrality metric to evaluate the importance of each node. The time-dependent
coefficient γ(t) = β

t , where t is the current epoch, β is a learnable scaling factor that controls
how quickly γ(t) decreases with the training process for each node. It modulates the impact of the
staleness on attention during the training process. ϕ is a non-linear activation function. Note that
αin

ij(t) degenerates into the traditional attention scores in GAT when staleness equals 0, which aligns
with our intuition.

The core of our design revolves around the term −γ(t) ∗ sj ∗ σ(cj − cavg), which consists of three
components:

(1) Staleness Criterion: sj represents the staleness of each node embedding, which is the key
for achieving staleness-aware attention. In our implementation, we choose to use gradient crite-
rion ||∇Lθ(hi)||. The gradients at any layer are obtained from backward propagation when the
corresponding node was included into the computation graph previously.

(2) Centrality: After considering the impact of feature embeddings, centrality c is introduced to
incorporate the graph structure. The motivation is that if a stale node is important, the negative
effects caused by staleness will be amplified. Specifically, when the degree of a node is high and
the staleness is also high, this term significantly penalizes and reduces the attention coefficient to
mitigate the impact of staleness, as these stale embeddings are propagated through many neighboring
nodes. Conversely, if the staleness is low, the node’s embedding is fresh and will not cause significant
negative effects, allowing it to be effectively utilized. When the degree is low, these nodes are less
critical to the final representation, so staleness may have a smaller impact. Furthermore, we choose to
use relative centrality by subtracting the average node degree of the graph from each node’s degree,
cj − cavg, to prevent the issue that graphs with dense connections naturally have high node degrees.
We then use the sigmoid function to further reduce the scale impact.

(3) Decay Coefficient: We also introduce a function γ(t) related to the training process as a
coefficient for the staleness term. The reason for this is that as training progresses, the model
parameters gradually converge, leading to minimal updates of the embeddings in the final few epochs.
Therefore, the influence of staleness should not play a significant role when calculating the attention
score. Although there are many feasible designs, we directly used β

t for the sake of simplicity.

3.3 STALENESS-AWARE LOSS

In addition to the proposed dynamic staleness attention, we also incorporate staleness into the
optimization process as a regularization term to more effectively mitigate its effects. However, the
gradient criterion ||∇Lθ(hi)|| for staleness is not feasible to use since the loss has not yet been
computed. From Theorem 1, we find that the final representation contains the accumulated staleness
from all layers, allowing it to effectively represent staleness. Hence, we choose to utilize the feature
embeddings of in-batch nodes at last layer between two consecutive epochs for our design. The
staleness-aware regularization term is defined as follows:

Lstale =
∑
i∈B

||h(L)
i,k − h

(L)
i,k−1||

2 (8)

where h(L)
i,k represents the feature embedding of node i at the final layer L during epoch k. This design

is based on the observation that as training progresses, model parameters tend to converge, resulting
in smaller gradient values and fewer updates to the embeddings in later epochs. Consequently, the
difference between final representations from consecutive epochs becomes progressively smaller,
particularly after the model has been trained for several epochs. This aligns with our earlier conclusion
that the influence of staleness diminishes as training progresses. Another advantage of this design is
that it does not introduce any additional computational overhead.
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By jointly optimizing both the downstream tasks and the staleness issue, the gradient also becomes
staleness-aware, which better mitigates the negative effects of staleness on the model’s performance.
For the sake of simplicity, we define the overall training loss as follows:

L = Ltask + λ · Lstale (9)

where λ is a hyperparameter that controls the trade-off between the task-specific loss and the penalty
for staleness. Ltask is the task-specific loss, such as cross-entropy in node classification.

3.4 STALENESS-AUGMENTED EMBEDDINGS

We further enhance the model’s performance by incorporating staleness awareness through the direct
injection of staleness criterion into node embeddings. We present two implementation methods:
concatenation and summation.

Concatenation: We treat staleness as an additional dimension of feature and concatenate it with the
historical embeddings at each layer. To ensure that the impact of staleness is appropriately balanced,
we first normalize the staleness criterion using a log normalization technique. This approach helps to
mitigate the influence of imbalanced distributions, such as extremely high staleness criterion values,
ensuring that stale embeddings do not dominate the feature representation. It also prevents staleness
from being overly influential due to differences in scale when combined with the node features. The
augmented embeddings can be represented as:

h̄j
′
= Concat

(
h̄j , log(1 + sj)

)
(10)

Summation: This approach differs from simple concatenation. We combine the staleness criterion
with the node features through a non-linear transformation, allowing the model to learn a weighted
combination of the node’s inherent features and its staleness, potentially capturing their interactions
and enhancing the expressiveness of the learned node representations. Specifically, suppose Ws is a
learnable weight matrix, the transformation can be represented as:

h̄j
′
= h̄j + ϕ(Ws · sj) (11)

Similarly, we use ||∇Lθ(hi)|| as the staleness criterion si. This choice is based on our experiments,
which indicate that extreme values in the persistence time Ti can adversely affect aggregation,
causing the model to overly focus on the staleness term. Consequently, this negatively affects
convergence, especially on very large datasets. However, we still utilize Ti as used in Refresh: We
set a dataset-dependent high value threshold Gthres, a small portion of nodes whose persistence times
are significantly larger during each training iteration to further mitigate the impact of staleness while
most nodes are not affected by this criterion.

4 EXPERIMENTS

In this section, we present experiments that demonstrate the effectiveness of our proposed algorithms
in enhancing performance, improving efficiency, and accelerating convergence.

4.1 PERFORMANCE

Experimental setting. We present a performance comparison against major baselines, including
several classical GNN models such as GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al.,
2017), FastGCN (Chen et al., 2018), LADIES (Zou et al., 2019), Cluster-GCN (Chiang et al., 2019),
GraphSAINT (Zeng et al., 2020), and SGC (Wu et al., 2019). Additionally, we include state-of-the-art
methods for historical embeddings such as VR-GCN (Chen et al., 2017), MVS-GCN (Cong et al.,
2020), GNNAutoScale (GAS) (Fey et al., 2021), GraphFM (Yu et al., 2022), Refresh (Huang et al.,
2023) and LMC (Shi et al., 2023). For the last four models, we employ GAT as the GNN backbone to
ensure a fair comparison with our proposed methods. We conduct experiments on three widely-used
large-scale graph datasets: REDDIT, ogbn-arxiv, and ogbn-products (Hu et al., 2020). We denote the
augmentation strategies of concatenation and summation introduced in Section 3 as VISAGNN-Cat
and VISAGNN-Sum, respectively. The performance results are reported in Table 1, where OOM

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

stands for out-of-memory. Additionally, we provide a direct and clear performance comparison with
other historical embedding methods on a significantly larger dataset, ogbn-papers100M. The results
are shown in Table 2. For all baselines, we follow the configurations provided in their respective
papers and official repositories.

VISAGNN’s hyperparameters are tuned from the following search space: (1) learning rate:
{0.01, 0.001, 0.0001}; (2) weight decay: {0, 5e − 4, 5e − 5}; (3) dropout: {0.1, 0.3, 0.5, 0.7}; (4)
propagation layers : L ∈ {1, 2, 3}; (5) MLP hidden units: {256, 512}; (6) λ ∈ {0.1, 0.3, 0.5, 0.8}.

Table 1: Accuracy comparison (%) with major baselines.
# nodes 230K 169K 2.4M
# edges 11.6M 1.2M 61.9M

Method GNNs REDDIT
ogbn ogbn
arxiv products

Scalable

GraphSAGE 95.4 71.5 78.7
FastGCN 93.7 — —
LADIES 92.8 — —

Cluster-GCN 96.6 — 79.0
GraphSAINT 97.0 — 79.1

SGC 96.4 — —
VR-GCN 94.1 71.5 76.3

MVS-GNN 94.9 71.6 76.9

Full Batch
GCN 95.4 71.6 OOM
GAT 95.7 71.5 OOM

APPNP 96.1 71.8 OOM

Historical

GAS 95.7 71.7 77.0
GraphFM 95.6 71.9 77.2
Refresh 95.4 70.4 78.7
LMC 96.2 72.2 77.5

Ours VISAGNN-Cat 96.5 73.0 79.9
VISAGNN-Sum 96.6 73.2 80.2

Performance analysis. From the results
of the performance comparison, we can
draw the following observations:

• None of the existing historical embed-
ding methods consistently outperform
classical models on large-scale datasets
such as ogbn-products, and they only sur-
pass other scalable methods by a small
margin on other datasets. This is due
to the slower update of historical em-
beddings compared to model parame-
ters, especially given the large number
of batches in a single training epoch,
highlighting staleness as a significant
bottleneck for all historical embedding
techniques. It is worth noting that
while Refresh performs well on large-
scale datasets, it falls significantly be-
hind other baselines when staleness is
not dominant (ogbn-arxiv). This is be-
cause it simply evicts some important neighbors, which can potentially introduce significant bias,
reinforcing our claim made in Section 2.

• When comparing performance on large-scale datasets, the proposed VISAGNN outperforms all
baselines on ogbn-arxiv, ogbn-products and ogbn-papers100M, particularly in comparison to state-
of-the-art historical embedding methods, while achieving comparable results on Reddit. Notably,
VISAGNN shows substantial improvements on large scale datasets, highlighting the necessity and
significance of the staleness-aware techniques we introduced, especially under conditions of increased
staleness. Furthermore, VISAGNN-Sum surpasses VISAGNN-Cat, indicating that using a learnable
fully connected layer is more effective for integrating staleness information into node embeddings,
resulting in improved final representations.

• The strategies we proposed in VISAGNN can be integrated with various baselines. For instance, in
LMC, historical gradients also encounter the issue of staleness, which dynamic attention can help
alleviate during gradient message passing. This advantage underscores the flexibility and adaptability
of our model.

4.2 EFFICIENCY ANALYSIS

Table 2: Prediction accuracy (%) comparison with other
baselines on ogbn-papers100M

Method GAS FM Refresh LMC VISAGNN

Acc(%) 57.5 58.6 65.4 61.3 67.5

In this section, we provide an efficiency
analysis, including memory usage and
total running time on the ogbn-arxiv and
ogbn-products datasets, comparing our
method against one classical scalable
GNN, GraphSAGE, and two historical
embedding methods, GAS and Refresh, as shown in Table 3. Note that we exclude system-level
optimizations from Refresh to ensure a fair comparison. All experiments were conducted on a single
GPU. To ensure a fair comparison, we employed the official implementations for all baseline methods
and kept the hyperparameters consistent. For GAS and Refresh, we used GAT as the GNN backbone
since both methods also leverage attention mechanisms.
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From the results, we observe that GraphSAGE still suffers from the neighbor explosion problem,
leading to out-of-memory (OOM) errors on ogbn-products and significantly higher memory costs for
ogbn-arxiv in our experiments. Refresh requires less running time on ogbn-products as it converges
more quickly due to the eviction of stale embeddings. However, it takes longer to converge on
ogbn-arxiv compared to other models. In contrast, VISAGNN maintains nearly the same memory
usage as GAS and Refresh while accelerating the training process. This improvement is attributed
to VISAGNN’s ability to achieve the fastest convergence among all historical embedding baselines,
requiring substantially fewer epochs to reach convergence. Moreover, while VISAGNN-Sum incurs
slightly higher memory costs and running time than VISAGNN-Cat due to the inclusion of a fully
connected layer, it demonstrates improved performance.

Table 3: Memory usage (MB) and running time (seconds) on ogbn-arxiv and ogbn-products.

Dataset
MEMORY (MB) TIME (S)

Sage GAS Refresh VISAGNN VISAGNN SAGE GAS Refresh VISAGNN VISAGNN
-Cat -Sum -Cat -Sum

ogbn-arxiv 2997 767 791 813 869 21 40 49 22 26

ogbn-products OOM 8886 8933 8982 9017 N/A 2522 2178 1303 1380

4.3 CONVERGENCE ANALYSIS

We provide a convergence analysis by comparing the test accuracy over time for baselines, including
GAS, Refresh, and our proposed VISAGNN, on the ogbn-arxiv and ogbn-products datasets. The
results in Figure 2 and 3 (S stands for summation, C stands for concatenation) reveal that when
staleness is not significant (as in the ogbn-arxiv case), Refresh performs poorly because it loses
information from neighbors. However, when staleness is significant (as in the ogbn-products case),
GAS’s convergence is heavily affected by staleness. In contrast, our model achieves faster convergence
and superior performance on both cases by effectively accounting for varying levels of staleness
in the historical embeddings during training, as introduced in Section 3. This advantage becomes
especially clear on large datasets, where staleness tends to be more severe. Overall, these findings
show that our algorithm not only improves performance but also accelerates convergence.

Figure 2: Test Accuracy on ogbn-arxiv Figure 3: Test Accuracy on ogbn-products

4.4 ABLATION STUDY

4.4.1 HYPERPARAMETERS

Given the three novel techniques introduced in our VISAGNN, we conducted an ablation study on the
ogbn-arxiv and ogbn-products datasets to identify which technique contributes the most to the final
performance. For simplicity, we denote the dynamic attention, staleness-aware loss, and augmented
embeddings as ”att,” ”loss,” and ”emb,” respectively. We use summation here for the augmented
embedding. To ensure a fair comparison, all other hyperparameters are kept consistent, and we test
various combinations of the three proposed strategies.

From Table 4, we observe that the best performance occurs when all three techniques are applied.
Specifically, the dynamic attention mechanism contributes the most, as it explicitly considers the
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staleness of each historical embedding during message passing and integrates this information into
the training process, preventing overly stale embeddings from harming the final representation.
Additionally, the proposed loss term enhances model performance by accounting for staleness in
each training iteration, injecting this information into the gradient through backpropagation, thereby
promoting staleness awareness in the model.

4.4.2 STALENESS RESISTANCE

Table 4: Prediction accuracy (%) comparison of different
components

Method ogbn-arxiv ogbn-products

VISAGNN w/o att 72.0 77.8
VISAGNN w/o loss 72.6 79.2
VISAGNN w/o emb 72.9 79.8
VISAGNN 73.2 80.2

Previous results demonstrated that our
model effectively mitigates the negative
impact of stale embeddings. In this sec-
tion, we further demonstrate our model’s
effectiveness in mitigating the adverse
effects of staleness by conducting ex-
periments with varying levels of stal-
eness through different batch sizes on
ogbn-arxiv and ogbn-products. When
the batch size is small, the staleness be-
comes significant because there are more parameter updates within an epoch, while the historical
embeddings are updated only once. We compare our model with existing representative historical
embedding methods: GAS, GraphFM, LMC, and Refresh. The results are presented in Table 5. In
these experiments, we strictly adhere to the settings outlined in their papers and official repositories.
The graphs undergo pre-clustering using METIS (Fey et al., 2021), with the total number of clusters
detailed in Table under the label “Clusters.” The term ”BS” refers to the number of clusters in the
current mini-batch.

We observe that the performance of all baselines significantly drops as staleness increases. Specifically,
we find that Refresh performs worse when staleness is low, as it directly drops neighbors based on
staleness criteria, resulting in the loss of important information from direct neighbors, as discussed
in Section 2. In contrast, our algorithms maintain strong performance across all cases, significantly
outperforming all baselines, particularly in scenarios with large datasets and small batch sizes where
staleness is prominent. For example, we observe a notable performance boost of 2.6% over GAS
on the ogbn-products dataset and 3.8% over Refresh on ogbn-arxiv when the batch size is 5. This
demonstrates the strong staleness resistance of our model, as all three proposed strategies help make
the training process staleness-aware, effectively mitigating the negative impact of stale embeddings
on model performance.

Table 5: Accuracy (%) for different batch sizes.
DATASET CLUSTERS BS GAS FM REFRESH LMC VISAGNN

Products 150
5 74.5 ± 0.6 74.8 ± 0.4 76.1 ± 0.3 75.0 ± 0.4 77.1 ± 0.3

10 75.6 ± 0.4 76.0 ± 0.3 77.5 ± 0.3 76.3 ± 0.2 79.2 ± 0.3
20 77.0 ± 0.3 77.2 ± 0.2 78.7 ± 0.2 77.5 ± 0.3 80.2 ± 0.2

Reddit 200
20 94.8 ± 0.2 94.7 ± 0.3 94.9 ± 0.2 95.0 ± 0.1 95.7 ± 0.1
50 95.0 ± 0.2 95.1 ± 0.3 95.1 ± 0.3 95.7 ± 0.2 96.2 ± 0.1
100 95.7 ± 0.1 95.6 ± 0.2 95.4 ± 0.2 96.2 ± 0.1 96.6 ± 0.2

Arxiv 40
5 69.5 ± 0.4 70.1 ± 0.3 68.9 ± 0.2 71.5 ± 0.2 72.7 ± 0.2

10 70.1 ± 0.3 70.5 ± 0.3 69.2 ± 0.3 71.8 ± 0.2 72.9 ± 0.2
20 71.7 ± 0.2 71.9 ± 0.2 70.4 ± 0.2 72.2 ± 0.1 73.2 ± 0.2

5 CONCLUSION

Historical embedding methods have emerged as a promising solution for training GNNs on large-scale
graphs by solving the neighbor explosion problem while maintaining model effectiveness. However,
staleness has become a major limitation of these methods. In this work, we first present a theoretical
analysis of this issue and then introduce VISAGNN, a versatile GNN framework that dynamically
incorporates staleness criteria into the training process through three key designs. Experimental
results show significant improvements over traditional historical embedding methods, particularly
in scenarios with pronounced staleness, while accelerating model convergence and preserving good
memory efficiency. It provides a flexible and efficient solution for large-scale GNN training.
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with personalized pagerank for classification on graphs. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=H1gL-2A9Ym.

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph
neural networks. Advances in Neural Information Processing Systems, 33:11984–11995, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple gnn
training acceleration with mlp initialization. ICLR, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

11

https://openreview.net/forum?id=H1gL-2A9Ym


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kezhao Huang, Haitian Jiang, Minjie Wang, Guangxuan Xiao, David Wipf, Xiang Song, Quan
Gan, Zengfeng Huang, Jidong Zhai, and Zheng Zhang. Refresh: Reducing memory access
from exploiting stable historical embeddings for graph neural network training. arXiv preprint
arXiv:2301.07482, 2023.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label propa-
gation and simple models out-performs graph neural networks. arXiv preprint arXiv:2010.13993,
2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems, 31, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
338–348, 2020.

Yao Ma and Jiliang Tang. Deep learning on graphs. Cambridge University Press, 2021.

Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on graph
neural networks as graph signal denoising. arXiv preprint arXiv:2010.01777, 2020.

Xuran Pan, Song Shiji, and Huang Gao. A unified framework for convolution-based graph neural
networks. https://openreview.net/forum?id=zUMD–Fb9Bt, 2020.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 7:15,
2020.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference 2021, pp. 2535–2546, 2021.

Yingxia Shao, Hongzheng Li, Xizhi Gu, Hongbo Yin, Yawen Li, Xupeng Miao, Wentao Zhang,
Bin Cui, and Lei Chen. Distributed graph neural network training: A survey. arXiv preprint
arXiv:2211.00216, 2022.

Zhihao Shi, Xize Liang, and Jie Wang. Lmc: Fast training of gnns via subgraph sampling with
provable convergence. arXiv preprint arXiv:2302.00924, 2023.

Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural networks with
self-label-enhanced training. arXiv preprint arXiv:2104.09376, 2021.

Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang Wang. Knowing
your fate: Friendship, action and temporal explanations for user engagement prediction on social
apps. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 2269–2279, 2020.
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A PROOF OF THEOREM

Notations. A graph is represented by G = (V, E) where V = {v1, . . . , vn} is the set of n nodes
and E = {e1, . . . , em} is the set of m edges. We denote the d-dimensional feature vectors of nodes
as X ∈ Rn×d. The graph structure of G can be represented by an adjacency matrix A ∈ Rn×n,
where Aij > 0 when there exists an edge between node vi and vj , and Ai,j = 0 otherwise. The
neighboring nodes of node v is denoted by N (v). The symmetrically normalized graph Laplacian
matrix is defined as L = I −A with Â = D−1/2AD−1/2 where D is the degree matrix.

Theorem 1 (Embeddings Approximation Error). Assuming a L-layers GNN g
(l)
θ (h) with a Lipschitz

constant β(l) for each layer l = 1, . . . , L, and N (i) is the set of neighbor nodes of i, ∀i ∈ V .
∥h̄(l) − h(l)∥ represents the distance between the historical embeddings and the true embeddings,
which corresponds to the staleness. The approximation error of the final layer embeddings is then
upper bounded by:

||h̃(L)
i − h

(L)
i || ≤

L∑
k=1

(

L∏
l=k+1

β(l)|N (i)| ∗ || ˜̂Ai,|| ∗ ||h̄(k−1) − h(k−1)||).

Proof. Suppose g̃(l)θ is a historical embedding-based GNN with L-layers, then the whole GNN model
can be defined as h̃(L) = g̃

(L)
θ ◦ g̃(L−1)

θ ◦ · · · ◦ g̃(1)θ , similarly, the full batch GNN can be defined as:
h(L) = g

(L)
θ ◦ g(L−1)

θ ◦ · · · ◦ g(1)θ , then:

||h̃(L) − h(L)|| = ||g̃(L)
θ ◦ g̃(L−1)

θ ◦ · · · ◦ g̃(1)θ − g
(L)
θ ◦ g(L−1)

θ ◦ · · · ◦ g(1)θ || (12)

= ||g̃(L)
θ ◦ g̃(L−1)

θ ◦ · · · ◦ g̃(1)θ − g̃
(L)
θ ◦ g̃(L−1)

θ ◦ · · · ◦ g(1)θ (13)

+ g̃
(L)
θ ◦ g̃(L−1)

θ ◦ · · · ◦ g̃(2)θ ◦ g(1)θ − g̃
(L)
θ ◦ g̃(L−1)

θ ◦ · · · ◦ g(2)θ ◦ g(1)θ − . . .
(14)

+ g̃
(L)
θ ◦ g(L−1)

θ ◦ · · · ◦ g(1)θ − g
(L)
θ ◦ g(L−1)

θ ◦ · · · ◦ g(1)θ || (15)

≤ ||g̃(L)
θ ◦ g̃(L−1)

θ ◦ · · · ◦ g̃(1)θ − g̃
(L)
θ ◦ g̃(L−1)

θ ◦ · · · ◦ g(1)θ ||+ (16)

· · ·+ ||g̃(L)
θ ◦ g(L−1)

θ ◦ · · · ◦ g(1)θ − g
(L)
θ ◦ g(L−1)

θ ◦ · · · ◦ g(1)θ || (17)

=

L∑
k=1

(
L∏

l=k+1

β(l)||g̃(k)θ ◦ g(k−1)
θ ◦ · · · ◦ g(1)θ − g

(k)
θ ◦ g(k−1)

θ ◦ · · · ◦ g(1)θ ||

)
(18)

=

L∑
k=1

(
L∏

l=k+1

β(l)||g(k)θ

(
h
(k−1)
i , h̄(k−1)

)
− g

(k)
θ

(
h
(k−1)
i , h(k−1)

)
||

)
(19)

≤
L∑

k=1

 L∏
l=k+1

β(l)||
∑
N (i)

˜̂
Ai, ∗ h̄(k−1) −

∑
N (i)

˜̂
Ai, ∗ h(k−1)||

 (20)

≤
L∑

k=1

(
L∏

l=k+1

β(l)|N (i)| ∗ || ˜̂Ai, ∗ h̄(k−1) − ˜̂
Ai, ∗ h(k−1)||

)
(21)

≤
L∑

k=1

(
L∏

l=k+1

β(l)|N (i)| ∗ || ˜̂Ai,|| ∗ ||h̄(k−1) − h(k−1)||

)
(22)
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