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Abstract
Evaluating the cognitive capacities of large lan-
guage models (LLMs) requires overcoming not
only anthropomorphic but also anthropocentric
biases. This article identifies two types of an-
thropocentric bias that have been neglected: over-
looking how auxiliary factors can impede LLM
performance despite competence (Type-I), and
dismissing LLM mechanistic strategies that dif-
fer from those of humans as not genuinely com-
petent (Type-II). Mitigating these biases neces-
sitates an empirically-driven, iterative approach
to mapping cognitive tasks to LLM-specific ca-
pacities and mechanisms, which can be done by
supplementing carefully designed behavioral ex-
periments with mechanistic studies.

1. Introduction
What cognitive competencies do large language models
(LLMs) have, if any? That is a question of immense theo-
retical and practical importance. It is also formidable, since
we currently lack an appropriate methodological framework
with which to answer it. Among existing scientific dis-
ciplines, experimental psychology likely offers the most
suitable approach. Yet, this methodological framework was
designed with human subjects in mind, and LLMs are decid-
edly non-human. While the rigorous experimental methods
of psychology provide an excellent foundation for investi-
gating the cognitive capacities of LLMs, we cannot simply
transfer them whole cloth. Indeed, the inferences enabled
by these methods in human studies are buttressed by a rich
set of background assumptions about how humans typi-
cally operate, and there is no a priori reason to think that
those assumptions also hold true of LLMs. As a result,
naively applying the methods of experimental psychology
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to LLMs risks succumbing to both anthropomorphic and
anthropocentric biases. Anthropomorphic bias involves at-
tributing human qualities to LLMs without justification –
being too eager to recognize the capacities of an LLM as
instances of our own. Anthropocentric bias, though more
challenging to articulate, roughly entails evaluating LLMs
according to human standards without adequate justification
for applying those standards, and refusing to acknowledge
the possibility of genuine cognitive competence that differs
in substantive ways from our own. This article aims to eluci-
date and expand upon this challenge, offering a constructive
path forward for resolving current disputes and advancing
our understanding of the capacities of LLMs.1

2. The performance/competence distinction
The distinction between competence and performance
(Chomsky, 1965) plays a crucial role in cognitive science.
The distinction is often introduced by defining competence
as the system’s internal knowledge underlying a particular
capacity, and performance as the observable behavior of
a system exercising that capacity (Firestone, 2020). For a
competent system, then, performance is the external man-
ifestation of competence. This formulation allows us to
draw upon examples illustrating how performance and com-
petence can diverge. For instance, a student cheating on
a test demonstrates performance success without compe-
tence, while a knowledgeable student failing due to anxi-
ety shows performance failure despite competence. Such
examples might invite criticism that applying the perfor-
mance/competence distinction to LLMs is inherently anthro-
pomorphic, since it relies on a concept of knowledge that
properly applies only to humans. We can avoid that concern
by providing an alternative formulation of the distinction. In
an experimental context, performance refers to how closely
a system’s behavior aligns with some normative standard of
success on a task, while competence refers to system’s com-
putational capacity to meet that normative standard under
ideal conditions.

It is widely recognized that there is a double dissociation
between performance and competence, and that this distinc-

1Our aim is not to debate whether LLMs should be designed
to have human-like capacities, but to discuss how we can fairly
assess and compare their capacities to human cognition.
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tion gives us reason to be wary not only of naive inferences
from good performance to competence, but also from bad
performance to lack of competence. Although the perfor-
mance/competence distinction is applied bidirectionally in
human experimental psychology, it is almost exclusively
applied in the former direction when studying LLMs. With-
out adequate justification, this asymmetry is suggestive of
anthropocentric bias. We suspect that, within the ML re-
search community, anthropocentric bias is motivated by the
reasonable desire to temper the opposite and perhaps more ir-
responsible form of bias – anthropomorphism, the tendency
to ascribe human-like capacities to LLMs without sufficient
evidence.2 However, fighting one bias by entrenching an-
other won’t foster impartiality (Buckner, 2021). Instead, as
the philosopher Elliot Sober once remarked in a discussion
of anthropocentric reasoning in comparative psychology,
“the only prophylactic we need is empiricism” (Sober, 2005,
p. 97).

3. Taxonomy of Anthropocentric Bias
Claiming that a pattern of reasoning is biased implies that
it lacks adequate justification. To effectively counter this
bias, we must understand the reasons behind its lack of
justification. In reality, there can be multiple such reasons,
each corresponding to different varieties of anthropocentric
bias that come with distinct methodological challenges. In
what follows, we propose a novel taxonomy of these biases,
and explore strategies to mitigate them.

3.1. Type-I anthropocentrism

The first kind of bias, which we call Type-I anthropocen-
trism, is the tendency to assume that an LLM’s performance
failures on a task designed to measure competence C al-
ways indicate that the system lacks C. This assumption is
flawed because it overlooks the possibility that auxiliary
factors caused the performance failure. In human psychol-
ogy, auxiliary factors are often illustrated by cases such as
the excessively nervous student described above: the stu-
dent’s nervousness negatively impacts her performance on
the test, even though she actually has the relevant knowledge
and would have otherwise done well. One might question
whether applying the concept of auxiliary factor to LLMs
introduces a subtle form of anthropomorphism, as it relies
in the human context on the existence of a complex, semi-
modular faculty psychology, where limitations in one faculty
might bottleneck performance in another. Since LLMs pre-
sumably do not have psychological faculties in that sense,
citing auxiliary factors as causes of LLM performance fail-
ure may seem like a nonstarter.

2See, for example, Emily Bender’s “On the NYT Magazine on
AI: Resist the Urge to be Impressed,” a response to a New York
Times Magazine article about OpenAI (Bender, 2022).

Table 1. Auxiliary factors overlooked by Type-I anthropocentrism
Type Example Reference

Task Metalinguistic Hu & Frank (2024)
demands judgment

Computational
limitations

Limited output
length

Pfau et al. (2024)

Mechanistic Competing Zhong et al. (2023)
interference circuits

However, auxiliary factors can and do influence LLM perfor-
mance. To make sense of an auxiliary factor in this context,
it is only necessary to assume that there exists a mechanistic
explanation of the LLM performance in question. Every
mechanistic explanation highlights some causal factors, and
relegates others to the inventory of enabling conditions that
we tend to ignore, on the basis of the assumption that they
will remain stable. For example, when we look for causes
of a forest fire, we cite the discarded cigarette, and ignore
the presence of oxygen. Sometimes, however, our assump-
tions about the enabling conditions are wrong. We might
assume that a particular enabling mechanism is working
when it isn’t. In that case, much like a burnt ignition fuse
on a winning Formula 1 car, the broken mechanism might
explain performance failure despite not typically being cited
as a cause of performance success. Alternatively, and of
particular importance in the study of comparative cogni-
tion, we might assume that some enabling mechanism is
present in the target system merely because it is present in
humans. If the target system lacks that enabling mechanism,
it might fail for reasons unrelated to the competence of in-
terest. In the mirror-test for self-recognition, for example,
we put a red mark on the animal’s body and then observe
whether it tries to remove the mark in the presence of a
mirror. The experimental design assumes that other animals
care about the fact that they have a red dot on their body.
If that enabling mechanism is absent, they will fail the self-
recognition test for reasons that have little or nothing to do
with self-recognition.

In LLMs, we can distinguish at least three kinds of auxiliary
factors (Table 1). The first and most familiar kind are aux-
iliary task demands. Hu & Frank (2024) provide a helpful
illustration of such demands in evaluating whether language
models are sensitive to syntactic features like subject-verb
agreement. They compare two approaches: (1) prompting
the model to make explicit grammaticality judgments, and
(2) directly comparing the probabilities the model assigns
to minimal pairs that vary the target feature. For the met-
alinguistic approach, they use prompts such as: “Here are
two English sentences: 1) Every child has studied. 2) Ev-
ery child have studied. Which sentence is a better English
sentence? Respond with either 1 or 2 as your answer.” They
then analyze both the output and the probabilities assigned
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to ‘1’ and ‘2’. For the direct estimation approach, they
prompt LMs with minimal pairs such as “every child has
studied” and “every child have studied”, and compare the
log probabilities assigned to each string. A model is con-
sidered successful if it assigns a higher probability to the
grammatical sentence. Across model sizes and datasets,
Hu and Frank find that direct probability estimation yields
results that differ from and are often better than the met-
alinguistic approach. They conclude that metalinguistic
prompting introduces an auxiliary task demand - the abil-
ity to generate explicit grammaticality judgments - that is
irrelevant to the underlying syntactic competence of interest.
In contrast, direct probability estimation more validly mea-
sures the target capacity. We concur with their assessment.
What makes it a genuine demand is the fact it degrades per-
formance. What makes it genuinely auxiliary is the fact that
metalinguistic judgment is conceptually independent of the
psychological construct of interest, which is the capacity to
track grammaticality.

Neglecting the effect of auxiliary task demands on model
performance can lead inferences about competence astray.
Such negligence is compounded in comparative studies with
mismatched experimental conditions, resulting in divergent
auxiliary task demands for LLMs and human subjects. This
concern is highlighted by Lampinen (2023)’s case study
comparing human and model performance on recursively
nested grammatical structures, in response to prior work by
Lakretz et al. (2022). Lakretz et al. found that humans out-
performed language models on challenging long-distance
subject-verb agreement dependencies in embedded clauses.
However, Lampinen notes that human subjects were given
substantial instructions, training and feedback to orient them
to the experimental task, while models were evaluated “zero-
shot” without any task-specific context. The discrepancy in
experimental conditions confounds the comparison: the ad-
ditional context provided to humans but not models can be
interpreted as imposing weaker auxiliary task demands on
humans than models. To level the playing field, Lampinen
tested LLMs on the same task by providing it with prompts
containing a few examples, intended to match the orienting
context given to human subjects. With this modest task-
specific context, LLMs perform as well as or better than
humans, even on challenging sentences with deeper nesting
than those tested in humans. This cautionary tale illustrates
how mismatched experimental conditions across humans
and models – with respect to instructions, examples, moti-
vation, and other factors – can distort comparisons of their
capacities. Meaningful comparative evaluation requires that
humans and models are subject to similar auxiliary task de-
mands, just as comparative psychology strives for “species-
fair comparisons” across humans and animals.

Auxiliary task demands present a particularly challenging
issue in LLM evaluation because tasks that are considered

trivial for humans may not be trivial for an LLM. The clas-
sification of a task as trivial depends on the causal structure
of the system being tested, specifically whether the cause
of performance failure is associated with the parts and op-
erations that explain its success when things go well. If
the cause of performance failure is related to other parts of
the system that do not contribute to its success in normal
circumstances, then it is a non-trivial task demand relative to
that system. This problem is exemplified by a recent debate
regarding the possibility that LLMs possess competence in
analogical reasoning. Webb et al. (2023) showed that LLMs
can match or surpass average human performance on vari-
ous novel analogical reasoning tasks, including letter-string
analogy tasks such as [ABC] → [ABE], [MNO] → [?].
However, Lewis & Mitchell (2024) found that when using
a variant of letter-string analogy tasks with a permuted al-
phabet, model performance deteriorates. They interpret this
performance drop as evidence that LLMs lack general com-
petence in analogical reasoning. In response, Webb et al.
(2024) argue that reasoning about the permuted alphabet
necessitates that the model count letter indices, which it
cannot do effectively without access to a Python interpreter
(see Chang & Bisk, 2024). Essentially, Webb et al. assert
that counting is an auxiliary task demand that prevents the
inference from poor performance to lack of competence.
In a recent blog post, Mitchell contends that counting can-
not be an auxiliary task demand because humans do not
need to count when performing the permuted alphabet task
(Mitchell, 2024). However, while humans may not explicitly
assign numerical indices to letters, they do need to track
how many times to apply successor or predecessor opera-
tions in the alphabet sequence to solve the task. This is
arguably an auxiliary task demand, though it may not im-
pede human performance, particularly when subjects can
refer back to the displayed permuted alphabet as often as
needed. Likewise, counting – whether with letter indices
or sequential operation tracking – is an auxiliary demand
for LLMs. Unlike with humans, however, this is a strong
auxiliary demand given LLM’s limited ability to count with-
out a Python interpreter or sophisticated chain-of-thought
prompt templates. This discrepancy in the relative impact
of counting-related task demands could explain the perfor-
mance gap on counterfactual letter-string analogy tasks.

Another kind of auxiliary factor is what we might call input-
dependent computational limitations. There is converging
evidence that the expressive power of Transformer-based
models can be constrained by the number of tokens gen-
erated before producing an answer (Merrill & Sabharwal,
2024; Pfau et al., 2024). Pfau et al. (2024)’s experiments on
the 3SUM task, which involves determining whether a set of
numbers contains a trio that sums to zero, demonstrate that
Transformers can achieve perfect accuracy when permitted
to generate “filler” tokens (e.g., repeated dots) that serve as
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scaffolding for additional computational steps. In contrast,
accuracy remains at baseline if the model must provide an
immediate answer without any intermediate tokens. These
results suggest that even when a Transformer model has
the latent competence to solve a task, as measured by its
performance given enough intermediate tokens, it may still
fail to manifest that competence if an insufficient number of
tokens are allowed for the internal computations necessary
to arrive at the correct answer. In other words, the model’s
performance can be bottlenecked by the number of com-
putational steps it is able to perform before outputting an
answer, which depends on the number of tokens generated –
a contingent property of the input on each trial. Importantly,
this is the case even when additional tokens generated are
semantically meaningless “filler” tokens, rather than inter-
pretable reasoning steps. This suggests the intermediate
tokens can provide raw additional computational capacity,
rather than task-specific information. These findings high-
light how some errors made by LLMs on complex reasoning
tasks may not always reflect a genuine lack of task-relevant
competence, but rather a limitation in the depth of compu-
tation afforded by the input-dependent number of tokens
generated.

A third kind of auxiliary factor is what we might call mech-
anistic interference, according to which a network learns a
mechanism for solving a certain kind of problem, but the
activity of that mechanism is interrupted by another, concep-
tually distinct process. Recent work on Transformer models
trained on modular addition tasks provides insights into how
a model’s performance can be impacted by such auxiliary
factors. Nanda et al. (2022) show that even after a Trans-
former has formed a generalizable circuit that implements an
algorithm to solve modular addition, its test set performance
can still be impeded by previously memorized input-output
mappings until a later “cleanup” phase in which this rote
memorization is removed. This shows that the presence of a
general solution algorithm does not necessarily translate to
strong test set performance when there is interference from
auxiliary computations. Zhong et al. (2023) further show
that even in fully trained networks that have “grokked” the
task, there can be multiple concurrent algorithms or circuits
that interact to solve the task and potentially interfere with
each other. For instance, a Transformer might contain one
circuit implementing a highly general algorithm alongside
another implementing a more limited or approximate algo-
rithm for the same task. The model’s overall performance
could then be negatively impacted by the causal interference
of the lesser algorithm, even though the latent competence
to fully solve the task is present. Taken together, these find-
ings illustrate that a model’s performance on a task can be
meaningfully influenced by auxiliary computations that are
conceptually distinct from the core competence required for
the task.

3.2. Type-II anthropocentrism

Type-II anthropocentrism is the tendency to assume that
even when LLMs achieve performance equal to or better
than the average human, any substantive difference between
the human strategy for solving the problem and the LLM
strategy for solving the problem is, ipso facto, evidence
that the LLM’s solution is not general. In slogan form, the
assumption says: all cognitive kinds are human cognitive
kinds.3 In other words, if an LLM arrives at a solution
through a different computational process than humans use,
Type-II anthropocentrism would lead us to conclude that the
LLM’s approach is not genuinely competent, regardless of
how well it performs. This tendency often seems premised
upon the assumption that any significant difference between
human and LLM strategies for solving a problem necessarily
implies that the LLM’s solution is narrow or lacks generality.

However, this line of thinking risks obscuring the real capa-
bilities of LLMs. Consider a model that learns a general al-
gorithm for addition, rather than simply memorizing a large
set of specific addition problems and their solutions. Now
suppose that humans use a somewhat different algorithm
for addition. The mere fact that the LLM’s approach differs
from the human approach does not mean that the LLM lacks
real competence at addition. What matters is whether the
LLM has learned a robust, generalizable strategy –– not
whether this strategy mirrors human cognition. Indeed, we
can easily imagine an LLM outperforming humans at addi-
tion while using a distinctly unhuman-like computational
process.

The key point is that competence, once abstracted from a
narrowly human-centric understanding of the term, should
be related to the generality and flexibility of the system’s
computations rather than superficial resemblance to the hu-
man cognitive architecture. An LLM that relies on a giant
lookup table of memorized addition problems would not be

3This bias bears some similarities to what Buckner (2013) calls
“anthropofabulation” in comparative psychology, though it is not
equivalent. Anthropofabulation is a compound bias that results
from two distinct tendencies: semantic anthropocentrism, which
involves defining psychological terms (such as “theory of mind”
or “episodic memory”) in ways that implicitly require human-level
cognitive sophistication; and the exaggeration of typical human
cognitive abilities, which involves overestimating the consistency,
domain-generality, and reflective nature of human cognition in
everyday situations. When combined, these biases lead researchers
to set unrealistically high standards for cognitive capacities, based
on an idealized and often inaccurate view of human performance.
In contrast, Type-II anthropocentrism neither inflates human per-
formance nor focuses solely on the semantics of psychological
terms. Instead, it assumes that the specific computational processes
used by humans are necessary for genuine competence, regardless
of performance outcomes. Despite these differences, both biases
can lead to similar errors: setting standards for genuine cognition
that no non-human system could meet, even if that system matched
or exceeded normal human performance.
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competent at addition, because it could not flexibly apply
its memorized content-specific transitions to novel cases.
But a neural network that learns a general addition algo-
rithm could be seen as competent in the domain, even if the
solution it has converged upon is distinctly unhuman-like.

3.3. An objection

We now anticipate an objection to our discussion of Type-II
anthropocentrism: since the only indisputable examples of
language-driven cognition we have are human, and since the
capacities of LLMs are acquired through training on human-
produced data, isn’t it appropriate to treat human cognition
as the only appropriate yardstick for studying LLMs? Our
response is that it depends on how we conceive of human
cognition as a yardstick. While we can – and presumably
must – begin our investigation of LLM competencies by
comparing them to our own, the role of human cognition
as a benchmark can be overstated in two ways. First, the
human competencies we use as reference points should be
regarded as what philosopher Ali Boyle calls “investigative
kinds” (Boyle, 2024) - they serve as an initial search tem-
plate, but not as necessary conditions for cognitive status.
Second, questions of the form “Do LLMs have cognitive
competence C?” should be treated as empirical questions.
Though this may seem self-evident, it is a principle that
is easy to violate, particularly when we assume that facts
about implementation are among the distinguishing features
between competence A and competence B. If facts about
the physical implementation of a competence are included
in its definition, then it will be impossible for LLMs, which
are implemented in silicon computers, to acquire any of the
competencies that humans enjoy. Moreover, this impossibil-
ity will be logical, rather than empirical. In order to preserve
the empirical character of debates about LLM capacities,
therefore, we must focus on the algorithmic level of descrip-
tion, where facts about implementation are explicitly set
aside.

The investigation of cognitive capacities in LLMs is best
viewed as an iterative, cyclic process in which our concep-
tion of the relevant competencies and our understanding
of the mechanisms that implement them in LLMs mutu-
ally inform and revise each other. Solving the challenge of
mapping cognitive tasks to capacities often involves con-
sideration of the underlying mechanisms (Francken et al.,
2022). But to home in on the mechanisms responsible for a
particular competence, we must make principled decisions
about the level of abstraction at which to characterize the
mechanism and about how to delineate the boundaries of the
mechanism itself. These decisions, in turn, depend on how
we conceptualize the cognitive phenomenon we are trying
to explain. What results is a investigative process in which
our characterization of cognitive tasks, our ontology of ca-
pacities, and our understanding of mechanisms evolve in

tandem as we search for maximally predictive and explana-
tory mappings between them. In the case of LLMs, this
process may lead us quite far from our initial starting point.
Though we inevitably begin by searching for human-like
competencies in LLMs, the gradual discovery and refine-
ment of LLM-specific mechanisms may ultimately produce
a novel ontology of cognitive kinds, one that is optimized
for explaining the distinctive strengths and weaknesses of
machine intelligence rather than human intelligence. In this
way, the iterative nature of the investigative process allows
it to drift away from its anthropocentric origins.

4. Conclusion
Like humans, LLMs can be right for the wrong reasons; we
should not take good performance on various benchmarks,
particularly those designed without attention to construct
validity and potential confounds, at face value. However,
they can also be wrong for the wrong reasons. Various aux-
iliary factors can interfere with their performance, such that
both successes and failures only provide defeasible evidence
about their underlying competence in a domain. Our analy-
sis suggests that anthropocentrism, being more subtle than
anthropomorphism, has garnered less theoretical scrutiny.
Despite this relative neglect, we argued that anthropocen-
tric bias can significantly impede the objective assessment
of LLM capabilities. To address this gap, we presented a
systematic taxonomy of anthropocentric reasoning about
LLMs.

The most direct way to work out whether auxiliary factors
actually cause performance degradation on a task is to look
inside the model. As such, mechanistic interpretability tech-
niques are essential for counteracting Type-I anthropocen-
trism. However, the role of mechanistic interpretability in
addressing Type-II anthropocentrism is more nuanced. It
is possible to decode a feature or circuit of interest from
a large neural network even if that feature or circuit does
not significantly contribute to the network’s functionality
(Makelov et al., 2023; Huang et al., 2023). Consequently,
there is a risk of anthropomorphic projection in mechanistic
interpretability research. As previously noted, we should
be cautious not to combat anthropocentrism by resorting to
anthropomorphism. Nevertheless, there exist mechanisms
that process information in ways that differ from typical
human strategies but are nonetheless robust and general.
Mechanistic interpretability research can help identify these
mechanisms. When such mechanisms are discovered, we
should not dismiss them simply because they deviate from
common human approaches.
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cognitive science. Noûs, n/a(n/a), 2024. ISSN 1468-0068.
doi: 10.1111/nous.12480.

Buckner, C. Morgan’s Canon, meet Hume’s Dictum: Avoid-
ing anthropofabulation in cross-species comparisons. Bi-
ology & Philosophy, 28(5):853–871, September 2013.
ISSN 1572-8404. doi: 10.1007/s10539-013-9376-0.

Buckner, C. Black Boxes or Unflattering Mirrors? Com-
parative Bias in the Science of Machine Behaviour. The
British Journal for the Philosophy of Science, pp. 000–
000, April 2021. ISSN 0007-0882. doi: 10.1086/714960.

Chang, Y. and Bisk, Y. Language Models Need Inductive
Biases to Count Inductively, May 2024.

Chomsky, N. Aspects of the Theory of Syntax. Cambridge,
MA, USA: MIT Press, 1965.

Firestone, C. Performance vs. competence in human–
machine comparisons. Proceedings of the National
Academy of Sciences, 117(43):26562–26571, October
2020. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.
1905334117.

Francken, J. C., Slors, M., and Craver, C. F. Cognitive ontol-
ogy and the search for neural mechanisms: Three founda-
tional problems. Synthese, 200(5):378, September 2022.
ISSN 1573-0964. doi: 10.1007/s11229-022-03701-2.

Hu, J. and Frank, M. C. Auxiliary task demands mask the
capabilities of smaller language models, April 2024.

Huang, J., Geiger, A., D’Oosterlinck, K., Wu, Z., and Potts,
C. Rigorously Assessing Natural Language Explanations
of Neurons, September 2023.

Lakretz, Y., Desbordes, T., Hupkes, D., and Dehaene, S.
Can Transformers Process Recursive Nested Construc-
tions, Like Humans? In Proceedings of the 29th Inter-
national Conference on Computational Linguistics, pp.
3226–3232, Gyeongju, Republic of Korea, October 2022.
International Committee on Computational Linguistics.

Lampinen, A. K. Can language models handle recursively
nested grammatical structures? A case study on compar-
ing models and humans, February 2023.

Lewis, M. and Mitchell, M. Using Counterfactual Tasks
to Evaluate the Generality of Analogical Reasoning in
Large Language Models, February 2024.

Makelov, A., Lange, G., and Nanda, N. Is This the Subspace
You Are Looking for? An Interpretability Illusion for
Subspace Activation Patching, December 2023.

Merrill, W. and Sabharwal, A. The Expressive Power of
Transformers with Chain of Thought, March 2024.

Mitchell, M. Stress-Testing Large Language Models’ Ana-
logical Reasoning Abilities, May 2024.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Steinhardt,
J. Progress measures for grokking via mechanistic inter-
pretability. In The Eleventh International Conference on
Learning Representations, September 2022.

Pfau, J., Merrill, W., and Bowman, S. R. Let’s Think Dot
by Dot: Hidden Computation in Transformer Language
Models, April 2024.

Sober, E. Comparative psychology meets evolutionary bi-
ology. In Datson, L. and Mitman, G. (eds.), Thinking
with Animals: New Perspectives on Anthropomorphism.
Columbia University Press, 2005.

Webb, T., Holyoak, K. J., and Lu, H. Emergent analogi-
cal reasoning in large language models. Nature Human
Behaviour, pp. 1–16, July 2023. ISSN 2397-3374. doi:
10.1038/s41562-023-01659-w.

Webb, T., Holyoak, K. J., and Lu, H. Ev-
idence from counterfactual tasks supports emer-
gent analogical reasoning in large language models.
https://arxiv.org/abs/2404.13070v1, April 2024.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The Clock
and the Pizza: Two Stories in Mechanistic Explanation
of Neural Networks, June 2023.

6


