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ABSTRACT

We propose to perform self-supervised disentanglement of depth and camera pose
from large-scale videos. We introduce an Autoencoder-based method to recon-
struct the input video frames for training, without using any ground-truth anno-
tations of depth and camera. The model encoders estimate the monocular depth
and the camera pose. The decoder then constructs a Multiplane NeRF represen-
tation based on the depth encoder feature, and renders the input frames with the
estimated camera. The learning is supervised by the reconstruction error, based
on the assumption that the scene structure does not change in short periods of time
in videos. Once the model is learned, it can be applied to multiple applications
including depth estimation, camera pose estimation, and single image novel view
synthesis. We show substantial improvements over previous self-supervised ap-
proaches on all tasks and even better results than counterparts trained with camera
ground-truths in some applications. Our code will be made publicly available.
Video examples can be found in: https://anonymous—result.github.
io/.

1 INTRODUCTION

The Autoencoder is a classical technique for visual representation learning. Besides learning repre-
sentations for recognition tasks (Vincent et al., 2008; Rasmus et al., 2015; He et al., 2021), it has also
been widely utilize to learn disentangled representations (Kulkarni et al., 2015; Park et al., 2020).
For example, by introducing certain inductive biases, the Autoencoder can learn the disentanglement
between structure and texture (Park et al., 2020), pose, light, and shape (Kulkarni et al., 2015) in a
self-supervised manner. However, most methods using autoencoders focus on using 2D images.

We propose an Autoencoder that learns representations from videos and disentangles the scene struc-
ture and the camera pose. Our method learns such disentanglement in a self-supervised manner,
without any supervision from ground-truth camera pose and depth. To achieve this goal, we utilize
continuity and persistence in natural videos where the 3D structure remains static over short peri-
ods. Specifically, our Autoencoder model encodes the input frames into two separate intermediate
representations of 3D scene structure and camera pose. These representations are used to decode
the same video frames as the outputs. To ensure that the model learns disentangled representations
of depth and pose, we propose a differentiable rendering-based decoder.

We use differentiable rendering with Neural Radiance Fields (NeRF) as our decoder, inspired by
its recent success in view synthesis (Mildenhall et al., 2020). Despite its effectiveness in rendering
high-quality images, constructing NeRF requires accurate ground-truth camera poses and the learned
NeREF is specific to only one scene in most cases. This limits NeRF’s applications in large-scale
noisy real-world videos. Interestingly, real-world videos often come with slow camera changes
(continuity) instead of presenting diverse viewpoints. Multiple continuous frames from the video can
reconstruct multiplane images for a given view (Tucker & Snavely, 2020). With this observation, Li
et al. (2021) propose to combine the discrete multiplane images into NeRF to create continuous
multiplane neural radiance fields, which generalizes NeRF robustly and efficiently to synthesize
diverse scenes instead of overfitting to one scene. However, ground-truth cameras computed from
Structure-from-Motion (SfM) are still required for learning in (Li et al., 2021). Running SfM in
training and testing can be time-consuming and it does not always succeed.

In this paper, we apply the Multiplane NeRF in our decoder and train our Autoencoder model end-
to-end on large-scale video data without ground-truth camera pose. Given the input video frames,
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Figure 1: The disentangled representations learned in our model can be applied to depth estimation, novel
view synthesis, and camera pose estimation.

our framework uses a depth encoder to perform monocular depth estimation for each frame (which
is encouraged to be consistent), and a camera pose encoder to estimate the relative camera pose
between every two consecutive frames. The depth encoder feature and the camera pose are the
intermediate disentangled representations. For each input frame, we construct a Multiplane NeRF
representation with the depth encoder feature and render it to decode another input frame based on
the estimated camera pose. We train the model with the reconstruction loss between the rendered
frames and the input frames. However, using a reconstruction loss alone can easily lead to a triv-
ial solution as the estimated monocular depth, camera pose, and the NeRF representation are not
necessarily on the same scale. One key technical contribution we propose is a novel scale calibra-
tion method during training to align these three representations. The advantages of our framework
are: (i) Unlike NeREF, it does not need 3D camera pose annotations (e.g., computed via StM); (ii) It
generalizes training on a large-scale video dataset, which leads to better transfer.

At test time, the learned representations can be applied to multiple downstream tasks including:
(i) monocular depth estimation from a single RGB image; (ii) camera pose estimation; (iii) single-
image novel view synthesis. We conduct all experiments on indoor scenes in this paper, as shown
in Figure 1. For depth estimation, we train on Scannet (Dai et al., 2017). Our method significantly
improves over previous self-supervised depth estimation approaches not only on the Scannet test set
and also generalizes to NYU Depth V2 (Nathan Silberman & Fergus, 2012) better. For camera pose
estimation, we use RealEstate10K (Zhou et al., 2018) following (Lai et al., 2021) and consistently
achieve much better performance compared to previous approaches. For novel view synthesis from
a single image input, we estimate the monocular depth using the depth encoder, construct the mul-
tiplane NeRF, and then render another view with a given camera. On RealEstate 10K (Zhou et al.,
2018), our approach significantly improves over methods that learn without camera ground-truth
and also outperform recent methods that learn with the ground-truth cameras (Wiles et al., 2020).
To our knowledge, our method is the first work that learns neural radiance fields on a large-scale
dataset without camera ground truth.

2 RELATED WORK

Disentangled representations. Disentangled representations aim to decompose complex visual
data into several lower-dimensional individual factors that control different types of attributes. Com-
mon approaches to achieve disentanglement include using Generative Adversarial Networks (Chen
et al., 2016b; Huang et al., 2018; Karras et al., 2019; Lee et al., 2020; Zhu et al., 2018) and Autoen-
coders (Jha et al., 2018; Liu et al., 2020; Park et al., 2020; Pidhorskyi et al., 2020). For instance,
Park et al. (2020) proposed an Autoencoder to disentangle texture from the structure by enforcing
one component to encode co-occurrent patch statistics across different parts of the image. Besides
learning from images, recently researchers have looked into using the temporal continuity in videos
for learning disentangled representations (Denton et al., 2017; Minderer et al., 2019; Wiles et al.,
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2018; Xue et al., 2016; Lai et al., 2021). The most related work to our method is (Lai et al., 2021),
where a Video Autoencoder is proposed to disentangle the static 3D scene structure and camera mo-
tion from videos. However, their 3D structure is represented by deep voxel features, which cannot
reveal the explicit scene geometric structure. Our work is able to directly infer depth as the scene
representation, which can be directly used as a downstream application.

Novel View Synthesis. Learning-based novel view synthesis has been a long stand task. Researchers
have studied on using explicit 3D representations including voxels (Jimenez Rezende et al., 2016;
Kar et al., 2017; Tulsiani et al., 2017; Sitzmann et al., 2019a; Tung et al., 2019; Nguyen-Phuoc
et al., 2019), depth maps (Wiles et al., 2020; Rockwell et al., 2021) and multiplane image (Zhou
et al., 2018; Srinivasan et al., 2019; Tucker & Snavely, 2020; Li et al., 2021) for view synthesis. For
example, Wiles et al. (2020) proposed to infer the depth map from the input image as an intermedi-
ate representation and perform rendering from another view for synthesis. Instead of using a single
depth map, multiplane image (MPI) representation is utilized to explicitly model the occluded con-
tents during view synthesis (Tucker & Snavely, 2020). Besides explicit 3D representations, recent
work on using implicit representations have shown superior performance in view synthesis (Sitz-
mann et al., 2019b; Niemeyer et al., 2020). Following this line of research, NeRF and its subsequent
works (Yu et al., 2021; Trevithick & Yang, 2021; Martin-Brualla et al., 2021; Schwarz et al., 2020;
Wang et al., 2021; Meng et al., 2021; Chen et al., 2021) have even achieved photo-realistic ren-
dering results. While the original formulation is restricted to one single instance with the provided
camera, recent extensions have made it available to generalize to multiple instances with camera
ground-truths (Yu et al., 2021; Trevithick & Yang, 2021; Li et al., 2021) or training on a single
scene without camera ground-truths (Wang et al., 2021; Meng et al., 2021). For example, Wang
et al. (2021) shows that the camera pose can be jointly optimized as learnable parameters with NeRF
training. However, this approach only works on training NeRF for a single scene. None of the pre-
vious works can generalize to training on large-scale data and without cameras at the same time.

Self-Supervised Depth Estimation. Single image depth estimation has been widely studied in a
supervised learning setting (Eigen et al., 2014; Laina et al., 2016; Kendall et al., 2017). However,
with the absence of ground-truth depth or camera pose in most real-world data, self-supervised
approaches using image reconstruction as the training signal without relying on neither depth nor
camera annotations are proposed (Zhou et al., 2017; Vijayanarasimhan et al., 2017; Yin & Shi, 2018;
Yang et al., 2018; Mahjourian et al., 2018; Gordon et al., 2019; Li et al., 2020). In this paper, we also
follow the setting on learning without both depth and camera ground-truths and apply it on indoor
scenes. Different from previous approaches, we show that depth can be learned by rendering with
multiplane NeRF, which not only significantly improves depth estimation, but also allows better
camera estimation and novel view synthesis results.

Self-supervised learning on video. Our work is also related to self-supervised learning of visual
representations from videos (Agrawal et al., 2015; Han et al., 2019; Misra et al., 2016; Wang &
Gupta, 2015; Wang et al., 2019; Jabri et al., 2020). However, instead of focusing on learning rep-
resentations for recognition tasks, our work is more focused on scene geometric understanding for
tasks including camera pose estimation, depth estimation, and novel view synthesis.

3 PROPOSED METHOD

In this work, we aim to learn disentangled 3D representations from videos in a self-supervised
manner (no camera pose and depth ground-truths) in an autoencoder fashion. The inputs to our
model are video frames (3 frames in our experiments) that are nearby in a short period of time.
The video frames are processed with the depth encoder and the camera pose encoder for the depth
estimation and camera trajectory estimation respectively. In the decoding process, we construct
the multiplane NeRF representation using the depth encoder feature and render using the estimated
cameras. We minimize the reconstruction loss between the rendered frames and the input frames to
learn the full model. Our model learns disentanglement of the intermediate representations including
the depth feature (which is used to predict depth) and the camera pose. We introduce the encoding
process in sections 3.1 and 3.2, the decoding process in section 3.3, and the training details in
section 3.4.

3.1 CAMERA POSE ENCODER

The camera pose encoder predicts the relative camera transformation between two input frames as
shown at the bottom of Fig 2 (blue box). Specifically, given a source frame I, and a target frame
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Figure 2: Method overview. Given a short clip of video, the camera encoder and depth encoder disentangle
it into depth maps and relative camera trajectory. The Multiplane NeRF is utilized as the decoder to generate
the target images according to the estimated camera pose. During training, the model is supervised via the
reconstruction loss between the input frames and the generated ones. During testing, three downstream tasks,
i.e.camera pose estimation, depth estimation, and novel view synthesis can be achieved within a single model.

I as inputs, it computes the rotation matrix and translation matrix w.r.t the source view image.
For an input sequence during training, we use the middle frame as the source view image and take
the remaining frames before and after as target images. We follow the ResNet (He et al., 2016)
architecture to design our encoder, which takes both frames as inputs (i.e., stacked along the channel
dimension leading to six input channels) and outputs a 6-dim vector as the 3D rotation and translation
parameters. We formulate the camera encoder as,

Te = [R, t] = ]:traj([lsvlt]) 1)

The estimated camera poses for all target images can construct a trajectory and then be used for
target view synthesis in the decoder which will be discussed later.

3.2 MONOCULAR DEPTH ENCODER

We design a separate encoder for monocular depth estimation from each single input frame, as shown
in the upper part of Fig. 2 (green box). We adopt the network architecture from MnasNet (Tan et al.,
2019) as the depth encoder network, which extracts feature maps with different resolution scales to
predict the depth map. We formulate the depth encoder as,

Ds = ]:dep(Is) (2)

Note that the raw output Dy is the disparity map and needs to be converted to the depth map. The
output monocular depth map is used as the intermediate representation to guide the construction of
Multiplane NeRF.

3.3 MULTIPLANE NERF BASED DECODER

The disentanglement is learned via back-propagation from the differentiable decoder. To enable the
optimization, we assume that the input video frames are taken from a short range of time scales,
and the scene structure remains the same. This assumption provides supervision for our method
to construct a Multiplane NeRF representation from a single image in our decoder, and use this
representation to render the outputs. We first introduce the multiplane image representation, and
then illustrate how to combine it with NeRF to perform rendering in our framework.

Multiplane Images. We review Multiplane Images (MPIs) (Zhou et al., 2018), where an image is
represented by a set of parallel planes of RGB-a, {(c;, ;) }2 |, where ¢; € RTXW*3 are RGB val-
ues, a; € RE>XWX1 gre the alpha values and D is the number of planes. Each plane corresponds to a
specific disparity (inverse of depth) value d; uniformly sampled from a predefined range|[d min , dmax)-
Given the rotation matrix R and translation matrix ¢ from target to source view and the intrinsics
matrix for source and target views K, Ky, we can generate the target-view image I, and the dis-
parity map D, via the following steps. We use D to denote the monocular depth directly estimated
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from the network, and D to denote the depth generated by rendering from MPI. First, the warping
operation for the ¢-th plane from target to source view can be formulated as the following,

Ug Ut
[Us] ~ Kg (R*tani)(Kt)71 |\’Ut‘| (3)
1 1

where n is the norm vector of the i-th plane and [us, vs], [u, v¢] are coordinates in the source and
target views respectively. The MPI representation of the target view can be obtained by warping
each layer from the source viewpoint to the desired target viewpoint using Eq. 3. Then, the MPI
representation under target view (¢, o) can be described as,

c(ug, v) = ci(us,vs)  al(ug, vp) = o (us, vs) “4)

Finally, the RGB image and the disparity map under both the source view and target view can be
obtained via the same compositing procedure proposed in (Zhou et al., 2018),

R D D R D D
Is = Z(CZ(X: H (1 — Oéj)) Ds = Z(diai H (1 — Oéj))
i=1 j=it1 i=1 j=it1
) D D . D D (5)
I = Z(céa; H (1-— a;)) D, = Z(dia; H (1-— a;))
i=1 j=it+1 i=1 j=it1

Multiplane NeRF. Going beyond RGB images, we generalize the representations by introducing
NeRF as (Li et al., 2021), namely Multiplane NeRF. Different from MPI which consists of multiple
planes of RGB-« images at sparse and discrete depths, the Multiplane NeRF achieves continuous
representation of 3D scenes by predicting RGB-« images at any arbitrary depth. Formally, the image
is represented by {(c;, 0;)} 2 ;, where o; is the volume density of the i-th plane. We follow a similar
setting to construct the Multiplane NeRF representation as our decoder to generate the novel view
images. Specifically, we extract the intermediate representation from the monocular depth encoder
(gray cube in Fig. 2) as the image feature for I,. We combine this feature with a disparity level d; as
the inputs for an internal encoder-decoder module, which outputs the RGB image c¢; and the density
map o; as a 4-channel map {(c;, 0;)} (multiple orange planes in Fig. 2). We have different planes of
{(¢;,04)} given different disparity d;, and we use positional encoding to encode each d;. The i-th
plane for the Multiplane NeRF representation is formulated as,

{Ciagi} = ]:mpi (IS7PE(dl)) (6)

Note we only need to run the depth encoder once to extract the image feature for I;. To reconstruct
one target view, given the camera trajectory obtained from the camera pose encoder (blue module
in Fig 2), we first compute the new RGB and density values on the target view (¢}, o) using homog-
raphy warpping described in Eq. 3, then replace the alpha map « and the compositing operation in
Eq. 5 by the volume density o and the naive rendering procedure used in (Mildenhall et al., 2020)
to obtain the image and the disparity map. The advantages of multiplane NeRF over the vanilla
NeRF include: (i) it builds the frustum from a single image; (ii) it has a better generalization ability
allowing training on large-scale data, which makes it more feasible than NeRF as the decoder in our
autoencoder-like architecture.

3.4 SUPERVISION WITH RGB

Our model is trained in a self-supervised manner by reconstructing multiple video frames as shown
in Fig. 2. During training, we select the center frame of N-frame clip (N = 3 in our experiments)
as the source view image I;. We use the depth encoder to estimate the monocular depth D for the
source view. We use the camera encoder taking the source view image I, and the target view image
I, as the inputs to obtain the relative camera pose (R, t). Together with the depth encoder feature
(gray box in Fig. 2) and the estimated camera, we can construct the Multiplane NeRF representation
and render the target view (ft, ﬁt) as the outputs. The autoencoder is supervised by comparing
the rendered target image I, and the ground-truth target image I;. However, a direct reconstruction
objective can easily lead to trivial solutions given both depth and camera ground truths are not
provided in training. We propose two key technical contributions including auto-scale calibration
and new loss functions to enable successful disentanglement of depth and camera pose.
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3.4.1 AUTO SCALE CALIBRATION

Recall that our Multiplane NeRF is built upon a single image, this can lead to the scale ambiguity
issue. As explained in (Tucker & Snavely, 2020; Li et al., 2021), each training sequence can be
considered equally valid when we scale down or up the world coordinate by any constant value.
To tackle this issue, Li et al. (2021) and Tucker & Snavely (2020) propose to use Structure-from-
Motion (SfM) to compute camera pose and the depth (sparse point cloud), where both are at the
same scale. The calibration procedure is to adjust the camera pose by comparing the depth from
SfM and the rendered depth map from Multiplane NeRF. However, the requirement of running StM
in training and testing is time-consuming and it does not always succeed.

In this paper, we propose to overcome the limits of SfM, and use the encoders to estimate the camera
pose Ts_.; (Eq. 1) and disparity map Dy (Eq. 2). In this case, none of the camera pose T',_,;, the

disparity map D and the NeRF rendered disparity map D, are at the same scale initially. We
need to calibrate all three together at the same time in the following two steps.

(1) First, we encourage the rendered disparity map D, to be consistent with the disparity prediction
D, by minimizing the L1 distance between them. In detail, we first convert the disparity map into
the depth map and then compute the pixel-wise L1 distance between them,

1 1 1
Econsist - W Z |FS - bs |1 (7)

The above step aligns the rendered depth result with the monocular depth estimation result.

(i) Meanwhile, we need to guarantee that the monocular depth estimation and the estimated camera
pose are on the same scale. We achieve this goal via applying a photometric reprojection loss (Go-
dard et al., 2019) between the original source image I, and the synthesized source image I,
obtained by projecting pixels from I, onto I given the predicted monocular depth D, camera
transformation T's_,; and the camera intrinsic K.

1 .
Ercproj = ﬁ Z ‘Is - It~>s|1 It%s = It <pf0J (st Ts%ta Ks)> (8)
These two steps can achieve the calibration among the camera pose Ts_,;, the disparity map D and
the NeRF rendered disparity map D, by enforcing the alignment between the synthesized disparity

map D, and the estimated disparity map D as well as the alignment between camera pose Ts_,;
and the estimated disparity map D, simultaneously.

3.4.2 LoSSs FUNCTIONS

In addition to the calibration, we also adopt three loss functions: RGB L1 loss L1, RGB SSIM
loss Lgsim and edge-aware disparity map smoothness 10ss Leqge as described in Tucker & Snavely
(2020). The RGB L1 loss and SSIM loss (Wang et al., 2004) are defined as,

1 . A
Li1 = g S L —L|  Lssoa =1— SSIM(T,, 1) 9)

Both losses aim at matching the synthesized target image with the ground-truth one. Both I, and I,
are RGB images with the size of H x W. Meanwhile, we impose an edge-aware smoothness loss
on the synthesized disparity map to align the edge and smoothness region between the disparity map
and the original image (Godard et al., 2017; 2019; Tucker & Snavely, 2020; Li et al., 2021),

]js —16.1 ]A)S —16,1

]_)S|exp 19 |—|—|8y]_)—|exp 19,1 (10)

S

Esmooth = |8

where 0, and J, are image gradients and D, is the mean value of the disparity map D,. Overall,
together with the scale calibration losses, the total is:

L= )\Ll £L1 + )\SSIMESSIM + )\smoothﬁsmooth + )\consistﬁconsist + )\reproj £reproj (1 ])

4 EXPERIMENTS

We empirically evaluate our method and compare it to the existing approaches on three different
tasks: monocular depth estimation, camera pose estimation, and single image novel view synthesis.
We perform evaluations on indoor scenes. Compared to outdoor street views, indoor scenes have
more structural variance and are more commonly used for evaluating all three tasks together.

6



Under review as a conference paper at ICLR 2023

Methods Sup Came, |Abs Rel] Abs Err | SqRel] RMSE | o1 1
MVDepthNet (Wang & Shen, 2018) [Depth v 0.098 0.191 0.061  0.293 89.6
GPMVS (Hou et al., 2019) Depth Vv 0.130 0.239  0.339 0472 90.6
DPSNet (Im et al., 2019) Depth v/ 0.087 0.158 0.035 0232 925
Atlas (Murez et al., 2020) Depth Vv 0.065 0.123 0.045 0.251 93.6
MonodepthV2 (Godard et al., 2019) | RGB X 0.205 0.351 0.129 0453 679
Ours RGB X 0.169 0.288  0.089 0.375 76.0

Table 1: Comparison of depth estimation task on the Scannet (Dai et al., 2017) dataset. We measure the
standard metrics on the whole test set released by (Dai et al., 2017).

4.1 IMPLEMENTATION DETAILS

In the pre-processing step, we resize all images to the resolution of 256 x 256 for both training and
testing. During training, we randomly sample 3 frames per sequence with the interval of 5 as the
input to ensure the camera motion is large enough. The number of planes D is set to 64 and the
range of camera frustum is predefined as [0.2, 20]. We train our model end-to-end using a batch size
of 4 with an Adam optimizer for 10 epochs. The initial learning rate is set to 0.0001 and is halved
at 4,6, 8 epochs. We empirically set the balance parameters Ar,1, Assim, Asmooth, Aconsist AN Areproj
in Eq. 11 t0 1.0,1.0,1.0,0.01, 1.0 and 30, respectively. All configurations and hyperparameters are
shared for all experiments over three tasks unless specified.

4.2 DEPTH ESTIMATION

We evaluate our depth estimation results on two standard benchmarks: ScanNet (Dai et al., 2017)
and NYU-depth V2 (Nathan Silberman & Fergus, 2012). We use the synthesized (rendered) depth
map as our prediction result and evaluated it by standard metrics introduced in (Eigen et al., 2014).
Before evaluation, we first align predictions with the ground truths for scale ambiguity issue, which
is a common strategy for monocular depth estimation (Tucker & Snavely, 2020; Yin et al., 2021).

For the experiment on the ScanNet (Dai et al., 2017), we train our framework with all training
sequences and evaluate it on all testing sequences released in the official test split. We first compare
our model with several fully supervised methods that trained with ground-truth depth supervision:
MVDepthNet (Wang & Shen, 2018), GPMVS (Hou et al., 2019), DPSNet (Im et al., 2019) and
Atlas (Murez et al., 2020). We directly borrow the performance reported in their paper and list
them in Table 1. Note that most of these methods are based on MVS with at least two images as
input while our work only requires a single image as input. Without any depth ground truths, our
approach still achieves a comparable result with some state-of-the-art. Meanwhile, compared to
MonodepthV2 (Godard et al., 2019) which also only requires RGB supervision as ours, our method
achieves much better performance.

Beyond ScanNet (Dai et al., 2017), we also evaluate the depth estimation performance on NYU
Depth V2 (Nathan Silberman & Fergus, 2012). For a fair comparison, we train the model only
with RealEstate 10K (Zhou et al., 2018) training data as suggested in (Tucker & Snavely, 2020; Li
et al., 2021) and report the results in Table 2. We split the existing method into three groups: (i)
the depth supervision model; (ii) the RGB supervision model with camera pose; and (iii) the RGB
supervision model without camera pose. Notably, compared to MiDas (Ranftl et al., 2020) trained
across 10 different datasets with depth supervision, we achieve comparable performance. Although
our method is slightly worse than MINE (Li et al., 2021), they utilize ground-truth camera poses
for training while we do not. Compared with the approaches without neither depth supervision nor
camera poses, our approach significantly outperforms them by a large margin.

4.3 CAMERA POSE ESTIMATION

We perform camera pose trajectory estimation and evaluate its performance on RealEstate 10K (Zhou
et al., 2018). Following (Lai et al., 2021), we use 1, 000 30-frames video clips from RealEstate1 0K
testing data to construct the testing set. For each video clip, we take a pair of images as input and
estimate the relative pose between them and repeat this step sequentially through the whole video to
obtain the full trajectory. Since the model only estimates the relative pose in the world coordinate
defined in our model, we adopt a post-processing step for alignment between the predicted camera
trajectory and the SfM trajectory provided by RealEstate 10K (Zhou et al., 2018) via the Umeyama
algorithm (Umeyama, 1991). We evaluate the Absolute Trajectory Error (ATE) over testing videos
and compare it with the state-of-the-art methods in Table 3.
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Methods Sup Dataset Camg, |rel| logl0) RMS| o171 021
DIW (Chen et al., 2016a) Depth DIW - 1025 0.1 0.76 0.62 0.88
MegaDepth (Li & Snavely, 2018) Depth Mega - 1024 0.09 0.72 0.63 0.88
MiDaS (Ranftl et al., 2020) Depth MiDaS 10 datasets — [0.16 0.06 0.50 0.80 0.95
MPI (Tucker & Snavely, 2020) RGBT RealEstate10K v 10.15 0.06 0.49 0.81 0.96
MINE (Li et al., 2021) RGBt RealEstate10K v 1011 0.05 040 0.88 0.98
MonodepthV2 (Godard et al., 2019) | RGB KITTI X 1025 0.10 0.74 0.62 0.87
MonodepthV2* (Godard et al., 2019)| RGB ~ RealEstate10K X 1031 0.12 0.82 0.51 0.83
Manydepth (Watson et al., 2021) RGB KITTI X 1025 0.10 0.76 0.61 0.87
Ours RGB  RealEstate]10K X 1017 0.07 0.57 0.73 0.94

Table 2: Comparison of depth estimation task on NYU Depth V2 dataset. We follow the standard metrics.
“Sup” denotes the supervision signal used during training. “RGB'” means using both RGB image and sparse
depth during training. “MonodepthV2*” is our reproduction of MonodepthV2 on RealEstate10K.

Methods Cam., | PSNRT SSIM{ Perc Sim|
Dosovitsky et al. (Dosovitskiy et al., 2015) v 11.35 0.33 3.95
GQN (Eslami et al., 2018) v 16.94 0.56 3.33
Appearance Flow (Zhou et al., 2016) v 17.05 0.56 2.19
SynSin (Wiles et al., 2020) v 22.31 0.74 1.18
StereoMagt (Zhou et al., 2018) v 25.34 0.82 1.19
SSV (Mustikovela et al., 2020) X 7.95 0.19 4.12
SfMLearner (Zhou et al., 2017) X 15.82 0.46 2.39
MonoDepth2 (Godard et al., 2019) X 17.15 0.55 2.08
P?Net (Yu et al., 2020) X 17.77 056 1.96
VideoAE (Lai et al., 2021) X 23.21 0.73 1.54
Ours X 25.00 0.83 0.99
results on the test split proposed in (Li et al., 2021)

MPI; (Tucker & Snavely, 2020) v 27.05 0.87 0.097*
MINEZ (Li et al., 2021) v 28.39 0.90 0.090"
Ours X 26.68 0.86 0.143%

Table 4: Comparison of novel view synthesis task on RealEstate10K. We follow the standard metrics of
PSNR, SSIM, and Perc Sim (Wiles et al., 2020). The number xx* represents the LPIPS metric using the
implementation of (Zhang et al., 2018).tStereoMag makes use of 2 images as input. MPI and {MINE use
sparse point clouds as the additional supervision signal during training.

SfMLearner (Zhou et al.,, 2017) and

Methods Mean] RMSE] Max err. |
P?Net (Yu et al., 2020) are two works re- S5y (Mustkovela ot al, 2020) 0.142 0.175 0365
lated to ours, which borrow similarideas  g¢MI earner (Zhou et al., 2017) 0.048 0.055 0.1105
from traditional SfM and optimize the  p2Net (Yu et al., 2020) 0.059 0.068 0.1475
camera trajectory and depth map jointly. COLMAP (Schénberger et al., 2016)| 0.024  0.030  0.0765
Our approach outperforms them by a  VideoAE (Lai et al., 2021) 0.017 0.019 0.0410
large margin. For instance, the RMSE Ours 0.009 0.011 0.0223

is reduced from 0.055 to 0.011 which
is about a 80% improvement. In addi-
tion, our approach is superior compared
to the COLMAP (Schonberger et al., 2016) based on the SfM pipeline. Especially for the videos
with slow and little camera movement, COLMAP (Schonberger et al., 2016) can hardly work well
and always requires plenty of frames to process leading to a much longer inference time. Finally, a
similar improvement can be also found when comparing to VideoAE (Lai et al., 2021), which is a
recent work on the disentanglement of camera motion and 3D structure.

Table 3: Comparison of camera pose estimation task on
RealEstate10K.

4.4 NOVEL VIEW SYNTHESIS

Our approach generates novel view images by rendering the Multiplane NeRF representation into
target views. Following the setting of (Wiles et al., 2020; Lai et al., 2021), we evaluate the novel view
synthesis on RealEstate10K (Zhou et al., 2018), which is a large-scale walkthrough video dataset
with both indoor and outdoor scenes. During training, we follow the training split used in (Lai et al.,
2021), while for the testing, we follow two test splits provided by (Lai et al., 2021) and (Li et al.,
2021). For evaluation, we randomly sample 5 source frames from each testing sequence and sample
target frames that are 5 frames apart from the source frames. We measure the similarity scores by
PSNR, SSIM (Wang et al., 2004), and perceptual similarity with VGG (Simonyan & Zisserman,
2014) features. Note that there are two different implementations to calculate the perceptual simi-
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Input Synsin Synsin-D Ours Ours-D

Figure 3: Visualization of depth and novel view images on RealEstate]10K. We compare our method with
Synsin. Despite they share similar quality of generated images, our depth output is much more accurate.

ratio PSNRT SSIM{ LPIPS,

#D PSNRT SSIM{ LPIPS]

calib. PSNRT SSIMT LPIPS], [0 2668 0863 0143
X 2146 0677 0.289 2‘2‘ gg-gg 8-22? 8’12? 08 2661 0860 0.145
/2668 0863 0.143 : : - 06 2631 0857 0.147

16 26.65 0.861 0.144 04 2621 0851 0.151

02 2552 0.834 0.161

Table 5: Novel view synthesis Table 6: . .
on RealEstate10K w./w.o. auto able 6: Novel view synthes_ls Table 7: Novel vi hesi
A on RealEstate10K with the dif- able /: Novel view synthesis

scale calibration (Sec. 3.4.1). ferent number of planes. on RealEstate 10K with different
ratios of training data.

larity used in SynSin (Wiles et al., 2020) and MINE (Li et al., 2021), the latter one is also known as
LPIPS (Zhang et al., 2018). Table 4 summarizes the novel view synthesis performance over different
methods. Compared to single-image view synthesis algorithms, for instance, Synsin (Wiles et al.,
2020) , our method can achieve comparable or better performance, even though our method does not
require camera pose ground truths while other methods do. Compared with MPI (Tucker & Snavely,
2020) and MINE (Li et al., 2021) where similar 3D representations are adopted, our approach is
slightly worse on PSNR and SSIM. We believe this inferior performance is reasonable since they
rely on the ground-truth camera pose and the sparse points obtained by COLMAP (Schonberger
et al., 2016) during training and testing. On the other hand, our approach easily outperforms all
existing methods of training without the camera pose. Some qualitative results are shown in Fig. 3
and more can be found in the supplementary material.

4.5 ABLATION STUDY

We find the performance of three tasks are aligned in our experiments, thus we report the ablation
based on the novel view synthesis task here.

Auto scale calibration. We show the effectiveness of auto-calibration (Sec. 3.4.1) by conducting an
experiment w./w.o the calibration step. As shown in Table 5, the novel view synthesis performance
drops dramatically without the auto scale calibration, i.e., more than 5% on PSNR, which indicates
this calibration step is beneficial to scale-invariant synthesis.

Number of planes. We compare our default model with different numbers of planes used in Mul-
tiplane NeRF as listed in Table 6. We found that our approach is not so sensitive to the number of
planes, but in general, our default setting achieves the best performance.

Amount of training data. We analyze the effect of using different fractions of training data. We
uniformly sample every 20% fraction of RealEstate10K (Zhou et al., 2018) training data and evaluate
the performance on the same test set. As reported in Table 7, with more training data, the quality of
generated images is getting better.

5 CONCLUSION

We present an autoencoder architecture that disentangles video into camera motion and depth map
via the camera encoder and the depth encoder. And the Multiplane NeRF is utilized as the decoder to
represent the 3D scene. We further introduce an auto-scale calibration strategy to learn the disentan-
glement representation even with the camera pose. With the powerful 3D representation, we show
our model enables camera pose estimation, depth estimation, and novel view synthesis. Our model
achieves on-par or even better results on three tasks compared to approaches with the ground-truth
camera or depth during training.
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6 REPRODUCIBILITY STATEMENT

All experiments reported in this paper are reproducible and we are committed to releasing the code
once accepted.
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A NETWORK STRUCTURES

We show the details of network structures in Table 8, Table 9, and Table 10, including the camera
encoder F,,j, the depth encoder Fyep, and the Multiplane NeRF. More specifically,

» Camera encoder (Fi,j): given a pair of frames as input, we first use the ResNet50 (He
et al., 2016) to extract the RGB feature, which is modified to accept a pair of frames(6-
channel input), then we use several convolutional layers to predict the camera pose. Note
that we represent the camera pose by axis-angle, hence the output is a 6— channel vector.

» Depth encoder (F4ep): given the raw RGB image, we instead use the MnasNet (Tan et al.,
2019) followed with a FPN (Lin et al., 2017) to obtain the multi-stage features, then the
U-Net (Ronneberger et al., 2015) like structure with skip-connections is utilized to predict
the monocular depth map at different resolution scales.

* Multiplane NeRF (F,,;,;): as described in the method section, the Multiplane NeRF is
construct upon the raw RGB image and a position embedding of a specific disparity value
d;. Given the shared image feature from MnasNet (Tan et al., 2019) and FPN (Lin et al.,
2017), it first concatenates together with the positional embedding and then feed into the
similar U-Net (Ronneberger et al., 2015) structure used in depth encoder, except that we
add two additional downsampling blocks and two upsampling blocks. The output is the
4-channel image with RGB color ¢ and the density value o.

* Multiplane NeRF rendering: Multiplane NeRF is a continuous depth generalization of
the MPIs by introducing the neural radiance fields. Formally, the image is represented
by {(ci,0:)}2,, where o; is the volume density of the i-th plane. Unlike the vanilla
NeRF Mildenhall et al. (2020), it represents a camera frustum using planes instead of rays.
Then, we follow the naive setting of rendering mechanism used in NeRF Mildenhall et al.
(2020) to obtain the image and the disparity map under the source view,

D D

I, =) T(1-exp(—0idi))ei  Dy=> T(1—exp(—0idi))d;  (12)

=1 =1

where T; = exp (f Z§'=1 0j 5j) denotes the probability of a ray travels from the first plane
to i-th plane without hitting any object and the d; is the distance map between the i-th plane
and ¢ 4 1-th plane.

B TRAINING & INFERENCE DETAILS

B.1 TRAINING DETAILS.

We adopt a multi-scale training strategy proposed in (Godard et al., 2019). More specifically, L1,
and Lgsiv are applied on the outputl while the remaining term Lgmooth, Leonsists aNd Lyieproj are
applied on outputl, output2, and output3. Since the monocular depth is used to compute the the
consistency 1oss Lconsist, We detach the monocular depth estimation part to stop the gradient flow
from Leonsist and the monocular depth estimation is only supervised by the reprojection 10ss L;eproj-

B.1.1 INFERENCE DETAILS.

We evaluate our model on three different tasks: depth estimation, camera pose estimation, and novel
view synthesis with different inference procedures. We describe the inference procedure for each
task in details as following:

* Depth estimation: given a testing frame, instead of using the monocular depth estimation
results, we utilize the Multiplane NeRF to obtain the depth map via rendering. Comparing
with the monocular depth predictions, the rendered depth maps are always more smooth.
To address the scale ambiguity issue, we adopt a scale alignment method by least squares
optimization before evaluation.

* Camera pose estimation: given a short video clip i.e., 30 frames, we take a pair of two
frames as input sequentially. Each pair of frames is concatenated together and fed into the
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Layer k S c input
Resnet50 - - 2048 Concat(I,, I;)
pconv0 1 1 256 econv>
pconvl 3 1 256 pconv0
pconv2 3 1 256 pconvl
pconv3 1 1 6 pconv2
avgpool - - - pconv3

Table 8: The camera encoder (Fi.4;) architecture.

Layer k S c input
MnasNet+FPN - - 32 I
upconv4_0 3 1 128 fconv4
upconv4_1 3 1 128 upconv4_0t, fconv3
upconv3_0 3 1 64 upconv4_1
upconv3_1 3 1 64 upconv3_0t, fconv2
disp3 3 1 1 upconv3_1
upconv2_0 3 1 32 upconv3_1
upconv2_1 3 1 32 upconv2_0t, fconvl
disp2 3 1 1 upconv2_1
upconvl_0 3 1 16 upconv2_1
upconvl_1 3 1 16 upconv1_01
displ 3 1 1 upconvl_1

Table 9: The depth encoder (Fq4.p) architecture. The “1™ is the upsampling operation.

camera encoder Fi;,; to obtain the relative pose between two frames. Then, the camera
trajectory can be constructed upon estimated relative poses. Next, both estimated cam-
era trajectory and the ground-truth one are converted into the same coordinate with the
same origin and the Absolute Trajectory Error (ATE) is evaluated via the public evo pack-
age (Grupp, 2017).

* Novel view synthesis: given a pair of two frames, i.e., one is the source view image and
the other is the target view image, we first compute the relative camera pose between two
frames and then construct the Multiplane NeRF upon the source image and utilize the
estimated camera transformation to obtain the RGB image under the target view. We follow
two different test split released by VideoAE (Lai et al., 2021) and MINE (Li et al., 2021)
and the interval between source and target view is set to 5.

C MORE EXPERIMENTS

C.1 GENERALIZATION ABILITY

To show the generalization ability of our model, we utilize the model pretrained on
RealEstate 10K (Zhou et al., 2018) and evaluate the performance of novel view synthesis and depth
estimation on ScanNet (Dai et al., 2017). As illustrated in Table 11, our model can achieve on par
or even better results on both two tasks.

C.2 ADDITIONAL QUALITATIVE RESULTS

We highly recommend you to check the supplementary video which contains more video results.

Depth Estimation. More depth estimation visualizations on ScanNet (Dai et al., 2017) are shown
in Fig. 4.
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Layer k s c input
MnasNet+FPN* - - 32 I.
downconvl 1 1 512 fconv4
downconv2 3 1 256 downconvl
upconv_0 3 1 256 downconv2
upconv_1 1 1 32 upconv_0
upconv4_0 3 1 128 upconv_1, PE(d;)
upconv4._1 3 1 128  upconv4_0t, fconv3, PE(d;)
upconv3_0 3 1 64 upconv4_1
upconv3_1 3 1 64 upconv3_071, fconv2, PE(d;)
output3 3 1 4 upconv3_1
upconv2_0 3 1 32 upconv3_1
upconv2_1 3 1 32 upconv2 01, fconvl, PE(d;)
output2 3 1 4 upconv2_1
upconvl_0 3 1 16 upconv2_1
upconvl_1 3 1 16 upconvl 01
outputl 3 1 4 upconvl_1

Table 10: Multiplane NeRF (F,p;) architecture. The MnasNet+FPN* is shared by both depth en-

coder and Multiplane NeRF.

novel view synthesis

depth estimation

Methods PSNR1 SSIM 1 Perc Sim| | Abs Rel| SqRel| RMSE]
Appearance Flow (Zhou et al., 2016) | 14.8 0.48 3.13 - - -
SynSin (Wiles et al., 2020) 157 047 2.76 0.91 1.81  2.08
MINE (Li et al., 2021) 193 071 1.69 019 0.8 034
Ours 180 061 211 017 009 039

Table 11: Generalization ability of novel view synthesis task and depth estimation task. We pretrain
our model on the RealEstate10K (Zhou et al., 2018) and evaluate on the 100 30-frames clips of

ScanNet (Dai et al., 2017).

Camera Pose Estimation. We also plot the camera pose trajectory in Fig. 5. The ground-truth
trajectory is marked by green color while the estimated one is marked by blue. Note that we first
adopt the alignment before visualization.

Novel View Synthesis. We provide more qualitative results of novel view synthesis in Fig. 6. We
present the input RGB image, synthesised RGB image under target view and the the ground-truth
RGB image. The synthesised depth maps are also shown as the reference.
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Input Depth Input Depth

Figure 4: Visualization of depth map on ScanNet (Dai et al., 2017)
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Figure 5: Visualization of estimated camera trajectory on RealEstate10K (Zhou et al., 2018). The green
trajectory indicates the ground-truth camera poses while the blue one indicates the estimated poses.
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Figure 6: Visualization of depth map and novel view images on RealEstate10K (Zhou et al., 2018)
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