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ABSTRACT

In this paper, we present Language Model as Visual Explainer (LVX), a systematic
approach for interpreting the internal workings of vision models using a tree-
structured linguistic explanation, without the need for model training. Central
to our strategy is the collaboration between vision models and LLM to craft
explanation. On one hand, the LLM is harnessed to delineate hierarchical visual
attributes, while concurrently, a text-to-image API retrieves images that are most
align with these textual concepts. By mapping the collected text and image to
the vision model’s embedding space, we construct a hierarchy-structured visual
embedding tree. This tree is dynamically pruned and grown by querying the LLM
using language templates, tailoring the explanation to the model. Such a scheme
allows us to seamlessly incorporate new attributes while eliminating undesired
concepts based on the model’s representations. When applied to testing samples,
our method provides human-understandable explanations in the form of attribute-
laden trees. Beyond explanation, we retrained the vision model by calibrating
the model on the generated concept hierarchy, allowing the model to incorporate
the refined knowledge of visual attributes. To access the effectiveness of our
approach, we introduce new benchmarks and conduct rigorous evaluations. The
results unequivocally demonstrate the plausibility, faithfulness, and stability of our
approach compared to existing interpretability techniques.

1 INTRODUCTION

Unlocking the secrets of deep neural networks is akin to navigating through an intricate, ever-shifting
maze, as the intricate decision flow within the networks is, in many cases, extremely difficult for
humans to fully interpret. As we delve deeper into safety-critical domains like medical applications
and autonomous driving, the lack of interpretability and the presence of uncertainty pose significant
obstacles to users who need to trust the decisions made by these systems. In this quest, extracting
clear, understandable explanations from these perplexing mazes has become an imperative task.

While efforts have been developed to address the lack of explainability in the domain of computer
vision, these approaches often fall short of providing direct and human-understandable explanations.
Standard techniques, such as attribution methods [Lundberg & Leel|[2017; Ribeiro et al., 2016} [Zeiler|
& Fergus, 20145 Smilkov et al.,[2017]], feature importance [Selvaraju et al.,[2017; |Simonyan et al.,
2013} Shrikumar et al., 2017]] and prototype analysis [[Chen et al., [2019; Nauta et al., [2021]], only
highlight certain pixels or features that are deemed important by the model. As such, these methods
often require the involvement of experts to verify or interpret the outputs for non-technical users.
Natural language explanations [Hendricks et al.,|2016; (Camburu et al., [2018; L1 et al.|, 2018} |Kim!
et al., 2018, on the other hand, present an attractive alternative, since the produced texts are better
aligned with human cognition. Nevertheless, these approaches typically rely on labor-intensive and
biased manual annotation of textual rationales for model training.

In this study, we take a bold step toward bridging the gap between human comprehension and
Al decision. We present a systematic approach, Language Model as Visual Explainer (LVX), for
interpreting vision models using tree-structured language explanations, without model training. The
primary challenge we face is that models trained solely on pixel data lack an understanding of the
visual concepts present in an image. For example, if a model predicts one image as a “dog”, it is
unclear whether it truly recognizes the features like the wet nose or floppy ear, or if it is merely
making irrational guesses. To address this challenge, we propose linking the visual model with a
robust, external knowledge provider to establish connections between visual attributes and image
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Figure 1: General workflow of LVX. (Left) A toy example that LLM interacts with vision model to
examine its capability. (Mid) It combines vision, language, and visual-language APIs to create a
parse tree for each visual model. (Right) In testing, embeddings navigate this tree, and the traversed
path provides a personalized explanation for the model’s prediction.

patterns. To this end, we leverage large language models (LLM) such as ChatGPT and GPT4 as our
knowledge providers, combining them with the visual recognition system. Figure|l|(Left) describes a
toy case, where the LLM is interacts with the vision model to explore its capability boundaries. By
doing so, we gain insights into the what visual attributes can be recognized by the model.

The pipeline of our approach is illustrated in Figure [, which comprises two main stages, the
construction phase and the test phase.

In the construction phase, our goal is to create an attribute parse tree for each category, partitioning
the feature space of a visual model via LLM-defined attribute hierarchy. We begin by extracting
commonsense knowledge about each category and its visual attributes from LLMs using in-context
prompting [Liu et al.}2021]] and organize this knowledge into a tree. Utilizing a text-to-image API,
we gather corresponding images. These are subsequently inputted into the vision model to extract
prototype embeddings, which are then mapped to the tree nodes. The parse tree is then refined based
on the properties of the training set. Each training sample is processed by the vision model, with its
features navigating the parse tree based on their proximity to prototype embeddings. Infrequently
visited nodes, representing attributes less recognizable by the model, are pruned. Conversely, nodes
that are visited often, signifying that the model can efficiently recognize the associated concepts,
induce the tree’s growth as the LLM introduces refined concepts. Consequently, LVX yields human-
understandable attribute trees that mirror the model’s understanding of each concept.

In the test phase, we input a test sample into the model to extract its feature. The feature is then
routed in the parse tree by finding the nearest neighbor at each node. The path from the root to the
leaf node serves as a sample-specific rationale for the model’s prediction, offering an explanation of
how the model arrived at its decision.

To validate our approach’s efficacy, we collect new hierarchical annotations and design new metrics
to evaluate the performance of LVX on various real-world datasets. Notably, the dataset is solely used
for evaluation purposes. Beyond interpretation, our study proposes to calibrate the vision model by
utilizing the generated explanation results. By leveraging insights obtained from the tree-structured
explanations, we can improve the model’s performance, leading to reliable decision-making processes.
Experimental results demonstrate the effectiveness of our method compared to existing interpretability
techniques, highlighting its potential for advancing explainable Al.

To summarize, Our main contributions are:

* The paper introduces a novel task, visual explanatory tree parsing, that interprets vision models
using tree-structured language explanations.

* We introduce the Language Model as Visual Explainer (LVX) to carry out the visual explanatory
tree parsing task without model training. The proposed LVX is the first dedicated approach to
leverage language models to explain the visual recognition system.

* QOur study proposes leveraging the generated explanation results to calibrate the vision model,
leading to enhanced performance and improved reliability in decision-making processes.

* To validate the credibility of our tree-structured explanations, we present several new benchmarks
and design new metrics, facilitating rigorous evaluation of the LVX method’s plausibility,
faithfulness, and stability on real-world datasets.
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2 PROBLEM DEFINITION
We first define our specialized task,

called visual explanatory tree pars- “Dog”
ing, which seeks to unravel the ”

decision-making process of a vision |
model through a tree. Let us consider
Visual Tree Parsing

the trained vision model f, defined
as a function f: X — ), where X
represents the input image space and

Y denotes the output label space. In  Ejoyre 2: The illustration of visual explanatory tree parsing
this study, our focus lies on the clas- 45k where each input sample is interpreted as a parse tree

sification task, where f = g o his (5 represent the model’s logical process.
decomposed into a feature extractor g

and a linear classification head h. The output space ) € R", where n signifies the number of classes.
The model is trained on a labeled training set Dy, = {x;,y; };Vil would be evaluated a test set

Dys = {Xj}ngl-

The ultimate objective of our problem is to generate an explanation 71" for each model-input pair
(f,x) on the test set, illuminating the reasoning behind the model’s prediction § = f(x). This unique
explanation manifests as a tree of attributes, denoted as T' = (V, E'), comprising a set of L nodes
V = {v;} Y+, and M edges E = {e;}Y¢,. The root of the tree is the predicted category, ¢/, while each
node v; encapsulates a specific attribute description of the object. These attributes are meticulously
organized, progressing from the holistic to the granular, and from the general to the specific.

Figure [2| provides a visual illustration of our proposed task. Unlike existing approaches [Radford
et al., 2021 |Alayrac et al., [2022] that rely on visual-language paired training [Menon & Vondrick)
2022; Mao et al., 2022; Pellegrini et al., |2023; Yang et al.,|[2023} [Zhang et al.,|2023|], we address the
more challenging scenario, on explaining vision models trained solely on pixel data. While some
models can dissect and explain hierarchical clustering of feature embeddings [Singh et al.,[2019; |Wan
et al.,2020], they lack the ability to associate each node with a textual attribute. It is important to note
that our explanations primarily focus on examining the properties of the established network, going
beyond training model for reasoning hierarchy [Feinerer & Hornik} 2023 and attributes [Isola et al.,
20135[ from the image. Notably, our approach achieves this objective without supervision, eliminating
the need for predefined hierarchical ground truth explanations for model training.

3 LANGUAGE MODEL AS VISUAL EXPLAINER

This section dives deep into the specifics of LVX.At the heart of our approach is the interaction
between the LLM and the vision model to construct the parsing tree. Subsequently, we establish a
rule to route through these tree, enabling the creation of coherent text explanations.

3.1 TREE CONSTRUCTION VIA LLM

Before constructing our trees, let’s take a moment to examine how humans accomplish this task.
Typically, we already hold a hierarchy of concepts in our minds. When presented with visual stimuli,
we instinctively compare the data to our existing knowledge tree, confirming the presence of distinct
traits. We effortlessly recognize familiar traits and, for unfamiliar ones, we expand our mental
framework. For example, when we think of a dog, we typically know that it has a furry tail. Upon
observing a dog, we naturally check for the visibility of its tail. If we encounter a hairless tail,
previously unknown to us, we incorporate it into our knowledge base, ready to apply it to other dogs.

Our LVX mirrors this methodology. We employ LLM as a “knowledge provider” to construct the
initial conceptual tree. Subsequently, we navigate through the visual model’s feature space to assess
the prevalence of each conceptual node. If a specific attribute is rarely observed, we remove the
corresponding nodes from the tree. Conversely, if the model consistently recognizes an attribute, we
enrich the tree by integrating more nuanced, next-level concepts. This iterative process ensures the
refinement and adaptation of the conceptual tree within our pipeline, which gives rise to our LVX.
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Figure 3: Crafting text-image pairs for visual concepts. Through in-context prompting, we extract
knowledge from the LLM, yielding visual attributes for each category. These attributes guide the
collection of text-image pairs that encapsulate the essence of each visual concept.

Generating Textual Descriptions for Visual Concepts. We leverage a large language model (LLM)
as our “commonsense knowledge provider” [Li et al.,|2022; Zhou et al., [2020]] to generate textual
descriptions of visual attributes corresponding to each category. The LLM acts as an external database,
providing a rich source of diverse visual concept descriptions. The process is illustrated in Figure[3]

Formally, assume we have a set of category names, denoted as C' = {¢;}?_,, where i represents
the class index. For each of these classes, we prompt an LLM L to produce visual attribute tree.
We represent these attributes as d; = L(c;, P), where d; is a nested JSON text containing textual
descriptions associated with class ¢;. To help generate d;, we use example input-output pairs, P, as
in-context prompts. The process unfolds in two stages:

* Initial Attribute Generation: We initially generate keywords that embody the attributes of each
class. The contextual prompt follows a predefined template that instructs the LLM to elaborate on
the attributes of a visual object. The template is phrased as (“This is a <CLSNAME> because”).
The output JSON contains four primary nodes: Concepts, Substances, Attributes, and
Environments. As such, the LLM is prompted to return the structured key attributes of a visual
object. Note that the initial attributes tree may not accurately represent the model; refinements will
be made in the refinement stage.

* Description Composition: Next, we guide the LLM to create descriptions based on
these attributes. Again we showcase an in-context example and instruct the model to output
(“Generate sentences that describe a concept according to each attribute.”].

Once the LLM generates the structured attributes d;, we parse them into an initial tree, represented as

Ti(o) = (Vi(o), Ei(o)), using the key-value pairs of the JSON text. Those generated JSON tree is then
utilized to query images corresponding to each factor.

Visual Embeddings Tree from Retrieved Images. In order to enable the vision model to understand
attributes generated by the LLM, we employ a two-step approach. The primary step involves the
conversion of textual descriptions, outputted by the LLM, into images. Then, these images are
deployed to investigate the feature region that symbolizes specific attributes within the model.

The transition from linguistic elements to images is facilitated by the use of arbitrary text-to-image
API. This instrumental API enables the generation of novel images or retrieval of existing images that
bear strong relevance to the corresponding textual descriptions. An initial parse tree node, denoted by
v, containing a textual attribute, is inputted into the API to yield a corresponding set of K support
images, represented as {X;}X | = T2I(v). The value of K is confined to a moderately small range,
typically between 5 to 30. The full information of the collected dataset will be introduced in Section[d]

Our research incorporates the use of search engines such as Bing, or text-to-image diffusion models
like Stable-Diffusion [Rombach et al.l 2021]], to derive images that correspond accurately to the
provided attributes.
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Following this, the images are presented to the visual model to extract their respective embeddings,
represented as p; = ¢g(X;). As such, each tree node contains a set of support visual features
P = {pk}le. This procedure allows for the construction of an embedding tree, consisting of paired
text and visual features. These pairs are arranged in a concept tree structure as prescribed by the
LLM. It is important to note that the collected images are not employed in training the model. Instead,
they serve as a support set to assist the model in understanding and representing the disentangled
attributes effectively. As such, the visual model uses these embeddings as a map to navigate through
the vast feature space, carving out territories of attributes, and laying down the groundwork for further
exploration and explanation of a particular input.

Tree Refinement Via Refine Prompt. Upon construction, the parse tree structure is refined to better
align with the model’s feature spaces. This stage, termed Tree Refinement, is achieved through passing
training data as a query to traverse the tree. Nodes that are seldom visited indicate that the model
infrequently recognizes their associated attributes. Therefore, we propose a pruning mechanism that
selectively eliminates these attributes, streamlining the tree structure. For nodes that frequently appear
during the traversal, we further grow the tree by introducing additional or more detailed attributes,
enriching the overall context and depth of the tree. The procedure is demonstrated in Figure 4]

Initially, we treat the original training samples, denoted as (x;,y;) € Dy, as our query set. Each
sample is passed to the visual model to extract a feature, represented as q; = g(x;).

Next, the extracted feature traverses the tree corresponding to ¥/; from the root. Its aim is to locate the
closest semantic neighbor among the tree nodes. We define a distance metric between q; to support

set P as the point-to-set distance D(q;, P). This metric represents the greatest lower bound of the
set of distances from q; to prototypes in PP. Therefore, the distance metric is given by:

D(qj, P) = inf{d(q;,p)|p € P} 1

where d(-, -) denotes the Euclidean distance. Following this, we employ a Depth-First Search (DFS)
algorithm to locate the tree node closest to the query point q;. After finding this node, each training
point (x;, y;) is assigned to a specific node of the tree. Subsequently, we count the number of samples
assigned to a particular node v*, using the following formula:

M
Cype = Z 1{v"* = argmin D(q;, P,)} )

j=1 vevy

In this formula, 1 is the indicator function and P, denotes the support feature for node v. Following

this, we rank each node based on the sample counter, which results in two operations to update the

+1)

tree architecture Ti(t = Grow(P rune(Ti(t))), where ¢ stands as the iteration number

* True Pruning. Nodes with the least visits are pruned from the tree, along with their child nodes.

* True Growing. For the top-ranked node, we construct a new inquiry to prompt the LLM to
generate attributes with finer granularity. The inquiry is constructed with an instruction template
“Add visual attributes for the <NobeENaME> of a <CrassNaMeE>, to the json’j.

The revised concept tree generated by the LLM provides a comprehensive and detailed representation
of the visual attribute. To refine the attribute further, we employ an iterative procedure that involves
image retrieval and the extraction of visual embeddings, as illustrated in Figure |1} This iterative
process enhances the parse tree by incorporating new elements. As each new element is intro-
duced, the attribute areas within the feature space become increasingly refined, leading to improved
interpretability of the model. In our experiment, we performed five rounds of tree refinement.
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3.2 ROUTING IN THE TREE

Once the tree is established, the model predicts the class of a new test sample x’ and provides an
explanation for this decision by finding the top-k nearest neighbor nodes.

Specifically, the model predicts the category 4 for the object in the test sample x’ as § = f(x’). The
extracted image feature ' corresponding to x’ is routed through the tree. Starting from the root, the
tree is traversed to select the top-k nearest neighbor nodes {v; }%_, based on the smallest D(q’, P,,)
values, representing the highest semantic similarity between q’ and the visual features in the tree’s
nodes. The paths from the root to the selected nodes are merged to construct the explanatory tree 7'
for the model’s prediction.

This parse tree structure reveals the sequence of visual attributes that influenced the model’s classifica-
tion of x’ as . It facilitates the creation of precise, tree-structured justifications for these predictions.
Importantly, the routing process involves only a few feature similarity computations per node and
does not require queries to the large language model,resulting in exceptionally fast processing.

3.3 CALIBRATING THROUGH EXPLAINING

The created parse tree offers a two-fold advantage. Not only does it illustrate the logic of a specific
prediction, but it also serves as a by-product to refine the model’s predictions by introducing hierar-
chical regularization for learned representation. Our goal is to use the parse tree’s explanations as
pseudo-labels, embedding this hierarchical knowledge into the model.

To operationalize this, we employ a hierarchical multi-label contrastive loss (HiMulCon) Zhang et al.
[2022], denoted as L s, to fine-tune the pre-trained neural network. This approach enhances the
model by infusing structured explanations into the learning process, thus enriching the representation.

Specifically, we apply the LVX on all training samples. The explanatory path Tj provides a hierarchi-
cal annotation for each training sample x;. The model is trained with both the cross-entropy loss
Lok and Ly o as follows:

min i Lck (f(Xj% Z/j) + AMuanmc (Q(Xj% Tj) &)
=1

Here, ) is a weighting coefficient. The explanation Tj is updated every 10 training epochs to ensure
alignment with the network’s evolving parameters and learning progress. Notably, the support set
isn’t used in model training, maintaining a fair comparison with the baselines.

4 EXPERIMENT

This section offers an in-depth exploration of our evaluation process for the proposed LVX framework
and explains how it can be utilized to gain insights into the behavior of a trained visual recognition
model, potentially leading to performance and transparency improvements.

4.1 EXPERIMENTAL SETUP

Data Annotation and Collection. To assess explanation plausibility, data must include human
annotations. Currently, no large-scale vision dataset with hierarchical annotations is available to
facilitate reasoning for visual predictions. To address this, we developed annotations for three
recognized benchmarks: CIFAR10, CIFAR100 [Krizhevskyl 2009], and ImageNet Russakovsky et al.
[2015], termed as H-CIFAR10, H-CIFAR100, and H-ImageNet. These annotations, detailed in
Table [T} serve as ground truth for model evaluation, highlighting our dataset’s unique support for
hierarchical attributes and diverse visual concepts. Note that, we evaluate on hierarchical datasets
only, as our method is specifically designed for structured explanations.

As an additional outcome of our framework, we have gathered three support sets to facilitate model
explanation. In these datasets, each attribute generated by the LLM corresponds to a collection of
images that showcase the specified visual concepts. These images are either retrieved from Bing
search engineusing attributes as queries or are generated using Stable-diffusion. We subsequently

'"https://www.bing.com/images/
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Table 1: Data annotation statistics. The * indicates the number of video frames. We compare the
statistics of category, attributes, image and tree depth across different explanatory datasets. Our
dataset stands out as the first hierarchical dataset, offering a wide range of attributes.

Dataset Name No. Categories|No. Attributes|No. Images|Avg. Tree Depth|Rationales|Hierarchy|Validation Only
AWA2[Xian et al|[2018]] 50 85 37,322 N/A v X X
CUB|Wah et al.[[2011] 200 N/A 11,788 N/A v X X
BDD-X|Kim et al.|[2018] 906 1,668 26,000* N/A v X X
VAW |Pham et al.| [2021]] N/A 650 72,274 N/A X X X
COCO Attr|Patterson & Hays|[2016| 29 196 180,000 N/A X X X
DR-CIFAR-10Mao et al.|[2022] 10 63 2,201 N/A v X X
DR-CIFAR-100{Mao et al.|[2022] 100 540 18,318 N/A v X X
DR-ImageNet|Mao et al.|[2022] 1,000 5,810 271,016 N/A v X X
H-CIFAR-10 B 10 289 10,000 43 v v v
H-CIFAR-100 100 2,359 10,000 4.5 v v v
H-ImageNet 1,000 26,928 50,000 4.8 v v v

filter the mismatched pairs with the CLIP model, with the threshold of 0.5. Due to the page limit,
extensive details on data collection, false positive removal, limitations, and additional evaluation on
medical data, such as X-ray diagnoses, are available in the supplementary material.

Evaluation Metrics. In this paper, we evaluate the quality of our explanation from three perspectives:
Plausibility, Faithfulness and Stability.

* Plausibility measures how reasonable the machine explanation is compared to the human ex-
planation. For plausibility assessment, we leverage two conventional metrics for analyzing tree
similarity: Maximum Common Subgraph (MCS) Raymond & Willett| [2002]; Kann| [[1992]], and
Tree Kernels (TK)|Sun et al.|[2011]]. We calculate their normalized scores respectively. Specifically,

given a predicted tree T),,..q and the ground-truth T}, the MCS score is computed as %,
pred gt
and the TK score is computed as T (TypreaTgr) X100 . Here, | - | represents the number

VTK (Tprea;Tprea) TK (Tyt,Tyt)
of nodes in a tree, and T K (-, -) denotes the unnormalized TK score. We report the average score
across all validation samples.

* Faithfulness states that the explanations should reflect the inner working of the model. We
introduce Model-induced Sample-Concept Distance (MSCD) to evaluate this, calculated as the
average of point-to-set distances Ni > vev D(qj, P,) between all test samples and tree nodes,
reflecting the alignment between generated explanation and model’s internal logic. The concept
is simple: if the explanation tree aligns with the model’s internal representation, the MSCD is
minimized, indicating high faithfulness.

 Stability evaluates the resilience of the explanation graph to minor input variation, expecting
minimal variations in explanations. The MCS/TK metrics are used to assess stability by comparing
explanations derived from clean and slightly modified inputs. We include 3 perturbations, including
Gaussian additive noise with o € {0.05,0.1} and Cutout [DeVries & Taylor, [2017]] augmentation.

Baselines. Given the absence of pre-existing models capable of hierarchical explanations without
supervision, we introduce baseline models: Constant, using the full category template tree;
Random, which selects a subtree randomly from the template; and Subtree, choosing the most
common subtree in the test set for explanations. Additionally, we consider TrDec Baseline [Wang
et al, 2018, a strategy utilizing a tree-topology RNN decoder on top of image encoder. Given the
absence of hierarchical annotations, the CLIP model verifies nodes in the template trees, serving as
pseudo-labels for training. We only update the decoder parameters for interpretation purposes. These
models provide a basic comparison for the performance of LVX. More details are in the appendix.

For classification performance, we compare LVX-calibrated model with to neural-tree based solutions,
including a Decision Tree (DT) trained on the neural network’s final layer, DNDF [Kontschieder
et al.,[2015]], and NBDT [Wan et al.,[2020].

Models to be Explained. Our experiments cover a wide range of supervised trained neural networks,
including various convolutional neural networks (CNN) and transformer architectures. These models
consist of VGG [Simonyan & Zisserman, 2014]], ResNet [He et al.,|2016]], DenseNet [Huang et al.,
2017, GoogLeNet [Szegedy et al., [2015]], Inceptionv3 [Szegedy et al.,|2016], MobileNet-v2 [Sandler
et al.,|2018]], and Vision Transformer (ViT) [Dosovitskiy et al.,[2020]]. In total, we utilize 12 networks
for CIFAR-10, 11 networks for CIFAR-100, and 8 networks for ImageNet. For each model, we
perform the tree refinement for 5 iterations.
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Figure 5: Plausibility comparison on three visual tree parsing benchmarks. We plot the mean-+std
across all networks architectures. For both scores, higher values indicate better performance.

Gaussian  Gaussian Cutout

Method|Network Clean (¢ = 0.05) (6 = 0.1) (Thores = 1) Nelwork‘ CIFAR-10 CIFAR-100 ImageNet
‘ ‘MCS TK MCS TK MCS TK MCS TK ‘TrDec SubTree LVX TrDec SubTree LVX TrDec SubTree LVX
TrDec| RN-18 | 100 100 65.3 86.4 56.2 82.5 654 86.0
LVX RN-18 | 100 100 69.7 90.8 62.1 86.5 68.1 88.3 RN-18 1398 208 061 358 178 129 288 137 093
RN-50 [3.75 1.86 036 342 154 045 2.68 125 044
TrDec| RN-50 | 100 100 68.3 88.5 59.3 842 66.2 86.9
LVX | RN-50 | 100 100 71.9 92.1 65.6 88.3 69.3 90.1 ViT-S16| 3.62 168 023 328 144 0.52 256 1.15 020

Table 2: Stability comparison in CIFAR10 un- Table 3: Faithfulness comparison by computing the
der input perturbations. MSCD score. Smaller the better.

Calibration Model Training. As described in Section [3.3] we finetune the pre-trained neural net-
works with the hierarchical contrastive loss based on the explanatory results. The model is optimized
with SGD for 50 epochs on the training sample, with an initial learning rate in {0.001,0.01,0.03}
and a momentum term of 0.9. The weighting factor is set to 0.1. We compare the calibrated model
with the original model in terms of accuracy as well as the explanation performance.

4.2 LLM HELPS VISUAL INTERPREBILITY

Plausibility Results. We evaluated LVX against human annotations across three datasets, using
different architectures, and calculating MCS and TK scores. The results, shown in Figure E], reveal
LVX outperforms baselines, providing superior explanations. Notably, TrDec, even when trained on
CLIP induced labels, fails to generate valid attributes in deeper tree layers—a prevalent issue in long
sequence and structure generation tasks. Meanwhile, SubTree lacks adaptability in its explanations,
leading to lower scores. The insights each individual network are mentioned in the appendix.

Faithfulness Results. We present the MSCD scores for ResNet-18(RN-18), ResNet-50(RN-50), and
ViT-S, contrasting them with SubTree and TrDec in Table[3] Thanks to the incorporation of tree
refinement that explicitly minimizes MSCD, our LVX method consistently surpasses benchmarks,
demonstrating lowest MSCD values, indicating its enhanced alignment with model reasoning.

Stability Results. The stability of our model against minor input perturbations on the CIFAR-10
dataset is showcased in Table |2} where MCS/TK are computed. The “Clean” serves as the oracle
baseline. Our method, demonstrating robustness to input variations, retains consistent explanation
results (MCS>60, TK>85). In contrast, TrDec, dependent on an RNN-parameterized decoder,
exhibits higher sensitivity to feature variations.

Model and Data Diagnosis with Explanation. We visualize the sample explanatory parse tree on
ImageNet validation set induced by ViT-B in Figure[6] The explanations fall into three categories: (1)
correct predictions with explanations, (2) incorrect predictions with explanations, and (3) noisy label
predictions with explanations. We’ve also displayed the 5 nearest neighbor node for each case.

What’s remarkable about LVX is that, even when the model’s prediction is wrong, it can identify
correct attributes. For instance, in a case where a “white shark” was misidentifiedasa “killer
whale” (b-Row 2), LVX correctly identified “fins”, a shared attribute of both species. Moreover,
the misrecognition of the attribute “wide tail flukes” indicates a potential error in the model,
that could be later addressed to enhance its performance.
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Figure 6: Explanation visualization for ViT-B on ImageNet-1K. v and x means that the node is
aligned or misaligned with the image. Zoom in for better view.

Surprisingly, LVX is able to identify certain noisy labels in the data, as shown in c-Row 2. In such
cases, even experienced human observers might struggle to decide whether a “pig bank with
band” should be classified “piggy bank” or “band aid”. It again underscores the superior
capabilities of our LVX system in diagnosing the errors beyond model, but also within the data itself.

Calibration Enhances Interpretability and Performance. Our approach involves fine-tuning a
pre-trained model with the loss function outlined in Section[3.3] using parsed explanatory trees to
improve model performance. Table ] compares the classification performance of our model with that
of other neural tree methods. Our model clearly outperforms the rest.

While neural tree models often struggle to balance between interpretability and performance, our
LVX model circumvents this problem. LVX differs from traditional approaches in that, it doesn’t
necessitate an exact decision tree rule. Instead, the decision is made by the neural network, with
knowledge from the LLM incorporated into the model via Equation[3] This promotes the model’s
capacity to disentangle visual concepts, yielding explainability and awareness of visual attributes, an
edge that other models do not possess.

In addition, we compared the quality of the generated parsed tree with or without calibration, in
Figure[7] The calibration process not only improved model performance, but also led to more precise
tree predictions, indicating enhanced interpretability. We also test the calibrated model on OOD
evaluations in Appendix, where we observe notable improvements.

Method | Network | Expl. | CIFARI0 | CIFAR100 | ImageNet

S | NN ResNetl8 | x | 94.97% | 75.92% | 69.76%
-
o . SR DT ResNetl8 | v | 93.97% | 6445% | 63.45%
3 6.68
g ! DNDF ResNetl8 | v | 94.32% | 67.18% N/A
» NBDT ResNetl8 | « | 94.82% | 77.09% | 65.27%
LVX (Ours) | ResNet18 | | 95.14% | 77.33% | 70.28%

Baseline Calibrated Baseline Calibrated

Figure 7 Performapce and interpre'tabi!ity Table 4: Performance comparison of neural decision
comparison with/without model calibration  tree-based methods. Expl. stands for whether the
on CIFAR-100. Higher MCS means better.  prediction is explainable.

5 CONCLUSION

In this study, we introduced LVX, an approach for interpreting vision models using tree-structured
language explanations without hierarchical annotations. LVX leverages large language models to
connect visual attributes with image features, generating comprehensive explanations. We refined
attribute parse trees based on the model’s recognition capabilities, creating human-understandable
descriptions. Test samples were routed through the parse tree to generate sample-specific rationales.
LVX demonstrated effectiveness in interpreting vision models, offering potential for model calibration.
Our contributions include proposing LVX as the first approach to leverage language models for
explaining the visual recognition system. We hope this study potentially advances interpretable Al
and deepens our understanding of neural networks.
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