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Abstract001

Large Language Models (LLMs) demonstrate002
strong performance on different language tasks,003
but tend to hallucinate – generate plausible004
but factually incorrect outputs. Recently, sev-005
eral approaches to integrate Knowledge Graphs006
(KGs) into LLM inference were published to007
reduce hallucinations. This paper presents a008
systematic literature review (SLR) of such ap-009
proaches. Following established SLR method-010
ology, we identified relevant work by system-011
atically search in different academic online li-012
braries and applying a selection process. Nine013
publications were chosen for in-depth analysis.014
Our synthesis reveals differences and similari-015
ties of how the KG is accessed, traversed, and016
how the context is finally assembled. KG in-017
tegration can significantly improve LLM per-018
formance on benchmark datasets and addition-019
ally to mitigate hallucination enhance reason-020
ing capabilities, explainability, and access to021
domain-specific knowledge. We also point out022
current limitations and outline directions for023
future work.024

1 Introduction025

The performance of large language models (LLMs)026

has made significant progress in recent years (Zhao027

et al., 2024; Wang et al., 2024). Their ability to un-028

derstand and answer questions in natural language029

makes them popular tools in many industries (Hadi030

et al., 2023). However, due to their architecture,031

LLMs tend to "hallucinate" plausible but factually032

incorrect answers (Huang et al., 2024). This re-033

duces the applicability of LLMs, especially in sen-034

sitive domains such as, e.g., medicine. The aim035

of this review is to investigate how the integration036

of knowledge graphs (KGs) into the inference pro-037

cesses of LLMs can help mitigate hallucinations.038

We analyze how KGs can be used as a structured039

source of knowledge to improve the reliability and040

factual accuracy of model answers, what other ad-041

vantages this integration offers and what challenges042

Figure 1: Categorization of current approaches to inte-
grate LLMs and KGs according to (Pan et al., 2024).

Figure 2: Categorization of current approaches to KG-
supported mitigation of hallucinations according to
(Agrawal et al., 2024).

are associated with it. For this purpose, a system- 043

atic literature review (Keele et al., 2007) of publica- 044

tions that propose approaches for integrating KGs 045

into the LLM inference phase is conducted. 046

The combination of LLMs and KGs has already 047

been investigated in other systematic literature re- 048

views. (Pan et al., 2024) provide a comprehensive 049

overview of how LLMs and KGs can be combined 050

for different purposes. To this end, they categorize 051

previous research into three groups and each group 052

into subgroups (Fig. 1). The literature examined in 053

this review could be categorized as "KG-enhanced 054

LLMs" and therein as "KG-enhanced LLM infer- 055

ence", according to (Pan et al., 2024). Furthermore, 056

the focus in this review is on the mitigation of hal- 057

lucinations. (Agrawal et al., 2024) investigate the 058

integration of KGs for the mitigation of halluci- 059

nations in LLMs. In addition to inference, they 060

also consider other LLM-related processes such 061

as pre-training, fine-tuning and validation for the 062

integration of KGs (Fig. 2). Our review is limited 063

to the area of "knowledge-aware inference". 064

The rest of the paper is structured as follows: In 065
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Section 2 we provide necessary background on066

LLMs and KGs. In Section 3 we describe the067

methodology that we used to conduct the literature068

review, including research questions, databases and069

criteria for selecting and evaluating relevant litera-070

ture. In Section 4 we briefly overview all reviewed071

papers that present different approaches to integrate072

KGs into LLMs. Section 5 contains the synthesis073

of the results of the literature review to identify074

patterns, benefits and challenges. Finally, we con-075

clude with Section 6 where we summarize the key076

findings.077

2 Background078

LLMs (Zhao et al., 2024; Wang et al., 2024) are079

language models that can understand and answer080

queries in natural language. In a complex train-081

ing phase, they learn language patterns from huge082

text corpora. In the inference phase, the learned083

knowledge (in the form of model weights) is used084

to generate answers to queries. LLMs use learned085

language patterns to calculate probabilities for pos-086

sible next tokens based on the query and the tokens087

generated so far. Due to their statistical and prob-088

abilistic nature, LLMs are prone to hallucinations089

(Huang et al., 2024). Hallucinations are coherent,090

plausible, but factually wrong answers. In order to091

increase the reliability of LLMs, various methods092

for mitigating hallucinations have been proposed093

in recent years.094

Retrieval Augmented Generation (RAG) (Lewis095

et al., 2020) combines LLMs with external knowl-096

edge sources. Traditional RAG systems compare097

semantic vector representations ("embeddings") of098

the query and of chunks of the external knowl-099

edge, i.e., semantic similarity of query and knowl-100

edge chunks, in order to retrieve suitable chunks101

that contain the necessary knowledge to answer102

the question. This knowledge is then inserted as103

context to answer the query into the prompt for the104

LLM. Thereby, the probability of hallucinations105

can significantly be reduced.106

In addition to documents, knowledge graphs107

(Hogan et al., 2021) can serve as an external source108

of knowledge. Knowledge graphs consist of a set109

of entities (nodes) and relations (directed edges)110

between them. A graph therefore basically consists111

of triples with subject entity, relation and object112

entity (e.g. Berlin −capital_of→ Germany). A113

reasoning path is a concatenation of such triples114

and can serve the LLM as a context for answer-115

ing complex questions (e.g. Berlin −capital_of→ 116

Germany −in_continent→ Europe). To find such 117

paths, patterns in the form of relation paths can be 118

used to find entities based on a start entity: (Berlin 119

−capital_of→ ? −in_continent→ ?). 120

3 Methodology 121

The present paper aims at answering the following 122

research questions: i) How can KGs be integrated 123

into LLM inference to mitigate hallucinations? ii) 124

What is the structure of the integrated KGs and 125

where do they come from? iii) To what extent 126

does the integration of KGs improve the quality of 127

LLM answers? iv) What other advantages does the 128

integration of KGs have? v) What challenges arise 129

when integrating KGs? 130

The following academic databases were used: 131

IEEE Xplore, ACM Digital Library and Google 132

Scholar. IEEE Xplore and ACM Digital Library 133

are internationally important libraries for scientific 134

and technical literature. Google Scholar is a freely 135

accessible search engine for scientific literature. 136

According to the research questions, the search fo- 137

cused on LLMs, KGs and hallucinations. Since the 138

search at the ACM Digital Library led to many irrel- 139

evant results, the search string here was restricted 140

by excluding irrelevant tasks. Search strings and 141

results are shown in Tab. 1. 142

Only publications fulfilling the following condi- 143

tions were kept: i) The publication is in English. 144

ii) It is a primary source (no surveys etc.). iii) 145

The publication is peer reviewed or is cited more 146

than 50 times. iv) The integration of KGs in LLM 147

inference is a main topic. These preselected publi- 148

cations were assessed according to their relevance. 149

For this purpose, several questions were asked for 150

each publication and assigned a score (see Tab. 2). 151

The nine publications with the highest score were 152

included for in-depth analysis and synthesis. The 153

number of results after each step of this literature 154

search and selection process is shown in Fig. 3. 155

In order to obtain a complete overview of the 156

selected literature and thus recognize patterns, rel- 157

evant information was extracted from each publi- 158

cation using a data extraction scheme (see Tab. 3). 159

The resulting synthesis is presented in Section 5. 160

4 Analyzied Publications 161

In this section we summarize the nine analyzed 162

publications. 163
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Name Search string Date Result
IEEE Xplore (“llm*” OR “large language model*”) AND

“knowledge graph*” AND (“infer*” OR “reason*”
OR “retriev*”) AND “hallucinate*”

16.12.2024 18

ACM Digital Library (“llm” OR “large language model”) AND “knowl-
edge graph” AND (“inference” OR “reasoning”
OR “retrieval”) AND “hallucination” AND NOT
(“completion” OR “construction”)

29.12.2024 35

Google Scholar (“llm” OR “large language model”) AND “knowl-
edge graph” AND (“inference” OR “reasoning”
OR “retrieval”) AND “hallucination”

30.12.2024 Top 50

Table 1: Search queries on LLMs, knowledge graphs and hallucination

ID Question Points
1 Is the interaction between LLM inference and KGs comprehensible and

described in detail?
3

2 Are the source and structure of the KG clearly presented? 1
3 Is the goal of integrating KGs clearly stated? 1
4 Is the specific language model mentioned? 0.5
5 Is the approach presented as generally applicable? 1
6 Can the approach be understood in concrete terms? 1
7 Is the approach evaluated quantitatively? 1
8 Is the approach compared with similar procedures with or without KGs? 1
9 Are limitations or disadvantages of the approach discussed? 1

Table 2: Criteria to select papers on LLMs and knowledge graphs for analysis

Figure 3: Selection process.

(Fang et al., 2024) propose a 1-hop question an-164

swering system to integrate domain-specific knowl-165

edge using vector-based similarity for entity and166

relation matching. Based on a template, an LLM167

extracts a central entity and relation of a query168

which is matched to KG embeddings. The answer169

(target entity) is derived from the central entity via170

the central relation. (Luo et al., 2023) (Reasoning 171

on Graphs) combine fine-tuned (for adapting to the 172

KG and better utilizing the derived reasoning paths) 173

LLMs and KGs in inference. For the retrieval, the 174

LLM generates promising relation paths which are 175

then instantiated based on a central entity extracted 176

from the query. (Guo et al., 2024)(Knowledge- 177

Navigator) navigate the KG, based on a central 178

entity extracted from the query and semantically 179

identical variations of the question, up to a pre- 180

dicted hop depth. In each step, top k relations are 181

selected to follow. The selected triples are con- 182

verted into natural language using a simple tem- 183

plate and added as context to the prompt. (Sun 184

et al., 2023) (Think-on-Graph) traverse the KG 185

step by step starting from up to N entities extracted 186

from the query. SPARQL is used to identify adja- 187

cent relations to the corresponing nodes in the KG. 188

This process is iterated until the LLM can answer 189

the question with the collected reasoning paths as 190

context. (Kim et al., 2024) (Causal Reasoning) tra- 191

verse the KG randomly starting from a certain KG 192

node that is identified by semantic similarity to an 193

additionally provided question concept. Collected 194
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Information Example
Purpose of KG integration Reduce hallucinations
Language models used GPT-4, e5-base (Embedder)
Origin and structure of the KG Freebase
Interaction between LLM inference and KG 1. Extract relevant entities

2. Search for entities in the KG
Evaluation methodology Benchmarks: CWQ, WebQSP

Metric: Exact-Match @1
Comparison: LLM-only, RAG

Results Performs significantly better than...

Table 3: Exemplary extracted information from a paper on KG integration in LLMs

reasoning paths are added as context to answer the195

question. (Zhu et al., 2024) (EMERGE) use LLMs196

and KGs to generate a summarized patient report197

from patient data in the form of structured time198

series and unstructured clinical notes. Therefore,199

a sophisticated extraction method of entities and200

relations from patient data including time series201

information is applied. Suitable context from the202

KG is retrieved by semantic similartiy. (Xu et al.,203

2024) (ChatTf) uses special KGs to answer ques-204

tions about traditional Chinese folklore. An LLM205

extracts key folklore entities from the question. For206

each central entity, the semantically most similar207

folklore entity in the KG is determined. Then all208

triples in the KG that contain these entities are ex-209

tracted. Triples are verbalized, ranked, and the best210

triples added as context. (Ye et al., 2024) (Correct-211

ing Factual Errors via Inference Paths) use KGs to212

detect and correct hallucinations in an LLM answer.213

Therefore, subquestions are derived and reasoning214

paths in the KG are tried to be found to prove the215

generated answer. Depending on the path’s verdict,216

the answer is kept or corrected. (Kang et al., 2024)217

(Correcting Hallucination in Complaint LLM) use218

a special layered KG to provide the LLM with the219

necessary information to respond to complaints.220

For each question, a subgraph is created. This is221

extended by information from the KG and finally222

serves as context to answer the complaint.223

5 Synthesis224

5.1 Methods of Integrating KGs225

Entry into the Knowledge Graph. In order to226

recognize patterns in the approaches, we first in-227

vestigated which data is extracted from the input228

query and how this data is used to identify suitable229

entities in the KG as entry points. The results are230

shown in Tab. 4.231

Most approaches start with the extraction of 232

one or more entities from the input with an LLM. 233

EMERGE is the only investigated approach that 234

proposes an additional way for entity extraction 235

without LLM. (Ye et al., 2024) uses an LLM to 236

generate a naïve answer from which atomic facts 237

and, in turn, sub-questions are generated. They 238

form the basis for extracting the entities. (Kim 239

et al., 2024) is the only approach that does not gen- 240

erate any initial entities but directly finds the node 241

in the KG that has the highest semantic similarity 242

to a provided question concept. Some approaches 243

extract further information: (Fang et al., 2024) ap- 244

ply prompt engineering to extract a relation. (Luo 245

et al., 2023) uses a fine-tuned LLM to extract a com- 246

plete relation path from the question. (Guo et al., 247

2024) uses a special language model to estimate 248

the number of hops required from the question and 249

to generate semantically identical variants of the 250

question. 251

It can happen that extracted entities do not ap- 252

pear verbatim in the KG. Most of the approaches 253

ignore this problem, three approaches, however, 254

use semantic similarity to match extracted entities 255

with entities in the KG: (Fang et al., 2024), (Zhu 256

et al., 2024) and (Xu et al., 2024). In (Fang et al., 257

2024), the principle of semantic similarity is also 258

applied to the selection of an adjacency relation. 259

Querying the Knowledge Graph. Once the en- 260

try points have been defined, different methods to 261

traverse the KG are proposed to collect knowledge 262

that is made available to the LLM as context for 263

generating the answer. The procedures of the ap- 264

proaches vary greatly (Tab. 5). 265

Three general approaches can be observed: First, 266

(Fang et al., 2024), (Luo et al., 2023) and (Ye et al., 267

2024) apply a previously defined relation path di- 268

rectly to the entry node. This creates paths with 269
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Approach Extraction from Input Entry into KG
(Fang et al., 2024) Entity, Relation Semantic similarity with central entity and relation
(Luo et al., 2023) Entity, Relation paths Directly via entity
(Guo et al., 2024) Entity, Question variants,

Number of hops
Directly via entity

(Sun et al., 2023) Entities Directly via entities
(Kim et al., 2024) N/A Semantic similarity with question concept
(Zhu et al., 2024) Patient features, Diseases Semantic similarity with extracted patient features

and diseases
(Xu et al., 2024) Entities Semantic similarity with central entities
(Ye et al., 2024) Two entities Directly via one of the two entities
(Kang et al., 2024) Entities Directly via entities

Table 4: Overview of approaches to enter the KG based on input information

Approach Traversing the KG Final Context
(Fang et al., 2024) Relation N/A
(Luo et al., 2023) By relation path Reasoning paths
(Guo et al., 2024) Iterative selection of the most relevant

relation up to the predicted hop depth
Verbalized triples

(Sun et al., 2023) Iterative selection of the most relevant
relation until LLM terminates

Reasoning paths

(Kim et al., 2024) All adjacency relations Reasoning paths
(Zhu et al., 2024) Identification of disease from entry

node, then all adjacency relations of dis-
eases mentioned

Patient features, Diseases men-
tioned, Diseases found with defi-
nition, description, Info triplet on
the disease

(Xu et al., 2024) All adjacency relations Verbalized triples
(Ye et al., 2024) By relation path Naive answer, Reasoning path
(Kang et al., 2024) Iterative inclusion of entities with high

information gain in subgraph
Classification, Subgraph

Table 5: Strategies for traversing the KG and construction of final context

specific instances. For example, the relation path270

"? −Party→ ? −founded→ ?" applied to the en-271

tity "Olaf Scholz" could lead to the reasoning path272

"Olaf Scholz −Party→ SPD −founded→ 1863".273

Second, KnowledgeNavigator (Guo et al., 2024)274

and Think-on-Graph (Sun et al., 2023) traverse275

the KG iteratively. Starting from the initial nodes,276

reasoning paths are created, which are gradually277

extended by relations and entities evaluated by an278

LLM. (Kang et al., 2024) iteratively add nodes279

to the subgraph representation of the problem. No280

LLM is used for this, but simple formulas for calcu-281

lating information gain and importance of potential282

nodes. Third, CR (Kim et al., 2024) and ChatTf283

(Xu et al., 2024) consider all relations and entities284

adjacent to the entry node. CR then selects the285

best triple according to semantic similarity. ChatTf286

uses a special reranker language model to select the287

most relevant triples. EMERGE (Zhu et al., 2024) 288

uses the entry nodes (can be disease, symptom or 289

other feature) to identify related disease nodes in 290

the KG. All adjacency relations and entities are 291

extracted from these disease nodes. 292

The approaches are similar in providing the de- 293

rived knowledge for the LLM. All approaches use 294

prompt engineering to insert derived triples or rea- 295

soning paths as context for answering the query 296

in the LLM prompt. An exception is (Fang et al., 297

2024), where the entity derived from the KG is 298

directly output as answer. KN (Guo et al., 2024) 299

and ChatTf (Xu et al., 2024) verbalize the triples. 300

EMERGE (Zhu et al., 2024) uses a comprehensive 301

prompt to generate a patient report. 302

The majority of the approaches are based on pop- 303

ular, publicly accessible KGs: Freebase (Bollacker 304

et al., 2008) provides factual knowledge, collabora- 305
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tively created by an online community. Discontin-306

ued in 2016 and migrated to WikiData. WikiData307

(Vrandečić and Krötzsch, 2014) provides compre-308

hensive multilingual factual knowledge. Like other309

wiki projects, it is added to and updated collabora-310

tively by users. ConceptNet (Speer et al., 2017) pro-311

vides semantic relationships between words. Differ-312

ent sources and multilingual. PrimeKG (Chandak313

et al., 2023). provides a holistic view of 17080 dis-314

eases. Classification of entities and limitation to a315

few relations. Extracted from high quality medical316

sources. FB15k-237 (Toutanova et al., 2015) is a317

subgraph from Freebase.318

Some approaches constructed their own domain-319

specific KG (Fang et al., 2024) parse source mate-320

rial to automatically construct a KG. The result is321

a KG with entities some of which consist of sev-322

eral sentences. ChatTf (Xu et al., 2024) defines a323

detailed schema "TFOnto" for modeling Chinese324

folklore as a KG. (Kang et al., 2024) use a four-325

layer KG generated from complaint texts and of-326

ficial information on competent authorities. KGs327

tend to have a simple structure. Some use classes328

(such as PrimeKG, TFOnto) or specify constraints329

for certain relations (e.g., WikiData), but none are330

based on formal, e.g., description logics.331

5.2 Advantages of Integrating KGs332

In addition to the mitigation of hallucinations, other333

problems of LLMs that are improved by the in-334

tegration of KGs are mentioned in the reviewed335

publications (Tab. 6): Reasoning: Complex ques-336

tions with multiple logical connections pose a chal-337

lenge for LLMs. The structured representation338

of relationships in KGs can be used to simplify339

the modeling of complex questions as a chain of340

triples. New domain-specific knowledge: An exter-341

nal knowledge base such as a KG enables access342

to new knowledge without having to retrain the343

LLM. This enables state-of-the-art LLMs such as344

ChatGPT 4o from OpenAI to access up-to-date and345

domain-specific knowledge. Explainability: LLMs346

are black boxes. Their internal decision-making347

processes are difficult for humans to understand.348

The use of an external knowledge source that ex-349

plicitly presents facts ensures the explainability of350

the answers.351

Benchmarks. The examined publications use352

various benchmarks to evaluate the performance353

of their approaches. The respective results are354

shown in Tab. 7. Most benchmarks are so-called355

"Knowledge Base Question Answering" bench- 356

marks (KBQA). They are used to evaluate systems 357

that answer questions in natural language using 358

a knowledge base. They specify the knowledge 359

base, questions, expected answers and evaluation 360

metrics. These include WebQuestions (WebQ) (Be- 361

rant et al., 2013), WebQuestionsSP (WebQSP) (Yih 362

et al., 2016), ComplexWebQuestions (CWQ) (Tal- 363

mor and Berant, 2018), SimpleQuestions (Sim- 364

pleQ) (Gu et al., 2021), 10th Question Answering 365

over Linked Data Challenge (QALD10-en) (Us- 366

beck et al., 2024), MetaQA (Zhang et al., 2018), 367

and Mintaka (Sen et al., 2022). 368

ToG (Sun et al., 2023) also uses T-Rex (Elsahar 369

et al., 2018) and Zero-Shot RE (Petroni et al., 2021) 370

to quantify the performance of extracting relations 371

from questions. In addition, the fact-checking per- 372

formance is quantified with Creak (Onoe et al., 373

2021). (Kim et al., 2024) use CommonsenseQA 374

(Talmor et al., 2019) as a benchmark. It is not based 375

on a knowledge base, but is suitable for testing rea- 376

soning capacities. 377

Three studies created their own benchmarks to 378

evaluate their approaches. In (Fang et al., 2024), 379

test subjects were commissioned to formulate ques- 380

tions for a car handbook, from which the KG was 381

generated. For ChatTf (Xu et al., 2024), ques- 382

tions were derived from official sources such as 383

the "China Intangible Cultural Heritage" database 384

and the "China Folklore Society" website. (Kang 385

et al., 2024) derived a test dataset from official re- 386

sponses to complaints. The papers mainly use the 387

following metrics, but do not describe in detail how 388

they are derived from the outputs: Exact match, 389

Hits@1: Percentage of outputs that exactly match 390

the expected response (Ye et al., 2024), (Luo et al., 391

2023). (Sun et al., 2023) implies that the two met- 392

rics are used synonymously. Acc@1: Percentage 393

of outputs that are correct, regardless of the output 394

form (Kim et al., 2024). 395

The benchmark scores show that the integration 396

of KGs improves the performance of LLMs for dif- 397

ferent types of questions. For KBQA-benchmarks, 398

performance improvements range from 4% to 399

320%. It can be concluded that the use of explicit 400

knowledge from KGs reduces the likelihood of 401

hallucinations. Correctly answering complex ques- 402

tions proves that LLMs gain an improved under- 403

standing of complex questions by reasoning paths 404

from KGs. ChatTf (Xu et al., 2024) and (Kang 405

et al., 2024) show that knowledge of LLMs can be 406

effectively extended by domain-specific knowledge 407
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Approach Hallucinations Reasoning New Knowledge Explainability
(Fang et al., 2024) Yes no no Yes
(Luo et al., 2023) Yes Yes Yes Yes
(Guo et al., 2024) Yes Yes Yes Yes
(Sun et al., 2023) Yes Yes Yes Yes
(Kim et al., 2024) Yes Yes no no
(Zhu et al., 2024) Yes no Yes Yes
(Xu et al., 2024) Yes no Yes no
(Ye et al., 2024) Yes no no no
(Kang et al., 2024) Yes no Yes no

Table 6: Functional aspects of the approaches w.r.t. hallucinations, reasoning, new knowledge, and explainability

through the integration of KGs. Only the approach408

(Fang et al., 2024) led to unsatisfactory results,409

which according to the authors is due to complex410

user-generated queries, a difficult use case (manual411

with similar information on different models) and412

domain-specific abbreviations.413

5.3 Weaknesses and Limits414

In the reviewed publications, little emphasis was415

placed on describing the weaknesses and chal-416

lenges of the presented approaches. The following417

problems with the integration of KGs into LLM418

inference can be concluded from the evaluation419

of the papers: Incorrect traversal: With iterative420

traversal of the KG, the LLM can have problems421

selecting the correct next relation in certain cases.422

One problem are complex questions that require423

a longer sub-graph as context for the LLM to an-424

swer the question correctly (Guo et al., 2024). The425

LLM has to select one relation after the other with-426

out knowing which other relations lie behind the427

one currently under consideration. Another prob-428

lem are large, dense KGs such as WikiData, as the429

LLM has to evaluate hundreds of relations at once430

in the worst case when evaluating the adjacency431

relations of a node (Sun et al., 2023). Complex-432

ity: KG-supported LLM systems perform several433

LLM requests before the final answer is generated.434

This increases the runtime and costs of the sys-435

tem, as each LLM request costs time and money436

(as energy consumption of powerful hardware or437

directly through API requests) (Guo et al., 2024),438

(Luo et al., 2023), (Sun et al., 2023).439

6 Conclusion440

In this paper, a systematic literature search was con-441

ducted on the integration of KGs into the inference442

processes of LLMs for mitigation of hallucinations.443

A systematic search on IEEE Xplore, ACM Digi- 444

tal Library and Google Scholar yielded 103 search 445

results. By applying inclusion criteria and evaluat- 446

ing relevance with a scoring system, nine suitable 447

papers were selected to answer the research ques- 448

tions. A data extraction scheme was used to extract 449

relevant information from these papers in a stan- 450

dardized way. 451

General findings are summarized in the literature 452

synthesis. One focus was on the collaboration be- 453

tween LLM and KG. Most approaches start with an 454

entity extraction from the query that serve as entry 455

points to the KG, some approaches use semantic 456

similarity instead of exact match. The traversal of 457

the KG starting from the entry node varies greatly 458

from approach to approach. Almost all approaches 459

use prompt engineering to provide the LLM with 460

the extracted knowledge in the form of triples in 461

a structured way. Most approaches use publicly 462

available general KGs, such as Freebase or Wiki- 463

Data. Some use domain-specific KGs (medicine) 464

or constructed their own domain-specific KGs (car 465

manual, Chinese folklore, complaints). In addi- 466

tion to mitigating hallucination, the papers cited 467

further advantages of integrating KGs into LLM 468

inference: improvement of reasoning capacities 469

for complex questions, costeffective expansion of 470

the knowledge base of LLMs and explainability 471

of results. To prove the improved answer quality, 472

mostly conventional KBQA benchmarks such as 473

WebQuestionsSP or ComplexWebQuestions were 474

used. Some approaches constructed their own test 475

data sets manually or by interviewing test takers. 476

The benchmark scores consistently show that the 477

integration of KGs achieves a higher LLM answer 478

quality, especially with regard to complex ques- 479

tions and specific facts. Disadvantages of integrat- 480

ing KGs were hardly described in the reviewed 481
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Approach Benchmark Metric LLM Performance
(vs LLM only)

(Fang et al., 2024) custom Acc@1 GPT-3.5 34.3
(Luo et al., 2023) CWQ Hits@1 LLaMA 2 Chat (7B) 62.6 (+81%)

WebQSP 85.7 (+33%)
(Guo et al., 2024) WebQSP Hits@1 GPT-3.5 82.3 (+35%)

MetaQA (2H) 99.1 (+320%)
MetaQA (3H) 95.0 (+220%)

(Sun et al., 2023) CWQ Hits@1 GPT-3.5 57.1 (+52%)
WebQSP 76.2 (+20%)
GrailQA 68.7 (+134%)
QALD10-en 50.2 (+20%)
SimpleQ 53.6 (+168%)
WebQ 54.5 (+12%)
T-REx 76.8 (+29%)
Zero-Shot RE 88.0 (+218%)
Creak 91.2 (+2%)

(Kim et al., 2024) CQA Acc@1 LLaMA 2 Chat 0.59 (+4%)
(Zhu et al., 2024) MIMIC-III M AUROC Qwen (7B), 86.25

MIMIC-III R DeepSeek-V2 Chat 79.06
MIMIC-IV M 89.50
MIMIC-IV R 80.61

(Xu et al., 2024) custom Acc@1 GPT-3.5 0.91 (+81%)
(Ye et al., 2024) CWQ Exact-Match GPT-3.5 64.0 (+68%)

WebQSP 94.0 (+24%)
(Kang et al., 2024) SimpleQ Exact-Match GPT-3.5 58.1 (+254%)

Mintaka 53.9 (+131%)
HotpotQA 27.3 (+34%)
custom Acc@1 0.85 (+47%)

Table 7: Performance improvements of approaches integrating KGs into LLMs across various benchmarks.

publications: Only the increased complexity and482

problems with LLM-based KG traversal for com-483

plex questions or entities with many relations were484

mentioned.485

This review provides researchers and users with486

an overview of current approaches to integrating487

KGs into the LLM inference process for mitigat-488

ing hallucinations. This area of research is cur-489

rently developing rapidly. While these approaches490

mostly rely on relatively shallow traversal meth-491

ods and semantic similarity, future research should492

explore more expressive and principled mecha-493

nisms to query KGs. This can include the transla-494

tion of natural language queries into formal query495

languages such as SPARQL or Cypher, which496

could enable more precise access to the repre-497

sented knowledge. Furthermore, deeper exploita-498

tion of the graph schema, e.g. property constraints,499

could be tried. Finally, ontological reasoning based500

on logical axioms (e.g., transitivity, subclass in- 501

ference) could further improve inference quality, 502

consistency, and explainability. We advocate for 503

integrating LLMs with symbolic reasoners for a 504

more principled differentiation between LLM as 505

language interface and structed knowledge bases 506

and reasoners as knowledge sources to develop- 507

ing reliable systems with better and more explicit 508

explainability. 509
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