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Abstract: Diffusion-based robotic policies trained with imitation learning has1

achieved remarkable results in complex manipulation tasks. However, such poli-2

cies are constrained by the quality and coverage of their training data, limiting3

their adaptation to new environments. Existing approaches to address this ob-4

stacle typically rely on fine-tuning the diffusion model, which can be unstable5

and require costly human demonstrations. We instead study the online adap-6

tation of pretrained diffusion policies without parameter updates. We intro-7

duce Value-Guided Denoising (VGD), a simple method that steers a frozen dif-8

fusion policy using gradients from a reinforcement-learned value function. At9

inference, VGD guides diffusion denoising steps toward actions with higher Q-10

values. This enables adaptation with only black-box access to the pretrained11

policy. On Robomimic benchmarks, our method achieves substantially higher12

success rates than existing RL-with-diffusion approaches. These results demon-13

strate that diffusion policies can be steered efficiently at deployment, yielding14

strong performance gains with minimal data and computation. Code available at15

https://anonymous.4open.science/r/VGD.16

Keywords: Reinforcement learning, diffusion models, robotic manipulation17

1 Introduction18

Large-scale pretraining has produced highly capable foundation models in vision and language [1, 2,19

3]. Inspired by this success, robot learning has achieved impressive results with imitation learning,20

where expert demonstrations train policies via supervised behavior cloning (BC). Diffusion models21

in particular have emerged as a strong parameterization for BC policies, achieving state-of-the-art22

results in manipulation [4, 5, 6]. Due to their scalability and simplicity, such methods comprise the23

emerging paradigm for robot learning.24

However, imitation learning is inherently limited by its data. Policy performance depends on the25

quality, coverage, and diversity of data [7]. At test time, small imprecisions in control can accumu-26

late, eventually leading the policy to states far from those in demonstrations. This leads to degraded27

behavior, such as misaligned grasps or mistimed gripper closure [8]. Consequently, BC-learned poli-28

cies can struggle to achieve satisfactory performance, especially in novel environments and under29

nuisance shifts such as changes in lighting or camera pose [9, 10].30

How can we improve the proficiency of diffusion-based BC policies? A natural solution is fine-31

tuning on additional data. However, collecting quality demonstrations require expensive and time-32

consuming procedures like human teleoperation [11]. Recent work has used reinforcement learning33

(RL) to fine-tune policies using autonomous interactions between the agent and the environment [12,34

13, 14, 15, 16, 17]. But these approaches are often too sample-inefficient or unstable for practical35

use [17, 15]. These limitations motivate a different question: can we adapt diffusion policies without36

updating their parameters, and simply steer them towards better actions at inference?37
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Figure 1: Illustration of our approach, Value-Guided Denoising (VGD). In a standard application
of a diffusion-based BC policy, we sample an initial noise latent xT , then successively denoise it
through the DDIM sampling process. At each denoising step t, the standard DDIM decoding maps
xτ to xτ−1 =

√
ατ−1 · x̂(τ)

0 +
√
1− ατ−1 · ϵ(τ)θ (xτ ), where x̂0 is the model’s predicted denoising

target (given by Equation 1) and ϵ
(τ)
θ is the predicted noise. To steer the output of the diffusion

model towards more desirable actions, we shift the predicted target x̂(τ)
0 along the gradient of a

RL-learnt critic to x̂
′(τ)
0 , which we use as the new denoising target to calculate the next latent x′

τ−1.
We repeat this procedure repeats throughout the denoising process, steering the pretrained diffusion
model onto more desirable actions without altering its weights.

This prompts us to examine the diffusion sampling process. Our insight is that each denoising step38

in the diffusion process is a weighted sum of the predicted denoised target x̂(τ)
0 and the predicted39

noise ϵ
(t)
θ [18]. We observe that x̂(τ)

0 can be nudged toward higher-value actions using gradients40

from a learned critic, while leaving ϵ
(t)
θ unchanged. Details can be found in Section 2. This proce-41

dure enables policy steering at inference time, using only black-box access to the pretrained model.42

Crucially, it also avoids unstable backpropagation through the full diffusion chain and sidesteps43

the challenges of fine-tuning large, complex architectures [12, 19, 20]. Instead, we only train a44

lightweight critic on state-action pairs – a standard RL task. Figure 1 illustrates this process.45

We formalize this steering process as Value-Guided Denoising (VGD). Compared to prior RL-with-46

diffusion methods, we show that VGD leverages the structure of diffusion models to steer actions47

with greater sample-efficiency. On Robomimic benchmarks [21], VGD substantially improves suc-48

cess rates over state-of-the-art baselines.49

2 Preliminaries50

Markov Decision Process (MDP) We consider a MDPM = (S,A, P, r, γ). At time t, the agent51

observes st ∈ S (i.e. environment and proprioceptive states), takes action at ∈ A, receives reward52

rt = r(st,at), and transitions to the next state st+1 ∼ P (· | st,at). For a given policy π, the53

Q-function Qπ(s,a) represents the the γ-discounted return of policy π from taking action a after54

observing state s. That is,55
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Qπ(s,a) := Eπ

[ ∞∑
t=0

γtrt | s0 = s,a0 = a

]
.

In our VGD algorithm, this state-action critic is the only network we train – all other components of56

the diffusion policy remain frozen.57

Diffusion policies Diffusion policies treat action generation as conditional denoising [5]. Instead58

of predicting an action chunk x0 directly, the policy learns to invert a forward noising process59

that gradually corrupts x0 into Gaussian noise. Concretely, given x0 and a decreasing sequence60

{ατ}Tτ=1 ∈ (0, 1]T , the forward process produces noisy latents xτ via61

q(xτ | x0) = N (
√
ατ x0, (1− ατ )I).

A neural network ϵ
(τ)
θ (xτ , s), conditioned on the current observation s, learns to predict the noise62

injected at step τ , forming the generative process. At inference, we by sampling xT ∼ N (0, 1) and63

iteratively denoise it using this network until we obtain an action chunk x0 to execute.64

While both DDPM [22] and DDIM [18] samplers are compatible with our method, we focus on65

DDIM – a popular sampling algorithm that enables faster inference with fewer decoding steps. With66

DDIM, we update from xτ to xτ−1 via67

xτ−1 =
√
ατ−1

(
xτ −

√
1− ατ · ϵ(τ)θ (xτ , s)√

ατ

)
︸ ︷︷ ︸

“predicted x0”

+
√
1− ατ−1 − σ2

τ · ϵ
(τ)
θ (xτ , s)︸ ︷︷ ︸

“direction pointing to xτ ”

+στϵ
(τ)
θ (xτ , s)︸ ︷︷ ︸

random noise

(1)

We set στ = 0 so that the decoding process is deterministic given the initial noise xT . Here, the first68

term can be viewed as an estimate of the clean action output x0 [18]. We denote this term as x̂(τ)
0 .69

Thus, each update is a linear combination of x̂(τ)
0 and the noise prediction ϵ

(τ)
θ (xτ ).70

As the diffusion proceeds and τ → 0, ατ−1 tends to 1 so that xτ converges to x̂
(τ)
0 . Thus, we71

can interpret x̂(τ)
0 as an evolving “denoising target” toward which the latent trajectory drifts. We72

are motivated to utilize the denoising targets x̂
(τ)
0 for steering because they approximately lie in73

the distribution of action outputs, which is not true of the intermediate latents xτ .1 This makes it74

a natural interface for steering with a learned value function, as we describe next, eliminating the75

need for backpropagatation through the diffusion policy in previous methods.76

3 Value-Guided Denoising77

The VGD algorithm comprises two parts: the diffusion procedure, and the training process. We78

begin by describing diffusion with VGD.79

3.1 Diffusion with VGD80

At each denoising step τ , the denoising target81

x̂
(τ)
0 =

xτ −
√
1− ατ · ϵ(τ)θ (xτ , s)√

ατ
(2)

1The intermediate latents lie between the standard Gaussian and the distribution of desired action outputs,
so they cannot be evaluated by a state-action critic effectively. For more analysis on the differences between
the two terms in the realm of image generation, see Section 4 in [22].
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provides an increasingly accurate proxy for the final action that will be produced by the diffusion82

process. Our goal is to steer this process so that the final action is biased toward higher-value83

outcomes. Given a pretrained diffusion model, let πVGD
ϕ denote the policy obtained by applying84

VGD steering on to this model using critic Qϕ. To sample from πVGD
ϕ (s), we begin by sampling a85

noisy latent xT ∼ N (0, 1). Then, at each step τ , we treat x̂(τ)
0 as an action candidate, shift it in the86

direction of increasing Q-value, then use this new denoising target to update xτ .87

Specifically, given xτ at step τ , we first compute the denoising target x̂(τ)
0 using Equation 2, then88

derive the new denoising target as89

x̂
′(τ)
0 := x̂

(τ)
0 + λ · ∇aQϕ(s,a)

∣∣∣
a=x̂

(τ)
0

.

Here, λ ≥ 0 is a guidance strength, which we anneal over the start of training to stabilise learning90

(see Appendix C for details). In practice, we parametrize this Q-value critic as an MLP, and use91

Pytorch’s automatic differentiation to compute the gradient above. Then, we simply substitute this92

new target into Equation 1 to obtain the next latent:93

x′
τ−1 =

√
ατ−1 · x̂′(τ)

0 +
√
1− ατ−1 · ϵ(τ)θ (xτ ). (3)

We repeat this procedure, using x′
τ−1 as the starting latent xτ−1 for the next denoising step, until94

we obtain the final action output x0 = a. This describes how we sample a ∼ πVGD
ϕ (s). Algorithm 295

provides a summary. As detailed in Appendix C, we also experiment with disabling VGD for the96

initial denoising steps to improve performance, as the initial denoising targets x̂
(τ)
0 are far away97

from the target action distribution for large τ .98

Crucially, no gradients flow through the pretrained diffusion policy ϵθ; we only backpropagate99

through the critic. This differs from previous policy fine-tuning methods [12, 19, 20]. We steer100

directly in action space via x̂
(τ)
0 , which stabilizes guidance and improves sample-efficiency.101

3.2 Critic102

Algorithm 1 Online Critic Training with Value-Guided Denoising

1: input: frozen diffusion policy ϵ
(τ)
θ

2: Initialize critic Qϕ, replay buffer B.
3: for each environment step do
4: Sample a ∼ πVGD

ϕ (s) ▷ Sample action according to Value-Guided Denoising
5: Execute action a; observe (r, s′), and add (s,a, r, s′) to B
6: for u = 1 to updates per step do
7: Sample {(si,ai, ri, s

′
i)}Bi=1 ∼ B

8: for i = 1 to batch size do
9: Sample a′

i ∼ πVGD
ϕ (s′i)

10: yi ← ri + γ Qϕ(s
′
i,a

′
i) ▷ Form Q-learning targets

11: end for

12: Update ϕ to minimize LQ =
1

B

B∑
i=1

(
Qϕ(si,ai)− yi

)2
13: end for

VGD only requires a critic Qϕ(s,a). We train this function online with off-policy TD learning.103

Transitions (s,a, r, s′) enter a replay buffer. After every interaction, we update the critic for a fixed104

number of gradient steps. Each update samples a minibatch of transitions from the buffer. For each105

transition, we resample a new action from πVGD
ϕ (s) to obtain a candidate action a′. This ensures106

that the target matches the policy used to act.107

Finally, we update the critic parameters ϕ by minimizing the squared Bellman error over the batch.108

Importantly, the pretrained diffusion policy itself is never updated. The only learning occurs in the109
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Figure 2: On ROBOMIMIC [21] benchmarks, VGD achieves sample-efficient adaptation of diffusion-
based policies using online data.

critic, whose gradients are later used for steering the denoising process. See Algorithm 1 for the110

pseudocode summary of this procedure. This setup allows us to benefit from reinforcement signals111

without disturbing the diffusion policy’s prior.112

In summary, we learn a state–action critic Qϕ(s,a) from replay using standard TD targets. At action113

time, we treat the frozen diffusion policy as a prior and perform a locally greedy improvement at114

each denoising step. 2115

4 Experiments116

We evaluate the ability of Value-Guided Denoising (VGD) to improve pretrained diffusion policies117

using online interaction. Experiments are conducted on ROBOMIMIC [21] manipulation bench-118

marks, following the diffusion-policy evaluation protocol in prior work. For Robomimic Square119

and Transport, we use the diffusion policy checkpoints from Ren et. al [12] as our pretrained120

model. For Can and Square, we use the diffusion policies from Wagenmaker et. al [23]. In all121

cases, we freeze the diffusion policy and apply Algorithm 1 to train a critic online. We also anneal122

the VGD strength coefficient λ over the initial stage of each run to stabilise learning. Details can123

be found in Appendix C. Each experiment is averaged over 4 seeds, and error bands show the 95%124

confidence interval.125

We compare against several state-of-the-art methods that combine diffusion policies with rein-126

forcement learning. The first group of these methods directly adapt a pre-trained diffusion policy.127

DPPO [12] fine-tunes with a PPO-style objective to perform policy-gradient updates to the diffusion128

model’s weights. Additionally, IDQL [13] and IQL [14] add a Q-learning terms to the fine-tuning of129

the diffusion model. The second group of methods learn from scratch with a diffusion policy. DIPO130

2This approximates solving argmaxa Qϕ(s,a) in the neighborhood defined by the diffusion decoder,
rather than taking a global argmax. It is therefore not Q-learning nor direct policy optimization in the clas-
sic sense: it has no explicit argmax and no actor updates. We experimented with applying Soft-Actor-Critic to
steer denoising targets in lieu of gradient ascient on Qϕ, but this did not yield significant improvements.

5



[17] treats the diffusion model as the policy class and optimizes it online via standard RL gradients,131

whereas QSM [15] seeks to align the diffusion score with the action-value gradient.132

Figure 2 summarizes results. VGD (black) consistently matches or outperforms prior methods133

across all tasks. In each task, VGD substantially improves upon the pretrained policy, achieving134

near-perfect success rates on Can, Lift, and Square. On Transport, the most challenging task135

featuring two robotic arms, VGD delivers the largest relative gains. This highlights how VGD ap-136

plies corrections without destabilizing the pretrained model. In addition, VGD adapts the pretrained137

policy with less online data than existing methods on a majority of tasks, highlighting its sample-138

efficiency.139

5 Discussion140

We introduce Value-Guided Denoising (VGD), a method that steers frozen diffusion policies using141

reinforcement-learned value gradients. VGD provides a practical solution to the performance gaps142

of BC-trained policies. This makes it a promising tool for model deployment and sim-to-real143

transfer [24], even when the underlying model weights are not available. VGD applies broadly144

to any policy with a diffusion action head. This includes generalist vision-language-action (VLA)145

models that condition on language, such as Nvidia’s GR00T N1 [25]. We are currently running such146

experiments. Another natural extension is to pretrain the critic with offline RL, providing a stronger147

initialization before online adaptation.148

In summary, VGD highlights how reward signals can be leveraged to guide pretrained diffusion poli-149

cies efficiently at deployment. We hope this perspective motivates further exploration of inference-150

time steering as a complement to traditional fine-tuning in robot learning.151

6 Limitations152

Despite its lightweight training requirements, VGD introduces higher inference costs: each environ-153

ment step requires differentiating the critic at multiple denoising steps. One solution is to use VGD154

to generate additional demonstrations, and then fine-tune the diffusion model on this data to remove155

the critic from the loop. Another limitation is that fixed-size gradient updates may be suboptimal156

for tasks requiring very fine-grained control. Future work could address this by learning an actor to157

adaptively adjust denoising targets x̂(τ)
0 .158

In the paper, we validated our algorithm on only one benchmark (ROBOMIMIC) due to compute159

constraints. A greater range of empirical experiments would demonstrate the broader applicability160

of our method. For instance, applying VGD with high-dimensional image input instead of low-161

dimensional state input. We expect to address these limitations in upcoming work.162
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A Related Works283

Behavior cloning and Diffusion models Diffusion-based behavioral cloning has emerged as a284

strong class of policies for robotic control. Diffusion Policy demonstrated visuomotor policy learn-285

ing via conditional action denoising [5]. Extensions have incorporated 3D representations [26],286

goal-masking for exploration [27], and transformer-based backbones [28]. Methods such as JUICER287

enable efficient long-horizon assembly from few demonstrations [29], while DP3 attains strong gen-288

eralization across real-world tasks [26]. Diffusion-based policies have also been scaled to multi-task289

and generalist settings, including Octo [30], π0 [31] and Gr00t N1 [25]. These works establish diffu-290

sion models as a scalable and expressive policy class, but do not address adaptation after pretraining.291
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RL-based adaptation of diffusion policies. Several approaches apply reinforcement learning to292

improve diffusion policies. DPPO fine-tunes diffusion models with PPO-style objectives [12]. IDQL293

combines diffusion actors with implicit Q-learning critics [13]. QSM matches denoiser scores with294

Q-gradients [15]. DIPO formulates diffusion policies as the policy class within standard actor-295

critic frameworks [32]. Recent efforts avoid weight updates, instead steering behavior via auxiliary296

policies or noise perturbations. RESIP adds a residual RL policy to refine pretrained actions [33],297

while DSRL optimizes over the diffusion noise space to adapt behavior with black-box access [23].298

These methods highlight the potential of RL-guided adaptation, though most involve fine-tuning299

or auxiliary networks, unlike our lightweight steering approach. As we demonstrate empirically,300

altering diffusion weights lead to greater instability and is less sample-efficient compared to our301

method.302

Value-guided or critic-guided diffusion. Beyond robotics, value or critic functions have been303

integrated into diffusion sampling. Q-score matching [15], energy-weighted diffusion [34, 35], and304

diffusion-based variational optimization [36] embed critic signals into denoising objectives. Other305

approaches use rejection sampling [37, 13], score regularization [38], or advantage-weighted classi-306

fiers [39] to bias samples toward higher-value actions. Analogous techniques exist in image genera-307

tion, where classifier or latent noise optimization guides diffusion outputs [40, 41, 42]. In contrast,308

our method applies critic gradients directly to denoising targets at inference, enabling fine-grained,309

step-wise policy steering without retraining.310

B VGD algorithm311

Algorithm 2 Value-Guided Denoising

Require: state s; pretrained ϵ
(τ)
θ (·, s); critic Qϕ; guidance strength λ ≥ 0

1: Sample initial latent xT ∼ N (0, I)
2: for τ = T, T − 1, . . . , 1 do
3: x̂

(τ)
0 ←

(
xτ −

√
1− ατ ϵ

(τ)
θ (xτ , s)

)/√
ατ ▷ predicted x0

4: gτ ← ∇aQϕ(s,a)
∣∣
a=x̂

(τ)
0

▷ autodiff; no gradients through ϵθ

5: x̂
′(τ)
0 ← x̂

(τ)
0 + λ gτ

6: xτ−1 ←
√
ατ−1 x̂

′(τ)
0 +

√
1− ατ−1 ϵ

(τ)
θ (xτ , s)

7: end for
8: return a← x0 =0

C Experimental details312

Code is available at https://anonymous.4open.science/r/VGD.313

We evaluate VGD on four ROBOMIMIC: Can, Lift, Square, and Transport using frozen diffusion314

policies and training only a state–action critic online. Data for the methods we compare to (eg.315

DPPO, DIPO) are taken from [23]. Otherwise, VGD experiments were run on a Nvidia Geforce316

RTX 5090 GPU, with each run taking ≈ 12 hours. Environments are vectorized. Observations317

are low-dimensional, comprised of proprioceptive and object states. The frozen diffusion policy318

conditions on each observation step, and executes actions in chunks (see Table 1 for sizes).319

Base policies. For each task we load a pretrained diffusion checkpoint and keep all policy weights320

frozen. For Robomimic Square and Transport, we use the diffusion policy checkpoints from321

Ren et. al [12] as our pretrained model. For the more challenging tasks Can and Square, we use322

the diffusion policies from Wagenmaker et. al [23], which fine-tune upon the Ren et. al policies to323

provide stronger initial learning signals for our RL experiments. Decoding uses DDIM with a fixed324

number of denoising steps depending on task (see Table 1). Additionally, to stabilise learning, we325

clip each component of predicted clean actions to 1.0.326
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VGD decoding. At each denoising step we form the DDIM predicted clean action x̂
(τ)
0 , nudge it327

along the critic gradient by a step-dependent coefficient λ, and substitute the modified target back328

into the update. We are motivated to set λ = 0 for the initial few denoising steps, when x̂
(τ)
0 is still329

noisy and contain little information about the eventual output of the diffusion process. Empirically,330

for ROBOMIMIC tasks with 8 to 10 DDIM steps, we find that setting λ = 0 for the first 5 and 7331

steps respectively reduces compute without changing performance. Thus, we use this setting for the332

experiments. Additionally, we anneal λ during the very start of training to stabilize learning. In333

particular, we increase λ from 0 to its full value over a set number of warmup steps (see Table 1).334

Note that they are insignificant in proportion to the total number of environment steps. However,335

later experimentation revealed that they have no impact on performance.336

Critic and RL loop. We train only the critic (double-Q with n critics=2, min backup) via337

off-policy TD with Polyak averaging (τ = 0.005) to a target critic. This is implemented via the338

algorithms provided in STABLE BASELINES 3 [43]. Before training begins, we first run the frozen339

diffusion policy for a set number of steps to initialize the replay buffer with rollouts. In all cases, we340

use a sparse 0/1 reward: a positive reward is given only at steps where the robot completes the given341

task. Parts of this training code is adapted from [23].342

Task Action chunk size UTD γ λ warmup (updates) DDIM steps initial rollout
Can 4 20 0.99 0.01 0 8 1,501
Lift 4 30 0.99 0.005 50,000 8 1,501
Square 4 20 0.999 0.005 80,000 8 2,001
Transport 8 20 0.99 0.0008 100,000 10 20,001

Table 1: Per-task hyperparameters for ROBOMIMIC tasks.

Hyperparameter Value
Optimizer Adam
Learning rate 3 × 10−4

Number of environments 4
Batch size 512 or 1024 (per task)
Replay buffer size 10,000,000 transitions
Critic MLP 3 layers × 2048 units, Tanh activations
Target network smoothing τ 0.005
Q critics 2

Table 2: Shared training hyperparameters used across VGD experiments.

11


	Introduction
	Preliminaries
	Value-Guided Denoising
	Diffusion with VGD
	Critic

	Experiments
	Discussion
	Limitations
	Related Works
	VGD algorithm
	Experimental details

