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ABSTRACT

Byzantine-robust distributed learning (BRDL), in which computing devices are
likely to behave abnormally due to accidental failures or malicious attacks, has
recently become a hot research topic. However, even in the independent and
identically distributed (i.i.d.) case, existing BRDL methods will suffer a significant
drop on model accuracy due to the large variance of stochastic gradients. Increasing
batch size is a simple yet effective way to reduce the variance. However, when the
total number of gradient computation is fixed, a too-large batch size will lead to a
too-small iteration number (update number), which may also degrade the model
accuracy. In view of this challenge, we mainly study the effect of batch size when
the total number of gradient computation is fixed in this work. In particular, we
show that when the total number of gradient computation is fixed, the optimal
batch size corresponding to the tightest theoretical upper bound in BRDL increases
with the fraction of Byzantine workers. Therefore, compared to the case without
attacks, a larger batch size is preferred when under Byzantine attacks. Motivated
by the theoretical finding, we propose a novel method called Byzantine-robust
stochastic gradient descent with normalized momentum (ByzSGDnm) in order to
further increase model accuracy in BRDL. We theoretically prove the convergence
of ByzSGDnm for general non-convex cases under Byzantine attacks. Empirical
results show that when under Byzantine attacks, using a relatively large batch
size can significantly increase the model accuracy, which is consistent with our
theoretical results. Moreover, ByzSGDnm can achieve higher model accuracy than
existing BRDL methods when under deliberately crafted attacks. In addition, we
empirically show that increasing batch size has the bonus of training acceleration.

1 INTRODUCTION

Distributed learning has attracted much attention (Haddadpour et al., 2019; Jaggi et al., 2014; Lee
et al., 2017; Lian et al., 2017; Ma et al., 2015; Shamir et al., 2014; Sun et al., 2018; Yang, 2013;
Yu et al., 2019a;b; Zhao et al., 2017; 2018; Zhou et al., 2018; Zinkevich et al., 2010) for years due
to its wide application. In traditional distributed learning, it is typically assumed that there is no
failure or attack. However, in some real-world applications such as edge-computing (Shi et al.,
2016) and federated learning (McMahan & Ramage, 2017), the service provider (also known as the
server) usually has weak control over computing nodes (also known as workers). In these cases,
various software and hardware failures may happen on workers (Xie et al., 2019). Worse even,
some workers may get hacked by a malicious third party and intentionally send wrong information
to foil the distributed learning process (Kairouz et al., 2021). The workers under failure or attack
are also called Byzantine workers. Distributed learning with the existence of Byzantine workers,
which is also known as Byzantine-robust distributed learning (BRDL), has recently become a hot
research topic (Bernstein et al., 2019; Bulusu et al., 2021; Chen et al., 2018; Damaskinos et al.,
2018; Diakonikolas et al., 2017; Diakonikolas & Kane, 2019; Konstantinidis & Ramamoorthy, 2021;
Lamport et al., 2019; Rajput et al., 2019; Sohn et al., 2020; Wu et al., 2020; Yang & Li, 2021; 2023;
Yang et al., 2020; Yin et al., 2019).

∗Corresponding author.
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A typical way to obtain Byzantine robustness is to substitute the mean aggregator with robust
aggregators such as Krum (Blanchard et al., 2017), geometric median (Chen et al., 2017), coordinate-
wise median (Yin et al., 2018), centered clipping (Karimireddy et al., 2021), and so on. However,
when there are Byzantine workers, even if robust aggregators are used, it is inevitable that an
aggregation error will be introduced, which is the difference between the aggregated result and the
true mean value. Furthermore, even in the independent and identically distributed (i.i.d.) cases, the
aggregation error could be large due to the large variance of stochastic gradients (Karimireddy et al.,
2021) which are typical values sent from workers to the server for parameter updating. The large
aggregation error would make BRDL methods fail (Xie et al., 2020).

It has been shown in existing works that the variance of the values from non-Byzantine workers can
be reduced by using local momentum on workers (Allen-Zhu et al., 2020; El-Mhamdi et al., 2021;
Farhadkhani et al., 2022; Karimireddy et al., 2021). However, as the empirical results in our work
will show, even if local momentum has been used, existing BRDL methods will suffer a significant
drop on model accuracy when under attacks. Therefore, more sophisticated techniques are required
to further reduce the variance of stochastic gradients.

Increasing batch size is a simple yet effective way to reduce the variance. However, when the total
number of gradient computation is fixed, a too-large batch size will lead to a too-small iteration
number (update number), which may also degrade the model accuracy (Goyal et al., 2017; Hoffer
et al., 2017; Keskar et al., 2017; You et al., 2020; Zhao et al., 2020; 2023). In view of this challenge,
we mainly study the effect of batch size in i.i.d. cases when the total number of gradient computation
is fixed. The main contributions of this work are listed as follows:

• We show that when the total number of gradient computation is fixed, the optimal batch size
corresponding to the tightest theoretical upper bound in BRDL increases with the fraction
of Byzantine workers.
• Motivated by the theoretical finding, we propose a novel method called Byzantine-robust

stochastic gradient descent with normalized momentum (ByzSGDnm) in order to further
increase model accuracy in BRDL.
• We theoretically prove the convergence of ByzSGDnm for non-convex cases under attacks.
• We empirically show that when under Byzantine attacks, compared to the cases of small

batch size, setting a relatively large batch size can significantly increase the model accuracy.
Moreover, ByzSGDnm can achieve higher model accuracy than existing BRDL methods
when under deliberately crafted attacks.
• In addition, increasing batch size has the bonus of training acceleration, which is verified by

our empirical results.

2 PRELIMINARY

In this paper, we mainly focus on the following optimization problem:

min
w∈Rd

F (w) = Eξ∼D[f(w, ξ)], (1)

where w ∈ Rd is the model parameter and D is the distribution of training data. In addition, we
mainly focus on the widely-used parameter-server (PS) framework in this work, where there are m
computing nodes (workers) that collaborate to train the learning model under the coordination of
a central server. Each worker can independently draw samples ξ from data distribution D. That is
to say, we focus on the i.i.d. cases in this paper. Moreover, among the m workers, a fraction of δ
workers are Byzantine, which may behave abnormally and send arbitrary values to the server due to
accidental failure or malicious attacks. The other workers, which are called non-Byzantine workers,
will faithfully conduct the training algorithm without any fault. Formally, we use G ⊆ {1, 2, . . . ,m}
to denote the index set of non-Byzantine workers where |G| = (1− δ)m. The server has no access to
any training data and does not know which workers are Byzantine. In this work, we mainly consider
the loss functions that satisfy the following three assumptions, which are quite common in distributed
learning. For simplicity, we use the notation ‖ · ‖ to denote the Euclidean norm of a vector.

Assumption 1 (Bounded variance). There exists σ ≥ 0, such that Eξ∼D ‖∇f(w, ξ)−∇F (w)‖2 ≤
σ2 for all w ∈ Rd.
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Assumption 2 (Lower bound of F (·)). There exists F ∗ ∈ R such that F (w) ≥ F ∗ for all w ∈ Rd.

Assumption 3 (L-smoothness). The loss function F (·) is differentiable everywhere on Rd. Moreover,
‖∇F (w)−∇F (w′)‖ ≤ L‖w −w′‖ for all w,w′ ∈ Rd.

A typical and widely-used algorithm to solve the optimization problem (1) with potential Byzantine
workers is Byzantine-robust stochastic gradient descent with momentum (ByzSGDm) (Farhadkhani
et al., 2022; Karimireddy et al., 2021). Compared with vanilla stochastic gradient descent with
momentum (SGDm), the main difference in ByzSGDm is that the mean aggregator on the server is
substituted by a robust aggregator. Specifically, in ByzSGDm, the server updates the model parameter
at the t-th iteration by computing

wt+1 = wt − ηt · Agg(u
(1)
t , . . . ,u

(m)
t ),

where ηt is the learning rate and Agg(·) is a robust aggregator. Local momentum u
(k)
t is received

from the k-th worker (k = 1, 2, . . . ,m). For each non-Byzantine worker k ∈ G,

u
(k)
t =

{
g
(k)
0 , t = 0;

βu
(k)
t−1 + (1− β)g

(k)
t , t > 0,

where β is the momentum hyper-parameter and g
(k)
t = 1

B

∑B
b=1∇f(wt, ξ

(k,b)
t ) is the mean value of

a mini-batch of stochastic gradients with size B. For each Byzantine worker k ∈ [m] \ G, u(k)
t can

be an arbitrary value. For space saving, more details about ByzSGDm are moved to Algorithm 2 and
Algorithm 3 in Appendix A.

For a ‘good’ aggregator, the aggregated result Agg(u
(1)
t , . . . ,u

(m)
t ) should be close to the true

mean of the momentums on non-Byzantine workers, which can be written as 1
|G|
∑
k∈G u

(k)
t . To

quantitatively measure a robust aggregator, the definition of (δmax, c)-robust aggregator has been
proposed in existing works (Karimireddy et al., 2021), which we present in Definition 1 below.

Definition 1 ((δmax, c)-robust aggregator (Karimireddy et al., 2021)). Let 0 ≤ δmax <
1
2 and c ≥ 0.

Random vectors x1, . . . ,xm ∈ Rd satisfy that E‖xk − xk′‖2 ≤ ρ2 for all fixed k, k′ ∈ G, where
G ⊆ {1, . . . ,m} and |G| = (1− δ)m. An aggregator Agg(·) is called a (δmax, c)-robust aggregator
if we always have that

E‖e‖2 ≤ cδρ2,
when δ ≤ δmax. Here, e = Agg(x1, . . . ,xm)− 1

|G|
∑
k∈G xk is called the aggregation error.

In addition, it has been proved that for any potential robust aggregator, there is inevitably an
aggregation error of Ω(δρ2) in the worst case (Karimireddy et al., 2021). It has also been proved that
some existing aggregators such as centered clipping (Karimireddy et al., 2021) satisfy Definition 1.

3 METHODOLOGY

3.1 EFFECT OF BATCH SIZE ON CONVERGENCE

As shown in existing works on Byzantine-robust distributed learning (Blanchard et al., 2017; Chen
et al., 2017; Li et al., 2019; Yin et al., 2018), even if robust aggregators have been used, there is
typically a drop on model accuracy under Byzantine attacks due to the aggregation error. Therefore,
we attempt to alleviate the drop on model accuracy by reducing the aggregation error.

According to Definition 1, there are three variables related to the upper bound of aggregation error.
The fraction of Byzantine workers δ is determined by the problem, which can hardly be reduced. The
constant c is mainly related to the specific robust aggregator. There have been many works (Blanchard
et al., 2017; Chen et al., 2017; Karimireddy et al., 2021; Li et al., 2019; Yin et al., 2018) that propose
various robust aggregators. In this work, we mainly attempt to reduce ρ. Moreover, we focus on the
i.i.d. setting in this work. Since E[xk] = E[xk′ ] in this case, according to Assumption 1, we have

E‖xk−xk′‖2 = E‖(xk−E[xk])−(xk′−E[xk′ ])‖2 = E‖xk−E[xk]‖2+E‖xk′−E[xk′ ]‖2 ≤ 2σ2,
(2)
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which implies that ρ2 ≤ 2σ2 in i.i.d. cases under Assumption 1. Therefore, we can reduce ρ by
reducing the variance σ2 in i.i.d. cases. A simple but effective way to reduce the variance is increasing
the batch size on each worker, which is denoted by B in this paper. For simplicity, we assume that
all workers adopt the same batch size in this work. Compared to the case with batch size 1, the
variance of stochastic gradients will be reduced to 1/B of the original if the batch size is set to B.
However, to make the total number of gradient computation unchanged, the total iteration number
will be reduced to 1/B of the original, leading to fewer times of model updating. Formally, we use
C = TBm(1 − δ) to denote the total number of gradient computation on non-Byzantine workers,
where T is the total iteration number. Thus, we have T = C

Bm(1−δ) . It implies that a larger batch
size B will lead to a smaller total iteration number T when the total number of gradient computation
C is fixed. In many BRDL applications with deep learning models, C can be used to approximately
evaluate the computation cost since the computation cost of robust aggregation and model updating is
negligible compared to that of gradient computation.

We first recall the convergence of ByzSGDm, which has been adequately studied in existing
works (Karimireddy et al., 2021). We restate the convergence results of ByzSGDm in Theorem 1
below. For space saving, the details of how Theorem 1 is obtained from existing results (Karimireddy
et al., 2021) are presented in Appendix B .

Theorem 1 (Convergence of ByzSGDm (Karimireddy et al., 2021)). Suppose that F (w0)−F ∗ ≤ F0.
Under Assumptions 1, 2 and 3, when Agg(·) is (δmax, c)-robust and δ ≤ δmax, setting ηt = η =

min

(√
F0+

5cδσ2

16BL
20LTσ2

B ( 2
m+cδ)

, 1
8L

)
and 1− β = 8Lη, we have the following result for ByzSGDm:

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 16

√
σ2(1 + cδm)

TBm

(√
10LF0 +

√
3cδσ2

B

)
+

32LF0

T
+

20σ2(1 + cδm)

TBm
.

(3)

When C is fixed, inequality (3) can be re-written as 1
T

∑T−1
t=0 E‖∇F (wt)‖2 ≤ U(B) since T =

C
Bm(1−δ) , where U(B) is a real-valued function with respect to batch size B. Specifically,

U(B) = 16

√
σ2(1 + cδm)(1− δ)

C

(√
10LF0 +

√
3cδσ2

B

)
+

32LF0Bm(1− δ)
C

+
20σ2(1 + cδm)(1− δ)

C
.

Please note that U(B) is originally defined on the set of positive integers N∗ since B denotes the
batch size. We here extend the definition of U(B) to B ∈ (0,+∞) for simplicity. The results will be
interpreted back to B ∈ N∗ at the end of our analysis. Then we attempt to find the optimal batch size
B∗ that minimizes the theoretical upper bound U(B) when C = TBm(1− δ) is fixed. Formally, B∗
is defined by the following optimization problem:

B∗ = arg min
B∈(0,+∞)

U(B).

We present Proposition 1 below, which provides an explicit expression of B∗. Please refer to
Appendix B for the proof details.

Proposition 1. U(B) is strictly convex on (0,+∞). Moreover, when δ > 0, we have

B∗ =

(
3

16L2(F0)2m

) 1
3
(
cδ(1 + cδm)

m(1− δ)

) 1
3

σ
4
3 C 1

3 , (4)

and

U(B∗) =
16
√

10LF0(1 + cδm)(1− δ)σ
C 1

2

+
24
[
12cδ(1 + cδm)(1− δ)2LF0m

] 1
3 σ

4
3

C 2
3

+
20(1 + cδm)(1− δ)σ2

C
.
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Algorithm 1 Byzantine-Robust SGD with Normalized Momentum (ByzSGDnm)

Input: initial model parameter w0, worker number m, iteration number T , learning rates {ηt}T−1t=0 ,
batch size B, momentum hyper-parameter β ∈ [0, 1), robust aggregator Agg(·);
for t = 0 to T − 1 do

Broadcast wt to all workers;
on worker k ∈ {1, . . . ,m} in parallel do

Receive wt from the server;
Independently draw B samples ξ(k,1)t , . . . , ξ

(k,B)
t from distribution D;

Compute g
(k)
t = 1

B

∑B
b=1∇f(wt, ξ

(k,b)
t );

Update local momentum u
(k)
t =

{
g
(k)
0 , t = 0;

βu
(k)
t−1 + (1− β)g

(k)
t , t > 0;

Send u
(k)
t to the server (Byzantine workers may send arbitrary values at this step);

end on worker
Receive {u(k)

t }mk=1 from the m workers, and compute ut = Agg(u
(1)
t , . . . ,u

(m)
t );

Update model parameter with normalized momentum: wt+1 = wt − ηt ut
‖ut‖ ;

end for
Output model parameter wT .

Please note that U(B) has no more than one global minimizer due to the strict convexity. Thus,

B∗ is well-defined when δ > 0. Furthermore, the term
(
cδ(1+cδm)
m(1−δ)

) 1
3

in (4) is monotonically
increasing with respect to δ. It implies that when the total number of gradient computation on non-
Byzantine workers C = TBm(1− δ) is fixed, B∗ will increase as the fraction of Byzantine workers
δ increases. Then, we interpret the above results back to B ∈ N∗. Due to the strict convexity, U(B)
is monotonically decreasing when B ∈ (0, B∗) and monotonically increasing when B ∈ (B∗,+∞).
Thus, the optimal integer batch size that minimizes U(B) equals either bB∗c or bB∗c + 1, which
also increases with δ. The notation bB∗c represents the largest integer that is not larger than B∗. In
addition, the conclusion will be further supported by the empirical results in Section 5.

Meanwhile, although B∗ → 0 as δ → 0+, it should not be interpreted as recommending a batch
size that is close to 0 when there is no attack. In fact, since C is fixed, a too-small batch size B
implies a too-large iteration number T , which will lead to a large communication cost. Moreover, the
computation power of some devices (e.g., GPUs) will not be effectively utilized when B is too small.
Thus, the setting of B is a trade-off between model accuracy and running time when δ = 0, which
has been studied for years (Goyal et al., 2017; You et al., 2020; Zhao et al., 2020; 2023). In addition,
please note that although a smaller U(B) does not necessarily ensure a better empirical performance
given the complexity and variety in real-world applications, it provides a better worst-case guarantee.

3.2 BYZANTINE-ROBUST SGD WITH NORMALIZED MOMENTUM

Proposition 1 shows that the optimal batch size B∗ that minimizes U(B) increases with the fraction
of Byzantine workers. Hence, a relatively large batch size is preferred when under Byzantine attacks.
In existing works on traditional large-batch training without attacks (Goyal et al., 2017; Hoffer et al.,
2017; Keskar et al., 2017; Zhao et al., 2020; 2023), the normalization technique is widely used to
increase model accuracy. Motivated by this, we propose a novel method called Byzantine-robust
stochastic gradient descent with normalized momentum (ByzSGDnm), by introducing a simple
normalization operation. Specifically, in ByzSGDnm, the model parameters are updated by:

wt+1 = wt − ηt ·
Agg(u

(1)
t , . . . ,u

(m)
t )

‖Agg(u
(1)
t , . . . ,u

(m)
t )‖

.

The details of ByzSGDnm are illustrated in Algorithm 1. Please note that there are some existing
methods using layer-wise normalization (You et al., 2020). However, these methods might suffer
from degradation of model accuracy without additional training tricks such as warm-up (Zhao et al.,
2023). Furthermore, as shown in (Zhao et al., 2023), the layer-wise (block-wise) normalization might
slow down the convergence rate. Hence, we follow the way of performing normalization on the whole
momentum (Zhao et al., 2020; 2023; Cutkosky & Mehta, 2020).
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Moreover, please note that the purpose of traditional large-batch training (Goyal et al., 2017; You et al.,
2020; Zhao et al., 2020; 2023) is mainly to accelerate the training process by reducing communication
cost and utilizing the computation power more effectively. However, in this work, the main purpose
of increasing batch size and using momentum normalization is to enhance the Byzantine robustness
and increase the model accuracy under Byzantine attacks. The acceleration effect of adopting large
batch size is viewed as a bonus in this work. Please refer to Section 5 for the empirical results about
the wall-clock time of ByzSGDm and ByzSGDnm with different batch size.

4 CONVERGENCE

In this section, we theoretically analyze the convergence of ByzSGDnm under Assumptions 1, 2 and
3. The assumptions are common in distributed learning. For space saving, we only present the main
results here. Please refer to Appendix B for the proof details.
Theorem 2. Suppose that F (w0) − F ∗ ≤ F0 and let α = 1 − β. Under Assumptions 1, 2 and 3,
when Agg(·) is (δmax, c)-robust, δ ≤ δmax and ηt = η, we have the following result for ByzSGDnm:

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤
2F0

ηT
+

10ηL

α
+

9
√

2cmδ(1− δ) + 9√
Bm(1− δ)

(
1

αT
+
√
α

)
σ.

Finally, we show that when the learning rate η and the momentum hyper-parameter β = 1− α are
properly set, ByzSGDnm can achieve the convergence order of O

(
1

T
1
4

)
by Proposition 2 below.

Proposition 2. Under Assumptions 1, 2 and 3, when Agg(·) is (δmax, c)-robust and δ ≤ δmax, setting

1− β = α = min

( √
80LF0Bm(1−δ)[

9
√

2cmδ(1−δ)+9
]
σ
√
T
, 1

)
and ηt = η =

√
αF0

5LT , we have that

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤ 6
[√

2cmδ(1− δ) + 1
] 1

2

(
5LF0σ

2

TBm(1− δ)

) 1
4

+ 12

√
5LF0

T

+
27
[√

2cmδ(1− δ) + 1
] 3

2

4
√

5TB2m2(1− δ)2LF0

σ2. (5)

Moreover, when C = TBm(1− δ) is fixed, the optimal batch size B̃∗ that minimizes the right-hand

side of (5) is B̃∗ =
9
[√

2cmδ(1−δ)+1
] 3

2 σ2

80m(1−δ)LF0
. In this case (B = B̃∗), we have:

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤
6
[√

2cmδ(1− δ) + 1
] 1

2 (
5LF0σ

2
) 1

4

C 1
4

+
18
[√

2cmδ(1− δ) + 1
] 3

4

σ

C 1
2

.

Inequality (5) illustrates that after T iterations, ByzSGDnm can guarantee that

min
t=0,...,T−1

E‖∇F (wt)‖ ≤ O

(
(LF0)

1
4
√
σ

T
1
4

+
1

T
1
2

)
.

Therefore, ByzSGDnm has the same convergence order as vanilla SGD with normalized momen-
tum (Cutkosky & Mehta, 2020) without attacks. The extra factor [

√
2cmδ(1− δ) + 1]

1
2 /(1− δ) 1

4 in
the right-hand side (RHS) of (5) is due to the existence of Byzantine workers and increases with δ.
The extra factor vanishes (equals 1) when there is no Byzantine worker (δ = 0). Moreover, it has been
shown in existing works (Arjevani et al., 2023; Cutkosky & Mehta, 2020) that under Assumptions 1, 2
and 3, the convergence order O(1/T

1
4 ) is optimal for SGD. Byz-VR-MARINA (Gorbunov et al.,

2023) achieves a better convergence order by intermittently using full gradients. However, full
gradients are computationally expensive, especially in real-world applications with a large number of
training instances. We detailedly compare ByzSGDnm with Byz-VR-MARINA in Appendix D. The
empirical results show that ByzSGDnm significantly outperforms Byz-VR-MARINA. In addition,
B̃∗ also increases with δ since both δ(1− δ) and 1

1−δ increase with δ when δ ∈ [0, 12 ).
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The analysis in this paper is based on the definition of (δmax, c)-robust aggregator (Definition 1).
There is also another criterion of robust aggregators in existing works called the (f, κ)-robustness (Al-
louah et al., 2023). Similar results can also be obtained under the (f, κ)-robustness. Please refer to
Appendix C for more details.

5 EXPERIMENT

Task and platform. In this section, we will empirically test the performance of ByzSGDm and
ByzSGDnm on image classification tasks. Each algorithm will be used to train a ResNet-20 (He
et al., 2016) deep learning model on CIFAR-10 dataset (Krizhevsky et al., 2009). All the experiments
presented in this work are conducted on a distributed platform with 9 dockers. Each docker is bound
to an NVIDIA TITAN Xp GPU. One docker is chosen as the server while the other 8 dockers are
chosen as workers. The training instances are randomly and equally distributed to the workers.

Experimental settings. In existing works (Allouah et al., 2023; Karimireddy et al., 2021; 2022)
on BRDL, the batch size is typically set to 32 or 50 on the CIFAR-10 dataset. Therefore, We
set ByzSGDm (Karimireddy et al., 2021) with batch size 32 as the baseline, and compare the
performance of ByzSGDm with different batch size (ranging from 64 to 1024) to the baseline under
ALIE attack (Baruch et al., 2019). In our experiments, we use four widely-used robust aggregators
Krum (KR) (Blanchard et al., 2017), geometric median (GM) (Chen et al., 2017), coordinate-wise
median (CM) (Yin et al., 2018) and centered clipping (CC) (Karimireddy et al., 2021) for ByzSGDm.
Moreover, we set the clipping radius to 0.1 for CC. We train the model for 160 epochs with cosine
annealing learning rates (Loshchilov & Hutter, 2017). Specifically, the learning rate at the i-th
epoch will be ηi = η0

2 (1 + cos( i
160π)) for i = 0, 1, . . . , 159. The initial learning rate η0 is selected

from {0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0}, and the best final top-1 test accuracy is used as the
final metrics. The momentum hyper-parameter β is set to 0.9. Please note that the total number
of gradient computation on non-Byzantine workers C is independent of batch size. Specifically,
C = 160× 50000× (1− δ) since we train the model for 160 epochs with 50000 training instances.

Evaluation on the effect of batch size. We first evaluate the performance of ByzSGDm with
different batch size when the fraction of Byzantine workers δ is 0 (no attack), 1

8 and 3
8 , respectively.

As the results in Table 1 and Table 2 show, the batch size corresponding to the best top-1 accuracy
increases with δ, which is consistent with our theoretical results. Moreover, when δ = 3

8 , using a
relatively large batch size greatly increases the test accuracy. Meanwhile, the test accuracy decreases
with the batch size when there is no attack (δ = 0), which is consistent with existing works (Goyal
et al., 2017; Hoffer et al., 2017; Keskar et al., 2017; You et al., 2020; Zhao et al., 2020; 2023).

Table 1: The final top-1 test accuracy of ByzSGDm with various batch size under ALIE attack when
Krum (KM) and geometric median (GM) are used as the robust aggregator

Batch size ByzSGDm with KR
δ = 0 δ = 1/8 δ = 3/8

32×8 (baseline) 91.08% 55.84% 38.55%
64×8 89.98% (-1.10%) 63.22% (+7.38%) 54.15% (+15.60 %)

128×8 89.71% (-1.37%) 75.06% (+19.22%) 55.98% (+17.43%)
256×8 89.15% (-1.93%) 84.47% (+28.63%) 59.28% (+20.73%)
512×8 86.15% (-4.93%) 85.68% (+29.84%) 83.42% (+44.87%)

1024×8 84.97% (-6.11%) 83.48% (+27.64%) 83.45% (+44.90%)

Batch size ByzSGDm with GM
δ = 0 δ = 1/8 δ = 3/8

32×8 (baseline) 92.02% 83.81% 63.11%
64×8 91.50% (-0.52%) 87.92% (+4.11%) 70.88% (+7.77%)

128×8 90.85% (-1.17%) 89.68% (+5.87%) 82.08% (+18.97%)
256×8 89.26% (-2.76%) 87.99% (+4.18%) 87.62% (+24.51%)
512×8 88.21% (-3.81%) 87.70% (+3.89%) 86.95% (+23.84%)

1024×8 86.52% (-5.50%) 85.94% (+2.13%) 84.75% (+21.64%)
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Table 2: The final top-1 test accuracy of ByzSGDm with various batch size under ALIE attack when
coordinate-wise median (CM) and centered clipping (CC) are used as the robust aggregator

Batch size ByzSGDm with CM
δ = 0 δ = 1/8 δ = 3/8

32×8 (baseline) 92.30% 86.46% 33.11%
64×8 91.79% (-0.51%) 88.09% (+1.63%) 55.66% (+22.55%)
128×8 90.43% (-1.87%) 89.16% (+2.70%) 66.38% (+33.27%)
256×8 89.84% (-2.46%) 88.60% (+2.14%) 82.47% (+49.36%)
512×8 87.27% (-5.03%) 87.20% (+0.74%) 83.25% (+50.14%)

1024×8 84.06% (-8.24%) 83.71% (-2.75%) 80.94% (+47.83%)

Batch size ByzSGDm with CC
δ = 0 δ = 1/8 δ = 3/8

32×8 (baseline) 92.52% 86.55% 72.83%
64×8 91.74% (-0.78%) 88.59% (+2.04%) 79.45% (+6.62%)
128×8 90.63% (-1.89%) 88.94% (+2.39%) 84.94% (+12.11%)
256×8 89.40% (-3.12%) 88.46% (+1.91%) 87.25% (+14.42%)
512×8 88.78% (-3.74%) 88.29% (+1.74%) 87.46% (+14.63%)

1024×8 85.50% (-7.02%) 84.88% (-1.67%) 83.70% (+10.87%)

Table 3: The final top-1 test accuracy when there are 3 Byzantine workers under ALIE attack
Method with KR with GM with CM with CC

ByzSGDm, batch size = 32× 8 (baseline) 38.55% 63.11% 33.11% 72.83%
ByzSGDnm, batch size = 32× 8 43.47% 69.45% 61.28% 78.50%
ByzSGDm, batch size = 512× 8 83.42% 86.95% 83.25% 87.46%

ByzSGDnm, batch size = 512× 8 85.12% 89.13% 86.03% 88.53%

Table 4: The final top-1 test accuracy when there are 3 Byzantine workers under FoE attack
Method with KR with GM with CM with CC

ByzSGDm, batch size = 32× 8 (baseline) 10.00% 78.36% 83.97% 83.60%
ByzSGDnm, batch size = 32× 8 10.00% 88.55% 84.12% 88.99%
ByzSGDm, batch size = 512× 8 10.00% 84.09% 79.16% 86.24%

ByzSGDnm, batch size = 512× 8 10.00% 89.12% 84.65% 89.32%

Effectiveness of large batch size and momentum normalization. In this paper, we propose to use
(i) a relatively large batch size and (ii) the momentum normalization technique. Here, we empirically
evaluate the effectiveness of these two improvements. Specifically, we will compare the performance
of the following four methods: (a) ByzSGDm with batch size 32 × 8 (baseline), (b) ByzSGDnm
with batch size 32× 8, (c) ByzSGDm with batch size 512× 8, and (d) ByzSGDnm with batch size
512 × 8. The performances of the methods are compared when there are 3 workers under ALIE
attack (Baruch et al., 2019) and FoE attack (Xie et al., 2020), respectively. As presented in Table 3 and
Table 4, among the four methods, ByzSGDnm with batch size 512×8 has the best top-1 test accuracy
except for the case of using aggregator KR under FoE attack. All the methods fail when using KR
under FoE attack mainly because the KR aggregator is not robust against FoE attack, as shown in
existing works (Karimireddy et al., 2021; Xie et al., 2020). The empirical results of ByzSGDm and
ByzSGDnm with more different batch size are deferred to Appendix E for space saving. In addition,
we also compare the performance of ByzSGDm and ByzSGDnm under no attack (or failure) and
under bit-flipping failure (Xie et al., 2019), respectively. ByzSGDnm has a comparable performance
to ByzSGDm in these two cases. Please refer to Appendix E for the detailed results.

More evaluation when NNM is used. We also compare the empirical performance of different
methods when the nearest neighbour mixing (NNM) (Allouah et al., 2023) technique is used. NNM
is originally proposed to enhance the robustness of aggregators in general non-i.i.d. cases but can
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Table 5: The final top-1 test accuracy when there are 3 Byzantine workers under ALIE attack and the
nearest neighbour mixing (NNM) technique is used

Method with KR with GM with CM with CC
ByzSGDm, batch size = 32× 8 (baseline) 58.61% 72.58% 71.51% 76.48%

ByzSGDnm, batch size = 32× 8 80.41% 79.50% 79.81% 79.91%
ByzSGDm, batch size = 512× 8 85.26% 85.37% 86.95% 85.98%

ByzSGDnm, batch size = 512× 8 87.68% 88.09% 87.69% 87.59%

Table 6: The wall-clock time of ByzSGDm and ByzSGDnm for 160 epochs (in second)
Batch size 32×8 64×8 128×8 256×8 512×8

ByzSGDm 2007.39s 985.52s 522.27s 366.98s 314.80s
(×2.04 faster) (×3.84 faster) (×5.47 faster) (×6.38 faster)

ByzSGDnm 1985.78s 978.50s 515.46s 376.70s 327.62s
(×2.03 faster) (×3.85 faster) (×5.27 faster) (×6.06 faster)

also be used in i.i.d. cases. As the results in Table 5 show, ByzSGDnm with batch size 512× 8 still
has the best final top-1 test accuracy under ALIE attacks when NNM is used. In addition, we find
it interesting that when combined with NNM, the performance of KR and CM is improved, but the
performance of GM and CC is degraded. Since NNM is originally proposed for general non-i.i.d.
cases, it requires further study to understand this behavior of NNM in i.i.d. cases. However, since we
mainly focus on the effect of batch size, it is beyond the scope of this work.

The bonus of training acceleration. Existing works (Goyal et al., 2017; Hoffer et al., 2017; Keskar
et al., 2017; You et al., 2020; Zhao et al., 2020; 2023) have shown that increasing batch size can
accelerate the training process by reducing the communication cost and utilizing the computing
power of GPUs more effectively. We present the wall-clock time for 160 epochs when using CC as
the robust aggregator under no attack in Table 6. Please note that whether there are attacks or not
has almost no effect on the computation cost of non-Byzantine workers. For both ByzSGDm and
ByzSGDnm, the running time decreases as the batch size increases. It verifies that increasing batch
size has the bonus of training acceleration. In addition, ByzSGDnm has a comparable running time
to ByzSGDm, which shows that the computation cost of the momentum normalization is negligible.

Comparison with Byz-VR-MARINA. Byz-VR-MARINA (Gorbunov et al., 2023) is originally
proposed for non-i.i.d. cases, but can also be used in i.i.d. cases. Therefore, we also empirically
compare ByzSGDnm with Byz-VR-MARINA. Empirical results show that ByzSGDnm significantly
outperforms Byz-VR-MARINA in i.i.d. cases. Detailed results are deferred to Appendix D.

Although we mainly study the effect of batch size in BRDL for i.i.d. cases in this work, we also
provide some empirical results under non-i.i.d. settings in Appendix E.2. The empirical results show
that ByzSGDnm still outperforms existing methods in the non-i.i.d. setting. However, further work is
required to detailedly discover the effect of batch size and the behavior of ByzSGDnm in non-i.i.d.
cases, which we will study in the future.

6 CONCLUSION

In this paper, we theoretically show that when the total number of gradient computation is fixed,
the optimal batch size corresponding to the tightest theoretical upper bound in BRDL increases
with the fraction of Byzantine workers. The theoretical results indicate that a relatively large batch
size is preferred when there are Byzantine attacks. Furthermore, we propose a novel method called
ByzSGDnm and prove the convergence of ByzSGDnm. Empirical results show that when under
Byzantine attacks, setting a relatively large batch size can significantly increase the model accuracy
compared to the case of small batch size, which is consistent with our theoretical results. Moreover,
ByzSGDnm can achieve higher model accuracy than existing BRDL methods when under attack.
In addition, increasing batch size has the bonus of training acceleration, which is verified by the
empirical results.
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REPRODUCIBILITY STATEMENT

For the theoretical results of our work, the assumptions are presented in Section 2 and the detailed
proofs are deferred to Appendix B. For the empirical results, the experimental platform and the
hyper-parameter settings are described in Section 5. The core code for our experiments can be found
in the supplementary material.
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probabilistic gradient estimator for nonconvex optimization. In Proceedings of the International
Conference on Machine Learning, pp. 6286–6295, 2021.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 5330–5340, 2017.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Proceed-
ings of the International Conference on Learning Representations, 2017.

Chenxin Ma, Virginia Smith, Martin Jaggi, Michael Jordan, Peter Richtárik, and Martin Takác.
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A BYZANTINE-ROBUST SGDM

The detailed algorithm of Byzantine-robust SGDm (ByzSGDm) on the server and workers are
presented in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2 ByzSGDm (Server)

Input: worker number m, iteration number T , learning rates {ηt}T−1t=0 , robust aggregator Agg(·);
Initialization: model parameter w0;
Broadcast w0 to all workers;
for t = 0 to T − 1 do

Receive {u(k)
t }mk=1 from all workers, and compute ut = Agg(u

(1)
t , . . . ,u

(m)
t );

Update model parameter wt+1 = wt − ηtut;
Broadcast wt+1 to all workers;

end for
Output model parameter wT .

Algorithm 3 ByzSGDm (Worker k)

Input: iteration number T , batch size B, momentum hyper-parameter β ∈ [0, 1);
Receive initial model parameter w0 from the server;
for t = 0 to T − 1 do

Independently draw B samples ξ(k,1)t , . . . , ξ
(k,B)
t from distribution D;

Compute g
(k)
t = 1

B

∑B
b=1∇f(wt, ξ

(k,b)
t );

Update local momentum u
(k)
t =

{
g
(k)
0 , t = 0;

βu
(k)
t−1 + (1− β)g

(k)
t , t > 0;

Send u
(k)
t to the server (Byzantine workers may send arbitrary values at this step);

Receive the latest model parameter wt+1 from the server;
end for

B PROOF DETAILS

B.1 PROOF OF THEOREM 1

Proof. It has been proved in (Karimireddy et al., 2021) that for ByzSGDm, we have

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 16

√
σ̃2(1 + cδm)

Tm
(10LF0 + 3cδσ̃2) +

32LF0

T
+

20σ̃2(1 + cδm)

Tm
, (6)

where σ̃2 is the variance of stochastic gradients. In the setting of this work, we have σ̃2 = σ2/B
where B is the batch size on each worker. Therefore, we have

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 16

√
σ2(1 + cδm)

TBm

(
10LF0 +

3cδσ2

B

)
+

32LF0

T
+

20σ2(1 + cδm)

TBm
. (7)

Moreover, since for all x, y > 0,

1

2

√
x+

1

2

√
y ≤
√
x+ y =

√
(
√
x)2 + (

√
y)2 ≤

√
x+
√
y, (8)

we have that
1

2
≤
√
x+ y√
x+
√
y
≤ 1. (9)
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Therefore, we can replace the term
√

10LF0 + 3cδσ2

B with
(√

10LF0 +
√

3cδσ2

B

)
without changing

the convergence order. Consequently, we have

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 16

√
σ2(1 + cδm)

TBm

(√
10LF0 +

√
3cδσ2

B

)
+

32LF0

T
+

20σ2(1 + cδm)

TBm
.

(10)

B.2 PROOF OF PROPOSITION 1

Proof. Since

U(B) = 16

√
σ2(1 + cδm)(1− δ)

C

(√
10LF0 +

√
3cδσ2

B

)
+

32LF0Bm(1− δ)
C

+
20σ2(1 + cδm)(1− δ)

C
, (11)

it is not hard to find that U(B) is continuous and differentiable on (0,+∞). Then we analyze the
convexity of U(B) by showing that it has a positive second-order derivative. For simplicity, we define
the constants A1, A2 and A3 as follows:

A1 = 16

√
10LF0(1 + cδm)(1− δ)σ2

C
+

20(1 + cδm)(1− δ)σ2

C
, (12)

A2 = 16

√
3cδ(1 + cδm)(1− δ)σ4

C
, (13)

A3 =
32LF0m(1− δ)

C
. (14)

According to the definition of U(B), we have

U(B) = A1 +A2B
− 1

2 +A3B, B ∈ (0,+∞). (15)

Therefore,

U ′(B) = −1

2
A2B

− 3
2 +A3, B ∈ (0,+∞). (16)

Thus,

U ′′(B) =
3

4
A2B

− 5
2 > 0, B ∈ (0,+∞). (17)

which implies that U(B) is strictly convex. According to (16), the equation U ′(B) = 0 has the only
solution

B∗ =

(
A2

2A3

) 2
3

=

16
√

3cδ(1+cδm)(1−δ)σ4

C

2 · 32LF0m(1−δ)
C


2
3

=

(√
3cδ(1 + cδm)σ4C
4LF0m

√
1− δ

) 2
3

(18)

=

(
3

16L2(F0)2m

) 1
3
(
cδ(1 + cδm)

m(1− δ)

) 1
3

σ
4
3 C 1

3 .

(19)

Thus, B∗ is the only global minimizer of U(B). The minimum value U(B∗) is:

U(B∗) = U

((
A2

2A3

) 2
3

)
(20)

= A1 + 3

(
(A2)2A3

4

) 1
3

(21)
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=
16
√

10LF0(1 + cδm)(1− δ)σ
C 1

2

+
20(1 + cδm)(1− δ)σ2

C

+ 3


(

16
√

3cδ(1+cδm)(1−δ)σ4

C

)2 (
32LF0m(1−δ)

C

)
4


1
3

(22)

=
16
√

10LF0(1 + cδm)(1− δ)σ
C 1

2

+
20(1 + cδm)(1− δ)σ2

C

+
24
[
12cδ(1 + cδm)(1− δ)2LF0m

] 1
3 σ

4
3

C 2
3

. (23)

B.3 PROOF OF THEOREM 2

Firstly, we present Lemma 1 below, which quantitatively shows that the variance of stochastic
gradients can be reduced by increasing the batch size B.

Lemma 1 (Mini-batch variance reduction). Under Assumption 1, we have that ∀k ∈ G,

E
∥∥∥g(k)

t −∇F (wt)
∥∥∥2 ≤ σ2

B
, ∀t ≥ 0. (24)

Proof. By the definition of g(k)
t ,

g
(k)
t =

1

B

B∑
b=1

∇f(wt, ξ
(k,b)
t ). (25)

Since for all k ∈ G, E[∇f(wt, ξ
(k,b)
t )] = ∇F (wt) and ∇f(wt, ξ

(k,b)
t ) is independent to each other

with bounded variance σ2, we have that

E
∥∥∥g(k)

t −∇F (wt)
∥∥∥2 ≤ σ2

B
. (26)

Moreover, by using Cauchy-Schwarz inequality, it is obtained that

E
∥∥∥g(k)

t −∇F (wt)
∥∥∥ ≤√E

∥∥∥g(k)
t −∇F (wt)

∥∥∥2 ≤ σ√
B
. (27)

We define
ūt =

1

|G|
∑
k∈G

u
(k)
t , (28)

which represents the exact averaging local momentum of all non-faulty workers k ∈ G. Then we
provide an upper bound for the aggregation error of a (δmax, c)-robust aggregator in Lemma 2. The
notation of ūt is only used for theoretical analysis, which does not appear in the algorithm.

The proof of Lemma 2 is inspired by the existing work (Karimireddy et al., 2021). Moreover, we
have improved the analysis details, and the upper bound of aggregation error in Lemma 2 is tighter
than that in (Karimireddy et al., 2021).

Lemma 2 (Aggregation bias). Let α = 1− β. Under Assumption 1, when Agg(·) is (δmax, c)-robust
and δ ≤ δmax, we have that

E‖ut − ūt‖2 ≤
2cδσ2

B
[α+ (1− α)2t], ∀t ≥ 0. (29)
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Proof. Let α = 1− β. For all t ≥ 0 and fixed k, k′ ∈ G, since g(k)
t is independent to g

(k′)
t and u

(k)
t−1,

E
∥∥∥u(k)

t − u
(k′)
t

∥∥∥2 = E
∥∥∥(1− α)[u

(k)
t−1 − u

(k′)
t−1] + α[g

(k)
t − g

(k′)
t ]

∥∥∥2 (30)

= E
∥∥∥(1− α)[u

(k)
t−1 − u

(k′)
t−1]

∥∥∥2 + E
∥∥∥α[g

(k)
t − g

(k′)
t ]

∥∥∥2 (31)

= (1− α)2E
∥∥∥u(k)

t−1 − u
(k′)
t−1

∥∥∥2 + 2α2E
∥∥∥g(k)

t −∇F (wt)
∥∥∥2 (32)

≤ (1− α)2E
∥∥∥u(k)

t−1 − u
(k′)
t−1

∥∥∥2 +
2α2σ2

B
. (33)

Recursively using the inequality above, we have that

E
∥∥∥u(k)

t − u
(k′)
t

∥∥∥2 ≤ (1− α)2tE
∥∥∥u(k)

0 − u
(k′)
0

∥∥∥2 +
2α2σ2

B
[1 + (1− α)2 + . . .+ (1− α)2(t−1)]

(34)

= (1− α)2tE
∥∥∥g(k)

0 − g
(k′)
0

∥∥∥2 +
2α2σ2

B
· 1− (1− α)2t

1− (1− α)2
(35)

≤ (1− α)2t · 2σ2

B
+

2α2σ2

B
· 1

α(2− α)
(36)

≤ (1− α)2t · 2σ2

B
+

2ασ2

B
(37)

=
2σ2

B
[α+ (1− α)2t]. (38)

According to the definition of (δmax, c)-robust aggregator,

E

∥∥∥∥∥Agg(u
(1)
t , . . . ,u

(m)
t )− 1

|G|
∑
k∈G

u
(k)
t

∥∥∥∥∥
2

≤ 2cδσ2

B
[α+ (1− α)2t]. (39)

Namely,

E‖ut − ūt‖2 ≤
2cδσ2

B
[α+ (1− α)2t]. (40)

By using Cauchy-Schwarz inequality, it is obtained that

E‖ut − ūt‖ ≤
√
E‖ut − ūt‖2 ≤

√
2cδ[α+ (1− α)2t]σ√

B
. (41)

Based on Lemma 2, we can further obtain Lemma 3, which provides an upper bound for the difference
between the aggregated momentum ut and the global gradient ∇F (wt).

Lemma 3. Under Assumptions 1 and 3, when Agg(·) is (δmax, c)-robust, δ ≤ δmax and ηt = η, we
have the following result for ByzSGDnm:

E‖ut −∇F (wt)‖ ≤
ηL

α
+

√
2cmδ(1− δ) + 1√
Bm(1− δ)

[
(1− α)t +

√
α
]
σ, ∀t ≥ 0. (42)

Proof. ∀t ≥ 0, we have that

ūt −∇F (wt) =

(
1

|G|
∑
k∈G

u
(k)
t

)
−∇F (wt) (43)

=
1

|G|
∑
k∈G

[
βu

(k)
t−1 + (1− β)g

(k)
t

]
−∇F (wt) (44)
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= βūt−1 +

(
1− β
|G|

∑
k∈G

g
(k)
t

)
−∇F (wt) (45)

= β[ūt−1 −∇F (wt)] +
1− β
|G|

∑
k∈G

[
g
(k)
t −∇F (wt)

]
(46)

= β[ūt−1 −∇F (wt−1)] + β[∇F (wt)−∇F (wt−1)] +
1− β
|G|

∑
k∈G

[
g
(k)
t −∇F (wt)

]
.

(47)

Recursively using the equation above and substituting β with 1− α, we have that

ūt −∇F (wt) = (1− α)t[ū0 −∇F (w0)] +

t∑
t′=1

(1− α)t−t
′+1[∇F (wt′)−∇F (wt′−1)]

+

t∑
t′=1

(1− α)t−t
′

{
α

|G|
∑
k∈G

[
g
(k)
t′ −∇F (wt′)

]}
. (48)

Noticing that u(k)
0 = g

(k)
0 , we have that ū0 −∇F (w0) = 1

|G|
∑
k∈G [g

(k)
0 −∇F (w0)]. Therefore,

ūt −∇F (wt) =

t∑
t′=1

(1− α)t−t
′+1[∇F (wt′)−∇F (wt′−1)]

+
1

|G|
∑
k∈G

{
(1− α)t[g

(k)
0 −∇F (w0)] + α

t∑
t′=1

(1− α)t−t
′
[g

(k)
t′ −∇F (wt′)]

}
.

(49)

According to Assumption 3,

E‖∇F (wt′)−∇F (wt′−1)‖ ≤ L · E‖wt′ −wt′−1‖ = L · E
∥∥∥∥−η ut′−1
‖ut′−1‖

∥∥∥∥ = ηL. (50)

Since g
(k)
t ’s are independent to each other, by using Lemma 1 and |G| ≥ (1− δ)m, we have that

E

∥∥∥∥∥ 1

|G|
∑
k∈G

{
(1− α)t[g

(k)
0 −∇F (w0)] + α

t∑
t′=1

(1− α)t−t
′
[g

(k)
t′ −∇F (wt′)]

}∥∥∥∥∥
≤

E

∥∥∥∥∥ 1

|G|
∑
k∈G

{
(1− α)t[g

(k)
0 −∇F (w0)] + α

t∑
t′=1

(1− α)t−t
′
[g

(k)
t′ −∇F (wt′)]

}∥∥∥∥∥
2
 1

2

(51)

=
1

|G|

{∑
k∈G

[
(1− α)2tE

∥∥∥g(k)
0 −∇F (w0)

∥∥∥2 + α2
t∑

t′=1

(1− α)2t−2t
′
E
∥∥∥g(k)

t′ −∇F (wt′)
∥∥∥2]} 1

2

(52)

≤ 1

|G|

{
|G|σ2

B

[
(1− α)2t + α2

t∑
t′=1

(1− α)2t−2t
′

]} 1
2

(53)

=
σ√
B|G|

√
(1− α)2t + α2

1− (1− α)2t

1− (1− α)2
(54)

≤ σ√
B|G|

[
(1− α)t + α

√
1− (1− α)2t

1− (1− α)2

]
(55)
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≤ σ√
B|G|

[
(1− α)t + α

√
1

α(2− α)

]
(56)

=
σ√
B|G|

[
(1− α)t +

√
α

2− α

]
(57)

≤ σ√
Bm(1− δ)

[
(1− α)t +

√
α
]
. (58)

Consequently,

E‖ūt −∇F (wt)‖ ≤ ηL
t∑

t′=1

(1− α)t−t
′+1 +

σ√
Bm(1− δ)

[
(1− α)t +

√
α
]

(59)

≤ ηL

α
+

σ√
Bm(1− δ)

[
(1− α)t +

√
α
]
. (60)

Since E‖ut − ūt‖ ≤
√
E‖ut − ūt‖2, according to Lemma 2, we have that

E‖ut −∇F (wt)‖ ≤ E‖ūt −∇F (wt)‖+ E‖ut − ūt‖ (61)

≤ ηL

α
+

σ√
Bm(1− δ)

[
(1− α)t +

√
α
]

+

√
2cδ[α+ (1− α)2t]σ√

B
(62)

≤ ηL

α
+

σ√
Bm(1− δ)

[
(1− α)t +

√
α
]

+

√
2cδ[
√
α+ (1− α)t]σ√

B
(63)

=
ηL

α
+

√
2cmδ(1− δ) + 1√
Bm(1− δ)

[
(1− α)t +

√
α
]
σ. (64)

Then we present the descent lemma for SGD with normalized momentum. The proof of Lemma 4 is
inspired by the existing work (Cutkosky & Mehta, 2020), but the result in Lemma 4 is more general
than that in (Cutkosky & Mehta, 2020).

Lemma 4 (Descent lemma). Under Assumptions 1 and 3, for any constant γ ∈ (0, 1), we have the
following result for ByzSGDnm:

F (wt+1) ≤ F (wt)− ηt
1− γ
1 + γ

‖∇F (wt)‖+ ηt
2

γ(1 + γ)
‖ut −∇F (wt)‖+

(ηt)
2L

2
. (65)

Proof. According to Assumption 3, we have that

F (wt+1) = F (wt − ηt
ut
‖ut‖

) (66)

≤ F (wt)−∇F (wt)
T

(
ηt

ut
‖ut‖

)
+
L

2

∥∥∥∥ηt ut
‖ut‖

∥∥∥∥2 (67)

= F (wt)− ηt
∇F (wt)

Tut
‖ut‖

+
(ηt)

2L

2
. (68)

Let γ ∈ (0, 1) be an arbitrary constant. Then we consider the following two cases:

(i) When ‖ut −∇F (wt)‖ ≤ γ‖∇F (wt)‖, we have

−ηt
∇F (wt)

Tut
‖ut‖

=− ηt
∇F (wt)

T [∇F (wt) + (ut −∇F (wt))]

‖∇F (wt) + (ut −∇F (wt))‖
(69)

≤− ηt
‖∇F (wt)‖2 − ‖∇F (wt)‖ · ‖ut −∇F (wt)‖

‖∇F (wt)‖+ ‖ut −∇F (wt)‖
(70)
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≤− ηt
‖∇F (wt)‖2 − γ‖∇F (wt)‖2

(1 + γ)‖∇F (wt)‖
(71)

=− ηt
1− γ
1 + γ

‖∇F (wt)‖ (72)

≤− ηt
1− γ
1 + γ

‖∇F (wt)‖+ ηt
2

γ(1 + γ)
‖ut −∇F (wt)‖. (73)

(ii) When ‖ut −∇F (wt)‖ > γ‖∇F (wt)‖, we have

−ηt
∇F (wt)

Tut
‖ut‖

≤ηt‖∇F (wt)‖ (74)

=− ηt
1− γ
1 + γ

‖∇F (wt)‖+ ηt
2

1 + γ
‖∇F (wt)‖ (75)

≤− ηt
1− γ
1 + γ

‖∇F (wt)‖+ ηt
2

γ(1 + γ)
‖ut −∇F (wt)‖. (76)

In summary, we always have

− ηt
∇F (wt)

Tut
‖ut‖

≤ −ηt
1− γ
1 + γ

‖∇F (wt)‖+ ηt
2

γ(1 + γ)
‖ut −∇F (wt)‖. (77)

Therefore,

F (wt+1) ≤ F (wt)− ηt
1− γ
1 + γ

‖∇F (wt)‖+ ηt
2

γ(1 + γ)
‖ut −∇F (wt)‖+

(ηt)
2L

2
. (78)

Finally, we can obtain Theorem 2 by recursively using Lemma 4, taking expectation on both sides
and using Lemma 3. The proof details are presented below.

Proof. Recursively using Lemma 4 from t = 0 to T − 1 and letting ηt = η, we have that

F (wT ) ≤ F (w0)− (1− γ)η

1 + γ

T−1∑
t=0

‖∇F (wt)‖+
2η

γ(1 + γ)

T−1∑
t=0

‖ut −∇F (wt)‖+
Tη2L

2
. (79)

Therefore,

1

T

T−1∑
t=0

‖∇F (wt)‖ ≤
(1 + γ)[F (w0)− F (wT )]

(1− γ)ηT
+

2

Tγ(1− γ)

T−1∑
t=0

‖ut−∇F (wt)‖+
(1 + γ)ηL

2(1− γ)
.

(80)

According to Assumption 2, we have that F (wT ) ≥ F ∗. Furthermore, by taking expection on both
sides, letting γ = 1

3 and using Lemma 3, it is obtained that

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤
2[F (w0)− F ∗]

ηT
+

9

T

T−1∑
t=0

E‖ut −∇F (wt)‖+ ηL (81)

≤ 2[F (w0)− F ∗]
ηT

+
9ηL

α
+

9
√

2cmδ(1− δ) + 9√
Bm(1− δ)

(
1

αT
+
√
α

)
σ + ηL

(82)

≤ 2F0

ηT
+

10ηL

α
+

9
√

2cmδ(1− δ) + 9√
Bm(1− δ)

(
1

αT
+
√
α

)
σ. (83)
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B.4 PROOF OF PROPOSITION 2

Proof. Learning rate η appears only in the first two terms of the RHS of inequality (2). Thus,

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤
2F0

ηT
+

10ηL

α
+

9
√

2cmδ(1− δ) + 9√
Bm(1− δ)

(
1

αT
+
√
α

)
σ

≤ 2

√
2F0

ηT
× 10ηL

α
+

9
√

2cmδ(1− δ) + 9√
Bm(1− δ)

(
1

αT
+
√
α

)
σ (84)

=

√
80LF0

αT
+

9
√

2cmδ(1− δ) + 9√
Bm(1− δ)

(
1

αT
+
√
α

)
σ. (85)

The second equation holds only and only if 2F0

ηT = 10ηL
α , which is equivalent to that η =

√
αF0

5LT .

Furthermore, since α = min

( √
80LF0Bm(1−δ)[

9
√

2cmδ(1−δ)+9
]
σ
√
T
, 1

)
, we consider the following two cases.

(i) When α =

√
80LF0Bm(1−δ)[

9
√

2cmδ(1−δ)+9
]
σ
√
T

, we have that

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤ 6
[√

2cmδ(1− δ) + 1
] 1

2

(
5LF0σ

2

TBm(1− δ)

) 1
4

+
27
[√

2cmδ(1− δ) + 1
] 3

2

4
√

5TB2m2(1− δ)2LF0

σ2. (86)

(ii) When α = 1, it implies
√

80LF0Bm(1−δ)[
9
√

2cmδ(1−δ)+9
]
σ
√
T
≥ 1. Namely, 9

√
2cmδ(1−δ)+9√
Bm(1−δ)

σ ≤
√
80LF0√
T

. In

this case,

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤
√

80LF0

αT
+

9
√

2cmδ(1− δ) + 9√
Bm(1− δ)

(
1

αT
+
√
α

)
σ (87)

≤
√

80LF0

T
+

√
80LF0

T

(
1

T
+ 1

)
(88)

≤ 12

√
5LF0

T
. (89)

In summary,

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤ 6
[√

2cmδ(1− δ) + 1
] 1

2

(
5LF0σ

2

TBm(1− δ)

) 1
4

+ 12

√
5LF0

T

+
27
[√

2cmδ(1− δ) + 1
] 3

2

4
√

5TB2m2(1− δ)2LF0

σ2. (90)

In addition, when C = TBm(1− δ) is fixed, we have

1

T

T−1∑
t=0

E‖∇F (wt)‖ ≤ 6
[√

2cmδ(1− δ) + 1
] 1

2

(
5LF0σ

2

C

) 1
4

+ 12

√
5m(1− δ)LF0B

C
+

27
[√

2cmδ(1− δ) + 1
] 3

2

4
√

5m(1− δ)LF0CB
σ2. (91)
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Moreover,

12

√
5m(1− δ)LF0B

C
+

27
[√

2cmδ(1− δ) + 1
] 3

2

4
√

5m(1− δ)LF0CB
σ2

≥ 2

√√√√√√
(

12

√
5m(1− δ)LF0B

C

)
×

27
[√

2cmδ(1− δ) + 1
] 3

2

4
√

5m(1− δ)LF0CB
σ2

 (92)

=
18
[√

2cmδ(1− δ) + 1
] 3

4

σ

C 1
2

. (93)

The equation holds if and only if

12

√
5m(1− δ)LF0B

C
=

27
[√

2cmδ(1− δ) + 1
] 3

2

4
√

5m(1− δ)LF0CB
σ2, (94)

which is equivalent to that

B =
9
[√

2cmδ(1− δ) + 1
] 3

2

σ2

80m(1− δ)LF0
. (95)

C DISCUSSION ABOUT THE (f, κ)-ROBUSTNESS

The theoretical analysis in the main text is based on the definition of (δmax, c)-robust aggrega-
tor (Karimireddy et al., 2021). In this section, we show that similar results can be obtained under
the definition of (f, κ)-robustness (Allouah et al., 2023). In existing works 11, f is defined to be the
number of Byzantine workers. However, we have used the notation f to denote the loss function in
this paper. In order to avoid misunderstanding, we will use mδ to denote the number of Byzantine
workers in the following text, where m is the total number of workers and δ is the fraction of Byzan-
tine workers. Firstly, we present the definition of (δ, κ)-robust aggregator, which is equivalent to the
(f, κ)-robustness (Allouah et al., 2023) since the worker number m is deterministic in this paper.
Definition 2 ((δ, κ)-robustness). Let δ ∈ [0, 12 ) and κ ≥ 0. An aggregator Agg(·) is called a
(δ, κ)-robust aggregator if for any vectors x1, . . . ,xm ∈ Rd and any set G ⊆ {1, . . . ,m} satisfying
|G| = (1− δ)m, we have that

‖Agg(x1, . . . ,xm)− x̄G‖2 ≤
κ

|G|
∑
k∈G

‖xk − x̄G‖2, (96)

where x̄G = 1
|G|
∑
k∈G xk.

Thus, for a (δ, κ)-robust aggregator Agg(·), when {xk}k∈G′ is a set of i.i.d. random vectors where
G ⊆ {1, . . . ,m} satisfying |G| = (1− δ)m and E‖xk − E[xk]‖2 = σ2 for each k ∈ G, we have:

E‖Agg(x1, . . . ,xm)−x̄G‖2 ≤ E

[
κ

|G|
∑
k∈G

‖xk − x̄G‖2
]

=
|G| − 1

|G|
κσ2 =

(
1− 1

(1− δ)m

)
κσ2.

(97)

Meanwhile, for a (δmax, c)-robust aggregator Agg(·), when {xk}k∈G′ is a set of i.i.d. random vectors
where G ⊆ {1, . . . ,m} satisfying |G| = (1 − δ)m and E‖xk − E[xk]‖2 = σ2 for each k ∈ G, we
have E‖xk − xk′‖2 ≤ 2σ2 according to (2), and thus

E‖Agg(x1, . . . ,xm)− x̄G‖2 ≤ 2cδσ2. (98)
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Comparing (97) and (98), we can find that in i.i.d. cases, the upper bounds of aggregation error under
the two definitions are of the same order O(σ2). Moreover, the other factors |G|, κ, c and δ will not
change during the distributed learning process. Thus, to obtain the optimal batch size that minimizes
the theoretical upper bound under the (δ, κ)-robustness, we can simply replace the factor cδ with
c̃ = κ

2

(
1− 1

(1−δ)m

)
.

Recall that the optimal batch size that minimize the theoretical upper bound for ByzSGDm and
ByzSGDnm under the definition of (δmax, c)-robustness are

B∗ =

(
3

16L2(F0)2m

) 1
3
(
cδ(1 + cδm)

m(1− δ)

) 1
3

σ
4
3 C 1

3 , (99)

and

B̃∗ =
9
[√

2cmδ(1− δ) + 1
] 3

2

σ2

80m(1− δ)LF0
=

9

[ √
2cmδ

(1−δ)
1
6

+ 1

(1−δ)
2
3

] 3
2

σ2

80mLF0
, (100)

respectively. Thus, under the definition of (δ, κ)-robustness, the optimal batch size that minimize the
theoretical upper bound for ByzSGDm and ByzSGDnm are(

3

16L2(F0)2m

) 1
3
(
c̃(1 + c̃m)

m(1− δ)

) 1
3

σ
4
3 C 1

3 ,

and

9

[ √
2c̃m

(1−δ)
1
6

+ 1

(1−δ)
2
3

] 3
2

σ2

80mLF0
,

respectively. Notice that the term 1
1−δ is monotonically increasing w.r.t. δ. Thus, in order to

prove that the optimal batch size is monotonically increasing w.r.t. δ, we only need to prove that
c̃ = κ

2

(
1− 1

(1−δ)m

)
is monotonically increasing w.r.t. δ.

It has been shown in existing works (Allouah et al., 2023) that (i) κ = 1 + δ
1−2δ for Krum, (ii)

κ = δ
1−2δ (1 + δ

1−2δ ) for coordinate-wise trimmed-mean, (iii) κ = (1 + δ
1−2δ )2 for coordinate-wise

median and geometric median, and that (iv) the lower bound for κ is κ = δ
1−2δ . Then we prove that c̃

is monotonically increasing w.r.t. δ for these four cases separately.

Case (i). For Krum, we have κ = 1 + δ
1−2δ (0 ≤ δ < 1

2 ), and thus,

c̃(δ) =
1

2

(
1 +

δ

1− 2δ

)(
1− 1

(1− δ)m

)
(101)

=
1

2
· 1− δ

1− 2δ

(
1− 1

(1− δ)m

)
(102)

=
1

2
·

1− δ − 1
m

1− 2δ
. (103)

Therefore, the derivative of c̃(δ) is

c̃′(δ) =
1

2
·
−(1− 2δ) + 2(1− δ − 1

m )

(1− 2δ)2
=

m− 2

2m(1− 2δ)2
. (104)

Since the fraction of Byzantine workers is smaller than 1
2 , Byzantine worker can appear only when the

total worker number m > 2. Thus, we have m− 2 > 0. In addition, (1− 2δ)2 > 0 since 0 ≤ δ < 1
2 .

Therefore, we have c̃′(δ) > 0, and c̃(δ) is monotonically increasing w.r.t. δ.

Case (ii). For coordinate-wise trimmed-mean, we have κ = δ
1−2δ (1 + δ

1−2δ ). Thus,

c̃(δ) =
1

2
· δ

1− 2δ

(
1 +

δ

1− 2δ

)(
1− 1

(1− δ)m

)
(105)
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=

[
1

2

(
1 +

δ

1− 2δ

)(
1− 1

(1− δ)m

)]
·
(

δ

1− 2δ

)
. (106)

It has been proven in case (i) that the first term
[
1
2

(
1 + δ

1−2δ

)(
1− 1

(1−δ)m

)]
is monotonically

increasing w.r.t. δ. Since both δ and 1
1−2δ increase as δ ∈ [0, 12 ) increases, the second term δ

1−2δ is
also monotonically increasing w.r.t. δ. Moreover, the two terms are both positive. Thus, we have that
c̃(δ) is monotonically increasing w.r.t. δ.

Case (iii). For coordinate-wise median and geometric median, we have κ = (1 + δ
1−2δ )2. Thus,

c̃(δ) =
1

2
·
(

1 +
δ

1− 2δ

)2(
1− 1

(1− δ)m

)
(107)

=

[
1

2

(
1 +

δ

1− 2δ

)(
1− 1

(1− δ)m

)]
·
(

1 +
δ

1− 2δ

)
. (108)

It has been proven in case (i) that the first term
[
1
2

(
1 + δ

1−2δ

)(
1− 1

(1−δ)m

)]
is monotonically

increasing w.r.t. δ. Since both δ and 1
1−2δ increase as δ ∈ [0, 12 ) increases, the second term(

1 + δ
1−2δ

)
is also monotonically increasing w.r.t. δ. Moreover, the two terms are both positive.

Thus, we have that c̃(δ) is monotonically increasing w.r.t. δ.

Case (iv). The lower bound for κ is κ = δ
1−2δ . Thus, the lower bound for c̃(δ) is

c̃(δ) =
1

2
· δ

1− 2δ

(
1− 1

(1− δ)m

)
(109)

=
1

2

(
1 +

δ

1− 2δ

)(
1− 1

(1− δ)m

)
+

1

2

(
1

(1− δ)m
− 1

)
(110)

It has been proven in case (i) that the first term
[
1
2

(
1 + δ

1−2δ

)(
1− 1

(1−δ)m

)]
is monotonically

increasing w.r.t. δ. The second term 1
2

(
1

(1−δ)m − 1
)

is also monotonically increasing w.r.t. δ. Thus,
for the lower bound of κ, c̃(δ) is also monotonically increasing w.r.t. δ.

In summary, under the definition of (f, κ)-robustness, the optimal batch size that minimize the
theoretical upper bound for ByzSGDm and ByzSGDnm increase with the fraction of Byzantine
workers δ. The results are consistent with those under the definition of (δmax, c)-robust aggregator.

D COMPARISON WITH BYZ-VR-MARINA

We compare ByzSGDnm with Byz-VR-MARINA (Gorbunov et al., 2023) in this section.

D.1 VARIANCE REDUCTION TECHNIQUES

We first compare the techniques for variance reduction in ByzSGDnm and Byz-VR-MARINA. As
presented in the main text, in ByzSGDnm, the variance of stochastic gradients is reduced mainly
by using (i) large batch size and (ii) local momentums. The two techniques introduce little extra
computation cost but are empirically effective, as the empirical results in the main text show. However,
the two techniques work only in the i.i.d. cases that we focus on in this work.

Byz-VR-MARINA adopts PAGE (Li et al., 2021) for variance reduction. In contrast to the techniques
in ByzSGDnm, PAGE can reduce the bias in general non-i.i.d. cases but introduces much more
computation cost (as we will shown in Appendix D.3).

D.2 COMMUNICATION COST

ByzSGDnm and Byz-VR-MARINA take different ways to reduce the communication cost in dis-
tributed learning. ByzSGDnm uses large-batch training (Cutkosky & Mehta, 2020; Goyal et al.,
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2017; You et al., 2020) to reduce the number communication round while Byz-VR-MARINA uses
communication compression such as quantization (Alistarh et al., 2017) to reduce the transmitted bits
in each communication round.

D.3 COMPUTATION COST

Since the computation cost mainly comes from gradient computation in many real-world distributed
learning applications, we use the number of gradient computation on non-Byzantine workers to
estimate the computation cost for both methods. In ByzSGDnm, each of the m(1− δ) non-Byzantine
workers will draw a mini-batch of B samples and compute the corresponding stochastic gradients at
each iteration. Thus, the total number of gradient computation in each iteration for ByzSGDnm is
Bm(1− δ). In each iteration of Byz-VR-MARINA, each of the m(1− δ) non-Byzantine workers
computes the full gradient with probability p and computes a mini-batch estimation of gradient
differences with probability 1 − p. Since the estimation with batch size B requires 2B times of
gradient computation, the expectation of the total number of gradient computation in each iteration
for Byz-VR-MARINA is (1− δ)np+ 2Bm(1− δ)(1− p) where n is the total number of training
instances. Therefore, the number of gradient computation in Byz-VR-MARINA for each iteration is
kC times that of ByzSGDnm in expectation, where

kC
4
=

(1− δ)np+ 2Bm(1− δ)(1− p)
Bm(1− δ)

=
np+ 2Bm(1− p)

Bm
= 2 + p

( n

Bm
− 2
)
.

Since Bm is the total batch size of each iteration and n is the total number of instances, n
Bm is the

number of iteration per epoch, which is typically much larger than 2. Therefore, the number of
gradient computation for Byz-VR-MARINA is more than twice that of ByzSGDnm in expectation.

D.4 THEORETICAL CONVERGENCE ORDER

As we have proved in Section 4 in the main text, under Assumptions 1, 2 and 3, we have

min
t=0,...,T−1

E‖∇F (wt)‖ ≤ O
(

1

T
1
4

)
or equivalently

min
t=0,...,T−1

E‖∇F (wt)‖2 ≤ O
(

1

T
1
2

)
for ByzSGDnm with (δmax, c)-robust aggregators. Meanwhile, as the results in Gorbunov et al.
(2023) show, under similar conditions, we have

min
t=0,...,T−1

E‖∇F (wt)‖2 ≤ O
(

1

T

)
for Byz-VR-MARINA. It has been shown in existing works (Arjevani et al., 2023; Cutkosky &
Mehta, 2020) that the convergence order mint E‖∇F (wt)‖ ≤ O(1/T

1
4 ) is optimal for SGD under

Assumptions 1, 2 and 3. Byz-VR-MARINA achieves the faster convergence order mainly because
of intermittently using full gradients for variance reduction. The strategy of intermittently using
full gradients is also adopted in some traditional methods such as SVRG (Johnson & Zhang, 2013).
Although using full gradients improves the theoretical convergence order, it also increases the
expected number of gradient computation as discussed in Appendix D.3 above.

In summary, compared to ByzSGDnm, Byz-VR-MARINA has a faster theoretical convergence order
with respect to the iteration number, but also requires more times of gradient computation per iteration.
Moreover, the number of gradient computation for Byz-VR-MARINA depends on p and n.

D.5 EMPIRICAL PERFORMANCE

Finally, we empirically compare the performance of ByzSGDnm and Byz-VR-MARINA. The
experimental settings are the same as those presented in Section 5 of the main text. Specifically,
we use cosine annealing (Loshchilov & Hutter, 2017) learning rates for each method. The initial
learning rate for Byz-VR-MARINA is selected from {0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}, and
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the best final top-1 test accuracy is used as the final metrics. We set the batch size to 512 × 8 for
ByzSGDnm. We use the top-1 test accuracy w.r.t. gradient computation number as final metrics. For
fairness, we do not use communication compression for Byz-VR-MARINA. The empirical results of
Byz-VR-MARINA when the batch size is 32× 8, 64× 8, 128× 8, 256× 8 and 512× 8 are presented
in Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5,respectively.
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Figure 1: Top-1 test accuracy w.r.t. gradient computation number of different methods when there
are 3 workers under ALIE attack. The batch size for Byz-VR-MARINA is set to 32× 8.
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Figure 2: Top-1 test accuracy w.r.t. gradient computation number of different methods when there
are 3 workers under ALIE attack. The batch size for Byz-VR-MARINA is set to 64× 8.
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Figure 3: Top-1 test accuracy w.r.t. gradient computation number of different methods when there
are 3 workers under ALIE attack. The batch size for Byz-VR-MARINA is set to 128× 8.
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Figure 4: Top-1 test accuracy w.r.t. gradient computation number of different methods when there
are 3 workers under ALIE attack. The batch size for Byz-VR-MARINA is set to 256× 8.

As illustrated in Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5, Byz-VR-MARINA converges
much more slowly and has a much lower final top-1 accuracy than ByzSGDnm. There are mainly
two reasons. Firstly, the full gradients in Byz-VR-MARINA is used to alleviate the bias in non-i.i.d.
cases and is computation expensive. However, in i.i.d. cases that we focus on in this work, the full
gradient is unnecessary and requires a large number times of gradient computation. Secondly, it
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Figure 5: Top-1 test accuracy w.r.t. gradient computation number of different methods when there
are 3 workers under ALIE attack. The batch size for Byz-VR-MARINA is set to 512× 8.

has been shown in existing works (Defazio & Bottou, 2019) that using full gradients for variance
reduction does not improve over SGD on deep learning models.

E MORE EXPERIMENTAL RESULTS

E.1 INDEPENDENT AND IDENTICALLY DISTRIBUTED (I.I.D.) CASE

Final top-1 test accuracy when using different batch size. We present the empirical results of
ByzSGDm and ByzSGDnm with different batch size (ranging from 32× 8 to 1024× 8) under no
attack or failure, under bit-flipping failure (Xie et al., 2019), ALIE attack and FoE attack in Table 7,
Table 8, Table 9 and Table 10, respectively. Specifically, workers under bit-flipping failure will send
the vectors that are −10 times the true values. The final top-1 test accuracy of the two methods under
ALIE attack when NNM technique (Allouah et al., 2023) is used is presented in Table 11 below.

Table 7: The final top-1 test accuracy of ByzSGDm and ByzSGDnm with different batch size when
there is no attack or failure

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm + KR 91.08% 89.98% 89.71% 89.15% 86.15% 84.97%

ByzSGDnm + KR 91.00% 90.15% 89.23% 88.76% 87.83% 84.71%
ByzSGDm + GM 92.02% 91.50% 90.85% 89.26% 88.21% 86.52%

ByzSGDnm + GM 92.18% 91.81% 91.22% 89.93% 90.01% 88.08%
ByzSGDm + CM 92.30% 91.79% 90.43% 89.84% 87.27% 84.06%

ByzSGDnm + CM 92.29% 91.70% 91.15% 90.20% 89.06% 88.11%
ByzSGDm + CC 92.52% 91.74% 90.63% 89.40% 88.78% 85.50%

ByzSGDnm + CC 92.51% 91.91% 91.50% 90.00% 89.33% 88.47%
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Table 8: The final top-1 test accuracy of ByzSGDm and ByzSGDnm with different batch size when
there are 3 Byzantine workers under bit-flipping failure

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm + KR 91.09% 90.30% 89.55% 88.37% 87.52% 85.68%

ByzSGDnm + KR 90.71% 90.14% 89.59% 88.89% 85.76% 82.22%
ByzSGDm + GM 88.97% 89.18% 88.61% 87.43% 85.72% 83.56%

ByzSGDnm + GM 88.64% 89.16% 88.89% 88.22% 87.78% 86.21%
ByzSGDm + CM 86.80% 87.11% 87.40% 86.37% 85.40% 81.23%

ByzSGDnm + CM 87.39% 88.12% 87.66% 86.76% 86.33% 85.52%
ByzSGDm + CC 88.92% 88.97% 88.78% 88.02% 86.54% 83.93%

ByzSGDnm + CC 88.81% 88.89% 88.96% 88.45% 87.56% 85.53%

Table 9: The final top-1 test accuracy of ByzSGDm and ByzSGDnm with different batch size when
there are 3 Byzantine workers under ALIE attack

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm + KR 38.55% 54.15% 55.98% 59.28% 83.42% 83.45%

ByzSGDnm + KR 43.47% 70.88% 80.20% 82.83% 85.12% 85.93%
ByzSGDm + GM 63.11% 70.88% 82.08% 87.62% 86.95% 84.75%

ByzSGDnm + GM 69.45% 83.23% 86.63% 88.66% 89.13% 88.16%
ByzSGDm + CM 33.11% 55.66% 66.38% 82.47% 83.25% 80.94%

ByzSGDnm + CM 61.28% 71.46% 80.24% 83.55% 86.03% 85.74%
ByzSGDm + CC 72.83% 79.45% 84.94% 87.25% 87.46% 83.70%

ByzSGDnm + CC 78.50% 83.91% 86.56% 88.32% 88.53% 87.89%

Table 10: The final top-1 test accuracy of ByzSGDm and ByzSGDnm with different batch size when
there are 3 Byzantine workers under FoE attack

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm + KR 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

ByzSGDnm + KR 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%
ByzSGDm + GM 78.36% 81.98% 82.69% 82.20% 84.09% 78.90%

ByzSGDnm + GM 88.55% 88.75% 90.99% 90.23% 89.12% 88.38%
ByzSGDm + CM 83.97% 84.28% 84.01% 83.48% 79.16% 78.76%

ByzSGDnm + CM 84.12% 84.77% 85.23% 85.74% 84.65% 83.36%
ByzSGDm + CC 83.60% 84.26% 87.45% 88.48% 86.24% 81.36%

ByzSGDnm + CC 88.99% 90.07% 90.69% 90.54% 89.32% 88.20%

Table 11: The final top-1 test accuracy of ByzSGDm and ByzSGDnm with different batch size when
there are 3 Byzantine workers under ALIE attack and NNM technique is used

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm + KR 58.61% 65.96% 78.37% 85.71% 85.26% 83.97%

ByzSGDnm + KR 80.41% 83.85% 85.88% 87.15% 87.68% 87.09%
ByzSGDm + GM 72.58% 73.64% 78.02% 85.73% 85.37% 85.32%

ByzSGDnm + GM 79.50% 83.96% 86.42% 86.91% 88.09% 87.23%
ByzSGDm + CM 71.51% 78.15% 82.95% 86.06% 86.95% 85.24%

ByzSGDnm + CM 79.81% 84.14% 85.69% 87.65% 87.69% 87.11%
ByzSGDm + CC 76.48% 81.18% 84.63% 86.65% 85.98% 85.36%

ByzSGDnm + CC 79.91% 83.50% 87.00% 87.48% 87.59% 87.78%
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More results about wall-clock time. In Section 5 in the main text, we have reported the wall-clock
time of different methods for 160 epochs, which empirically shows that using large batch size has the
bonus of training acceleration. To further support the conclusion, we also present the wall-clock time
that different methods require to reach 50%, 75% and 85% top-1 test accuracy in Table 12, Table 13
and Table 14, respectively. As we can see from the results, ByzSGDnm requires less time to reach
the target accuracy than ByzSGDm in most cases. Moreover, setting a relatively large batch size can
significantly accelerate the training process.

Table 12: The wall-clock time for different methods to reach 50% top-1 test accuracy when there are
3 Byzantine workers under ALIE attack. The missing values mean that the target test accuracy is not
reached in 160 epochs for the corresponding methods.

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm + KR – 157.10s 34.04s 33.93s 31.32s 70.77s

ByzSGDnm + KR 408.89s 31.46s 26.27s 27.66s 33.35s 44.31s
ByzSGDm + GM 74.21s 42.70s 26.27s 28.90s 38.77s 55.85s

ByzSGDnm + GM 61.09s 24.92s 17.43s 24.18s 23.24s 38.24s
ByzSGDm + CM 303.55s 110.69s 28.52s 37.20s 36.52s 73.44s

ByzSGDnm + CM 475.48s 41.17s 22.32s 27.35s 27.16s 45.66s
ByzSGDm + CC 102.17s 37.60s 17.89s 29.08s 27.11s 67.76s

ByzSGDnm + CC 63.56s 25.20s 20.75s 10.86s 21.45s 27.22s

Table 13: The wall-clock time for different methods to reach 75% top-1 test accuracy when there are
3 Byzantine workers under ALIE attack. The missing values mean that the target test accuracy is not
reached in 160 epochs for the corresponding methods.

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm + KR – – – – 133.69s 148.70s

ByzSGDnm + KR – – 328.49s 123.12s 130.45s 134.09s
ByzSGDm + GM – – 114.38s 59.19s 90.74s 124.03s

ByzSGDnm + GM – 252.19s 66.13s 54.12s 45.07s 76.49s
ByzSGDm + CM – – – 202.97s 110.25s 204.42s

ByzSGDnm + CM – – 322.83s 150.25s 63.85s 109.23s
ByzSGDm + CC – 727.07s 77.19s 87.42s 86.53s 150.59s

ByzSGDnm + CC 1465.07s 112.49s 109.18s 56.20s 61.30s 81.28s

Table 14: The wall-clock time for different methods to reach 85% top-1 test accuracy when there are
3 Byzantine workers under ALIE attack. The missing values mean that the target test accuracy is not
reached in 160 epochs for the corresponding methods.

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm + KR – – – – – –

ByzSGDnm + KR – – – – 279.88s 248.95s
ByzSGDm + GM – – – 269.31s 218.80s –

ByzSGDnm + GM – – 408.89s 201.76s 176.06s 171.29s
ByzSGDm + CM – – – – – –

ByzSGDnm + CM – – – – 240.10s 257.50s
ByzSGDm + CC – – – 292.38s 207.57s –

ByzSGDnm + CC – – 426.95s 216.13s 176.83s 188.12s
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Top-1 test accuracy w.r.t. gradient computation number / wall-clock time. We present the top-1
test accuracy w.r.t. gradient computation number and wall-clock time for different methods when
there are 3 workers under ALIE attack in Figure 6 and Figure 7, respectively. The empirical results
show that using a relatively large batch size (B = 512× 8) can lead to a stabler training process and
higher final top-1 test accuracy. Moreover, under each setting of aggregators and batch size in the
experiment, ByzSGDnm outperforms ByzSGDm in final top-1 test accuracy.
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Figure 6: Top-1 test accuracy w.r.t. gradient computation number of ByzSGDnm and ByzSGDm
with different batch size when there are 3 workers under ALIE attack
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Figure 7: Top-1 test accuracy w.r.t. wall-clock time of ByzSGDnm and ByzSGDm with different
batch size when there are 3 workers under ALIE attack
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Figure 8: Training loss F (w) w.r.t. gradient computation number of ByzSGDnm and ByzSGDm
with different batch size when there are 3 workers under ALIE attack

Meanwhile, we also present the training loss w.r.t. gradient computation number in Figure 8. The
results further verify the effectiveness of large batch size and ByzSGDnm.
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E.2 NON-I.I.D. CASE

Although we mainly focus on the i.i.d. case in this paper, we also provide some empirical results in
non-i.i.d. cases in this section. Specifically, we randomly sample from the training set of CIFAR-10
dataset according to the Dirichlet distribution with hyper-parameter 1.0. The number of training
instances for each class on each worker is presented in Table E.1 below.

Table 15: The number of training instances for each class on each worker
Class label 0 1 2 3 4 5 6 7 8 9 Total

Worker 0 523 334 62 582 491 2502 721 148 568 319 6250
Worker 1 492 898 697 159 83 92 787 2415 67 560 6250
Worker 2 754 465 459 426 2365 167 121 815 678 0 6250
Worker 3 0 0 61 159 749 304 364 671 688 3254 6250
Worker 4 1106 515 1692 652 593 611 553 70 0 458 6250
Worker 5 2004 105 105 2608 29 0 0 345 1054 0 6250
Worker 6 59 2146 1561 314 564 395 324 135 752 0 6250
Worker 7 62 537 363 100 126 929 2130 401 1193 409 6250

Total 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 50000

Moreover, we replace the batch normalization layers in the ResNet-20 deep learning model (He et al.,
2016) with group normalization layers (Wu & He, 2018) as suggested in existing works (Hsieh et al.,
2020). We empirically compare ByzSGDnm with ByzSGDm and Byz-VR-MARINA (Gorbunov
et al., 2023). We try the batch size 32×8, 128×8 and 512×8 for each method. Among the 8 workers,
one worker (worker 0) is under ALIE attack. The other hyper-parameter settings for ByzSGDm and
ByzSGDnm are the same as those in Section 5 of the main text. The other hyper-parameter settings
for Byz-VR-MARINA are the same as those in Appendix D.5.

Comparison among the methods in the non-i.i.d. case. The top-1 test accuracy w.r.t. gradient com-
putation number is illustrated in Figure 9. We also present the final top-1 test accuracy of ByzSGDm
and ByzSGDnm with different batch size in Table 16. As the empirical results show, ByzSGDnm
still outperforms ByzSGDm and Byz-VR-MARINA under this non-i.i.d. setting. Moreover, for
ByzSGDnm and ByzSGDm, increasing batch size can still increase top-1 test accuracy under this
non-i.i.d. setting.

Further comparison when NNM technique is used. We also test the empirical performance of
the three methods (ByzSGDnm, ByzSGDm and Byz-VR-MARINA) under the non-i.i.d. setting
when nearest neighbour mixing (NNM) (Allouah et al., 2023) technique is used. The top-1 test
accuracy w.r.t. gradient computation number when there is 1 worker under ALIE attack is illustrated
in Figure 10. We also present the final top-1 test accuracy of ByzSGDm and ByzSGDnm with
different batch size in Table 17. Compared to the case without NNM, the final top-1 accuracy of
ByzSGDnm and ByzSGDm significantly increases (from about 35% to about 80%) when using NNM
technique. On the contrary, the final top-1 test accuracy of Byz-VR-MARINA is still around 20%
when NNM is used. In addition, for ByzSGDm and ByzSGDnm, the batch size that leads to the best
top-1 test accuracy decreases when combined with NNM. A possible reason is that when combined
with NNM, the term c in equation (4) decreases, leading to the decrease of B∗. However, since the
bias should also be taken into consideration, it requires further work to study the effect of batch size
in non-i.i.d. cases.

Meanwhile, as the results in Table 17 and in Figure 10 show, ByzSGDnm still outperforms ByzSGDm
when combined with NNM in non-i.i.d. cases. The empirical results show that in non-i.i.d. cases,
ByzSGDnm is still a promising choice. Since we mainly focus on the i.i.d. case in this work, we will
further study the behavior of ByzSGDnm in non-i.i.d. cases in future work.
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Table 16: The final top-1 test accuracy of ByzSGDm and ByzSGDnm with GM in the non-i.i.d.
setting when there is 1 Byzantine worker under ALIE attack.

Batch size 32×8 64×8 128×8 256×8 512×8 1024×8
ByzSGDm 10.16% 23.33% 27.78% 29.63% 32.90% 32.53%

ByzSGDnm 23.87% 26.78% 28.42% 30.04% 35.24% 36.25%
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(d) ByzSGDnm v.s. Byz-VR-MARINA (p = 0.2)

Figure 9: Top-1 test accuracy w.r.t. gradient computation number when there is 1 worker under ALIE
attack under the non-i.i.d. setting
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Table 17: The final top-1 test accuracy of ByzSGDm and ByzSGDnm with GM in the non-i.i.d.
setting when there is 1 Byzantine worker under ALIE attack and NNM technique is used.

Batch size 16×8 32×8 64×8 128×8 256×8 512×8
ByzSGDm 80.46% 80.56% 78.29% 74.10% 66.71% 58.78%

ByzSGDnm 81.11% 81.74% 80.08% 77.98% 74.65% 69.05%
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Figure 10: Top-1 test accuracy w.r.t. gradient computation number when there is 1 worker under
ALIE attack under the non-i.i.d. setting and NNM technique is used
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