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ABSTRACT

Hyperparameter optimization (HPO) is a crucial component of deploying ma-
chine learning models, however, it remains an open problem due to the resource-
constrained number of possible hyperparameter evaluations. As a result, prior
work focuses on exploring the direction of transfer learning for tackling the sam-
ple inefficiency of HPO. In contrast to existing approaches, we propose a novel
Deep Kernel Gaussian Process surrogate with Landmark Meta-features (DKLM)
that can be jointly meta-trained on a set of source tasks and then transferred effi-
ciently on a new (unseen) target task. We design DKLM to capture the similarity
between hyperparameter configurations with an end-to-end meta-feature network
that embeds the set of evaluated configurations and their respective performance.
As a result, our novel DKLLM can learn contextualized dataset-specific similarity
representations for hyperparameter configurations. We experimentally validate
the performance of DKLM in a wide range of HPO meta-datasets from OpenML
and demonstrate the empirical superiority of our method against a series of state-
of-the-art baselines.

1 INTRODUCTION

Hyperparameter optimization (HPO) is an essential open problem in machine learning (ML) due
to the black-box nature of methods’ empirical performances as a function of their hyperparame-
ters. The major challenge lies in the computational infeasibility of training and evaluating a large
sample of hyperparameters in order to identify the best generalization performances. As a result,
transfer learning lends itself as a promising direction for improving the sample efficiency of HPO
methods (Wistuba et al.,[2016; [Perrone et al., [2018; [Wistuba & Grabocka, [2021)).

Prior approaches for transfer learning in HPO rely on exploring existing evaluations on a pool of
datasets where the model under investigation is evaluated. The similarity between datasets is of-
ten captured via features describing their characteristics (a.k.a. meta-features), such as descriptive
statistics of dataset features (Michie et al., [1994; |Wistuba et al., |2016), or landmark measures in
the form of the accuracies gathered from a set of basic classifiers (nearest neighbors, decision trees,
SVMs, etc.) on the datasets (Pfahringer et al., [2000; |[Feurer et al. [2014). A recent trend high-
lights the potential of learning parametric meta-feature extractors for tabular datasets (Jomaa et al.,
2021al), which are further meta-trained (Finn et al.,|2017) to improve the HPO transferability to new
datasets (Jomaa et al., [2021D).

Unfortunately, typical transfer learning from a set of unrelated source tasks suffers from the neg-
ative transfer phenomenon (Wang et al., [2019), which implies a poor generalization performance
on target tasks that are dissimilar to the source tasks, according to a predefined dissimilarity mea-
sure, e.g. similarity of response curves. This can happen, for example, when a model is learned
jointly across tasks without task-specific attributes. To resolve the negative transfer of HPO per-
formance predictors (a.k.a. surrogates) we introduce a novel direction that conditions Gaussian
Process (GP) surrogates in Bayesian Optimization on the meta-features of datasets. In that manner,
we can transfer knowledge only from similar datasets, and hence conditioned on the similarity of
meta-features. However, in contrast to ad-hoc dataset meta-features that are hand-crafted by domain
experts, we propose a novel architecture for deep GP kernels (Wilson et al.|[2016a) that are enriched
with novel end-to-end neural network components that generate meta-features only from the tuples
of past hyperparameter configurations and their evaluated performances. Our meta-feature network
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is a set-based neural network that is invariant to the permutation/sequence of past hyperparameter
evaluations.

We jointly train Deep Kernel Gaussian Process surrogate with Landmark Meta-features (DKLM)
through HPO meta-learning (Wistuba & Grabocka, [2021). To validate the empirical performance of
our method we present extensive results on a large-scale benchmark that involves 16 different search
spaces and 101 datasets from OpenML for a total of 3.4 million hyperparameter evaluations (Pineda-
Arango et al.| 2021)). Detailed experiments against a series of traditional HPO methods, as well as
recent transfer HPO baselines, demonstrate the superiority of meta-learning the initialization of
DKLM. Overall, we make the following contributions:

* Introduce the first paper that tackles the negative transfer phenomenon in Bayesian HPO,
by conditioning GP surrogates on meta-features, i.e. on dataset characteristics;

* Propose an end-to-end deep GP which implicitly learns networks that generate meta-
features, with no ad-hoc inductive bias from experts on manually designing meta-features;

* Demonstrate the empirical superiority of our method on a very-large-scale experimental
protocol (3.4 million hyperparameter evaluations), against a large number of baselines.

2 RELATED WORK

Hyperparameter optimization (HPO) has been extensively studied over the past decade for improv-
ing the performance of machine learning models beyond simple search techniques (Larochelle et al.,
2007; Bergstra & Bengio, [2012). Non-transfer learning solutions often define a probabilistic surro-
gate that estimates the true hyperparameter response surface using Gaussian Processes (Rasmussen,
2003)), Bayesian Neural Networks (Snoek et al., 2015} |Springenberg et al.,|2016)), or tree-based mod-
els (Hutter et al.| 2011} |Bergstra et al.,2011). Hyperparameters are then selected via an acquisition
function (Wilson et al., [2017) and the process is reiterated with the new set of observations until a
specified budget is exhausted, e.g. runtime or number of trials.

HPO is further expedited when defined within the context of transfer learning, i.e. by leverag-
ing related tasks (or datasets) to improve the generalization over unseen tasks. Transfer learning
for HPO has been observed by modeling tasks jointly (Swersky et al., 2013} |Yogatama & Mann,
2014; Perrone et al., [2018; Salinas et al., 2020), or through some weighted-combination of the sur-
rogates (Schilling et al., 2016} Wistuba et al., 2016} [Feurer et al.| |2018)). Other directions include
pruning the hyperparameter search space (Wistuba et al., |2015a} [Perrone & Shen| 2019), or learn-
ing to initialize the surrogate by identifying good initial hyperparameters (Wistuba et al., 2015b).
Apart from learning a transferable surrogate, recently, transferable acquisition functions (Wistuba
et al., 2018;|Volpp et al.,2020) have also been proposed to replace engineered acquisition functions.
The success of meta-learning for domain adaptation has also been investigated for HPO. Wistuba
& Grabockal (2021)) explore few-shot Bayesian Optimization by learning a deep kernel Gaussian
Process surrogate across a set of tasks to quickly adapt to new a target task. Similarly, Jomaa et al.
(2021Db)) learn a shared neural network surrogate jointly coupled with a meta-feature extractor de-
fined over the dataset itself.

Meta-features (Vanschoren, 2018), or dataset characteristics, have also been widely adopted in HPO
algorithms for warm-start initialization (Feurer et al., 2015} Wistuba et al., [2016) or as additional
attributes to better marginalize the surrogate on individual tasks (Bardenet et al., 2013). Never-
theless, extracting meta-features requires direct access to the datasets, which might be difficult in
real settings where only the meta-dataset is available. In this paper, we propose to extract landmark
meta-features from existing evaluations (Leite et al., 2012;[Sun & Pfahringer,[2013) in an end-to-end
fashion using a deep Gaussian kernel approach.

3 PRELIMINARIES

3.1 HYPERPARAMETER OPTIMIZATION

We denote by D = {(z;,v;)}, atask of interest, such that z; € X C R" represents a hyperpa-
rameter configuration in the domain of a (bounded) hyperparameter search space for some model
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under investigation. Furthermore, let y; = f(x;) + € be the response of an unknown black-box
function f := X — R, with € as an additive i.i.d Gaussian noise with some homoscedastic vari-
ance o2. Typically, y represents a metric of interest that should be optimized to obtain better model
generalization, e.g. validation loss. The objective of hyperparameter optimization is then to find the
optimal hyperparameter such that z, = argmin,¢, f(x) given a fixed budget T of trials. HPO
is commonly treated as sequential decision-making process, where a surrogate model § : X — R
is iteratively fit to the history H; = {(z;,v;)}!_, of evaluated hyperparameters and a policy (or
acquisition function) A : (X x R)* — X is used to select the next candidate which minimizes the
expected hyperparameter response. Among the existing acquisition functions, expected improve-
ment is widely adopted (Mockus|, [1974).

3.2 DEEP KERNEL GAUSSIAN PROCESSES

Given a training task D = {(x;,y;)},, the response can be modeled using a Gaussian process
(GP), i.e. as a multivariate Gaussian distribution, such that y ~ A(m(X),k(X, X)). A GP is
a non-parametric approach that defines a prior over functions directly, and is defined by its mean
function, m, and kernel function k. Given some observed data points, it is possible to compute the
posterior over these functions to approximate unobserved data points as

y K, K,
el (5 i) »
with K,, = k(X, X | 0) + 021, K, = k(X, X, | 0), and K. = k(X,, X, | 0). The mean and
covariance of the posterior predictive distribution is then estimated as

Elf. | X,y X.] = K] K 'y, cov[f. | X, X.] = Ko — KUK, 'K, 2)

The standard approach of fitting GPs is to optimize the weights of the kernel function, e.g. squared
exponential kernel, . Nevertheless, these engineered kernels are often employed under false as-
sumptions (Cowen-Rivers et al.l2020), which leads to sub-optimal performances.

Recently deep kernel learning (Wilson et al.,[2016b) has emerged as a powerful extension that lever-
ages the representative capacity of non-linear function approximation, e.g. neural networks, and
facilitates learning the kernel directly. Specifically, we denote by ¢ : X — R™ a mapping from the
domain to a latent space which serves as an input to the kernel, such that:

Kaeep(w,7" | 0,w) = K(d(z,w), ¢(a",w) | 0) 3)

where w represents the parameters of ¢. The weights 6 and w are then jointly optimized for maxi-
mizing the marginal likelihood (Wistuba & Grabockal, 2021)).

4 DEEP KERNEL GAUSSIAN PROCESS WITH LANDMARK META-FEATURES

Inspired by landmark meta-features (Pfahringer et al.,2000), which are typically estimated by mea-
suring the response of given datasets to machine learning algorithms, we propose a novel deep ker-
nel GP that is conditioned on task-specific landmark meta-features. However, instead of computing
meta-features through ad-hoc approaches, we introduce a novel parametric meta-feature extractor
network that is integrated into the kernel function of a GP and subsequently meta-learned over a set
of source tasks together with the parameters of the GP kernel. In that manner, we learn meta-features
that describe a set of tasks in terms of minimizing the estimation of the tasks’ response functions.
By adding the task-specific information of the meta-features, the GP surrogate can infer a more ac-
curate response surface on a new task based on similar source tasks that share similar meta-features.
Therefore, our method is the first to tackle the negative transfer phenomenon for Bayesian HPO.

4.1 LANDMARK META-FEATURE NETWORKS

We propose a simple idea to learn landmark meta-features by learning a deep representation of the
evaluated set of hyperparameter-response pairs as part of a deep kernel Gaussian process. With the
success of set-based algorithms (Lee et al., 2020; Zaheer et al., 2017; |Lee et al., [2019) for function
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approximation, we propose to use a Deepset (Zaheer et al.,|2017) formulation that provides a fixed-
size vector representation from the dynamic set of observations. Although other methods have been
developed for set-based function estimation, we focus here on deepsets because they have already
been shown to perform well for learning meta-feature in task-agnostic settings (Jomaa et al., 2021a))
as well as for hyperparameter optimization (Jomaa et al., 2021b).

Suppose that we are given a collection of data points {(z;,y;)}"; where z € X is an observed
hyperparameter and y € R its corresponding response. We denote by H'~ := {(z;,4:;)}Z] an
associated set of data points that have been observed prior to x;. Furthermore, we formulate the

proposed meta-feature network as:

¢(x7Ht_17w) = ¢1 ([.’E,¢2(Ht_1;W¢2)]; wdn) ) (4)

t—1
s.t. ¢2(Ht_1;w¢2) =g (t—ll Zf([xui‘/z]v wy); wg) )
i=1

where | | symbolizes standard concatenation, ¢ : (X x R)* — RN and ¢ : X x RN — RM
are parametric neural networks with respective weights w, and where (X x R)* represents the set
of evaluated hyperparameter and their responses. With this formulation, we ensure that the rela-
tionship of the covariates and the responses in 7!~ ! is properly encoded, and thus ¢ is conditioned
on these latent representations. It is also important to note that ¢, is permutation invariant, i.e.
Ga(HITY) = po(m(HITY)), with 7 := (X x R)* — (X x R)* as a random permutation func-
tion. This is critical, as the ordering of the data points in H*~! should not affect the landmark
meta-features. Additionally, given ¢ (H!™1), this information about the marginal distribution of the
meta-features can be encoded with the specific attribute « which in turn allows the deep kernel GP
to be marginalized over individual tasks given the context, and thus transfer (joint) learning becomes
easier with minimal overhead.

4.2 META-LEARNING OUR DEEP GPs

The parameters 6 and w are optimized jointly by maximizing the following log marginal likelihood:

argmax logp(y | o, H;0,w) = argmax gy p)  logp (¥ | 24 Hai0,w) ©)
0,w 6,w
o< argé min  Egy1,...,0) ydTKglyd +log | Kq | @)

st. Kgep =K ((;5 (xd,t,thfl;w) , ¢ (:rdyt/,'}-lfilfl; w) ;0)

By using established practices (Wistuba & Grabockal 2021}, [Patacchiola et al.| [2020), we can opti-
mize Equation [/|in terms of w, # via stochastic gradient descent (SGD), that is proven to maintain
convergence guarantees (Chen et al) 2020). We direct the interested reader to the prior work for
more details on optimizing the parameters of deep GPs (Wilson et al.| 2016b)).

Given the diverse number of tasks, which vary in the number of available data points, we propose to
jointly learn the shared surrogate via first-order meta-learning (Nichol et al.| 2018)). Meta-learning
has found resounding success in the research community as an initialization scheme (Finn et al.,
2017; Wistuba & Grabockal, 2021; Jomaa et al., [2021b), which allows for fast adaption to new
domains. Consequently, the meta-trained model resides on a joint minimum across all the source
tasks, such that given limited information about the new (unseen) target task, it can converge faster
to the new task’s local optima. In this direction, we show the pseudocode of our meta-learning
optimization in Algorithm I

5 MOTIVATION

Meta-features help to model the posterior uncertainty. To motivate our approach, we present
an ablation of the effect of our deep GP kernel with meta-features, compared to the same deep
GP kernel without meta-features (i.e. Ours vs. FSBO (Wistuba & Grabockal [2021))). We created
a synthetic meta-dataset of K = 50 tasks in the form of randomly sampled sinusoidal functions
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Algorithm 1: Meta-learning DKM via REPTILE (Nichol et al., 2018))

1: Require: training dataset £; kernel parameters 6, network parameters w; learning rate 7; inner
update steps v; meta-batch size n, batch size b.
2: while not converged do
3: t~U ([Tmim Tmax])
4 Dy,...,Dp ~U([1,...,D])
5: for: = 1ton do
6.
7
8

Sample ¢ — 1 data points to form H!~! ~ D;
Sample batch B := {(z;,v:)}’_, ~ D;

9: for j =1tovdo

10: Define as L the objective function of Equation
11: 0; < 0; + nVoL

12: w; +— w; + VL

13: Update 6 + 6 + 77% >, (0:—0)
14: Update w <+ w +ni 37" | (w; — w)

DKLM + 2 Trials

AVAN

Meta-features vs Amplitude

-4 =2 0 2 4
Amplitude a®

— Ix) Seeds ==: i(x) —— El(x)

Figure 1: (top) Sequential model-based optimization of an unseen sine wave using our approach.
(bottom left and middle) Our fitted surrogate after 3 trials, compared to FSBO after 3 trials given the
same initial seeds. (bottom right) Correlation between amplitude and landmark meta-features.

fE(x) = a®sin(x + b)), k € {1,...,K} by drawing each a*) ~ 2/(0.1,5) and b*) ~
U(0,2r). Furthermore, we meta-learn our deep GP on these source functions and then transfer
the surrogate as an initialization for a new sinusoidal curve (with new parameters a, b) as shown in
Figure[T](top). We show the comparison of our surrogate with meta-features after 3 trials (for a total
of 8 data points, including 5 initial configurations) to an FSBO deep GP that has been meta-trained
identically. We notice that our surrogate (bottom row, leftmost plot) computes a better posterior
variance compared to FSBO (bottom row, middle plot). The effect of the superior modeling of the
uncertainty leads to better exploration in a Bayesian Optimization setup, and consequently to better
empirical accuracies of the discovered hyperparameters (as will be shown in Section [).

Meta-features capture task characteristics. We postulated that our proposed meta-features can
capture task characteristics. To illustrate the argument, we create another simpler collection of
K = 50 sinusoidal functions f*(z) = a® sin(z), k € {1,..., K} by drawing each a*) ~
U(0.1,5). As these sine waves change only in terms of the amplitude parameter a, then if we meta-
train our meta-feature network with a 1-dimensional (1D) output layer from these source functions,
it must strongly learn to correlate the 1D meta-feature with the sinusoidal amplitude a. As can
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be seen in the rightmost plot of the bottom row in Figure [T} this is exactly the case. In this plot,
the y-axis shows 1D meta-feature values computed from only 5 random pairs of configurations and
responses (x, f(z)) from one random task, and the x-axis shows the amplitude of that respective
task. Although our meta-feature networks have no design bias in terms of modeling sinusoidal
functions, they are perfectly able to extract a latent representation of the amplitude, based on the
end-to-end meta-learning of the deep GP for approximating random observations on the sine waves.

6 EXPERIMENTS

Our experimental protocol is designed to primarily address one simple research question: Do deep
GPs with our meta-feature networks outperform state-of-the-art HPO algorithms in the trans-
fer and non-transfer learning settings?

6.1 META-DATASET AND BASELINES

We evaluate our approach on HPO-B-v3, a new hyperparameter optimization benchmark designed
for comparing black-box HPO methods (Pineda-Arango et al., 2021). The benchmark contains a
collection of 935 black-box tasks for 16 hyperparameter search spaces (algorithms) evaluated on 101
datasets and divided into predefined training, validation, test splits. Following the same experimental
protocol specified at the HPO-B benchmark, we compare our approach to the following large set of
10 HPO baselines:

1. Random Search (Bergstra & Bengio, 2012);

2. GP (Rasmussen, 2003) is a hyperparameter tuning strategy that relies on a Gaussian Pro-
cess as a surrogate model with squared exponential kernels (Matern 5/2 kernel) with auto-
matic relevance determination;

3. DNGO (Snoek et al.l[2015) utilizes a neural network to extract adaptive basis function of
hyperparameters, which in turn are fed to a Bayesian linear regression model to generate a
posterior distribution;

4. BOHAMIANN (Springenberg et al., |2016) is based on Bayesian neural networks that are
trained via a stochastic gradient Hamiltonian Monte Carlo;

5. DGP (Patacchiola et al.,[2020) fits a deep kernel Gaussian process as a surrogate;

6. TST-R (Wistuba et al.l 2016)) is an ensemble approach where the Gaussian process sur-
rogate of the target task is weighted with surrogates of the training datasets based on the
ranking similarity of the evaluated hyperparameters;

7. RGPE (Feurer et al) [2018) is another ensemble approach, similar to TST-R, which es-
timates the weights by optimizing a ranking loss between the surrogates of the training
datasets and that of the target task;

8. ABLR (Perrone et al.| | 2018)) is a multi-task Bayesian linear regression approach that opti-
mizes a shared feature extractor across the training datasets as an initialization strategy for
the target task;

9. GCP+Prior (Salinas et al., [2020) utilizes a Gaussian Copula process (Wilson & Ghahra-
mani, 2010) trained jointly on the training tasks, where a quantile-transformation is applied
on their respective responses. The pretrained process is used as parametric prior for the
target dataset;

10. FSBO (Wistuba & Grabocka, 2021) uses deep Kernel Gaussian processes (Patacchiola
et al.} 2020) to estimate the response of the target dataset. The parameters are initialized
via meta-learning the joint response surface over the training datasets.

In a nutshell, our experimental protocol based on HPO-B is a large scale one by the standards of the
prior papers, as it involves 10 baselines, 16 search spaces (algorithms whose hyperparameters we
tune), 101 datasets, and totally 935 black-box tasks containing 6.3 million evaluations.
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6.2 IMPLEMENTATION DETAILS

We implement the Deep Kernel Gaussian Process using GPyTorch 1.5 (Gardner et al.,[2018) with a
Matern 5/2 kernel. As described in Equation[d, DKLM is composed of two modules, ¢ := ¢1 o ¢o.
The parameters of the network have been selected based on the performance on a held-out validation
set. Function f is 4 dense layers with 32 hidden units and ReLLU activation functions, whereas g is
1 dense layer with 32 hidden units. Finally, ¢; is 4 dense layers with 32 hidden units and ReLU
activation. All parameters of the Deep Kernel are estimated by maximizing the marginal likelihood.
We achieve this by using gradient ascent and Adam (Kingma & Ba), [2015)) with a learning rate of
0.001 and batch size of 64 with t € [2,100].

6.3 HPO RESULTS AND DISCUSSION

We start by comparing non-transfer HPO methods to our deep GPs with meta-features DKLM (RI)
that are randomly initialized (no meta-learning). As depicted in Figure 2] DKLM (RI) outperforms
the baselines after 100 hyperparameter trials in terms of both the mean normalized regret and the
mean rank metrics. We also notice how the performance improves gradually with the increasing
number of trials, indicating the impact of the posterior variance modeling of our method (Section 3)
as more observations are present on the black-box responses.

Mean Normalized Regret Mean Average Rank

Random
BOHAMIANN
GP

DNGO

Deep Kernel GP
DKLM (RI)

107!

LT

0 25 50 75 100 0 25 50 75 100
Number of Trials Number of Trials

Figure 2: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
the non-transfer learning HPO methods on HPO-B-v3

Afterwards, we demonstrate the comparison of state-of-the-art transfer against our method in Fig-
ure[3] DKLM outperforms the rest of the baselines with lower mean normalized regret and lower
mean rank. The superiority of landmark meta-features also becomes evident after a larger number
of trials (more than 50) .

Mean Normalized Regret Mean Average Rank

Random

Deep Kernel GP
DKLM (RI)
TAF-R

TST-R

ABLR

RGPE
GCP+Prior

1072 FSBO
0 50 100 O 50 100 ___ prim

Number of Trials Number of Trials

101

[T

Figure 3: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
the transfer learning HPO methods on HPO-B-v3

To further inspect the results we show the performance of DKML and all other baselines in the se-
lected individual search spaces of Figure[d We notice primarily that meta-learning the initialization
in DKLM improves the general performance in most cases. Nevertheless, we notice in 4796 that
effect of transfer learning is not evident, as DKLM (RI) and Deep Kernel GP are better than the
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Figure 4: Normalized regret comparison of transfer learning HPO methods on selected benchmarks
from HPO-B-v3
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Figure 5: 2D illustration of meta-features extracted from each task in 8 selected search spaces. For
each task, we sample 100 sets of 5 data points to extract landmark meta-features. We reduce the
dimensionality of the meta-features into a 2D representation via TSNE (Liu et al.} [2017).

meta-initialized variants, DKLM, and FSBO respectively. Still, landmark meta-features prove yet
again that they are effective in a single task setting.

6.4 END-TO-END LANDMARK META-FEATURES

To motivate the importance of landmark meta-features, we illustrate in Figure[5|the 2D latent dimen-
sions of the landmark meta-features for every test task in the 16 spaces of HPO-B-v3. Each point
on the graph represents a set of meta-features extracted from 100 randomly sampled data points, i.e.
t = 100, from the individual tasks after meta-initialization of the weights of DKLM. We observe
that the same color-coded meta-features, i.e. belonging to the same task, lie generally within the
vicinity of each other, and distant from other tasks. As pointed out by [Jomaa et al.| (2021a)), any
meta-feature extractor should be able to preserve inter-and intra-dataset similarity, a property that is
evident here.
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6.5 RESILIENCE TO NEGATIVE TRANSFER

To test the phenomenon of negative transfer we design a specific ablation experiment, where the
datasets in the meta-test split are uncorrelated to the datasets in the meta-train split. First of all,
we define the correlation of two datasets using Kendall’s 7 correlation coefficient (Kendalll |1945).
We sample 100 random hyper-parameter configurations and query the validation accuracies of these
configurations on both datasets from an HPO-B search space, to compute the Kendall’s 7 coefficient
between the accuracies’ vectors. Afterward, for every HPO-B search space, we i) compute the
correlation between each meta-test dataset and all the meta-training datasets, ii) keep the 10% of the
meta-training datasets that have the smallest mean Kendall’s 7 coefficient to the meta-test datasets.

We report the ablation results in Figure @ where DKLM (NT) and FSBO (NT) denote methods
trained using only the 10% most uncorrelated meta-training datasets. In contrast, DKML and FSBO
are trained using all the 100% meta-training dataset. We notice that performance gap of the ranks
between DKLM (NT) and FSBO (NT) is larger than that between DKLM and FSBO, validating
DKML’s resilience to the negative transfer phenomenon.

Additionally, we report the the critical difference diagrams @100 trials. We notice that the perfor-
mance of DKLM (NT) is statistically significant compared to FSBO (NT), further illustrating the
resilience of DKLLM to negative transfer.

Rank@100
Mean Normalized Regret Mean Average Rank 3 2@ 1
L 1 ]
4.0 FSRBEC?‘(jﬁ?} 2.5012 1.7081 DKLM (NT)
Rank@100
-1
10 3.5 3 2 1
Random 2.6163 l 1.6884 DKLM
3.0 FSBO
Rank@100
102 23 AR S N S
0 50 100 0 50 100 Random 41174 | * 2.5105 DKLM
Number of Trials Number of Trials Sﬁm mR 3.0058 25151 FSBO
= Random  =—— FSBO (NT) === DKLM (NT) === FSBO == DKLM

Figure 6: Aggregated comparisons of normalized regret and mean ranks across all HPO-B search
spaces, where the gap between DKLM (NT) and FSBO (NT) demonstrates the resilience to negative
transfer.

7 LIMITATIONS

Despite the fact that our method significantly reduces the time for fitting Machine Learning, we
caution practitioners against overtuning their model for a large number of configuration trials, only
to get a very small improvement in accuracy, unless it is absolutely necessary from a business need.

8 CONCLUSION

In this paper, however, we propose DKLM as a simple yet effective method to better condition deep
kernel Gaussian Processes on tasks. Inspired by landmark meta-features, we design a set-based
meta-feature extractor that captures the interaction between the available hyperparameters and their
respective responses, and consequently generates distinct task-specific attributes. DKLM is meta-
learned on a set of source tasks in an end-to-end fashion to jointly approximate the response surface
over the shared hyperparameter and landmark meta-feature space. We show in a battery of experi-
ments the significance of landmark meta-features, outperforming state-of-the-art HPO baselines in
non-transfer and transfer learning settings.

ETHICS STATEMENT

In our work, we use only publicly available data without privacy concerns. Furthermore, our algo-
rithm reduces the overall time for fitting machine learning algorithms, therefore, saving computa-
tional resources and yielding a positive impact on energy consumption.
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REPRODUCIBILITY STATEMENT

We promote reproducibility as detailed below:

* We use only publicly available datasets.

* All our baselines are publicly available and provided by the HPO-B benchmark (Pineda-
Arango et al., |2021).

* We clearly describe our method in Section 4] and provide implementation details in Sec-
tion

* Finally, we plan to make the source code of our method publicly available.
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A  ALGORITHMS

We describe in Algorithm [2] the general procedure for BO optimization. Our surrogate model,
DKLM, is fit to the history of observations H'~! at each trial via Algorithm [3|

Algorithm 2: Sequential Model-Based Optimization with DKLM

Input: kernel parameters 6, network parameters w, black-box function f , N initial evaluations
HO = {(4,v:)}}V, on target task, acquisition function .A(-), number of trials 7',
Output: Best configuration and response (., Y )
fort =17 T do
Fit ¢ and kernel using H‘~! in Algorithm;
Obtain next configuration to evaluation = arg max,cx A(z) ;
Observe response y = f(z);
Update History H! = H'= U{(z,9)} ;
end
Return best configuration (z., y.) = arg max, )yt ¥

Algorithm 3: Fitting DKLM to a target task

Input: Learning rates 7; and 72, N evaluations H = {(z;, ;) }}_, on target task, kernel
parameters 6, network parameters w
Output: Gaussian Process posterior p ( fi |2+, H)
while not converged do
Compute marginal likelihood £ on # (Equation [6);
0+ 0+mVeL;
w4 w~+ n2VyL;
end
Compute Gaussian Process posterior p (fi |74, H) = N(p, 0?) (Equation

B EXPERIMENTAL PROTOCOL

We followed the protocol presented in HPO-B, (Pineda-Arango et al.L[2021)), a benchmark collection
of tasks collected from OpenML. The tasks are grouped in 16 search spaces, and every search space
contains three splits: meta-training, meta-validation and meta-testing. According to the authors, the
splitting for the percentage of tasks is 80%, 10% and 10%, respectively. We refer to the repository
to know the exact task IDs for every split.

In our experiments, we meta-train a model per search space, whereas we used the meta-validation
data for early-stopping. We use n = 0.001,v = 1,n = 1000, T, = 2, Thax = 100,b = 64 for
meta-training (Algorithm[T)). We optimize the black-box function following Sequential Model Based
Optimization (SMBO, Algorithm [2), we use Expected Improvement as the acquisition function:

A(x) = E [max {f.(2) = Ymax, 0}] (8)

which uses the mean and variance computations presented in section [3.2] for estimating the expec-
tation. We fit DKLM using ADAM (Kingma & Ba, 2015) with learning rates n; = 72 = 0.001,
(see Algorithm [3). We use the meta-validation dataset for choosing the number of hidden layers in
Equation 5|and the learning rates 7.

C IMPACT OF SAMPLE SIZE

We mentioned in Section [6.5] that the performance of DKLM improves with the increasing number
of observed data points. To further examine this observation, we present in Table [T] the negative log

"https://github.com/releaunifreiburg/HPO-B
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likelihood given a history of size t. To get these results, we sample ¢ points for the history #! and
compute the negative log-likelihood on 100 separate data points upon meta-initialization of DKLM.
The process is repeated 100 times for each task, for a total of 10000 data points. We highlight the
trend of the negative log-likelihood by fitting a linear model to the 10000 points and reporting the
slope. In most search spaces, the performance improves with the increasing number of observed
data points, where we notice some over-fitting in others, e.g. space 5860 that can be alleviated by
further regularization.

Table 1: Mean Negative Log-Likelihood upon meta-initialization of DKLM with 1 unit of standard
deviation, lower is better.

Space t=5 t=10 t=20 slope
4796 038+264 -0.194+180 -0.78£0.99 -0.075
5527 292 +6.12 1.22 +3.86 09+244 -0.12
5636 -1.8£396  -3.01+072 -3.11+055 -0.077

5859 22.78 £40.70 10.18 =28.51 -0.37 £10.09 -1.473
5860 12.76 £ 21.81 14.61 +£1942 16.13£181 0.215

5889 0.22 £1.27 1.84 £ 1.86 3.75+£297 -0.039
5891 0.33 £0.90 0.02+£086 -028+0.69 0414
5906 291 £4.04 5.52+4.17 922 +5.19 -0.003
5965 -0.62 £ 1.12 -093+075 -0.73£0.77 -0.015
5970 -0.99 £ 0.12 -1.11£0.10 -1.22£0.09 0.021
5971 -1.08 £0.73 -1.26 £077  -0.81 £1.10 0.14
6766 0.29 £ 0.31 0.95 £ 043 238 +£0.59 -0.118
6767 1.59 £ 5.64 -0.05+143  -039+£092 -0.032
6794 -0.54 £ 1.76 -1.18 £082  -1.12+£0.67 0.019
7609 -0.59 +£2.42 -1.49+ 174 -1.89 £0.61 -0.08
7607 -0.05 £0.77 -0.06 £ 0.87 021+076 0.229

Average 241 £ 6.40 1.57 £ 4.69 1.37 £ 4.86 -0.062

D DETAILED EXPERIMENTAL RESULTS

We present the detailed results for the 16 search spaces in Figure [/l Additionally, we plot the 2D
landmark meta-features in Figure[§]
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Figure 8: 2D illustration of meta-features extracted from each task in the 16 selected search spaces.
For each task, we sample 100 sets of 5 data points to extract landmark meta-features. We reduce the

dimensionality of the meta-features into a 2D representation via TSNE 2017).
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