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Abstract—We present an unscented Kalman filtering (UKF)
algorithm for simultaneously estimating attitude and gyroscope
bias from an inertial measurement unit (IMU). The algorithm is
formulated as a discrete-time stochastic nonlinear filter, with state
space given by the direct product matrix Lie group SO(3) ×R3,
and observations in SO(3) reconstructed from IMU measure-
ments of gravity and the earth’s magnetic field. Computationally
efficient implementations of our filter are made possible by
formulating the state space dynamics and measurement equations
in a way that leads to closed-form equations for covariance propa-
gation and update. The resulting attitude estimates are invariant
with respect to choice of fixed and moving reference frames.
The performance advantages of our filter vis-à-vis existing state-
of-the-art IMU attitude estimation algorithms are validated via
numerical and hardware experiments involving both synthetic
and real data.

Index Terms—Attitude estimation, unscented Kalman filter,
gyroscope bias, inertial measurement unit.

I. INTRODUCTION

Estimating an object’s orientation, or attitude, from an
inertial measurement unit (IMU) attached to the object arises
in applications ranging from vehicle and robot navigation [1]–
[3] to human pose tracking [4]. A typical IMU consists of a
gyroscope, accelerometer, and magnetometer: the gyroscope
measures angular velocities (which can be integrated to cal-
culate the attitude), the accelerometer measures accelerations
due to gravity and other external forces, and the magnetometer
measures the earth’s magnetic field. Gyroscopic measurements
contain a time-varying bias error, and accelerometer and
magnetometer measurements can be used to identify and
compensate for this gyroscope bias. More generally, the chal-
lenges and benefits of simultaneously estimating the attitude
and gyroscope bias from disparate sensor measurements are
detailed in [5] and the cited references.

Notable among deterministic filtering methods for simulta-
neously estimating attitude and gyroscope bias are Mahony
et al’s series of nonlinear complementary filters (NCFs) [6]–
[8]; these filters ensure almost global stability of the observer
error, and their performance has been validated in numerous
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experimental scenarios. Stochastic filtering methods further
take into account statistical characterizations of measurement
and process noise, and include well-known and widely used
methods such as the extended Kalman filter (EKF). More
recently the unscented Kalman filter (UKF), despite its greater
computational complexity, has been shown to outperform the
EKF in a wide range of applications [9]–[11].

Because the underlying configuration space of rotations,
represented by the group SO(3) of 3 × 3 real orthogonal
matrices with unit determinant, is not a vector space but a
curved space, the attitude estimation problem is fundamentally
a nonlinear one. The straightforward but naive approach of ex-
pressing a rotation in terms of some suitable local coordinates
(e.g., roll-pitch-yaw angles, Euler angles) is problematic at
several levels: the local coordinates contain singularities that
require special treatment (for example, when the pitch angle
is 90 degrees), and the resulting estimates depend both on
the choice of local coordinates as well as fixed and moving
reference frames. If standard vector space filters are naively
adapted to local coordinate representations of the attitude,
not only are the equations for the state space dynamics and
measurements highly nonlinear and dependent on the choice
of reference frames, but filtering performance is highly uneven
throughout different regions of the configuration space.

Recent research has attempted to address the issue of
coordinate and reference frame dependency through the use
of differential geometric methods. Although computationally
more involved than standard vector space filtering algorithms,
when correctly formulated, these methods are invariant with
respect to the choice of fixed and moving reference frames,
and also independent of the choice of local coordinates used
to parametrize the rotations. For estimation problems in which
the underlying configuration space has the structure of a matrix
Lie group like SO(3), coordinate-invariant versions of both
the EKF [12]–[15], the UKF [16], [17], and also particle
filtering methods [18] have been presented in the recent
literature. Without exception, these general methods almost
always include illustrative examples involving estimation on
the rotation group, e.g., [14].

In this paper we address the problem of simultaneous
estimation of attitude and gyroscope bias from a stochastic
differential geometric perspective. When the assumed noise
models are valid, the advantages of stochastic filtering methods
over their deterministic counterparts are well-documented.
For real-time applications, stochastic filtering methods require
efficient calculation and propagation of covariances, which
often prove to be difficult for systems with complex nonlinear
state dynamics and measurements. Our contribution takes



1083-4435 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2019.2891776, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 2

advantage of the coordinate- and frame-invariant properties of
geometric filtering, and at the same time leads to a robust and
computationally efficient stochastic UKF algorithm that can
be implemented in real-time. These improvements in efficiency
and robustness are achieved by formulating the state dynamics
and measurements in a way that leads to closed-form equations
for covariance propagation and update, and also by drawing
upon Lie-theoretic properties in key steps of our geometric
UKF algorithm.

The paper is organized as follows. After a brief review
of geometric preliminaries in Section II, our UKF algorithm
for simultaneously estimating attitude and gyroscope bias is
described in Section III. Section IV details the calculation of
the measurement noise covariance. Section V compares the
performance of our geometric UKF algorithm against other
existing state-of-the-art estimators for attitude and gyroscope
bias [6], [19], [20], with detailed experiments involving both
synthetic and real data validating the performance advantages
of our geometric UKF algorithm.

II. GEOMETRIC PRELIMINARIES

We first recall some basic facts and useful formulas about
the rotation group SO(3) [21], [22]. Elements of SO(3) are
represented by the 3× 3 real matrices R satisfying RTR = I
and det R = 1, where I here denotes the 3×3 identity matrix.
SO(3) is an example of a matrix Lie group; its associated Lie
algebra, denoted so(3), is given by the set of 3× 3 real skew-
symmetric matrices of the form

[ω] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
where ω = (ω1, ω2, ω3)T ∈ R3. A fundamental connection
between so(3) and SO(3) is the matrix exponential map exp :
so(3)→ SO(3):

exp([ω]) =
∞∑
m=0

[ω]m

m!

= I +
sin ‖ω‖
‖ω‖

[ω] +
1− cos ‖ω‖
‖ω‖2

[ω]2,

where ‖·‖ represents the standard Euclidean vector norm. The
inverse of the exponential, or logarithm, of SO(3) is defined
as follows: for any R ∈ SO(3) such that tr(R) 6= −1,

log R =
θ

2 sin θ
(R−RT ),

where θ satisfies 1 + 2 cos θ = tr(R), |θ| < π (here tr(·)
denotes the trace of a matrix). If tr(R) = −1, then the equation
log R = [ω] has two antipodal solutions ±ω that can be
determined from the relation R = I + (2/π2)[ω]2. A straight-
forward calculation also establishes that ‖ log R‖/

√
2 = θ,

where ‖ · ‖ denotes the Frobenius matrix norm.
The natural way to measure distances between two rotations

R1 and R2 is via the formula

d(R1,R2) = ‖ log(RT
1 R2)‖.

The above distance metric is invariant with respect to left
and right translations, or bi-invariant, in the sense that

d(R1,R2) = d(PR1Q,PR2Q) for any P,Q ∈ SO(3). With
this notion of distance, the curve R(t) on SO(3) of shortest
length (or minimal geodesic) that connects R1 = R(0)
and R2 = R(1) is given by R(t) = R1 exp(Ωt), where
Ω = log(RT

1 R2) ∈ so(3).
Recalling that R3 is also trivially a Lie group under

vector addition, the direct product SO(3) × R3 can be
given the structure of a Lie group via the product rule
(R1,b1) · (R2,b2) = (R1R2,b1 + b2) and the inversion
rule (R,b)−1 = (RT ,−b).

Now define a random variable X on SO(3) as

X := exp([η]) X0, (1)

where X0 ∈ SO(3) is given and η ∈ R3 is a zero-mean
Gaussian with covariance Pη , i.e., η ∼ N (0,Pη). We refer to
η as right-translated exponential noise with right-invariant
covariance Pη . Alternatively, defining the random variable
X on SO(3) as X = X0 exp([ζ]), where [ζ] ∈ so(3) and
ζ ∼ N (0,Pζ), we refer to ζ as left-translated exponential
noise with left-invariant covariance Pζ . A straightforward
calculation verifies that

η = X0ζ (2)
Pη = X0PζX

T
0 (3)

Statistical and computational aspects of SO(3) exponential
noise defined in this way are further discussed in [23], [24].

Now consider the element (X,b) = (exp([η])X0,b0+n) ∈
SO(3)×R3, where [η] ∈ so(3),X0 ∈ SO(3), and b0,n ∈ R3,
with X0,b0 constant and η,n zero-mean Gaussian random
vectors. Define the six-dimensional zero-mean Gaussian ε =
(η,n) ∼ N (0,Pε), where Pε ∈ R6×6 is the covariance of
ε. The six-dimensional covariance Pε will play a prominent
role in our later UKF algorithm; in particular, the off-diagonal
elements of Pε will typically be non-zero since X and b may
be correlated.

III. UKF ALGORITHM FOR ESTIMATING ATTITUDE AND
GYROSCOPE BIAS

Before describing our geometric UKF algorithm, we fix
notation, describe the sensor models and their underlying as-
sumptions, and review Wahba’s Problem [25] and its solutions.

Let {I} be the inertial reference frame fixed to ground,
and let {B} denote the body frame fixed to the moving IMU.
Let ωm ∈ R3 be the angular velocity measured by the IMU
gyroscope with respect to frame {B}. Denote by a,m ∈ R3

the IMU accelerometer and magnetometer measurements, re-
spectively; like ωm, both a and m are assumed measured with
respect to the IMU frame {B}. Further define the unit vectors
v1 := a/‖a‖, v2 := m/‖m‖.

In what follows we assume that the IMU is suitably cal-
ibrated, and that the gravitational acceleration is dominant
in the accelerometer measurement a. Let r1 ∈ R3 be the
unit vector in the opposite direction of gravity, and r2 ∈ R3

be the unit vector in the direction of the earth’s magnetic
field. If r1 and r2 are not collinear, then ri and vi should
satisfy ri = Rvi, i = 1, 2, for some rotation R ∈ SO(3)
representing the orientation of the IMU frame {B} relative to
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the fixed frame {I}. Since in practice IMU measurements are
noisy, R is typically estimated as the solution to the following
optimization problem (referred to in the literature as Wahba’s
Problem [5], [25], [26]:

R∗ = arg min
R∈SO(3)

2∑
i=1

wi‖ri −Rvi‖2, (4)

where the wi are positive weights. A popular choice for wi
is wi = 1/σ2

i , where σ2
i denotes the variance of vi in the

direction normal to RT ri [27]. (Equivalently, the normalized
weights wi = σ2

tot/σ
2
i , where 1/σ2

tot =
∑2
i=1(1/σ2

i ) are also
widely used [28].)

Wahba’s Problem as defined by Equation (4) admits the
following closed-form solution [26]:

R∗ = VDUT , (5)

where U and V are obtained from the singular value decom-
position (SVD) of F :=

∑2
i=1 wivir

T
i = UΣVT . The matrix

D in Equation (5) is of the form D = diag(1, 1,det(VUT )).
(See [5] for a review of alternative solutions to (5) and a
discussion of their robustness and computational efficiency.)

A. State Space Dynamics and Measurements

Estimates of R obtained via the static optimization pro-
cedure described above do not take into account the state
space dynamics of the object or process and measurement
noise characteristics, and typically are inferior to estimates
obtained via nonlinear stochastic filtering techniques. We now
formulate the overall problem in a discrete-time stochastic
filtering setting. First, the angular rates ωmk ∈ R3 measured
by the gyroscope at time step k are assumed to have the form

ωmk = ωk + bk + ηk, (6)

where ωk denotes the ground truth angular rate vector, bk ∈
R3 is a time-varying bias term, and ηk is zero-mean Gaussian
noise. The state dynamics are then assumed to be of the form

Rk+1 = Rk exp([ωmk − bk − ηk]h) (7)
bk+1 = bk + nk, (8)

where h is the integration time step, and ηk,nk are inde-
pendent zero-mean Gaussians with the following distributions:
ηk ∼ N (0, cI), nk ∼ N (0, dI), with c, d > 0.

We now derive a first-order linear approximation of the
state dynamics (7) that leads to a closed-form expression
for the covariance of Rk+1 consistent with (1). From the
Baker-Campbell-Hausdorff formula [29], given [x], [y] ∈
so(3), exp([x]) exp([y]) can be written exactly in the form
exp([x]) exp([y]) = exp([z]), [z] ∈ so(3), where

[z] = log(exp([x]) exp([y])) (9)

=[x] + [y] +
1

2
[[x], [y]] +

1

12
[[x], [[x], [y]]] (10)

+
1

12
[[y], [[y], [x]]] + · · · ,

with the Lie bracket operator [·, ·] : so(3) × so(3) → so(3)
defined by the matrix commutator, i.e., [[a], [b]] = [a][b] −
[b][a].

Let x′ = z− y ∈ R3 and rewrite Equation (9) in the form

exp([x′ + y]) = exp([x]) exp([y]). (11)

Gathering only terms linear in x in Equation (10), the follow-
ing approximation between x and x′ holds for ‖x‖ sufficiently
small [23]:

x ≈ Jl(y)x′, (12)

where Jl(y) ∈ R3×3 is given by

Jl(y) = I +

(
1− cos ‖y‖
‖y‖2

)
[y] +

(
‖y‖ − sin ‖y‖
‖y‖3

)
[y]2.

(13)
The derivation of (12) is provided in Appendix A.

If ‖ηk‖ � 1, then Equation (7) can be approximated by

Rk+1 ≈ Rk exp([η′k]h) exp([ωmk − bk]h) (14)
= exp([lk])Rk exp([ωmk − bk]h), (15)

where η′k = −Jl(ψ)ηk, lk = Rkη
′
kh, ψ = (ωmk − bk)h.

In deriving (14), the first-order approximation given by Equa-
tion (12) is used. The relation R exp([ω])RT = exp([Rω])
for R ∈ SO(3), [ω] ∈ so(3) is used in the derivation of (15).

Note that lk = −RkJl(ψ)ηkh is itself a random variable,
since it is a function of random variables ηk,Rk, and ψ. If
we assume that ‖ψ‖ is small—this is a reasonable assumption
provided h is sufficiently small—then Jl(ψ) ≈ I + 1

2 [ψ] ≈
exp( 1

2 [ψ]) holds from the first-order approximation. Note that
lk can be approximated as an isotropic Gaussian multiplied
by rotation matrices, i.e., lk ∼ N (0, (ch2)I).

The measurement equations are assumed to be of the form

Yk+1 = exp([wk+1])Rk+1, (16)

where Yk+1 ∈ SO(3) is calculated as a solution to Wahba’s
Problem (4) using IMU gravitational acceleration and mag-
netic field measurements. The measurement noise wk+1 ∈ R3

is assumed to be zero-mean Gaussian, implying that the
measurement vector statistics are rotationally symmetric about
their true measurement vectors.

B. UKF Algorithm

We now present the geometric UKF algorithm for simulta-
neous attitude and gyroscope bias estimation. Let Rk and bk
respectively denote the attitude and the gyroscope bias at time
step k, and Xk := (Rk,bk) ∈ SO(3)× R3.

1) Initialization: Let X̂0|0 = (R̂0|0, b̂0|0) be the initial
state estimate. The right-invariant covariance of X̂0|0, denoted
P̂0|0, is given. From Equation (5), R̂0|0 is estimated by solving
Wahba’s Problem (4) from a pair of initial measurement
vectors (v1,v2).

2) Time Update:
• From the a priori state estimate X̂k|k = (R̂k|k, b̂k|k)

and its covariance Pk|k, extract a set of sigma points
X (i)
k := (X (i)

R,k,X
(i)
b,k) ∈ SO(3) × R3, i = 0, . . . , 12, as

follows:

X (0)
k = (R̂k|k, b̂k|k)

X (i)
k = (exp([γs

(a)
i ])R̂k|k, b̂k|k + γs

(b)
i ), i = 1, . . . , 6

X (i+6)
k = (exp([−γs

(a)
i ])R̂k|k, b̂k|k − γs

(b)
i ), i = 1, . . . , 6,
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where following [10], the parameter γ is chosen as γ =√
Nx + λ, with Nx set to the state dimension (six) and

λ = Nx(α2 − 1), 0 < α < 1; si ∈ R6 is the ith column
vector of the lower-triangular matrix S ∈ R6×6 in the
Cholesky decomposition Pk|k = SST , and s

(a)
i , s

(b)
i ∈

R3 are respectively the upper and lower halves of si.
• Setting lk = 0 in Equation (15) and nk = 0 in Equation

(8), define a set of sigma points {(Υ(i)
R,k+1,Υ

(i)
b,k+1) ∈

SO(3)× R3|i = 0, . . . , 12} as

Υ
(i)
R,k+1 = X (i)

R,k exp([ωmk −X
(i)
b,k]h) (17)

Υ
(i)
b,k+1 = X (i)

b,k. (18)

• Given the set of rotations {Υ(0)
R,k+1, . . . ,Υ

(12)
R,k+1} in

SO(3), evaluate the weighted mean rotation ῩR,k+1 ∈
SO(3) using Algorithm 1. Taking advantage the rapid
convergence of Algorithm 1 [18], [30], set the number
of iterations in line 2 of the algorithm to n = 3 or 4. The
weights w(i)

m ∈ R in line 3 satisfy
∑12
i=0 w

(i)
m = 1.

• The gyroscope bias estimate Ῡb,k+1 ∈ R3 is given by
the weighted mean of {Υ(0)

b,k+1, . . . ,Υ
(12)
b,k+1} in R3, i.e.,

Ῡb,k+1 =
∑12
i=0 w

(i)
m Υb. X̂k+1|k := (R̂k+1|k, b̂k+1|k) is

then

(R̂k+1|k, b̂k+1|k) = (ῩR,k+1, Ῡb,k+1). (19)

Algorithm 1: Weighted Intrinsic Mean on SO(3)
Input: Set of rotations {Z0, . . . ,Z12} in SO(3)

1 T← Z0

2 for j ← 0 to n do
3 Λ←

∑12
i=0 w

(i)
m log(ZiT

−1)
4 T← exp(Λ) T

5 return T

• Define the vectors [q
(a)
i ] := log(Υ

(i)
R,k+1Ῡ−1R,k+1) ∈ so(3)

and q
(b)
i := Υ

(i)
b,k+1 − Ῡb,k+1. Concatenate the two vec-

tors q
(a)
i ,q

(b)
i into a single vector qi = (q

(a)
i ,q

(b)
i ) ∈ R6.

The predicted covariance is given by

Pk+1|k =
12∑
i=0

w(i)
c qiq

T
i + Nk, (20)

where w(i)
c ∈ R are the weights and Nk =

[
(ch2)I 0

0 dI

]
is

the process noise covariance.
• Let ui ∈ R6 denote the ith column vector of the lower-

triangular matrix U ∈ R6×6 in the Cholesky decompo-
sition Pk+1|k = UUT . The upper and lower halves of
ui are respectively denoted u

(a)
i ∈ R3 and u

(b)
i ∈ R3.

Redraw the sigma points X (i)
k+1 := (X (i)

R,k+1,X
(i)
b,k+1),

(i = 0, . . . , 12) from X̂k+1|k and Pk+1|k as follows:

X (0)
k+1 = (R̂k+1|k, b̂k+1|k)

X (i)
k+1 = (exp([γu

(a)
i ])R̂k|k, b̂k|k + γu

(b)
i ), i = 1, . . . , 6

X (i+6)
k+1 = (exp([−γu

(a)
i ])R̂k|k, b̂k|k − γu

(b)
i ), i = 1, . . . , 6.

3) Measurement Update:
• If the IMU moves with high acceleration or is subject

to magnetic disturbances, the accelerometer and magne-
tometer measurements may be corrupted and not satisfy
our earlier assumptions. Appendix C summarizes some
existing methods for addressing these disturbances.

• Setting wk+1 = 0 in Equation (16), define the set of
measurement sigma points SY = {Y(i)

k+1 ∈ SO(3) | i =
0, . . . , 12} as follows:

Y(i)
k+1 = X (i)

R,k+1 (i = 0, . . . , 12). (21)

• The mean Ŷk+1 of {Y(0)
k+1, . . . ,Y

(12)
k+1} is given by

Ŷk+1 = R̂k+1|k, (22)

where R̂k+1|k is given by Equation (19). The covariance
of {Y(0)

k+1, . . . ,Y
(12)
k+1} is determined as

Pyy =

12∑
i=0

w(i)
c ziz

T
i , (23)

where [zi] := log(Y(i)
k+1Ŷ

−1
k+1) ∈ so(3). The innovation

covariance [9] is given by

Pvv = Pyy + Wk+1, (24)

where Wk+1 is the right-invariant covariance of the
solution to Wahba’s Problem. In the next section we
derive a closed-form expression for Wk+1 from Equation
(32).

• Define [p
(a)
i ] := log(X (i)

R,k+1R̂
−1
k+1|k) ∈ so(3) and

p
(b)
i := X (i)

b,k+1 − b̂k+1|k ∈ R3, and pi = (p
(a)
i ,p

(b)
i ) ∈

R6. The associated covariance Pxy is then calculated as

Pxy =

12∑
i=0

w(i)
c piz

T
i . (25)

• The Kalman gain is computed as K = PxyP−1vv . Define
the innovation vector δ ∈ R3 as

[δ] := log(Yk+1Ŷ
−1
k+1) ∈ so(3), (26)

where Yk+1 and Ŷk+1 are respectively given by Equa-
tions (16) and (22). Define φ(a) ∈ R3 and φ(b) ∈ R3 to
be the upper and lower halves of φ := Kδ ∈ R6. The
state and covariance are now updated according to

X̂k+1|k+1 = (exp([φ(a)])R̂k+1|k, b̂k+1|k + φ(b)), (27)

Pk+1|k+1 = M(φ(a))(Pk+1|k −KPyyKT )M(φ(a))
T
,

(28)

where M(φ(a)) ∈ R6×6 is given by

M(φ(a)) =

[
Jl(φ

(a)) 0
0 I

]
. (29)

The justification for M(φ(a)) in Equation (28) is given
in Appendix B.
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IV. MEASUREMENT NOISE COVARIANCE

This section presents an algorithm for obtaining, from a set
of noisy unit vector measurements of the gravity and magnetic
field vectors, a full-rank measurement noise covariance matrix.

A. Covariances of the Solution to Wahba’s Problem

In [27], Shuster provides the following first-order approxi-
mation to the left-invariant covariance of R in the solution to
Wahba’s Problem (4):

(
2∑
i=1

1

σ2
i

(I− Ārir
T
i ĀT ))−1, (30)

where Ā ∈ SO(3) denotes the true value of RT , which is
usually unknown. Ā can be approximated by

Ā ≈ arg min
A∈SO(3)

2∑
i=1

1

σ2
i

‖vi −Ari‖2. (31)

In [27] it is asserted, without rigorous proof, that the left-
invariant covariance of R is given by the inverse of the Fisher
information matrix. Appendix E provides a more detailed and
rigorous proof via the Cramer-Rao lower bound (CRLB).

Similarly, from Equation (30) the right-invariant covariance
of R can be obtained as

(

2∑
i=1

1

σ2
i

(I− rir
T
i ))−1 (32)

The above follows from a straightforward calculation combin-
ing Equations (3) and (30).

Note that the left-invariant covariance of R in Equation (30)
is equivalent to the covariance of the solution to Wahba’s
Problem represented with respect to the IMU body frame. In
contrast, the right-invariant covariance of R in Equation (32) is
the covariance of the solution to Wahba’s Problem represented
with respect to the fixed ground frame. If values for σ2

i , ri are
given, the right-invariant covariance of R in Equation (32)
can be determined to be a constant matrix, independent of Ā.
However, the left-invariant covariance of R in Equation (30)
requires Ā, σ2

i and ri.
When the IMU is moving, Ā is also changing, and the

left-invariant covariance of R needs to be updated at every
time step. The left-invariant covariance can be evaluated as
the inverse of a matrix that varies with Ā, while the right-
invariant covariance remains invariant. When the IMU motion
involves both translation and rotation, measurements of the
two direction vectors v1 and v2 are subject to greater errors,
leading to less accurate estimates of Ā. For the reasons
outlined above, our measurement noise covariance formula of
Equation (32) is preferable to Shuster’s formula (30) in the
geometric UKF algorithm.

B. Determination of Parameters in the Covariance of R

In this section we present an offline algorithm for determin-
ing the parameters in Equation (32), i.e., σ2

i and ri, i = 1, 2,
from accelerometer and magnetometer measurements.

1) Constant Vectors (r1, r2): Assign each axis of the
inertial reference frame {I} as follows: The direction opposite
to gravity is set to be the y-axis of {I}, while the x-axis of
{I} is orthogonal to both gravity and the earth’s magnetic
field. With these assignments, r1 = (0, 1, 0)T and

r2 = (0, cos(φ), sin(φ))T , (33)

where φ is unknown and to be determined.
We assume that the IMU is stationary, and multiple mea-

surement pairs are collected. Then v̂i := E(vi), i = 1, 2,
can be calculated from Proposition 1 in Appendix D. Since
rT1 r2 ≈ v̂T1 v̂2, φ can be approximated as

φ ≈ cos−1(v̂T1 v̂2). (34)

2) Variances (σ2
1 , σ

2
2): Let the unit vector v̆i denote the true

value of the measured unit vector vi, i = 1, 2. The covariance
of vi is given by [31]

Mt = σ2
i (I− v̆iv̆

T
i ). (35)

Let the SVD of Mt be Mt = UtΣtV
T
t , where in principle

Σt = diag(σ2
i , σ

2
i , 0) and v̆i is the corresponding direction

for the singular value 0. Since in practice ground truth values
of v̆i are unavailable, an alternative method of determining
σ2
i is needed. Assuming that the IMU is stationary and N

measurements are available, the covariance of vi can be
estimated by

Ma =
1

N

N∑
j=1

(v
(j)
i − v̂i)(v

(j)
i − v̂i)

T , (36)

where v
(j)
i denotes the jth measurement vector obtained from

the ith sensor (sensor 1 is the accelerometer, while sensor 2 is
the magnetometer). Let the SVD of Ma be Ma = UaΣaV

T
a ,

where Σa = diag(s1, s2, s3) and s1 ≥ s2 ≥ s3, s3 ≈ 0. Σa

will typically be close to its theoretical value Σt, in which
case we can set

σ2
i =

tr(Ma)

2
. (37)

V. EXPERIMENTAL RESULTS

In this section we compare the performance of our geomet-
ric UKF algorithm (“UKF on SO(3)”) against other state-of-
the-art methods (“UKF on Quaternion” [19], “EKF on Quater-
nion” [20], and the passive nonlinear complementary filter
(“NCF on SO(3)”) [6]). Using both synthetic and real data
in our experiments, both the convergence rate and accuracy of
the attitude and gyroscope bias estimates are compared.

Ground-truth values of the attitude and gyroscope bias at
time step k are denoted R̆k and b̆k, respectively. In both
simulations and real experiments, the filter update time step is
set to h0 = 1/60 seconds. Define

sk := (180◦/π)‖ log R̆−1k R̂k|k‖ (38)

dk := ‖b̂k|k − b̆‖, (39)

where sk and dk represent the estimation errors of the attitude
and gyroscope bias at time step k, respectively.
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The weighting factors w(i)
m and w(i)

c in Section III-B are set
to

w(0)
m =

λ

λ+Nx
, w(0)

c =
λ

λ+Nx
+ (1− α2 + β) (40)

w(i)
m = w(i)

c =
1

2(λ+Nx)
, (i = 1, . . . , 2Nx). (41)

α in Equation (40) is set to 0.9, and β is set to two for a
Gaussian prior [10].

A. Synthetic Data

In our numerical simulation experiments, the vectors
in Equation (4) are set to r1 = (0, 1, 0)T and r2 =
(0, cos(φs), sin(φs))

T , where φs = 2.4 radians. The ground
truth value R̆1 ∈ SO(3) is set randomly to be the initial
attitude.

For realistic simulation, we first collect a set of real angular
rate measurements ω̆k from an actual gyroscope (L3G4200D)
at the sampling rate 1/h0 = 60 Hz. From R̆1, true attitude
matrices can be iteratively generated by

R̆k+1 = R̆k exp([ω̆k]h0).

The ground-truth value of the initial gyroscope bias is set to
be b̆0 = (−0.06, 0.3, 0.3)T radian/seconds. We then generate
a set of synthetic data as follows:

ωmk = ω̆k + b̆k + ηω,k (42)

b̆k = b̆k−1 + ηb,k−1 (43)

v1,k = (R̆T
k r1 + ηv1,k

)/‖R̆T
k r1 + ηv1,k

‖ (44)

v2,k = (R̆T
k r2 + ηv2,k

)/‖R̆T
k r2 + ηv2,k

‖, (45)

where the Gaussian noise vectors have the following dis-
tributions: ηω,k ∼ N (0, σ2

0I),ηb,k ∼ N (0, σ2
1I),ηv1,k

∼
N (0, σ2

2I), and ηv2,k
∼ N (0, σ2

3I), k = 1, . . . , N . Here
σ0 = (1.1 × 10−3/h0) radian/seconds, σ1 = (1.0 × 10−5)
radian/seconds, σ2 = 1.00× 10−2, and σ3 = 1.58× 10−2.

To simulate the large initial estimation errors of gyroscope
bias and attitude, we set b̂1|1 = 0 and R̂1|1 = R̆1 exp([a1]),
where a1 = (3.13/

√
3)(1, 1, 1)T . The noise covariances Nk

in Equation (20) and Wk+1 in (24) of the proposed attitude
estimator (“UKF on SO(3)”) are set as follows: Nk =[
(σ0h0)

2I 0

0 σ2
1I

]
and Wk+1 = ( 1

σ2
2
(I−r1r

T
1 )+ 1

σ2
3
(I−r2r

T
2 ))−1.

UKF on SO(3) UKF on Quaternion NCF on SO(3)

Time (sec.)Time (sec.)

sk

20

60

100

140

180

EKF on Quaternion

Time (sec.)

UKF on SO(3)

Time (sec.) Time (sec.)

EKF on Quaternion NCF on SO(3)

Time (sec.)Time (sec.)

UKF on Quaternion

sk sk sk

sk
sk sk sk

20

60

100

140

180

4 8 12 160

20

60

100

140

180

4 8 12 160 4 8 12 160

20

60

100

140

180

Time (sec.)

4 8 12 160

0.5

1.5

2.5

15 25 35

0.5

1.5

2.5

0.5

1.5

2.5

0.5

1.5

2.5

15 25 35 15 25 35 15 25 35

Fig. 1. Simulation experiments: Attitude estimation errors (in degrees) over
the time intervals t ∈ [0, 16] seconds (top) and t ∈ [12, 44] seconds (bottom).
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Fig. 2. Simulation experiments: Gyroscope bias estimate errors (in ra-
dian/seconds) over the time intervals t ∈ [0, 16] seconds (top) and t ∈ [12, 44]
seconds (bottom).

From the simulation results shown in Figures 1 and 2, it
can be seen that the proposed algorithm (“UKF on SO(3)”)
converges most rapidly over the time interval t ∈ [0, 14] sec-
onds. To more reliably assess the accuracy of each estimator,
we generate 500 sets of synthetic data using Equations (42)-
(45). Figure 3 shows the histograms of estimation errors of the
attitudes and the slowly time-varying gyroscope biases. Tables
I and II summarize the experimental results corresponding to
Figures 3(a)-(b). From Figure 3(b) and Table II, it can be seen
that the gyroscope bias estimates show similar performance for
all estimators. In terms of attitude estimates, “UKF on SO(3)”
is the most accurate among the estimators (see Figure 3(a) and
Table I).
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Fig. 3. Simulation experiments: Histograms of estimation errors over the time
interval t ∈ [12, 44] seconds (averaged over 500 trials).

TABLE I
AVERAGE AND STANDARD DEVIATION OF ATTITUDE ESTIMATION ERRORS

(IN DEGREES) OVER THE TIME INTERVAL t ∈ [12, 44] SECONDS
(AVERAGED OVER 500 TRIALS).

UKF on SO(3) UKF on Quaternion EKF on Quaternion NCF on SO(3)
Average 0.45 0.49 0.51 0.57

Standard deviation 0.02 0.03 0.03 0.03

B. Real Experiments

The IMU for real experiments consists of an L3G4200D
gyroscope, LIS3LV02DQ accelerometer, HMC5883L magne-
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TABLE II
AVERAGE AND STANDARD DEVIATION OF GYROSCOPE BIAS ESTIMATION

ERRORS (IN RADIAN/SECONDS) DURING TIME INTERVAL t ∈ [12, 44]
SECONDS OVER 500 TRIALS.

UKF on SO(3) UKF on Quaternion EKF on Quaternion NCF on SO(3)
Average 0.011 0.011 0.011 0.011

Standard deviation 0.001 0.001 0.001 0.001

tometer, and Cortex-M3TM microcontroller. In real experi-
ments, ground-truth values of the slowly time-varying gyro-
scope bias are unknown. We therefore assume that the gyro-
scope bias is initially unknown, but near-constant over short
time durations. If the IMU is stationary, then the gyroscope
bias, denoted b̆, can be temporarily captured by averaging a
set of gyroscope data over a certain time interval [32].

Keeping the IMU stationary, the variance σ2
i of the unit

vector vi,k, i = 1, 2, can be calculated from Equation (37);
in our experiments we obtain the values σ2

1 = 8.95 × 10−5

and σ2
2 = 1.911×10−4. Denoting by φr the angle between r1

and r2, i.e., φr = cos−1(rT1 r2), we obtain φr = 2.486 radians
using Proposition 1 of Appendix D and Equation (34). The
noise covariances Nk in Equation (20) and Wk+1 in (24)
of the proposed attitude estimator (“UKF on SO(3)”) are set
as follows: Nk =

[
(2.0×10−9)I 0

0 (3.0×10−11)I

]
and Wk+1 =

(
∑2
i=1

1
σ2
i
(I− rir

T
i ))−1.

To obtain the ground-truth value of the attitude R̆k at time
step k, we use the optical motion capture system OptiTrackTM

consisting of multiple networked infrared cameras. The IMU
and four reflective markers are first rigidly attached to a plastic
plate. A set of real data {(ωmk ,v1,k,v2,k) | k = 1, . . . , Nr}
obtained from the moving IMU, and the ground-truth attitude
R̆k obtained from the OptiTrackTM infrared camera system,
are synchronously saved into files at a sampling rate 1/h0 =
60 Hz. Here the number of measurements Nr is set to 3000.
For fair comparison among filters, we perform experiments
with real data under the condition of negligible disturbances.

To evaluate the convergence rate and accuracy of each filter
when the initial estimation errors of the gyroscope bias and
attitude are large, we set the initial estimates as follows: b̂1|1 =

b̆ + (1/h0)(−0.001, 0.005, 0.005)T = b̆ + (−0.06, 0.3, 0.3)T

(radian/seconds) and R̂1|1 ← R̆1 exp([a1]), where a1 =

(3.13/
√

3)(1, 1, 1)T . Recall that b̆ can be obtained under the
stationary IMU assumption.

Like our earlier simulation results, Figures 4 and 5 show
that the proposed method (“UKF on SO(3)”) converges the
most rapidly, whereas other methods show slow convergence
rates and relatively large overshoots. To further experimentally
verify these results, we collect nine additional sets of real data.
As shown in Table III, “UKF on SO(3)” demonstrates superior
performance compared to existing methods in terms of the
accuracy of attitude estimates.

We also measure, at every time step, the computation times
for each filter—all implemented in C++ and executed on a
desktop computer with IntelTM i5-4670 (3.4GHz) CPU. The
computation times for each estimator are averaged over Nr
steps. From Table IV it can be seen that “NCF on SO(3)” is
the fastest among the estimators. Computation times for “UKF

on SO(3)” are similar to those for “Quaternion UKF”.
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Fig. 4. Real experiments: Attitude estimate errors (in degrees) over the time
interval t ∈ [0, 14] seconds (top) and t ∈ [10, 50] seconds. (bottom).
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Fig. 5. Real experiments: Gyroscope bias estimate errors (in radian/seconds)
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(bottom).

TABLE III
RESULTS OF REAL EXPERIMENTS: AVERAGE ERRORS OVER THE TIME

INTERVAL t ∈ [10, 50] SECONDS (AVERAGED OVER TEN EXPERIMENTS).

Average of attitude errors (in degrees) Average of gyroscope bias errors (in radian/seconds)
UKF on UKF on EKF on NCF on UKF on UKF on EKF on NCF on

SO(3) Quaternion Quaternion SO(3) SO(3) Quaternion Quaternion SO(3)
2.60 2.69 2.71 2.76 0.012 0.012 0.012 0.012

TABLE IV
AVERAGE COMPUTATION TIMES FOR EACH FILTER (IN MICRO-SECONDS)

UKF on SO(3) UKF on Quaternion EKF on Quaternion NCF on SO(3)
Average time 8.1 7.9 6.8 0.2

VI. CONCLUSION

This paper has presented a geometric unscented Kalman
filtering algorithm for simultaneously estimating attitude and
gyroscope bias from an inertial measurement unit. Drawing
upon the Lie group properties of the set of rotation ma-
trices SO(3), we derive a discrete-time stochastic nonlinear
filtering algorithm evolving on SO(3) ×R3. One of the key
features of our algorithm is to express observations as elements
of SO(3), by determining the rotation corresponding to the
IMU’s gravitational acceleration and magnetic field vector
measurements as a solution to Wahba’s Problem. By doing
so, first-order linear approximations of the state dynamics
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and measurement equations lead to closed-form equations for
covariance propagation and update. These in turn lead to com-
putationally efficient implementations of our filter, with the
resulting attitude estimates invariant with respect to the choice
of fixed and moving reference frames. Extensive numerical
simulation and hardware experiments have demonstrated the
superior convergence behavior and estimation accuracy of our
proposed algorithm compared to existing state-of-the-art IMU
estimators for attitude and gyroscope bias.

APPENDIX A
FIRST-ORDER APPROXIMATION OF EXPONENTIAL MAP

Given [x], [y] ∈ so(3), let [z] ∈ so(3) satisfy

exp([z]) = exp([x]) exp([y]). (46)

From the Baker-Campbell-Hausdorff formula [29], we have

[z] = log(exp([x]) exp([y]))

= [x] + [y] +
1

2
[[x], [y]] +

1

12
[[x], [[x], [y]]]

+
1

12
[[y], [[y], [x]]] + · · · .

The Lie bracket operator [·, ·] : so(3) × so(3) → so(3) is
defined as [[a], [b]] = [a][b] − [b][a] for [a], [b] ∈ so(3).
[c] = [[a], [b]] ∈ so(3) also admits the vector representation
c = [a]b ∈ R3.

If we assume that ‖x‖ is small, then by gathering only terms
linear in x, the following approximation holds [23]:

z ≈ y +
∞∑
n=0

Bn
n!

[y]nx, (47)

where Bn are the Bernoulli numbers (B0 = 1, B1 = − 1
2 ,

B2 = 1
6 , . . .). The Bernoulli numbers satisfy the following

series expression: x
ex−1 =

∑∞
n=0

Bn

n! x
n for any scalar x 6= 0.

Letting [x′] = [z]− [y] ∈ so(3), we have

exp([x′] + [y]) = exp([x]) exp([y]), (48)

with
x ≈ Jl(y)x′, (49)

where

Jl(y) = (
∞∑
n=0

Bn
n!

[y]n)−1 (50)

=
∞∑
n=0

1

(n+ 1)!
[y]n (51)

=

∫ 1

0

exp([y]s) ds (52)

denotes the left Jacobian of SO(3) on y [23]. The closed-form
formula of Jl(y) is given by

Jl(y) = I +

(
1− cos ‖y‖
‖y‖2

)
[y] +

(
‖y‖ − sin ‖y‖
‖y‖3

)
[y]2.

(53)

APPENDIX B
UKF COVARIANCE UPDATE ON SO(3) × R3

From Equation (1), a random variable R ∈ SO(3) can be
defined as

R := exp([ϕ]) R̂, (54)

where ϕ ∼ N (0,Pϕ) is the right-translated exponential noise
and R̂ ∈ SO(3) is the state estimate. We refer to Pϕ as the
right-invariant covariance of R.

The right-translated exponential noise after the time update
as described in Section III-B2 is assumed to be zero-mean
Gaussian, with covariance Pk+1|k calculated by Equation (20).
Special caution is required when computing Pk+1|k+1, which
is the a posteriori right-invariant covariance of (Rk+1,bk+1)
after the measurement update. If one implements the mea-
surement update as in standard vector space UKF, the state
(Rk+1,bk+1) is given by

Rk+1 = exp([ξ(a)]) R̂k+1|k, (55)

bk+1 = b̂k+1|k + ξ(b) (56)

where ξ(a), ξ(b) ∈ R3 refer to the upper and lower halves
of ξ ∼ N (φ,Pk+1|k − KPyyKT ). However, since φ 6= 0
in general, there exists a discrepancy between the random
variable models (54) and (55). Equation (55) is therefore
reformulated to conform to (54) (i.e., to satisfy the property of
“zero-mean” right-translated exponential noise). Assume that
(Rk+1,bk+1) can be represented as

Rk+1 = exp([ε′
(a)

]) R̂k+1|k+1, (57)

bk+1 = b̂k+1|k+1 + ε′
(b) (58)

where ε′ ∼ N (0,Pε′) and Pk+1|k+1 = Pε′ . We now find
Pε′ .

Define the vector ε ∈ R6 by ε := ξ−φ. ε has the following
distribution: ε ∼ N (0,Pε), where

Pε = Pk+1|k −KPyyKT . (59)

Since ξ = ε+ φ, Equation (55) can be rewritten as

Rk+1 = exp([ε(a) + φ(a)]) R̂k+1|k. (60)

Substituting Equation (27) into (57), we have

Rk+1 = exp([ε′
(a)

]) exp([φ(a)]) R̂k+1|k. (61)

Combining Equations (60) and (61) leads to

exp([ε(a) + φ(a)]) = exp([ε′
(a)

]) exp([φ(a)]), (62)

and ε(b) = ξ(b) − φ(b) = ε′
(b) holds by equating (56) and

(58) using Equation (27). If ‖ε‖ � 1, from the first-order
approximation derived from the Baker-Campbell-Hausdorff
formula in Appendix A, it follows that

ε′ ≈M(φ)ε,

where

M(φ) =

[
Jl(φ

(a)) 0
0 I

]
, (63)
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and Jl(φ
(a)) denotes the left Jacobian of SO(3) at φ(a), with

corresponding closed-form equation given by (13). Finally we
have

Pk+1|k+1 = Pε′ ≈M(φ)PεM(φ)T , (64)

where Pε is given by Equation (59). This justifies Equation
(28) in Section III-B3. ( [33] and [34] propose slightly different
algorithms from (64): the former proposes a method for
covariance correction of the quaternion state, while the latter
takes a first-order approximation of both φ(a) and the noise
vector ε(a) in the derivation. In contrast, Equation (64) is
derived solely from the first-order approximation of ε.)

Remark 1. If the left-invariant noise is adopted [12], the right
Jacobian should be used in the covariance update equation.

APPENDIX C
MOTION AND MAGNETIC DISTURBANCES

If a triaxial accelerometer is subject to large accelera-
tions, it outputs the vector sum of the negative gravitational
acceleration vector and other accelerations due to external
forces; the resulting acceleration vector measurement is ex-
pressed in the moving frame {B} attached to the IMU. In
[35] these additional acceleration terms are referred to as
motion disturbances. In magnetically disturbed environments,
the measurement of a triaxial magnetometer deviates from the
local magnetic field expressed in frame {B} coordinates.

To detect these disturbances, a number of reliability func-
tions have been proposed [8], [35]. In [36] it is claimed that
checking only the norms of the calibrated outputs of the ac-
celerometers and magnetometers is in many cases sufficient for
practical purposes. Let ṽi ∈ R3, i = 1, 2 be the unnormalized
calibrated output vector of the three-axis accelerometer or
magnetometer at a particular instant. If |‖ṽi‖ − 1| > γi for
some positive threshold value γi, the disturbance is regarded
as detected; otherwise no disturbance is presumed to exist.

When dealing with motion or magnetic disturbances in
stochastic attitude filtering, two methods are commonly used:
• Adaptation of noise covariances [37]: If a disturbance is

detected, then the noise covariance of the Kalman filter
is adjusted.

• Measurement reconstruction with a vector selector [38]:
If a disturbance is detected, then ṽi is replaced by
R̂T
k+1|kri. Here, R̂k+1|k is given by Equation (19).

In our estimator, the measurement reconstruction method with
a vector selector is used.

APPENDIX D
EXTRINSIC MEAN OF UNIT VECTORS

Proposition 1. Given a set of N unit vectors in Rd, denoted
Sv = {vi ∈ Rd | ‖vi‖ = 1, i = 1, . . . , N}, the extrinsic mean
of Sv is defined as v∗ := arg minv

∑N
i=1 ‖vi − v‖2 subject

to ‖v‖ = 1. If m :=
∑N
i=1 vi 6= 0, then v∗ = m/‖m‖.

Proof. Defining L(v, λ) =
∑N
i=1 ‖vi − v‖2 + λ(vTv − 1)

where λ > 0, the first-order necessary conditions for optimal-
ity (∂L(v

∗,λ)
∂v∗ = 0 and ∂L(v∗,λ)

∂λ = 0) yield the result.

APPENDIX E
PROOF OF EQUATION (30)

Given the inverse Ā ∈ SO(3) of the true attitude, consider
the following slightly modified version of the optimization
problem of Equation (4):

θ∗ = arg min
θ∈R3

2∑
i=1

1

σ2
i

‖vi − exp([θ]) Āri‖2, (65)

where vi = Āri + ∆vi, and ∆vi denotes the zero-mean
measurement noise. The covariance of the random variable
∆vi is given by Equation (35), and exp([θ])Ā corresponds to
the inverse of the optimization variable R in (4). Assuming
that ∆vi is small, the solution θ∗ will be located near the
origin. Under the first-order approximation exp([θ]) ≈ I+[θ],
the objective function can be approximated as

θ∗ = arg min
θ∈R3

2∑
i=1

1

σ2
i

‖∆vi + [Āri]θ‖2. (66)

Equation (66) corresponds to a linear least-squares estimation
problem, with the optimal estimate given as a linear function
of ∆vi:

θ∗ =
2∑
i=1

Ji∆vi,

where
Ji = M−1(

1

σ2
i

[Ari]), (67)

and

M :=
2∑
i=1

1

σ2
i

(I− Ārir
T
i ĀT ). (68)

Here M denotes the Fisher information matrix [27]. Since
Equation (66) has the form of a linear least-squares estimation
problem, the covariance of θ∗ achieves the Cramer-Rao lower
bound [39]. The covariance of θ∗ is therefore given by

E(θ∗θ∗T ) =
2∑
i=1

JiE(∆vi∆vTi )JTi (69)

= M−1, (70)

where E(θ∗) = 0 is used. Since R = Ā−1 exp(−[θ]) holds,
the left-invariant covariance of R in Equation (4) is the same
as the covariance of θ. This completes the proof.
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sensor fusion algorithms with sound state representations through encap-
sulation of manifolds,” Information Fusion, vol. 14, no. 1, pp. 57–77,
2013.

[18] J. Kwon, H. S. Lee, F. C. Park, and K. M. Lee, “A geometric particle
filter for template-based visual tracking,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 36, no. 4, pp. 625–643, 2014.

[19] L. Chang, B. Hu, and G. Chang, “Modified unscented quaternion
estimator based on quaternion averaging,” J. Guid. Control Dyn., vol. 37,
no. 1, pp. 305–308, 2014.

[20] Y. S. Suh, “Orientation estimation using a quaternion–based indirect
Kalman filter with adaptive estimation of external acceleration,” IEEE
Trans. Instrum. Meas., vol. 59, no. 12, pp. 3296–3305, 2010.

[21] F. C. Park, J. Bobrow, and S. R. Ploen, “A Lie group formulation of
robot dynamics,” Int. J. Robot. Res., vol. 14, no. 6, pp. 609–618, 1995.

[22] J. Kim, S.-H. Lee, and F. C. Park, “Kinematic and dynamic modeling
of spherical joints using exponential coordinates,” Proc. IMechE, Part
C: J. Mech. Eng. Sci., vol. 228, no. 10, pp. 1777–1785, 2013.

[23] T. D. Barfoot and P. T. Furgale, “Associating uncertainty with three
dimensional poses for use in estimation problems,” IEEE Trans. Robot.,
vol. 30, no. 3, pp. 679–693, 2014.

[24] T. D. Barfoot, State Estimation for Robotics. Cambridge: Cambridge
University Press, 2017.

[25] G. Wahba, “A least–squares estimate of satellite attitude,” SIAM Review,
vol. 7, no. 3, p. 409, 1965.

[26] F. L. Markley, “Attitude determination using vector observations and
the singular value decomposition,” J. Astronaut. Sci., vol. 36, no. 3,
pp. 245–258, 1988.

[27] M. D. Shuster, “Maximum likelihood estimation of spacecraft attitude,”
J. Astronaut. Sci., vol. 37, no. 1, pp. 79–88, 1989.

[28] M. D. Shuster, “The generalized Wahba problem,” J. Astronaut. Sci.,
vol. 54, no. 2, pp. 245–259, 2006.

[29] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elemen-
tary Introduction, 2nd ed. Switzerland: Springer, 2016.

[30] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,” Int. J.
Comput. Vis., vol. 103, no. 3, pp. 267–305, 2013.

[31] M. D. Shuster and S. D. Oh, “Three-axis attitude determination from
vector observations,” J. Guid. Control Dyn., vol. 4, no. 1, pp. 70–77,
1981.

[32] M. Hwangbo, J.-S. Kim, and T. Kanade, “Gyro-aided feature tracking
for a moving camera: fusion, auto-calibration and GPU implementation,”
Int. J. Robot. Res., vol. 30, no. 14, pp. 1755–1774, 2011.

[33] R. G. Reynolds, “Asymptotically optimal attitude filtering with guaran-
teed convergence,” J. Guid. Control Dyn., vol. 31, no. 1, pp. 114–122,
2008.

[34] M. W. Mueller, M. Hehn, and R. D’Andrea, “Covariance correction step
for Kalman filtering with an attitude,” J. Guid. Control Dyn., vol. 40,
no. 9, pp. 2301–2306, 2017.

[35] T. Harada, T. Mori, and T. Sato, “Development of a tiny orientation
estimation device to operate under motion and magnetic disturbance,”
Int. J. Robot. Res., vol. 26, no. 6, pp. 547–559, 2007.

[36] H. Rehbinder and X. Hu, “Drift-free attitude estimation for accelerated
rigid bodies,” Automatica, vol. 40, pp. 653–659, 2004.

[37] A. M. Sabatini, “Quaternion-based extended Kalman filter for determin-
ing orientation by inertial and magnetic sensing,” IEEE Trans. Biomed.
Eng., vol. 53, no. 7, pp. 1346–1356, 2006.

[38] J. K. Lee and E. J. Park, “Minimum-order Kalman filter with vector
selector for accurate estimation of human body orientation,” IEEE Trans.
Robot., vol. 25, no. 5, pp. 1196–1201, 2009.

[39] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, vol.1. Englewood Cliffs, NJ: Prentice-Hall, 1993.

Donghoon Kang (M’12) received his B.S. and M.S.
in mechanical engineering from Pohang University
of Science and Technology (POSTECH), Pohang,
Korea, in 1997 and 1999, respectively. He received
the Ph.D. degree in mechanical and aerospace en-
gineering from Seoul National University, Seoul,
Korea in 2018. Since 2000 he has been with Korea
Institute of Science and Technology (KIST), where
he is currently a senor researcher. His research in-
terests are in computer vision and signal processing.

Cheongjae Jang received his B.S. degree in me-
chanical and aerospace engineering from Seoul Na-
tional University in 2012. He is currently working
toward the Ph.D. degree at Seoul National Univer-
sity, Seoul, Korea. His current research interests are
in robot planning and control, and manifold learning
from high-dimensional data.

Frank C. Park (F’13) received his B.S. in electrical
engineering from MIT in 1985, and Ph.D. in applied
mathematics from Harvard University in 1991. After
joining the faculty of UC Irvine in 1991, since 1995
he has been professor of mechanical and aerospace
engineering at Seoul National University, where he
currently serves as department head. His research in-
terests are in robot mechanics, planning and control,
vision and image processing, and related areas of
applied mathematics. He has been an IEEE Robotics
and Automation Society Distinguished Lecturer, and

has held adjunct faculty positions at the NYU Courant Institute, the Interactive
Computing Department at Georgia Tech, and the HKUST Robotics Institute.
He is a Fellow of the IEEE, former Editor-in-Chief of the IEEE Transactions
on Robotics, developer of the EDX course Robot Mechanics and Control
I, II, and co-author (with Kevin Lynch) of the textbook “Modern Robotics:
Mechanics, Planning, and Control”.


