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Abstract

Despite their potential, markerless hand tracking tech-
nologies are not yet applied in practice to the diagnosis or
monitoring of the activity in inflammatory musculoskeletal
diseases. One reason is that the focus of most methods lies
in the reconstruction of coarse, plausible poses, whereas
in the clinical context, accurate, interpretable, and reliable
results are required. Therefore, we propose ShaRPy, the
first RGB-D Shape Reconstruction and hand Pose tracking
system, which provides uncertainty estimates of the com-
puted pose, e.g., when a finger is hidden or its estimate is
inconsistent with the observations in the input, to guide clin-
ical decision-making. Besides pose, ShaRPy approximates
a personalized hand shape, promoting a more realistic and
intuitive understanding of its digital twin. Our method re-
quires only a light-weight setup with a single consumer-
level RGB-D camera yet it is able to distinguish similar
poses with only small joint angle deviations in a metri-
cally accurate space. This is achieved by combining a data-
driven dense correspondence predictor with traditional en-
ergy minimization. To bridge the gap between interac-
tive visualization and biomedical simulation we leverage a
parametric hand model in which we incorporate biomed-
ical constraints and optimize for both, its pose and hand
shape. We evaluate ShaRPy on a keypoint detection bench-
mark and show qualitative results of hand function assess-
ments for activity monitoring of musculoskeletal diseases.
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Figure 1. Compared to keypoint approaches, e.g. OpenPose [3,
26], ShaRPy estimates the 3D hand pose and shape, and indicates
uncertainty by detecting unobserved and error-prone regions (both
visualized in red on the hand surface).

1. Introduction and Related Work

Hand function is affected by musculoskeletal rheumatic
diseases. Rheumatoid Arthritis (RA) and Psoriatic Arthri-
tis (PsA) are both common chronic inflammatory diseases,
characterized by joint pain and swelling that can result
in joint destruction [16]. In view of improved treat-
ment options a more detailed, objective assessment of
hand function is desirable, as it can potentially serve as a
biomarker for changes in disease activity and patient quality

ar
X

iv
:2

30
3.

10
04

2v
2 

 [
cs

.C
V

] 
 1

2 
Se

p 
20

23

mailto:vanessa.wirth@fau.de


left right

p
re

d
ic

ti
o
n

 h
ea

d
s

Yolact

RGB

Correspondence

Matching

k-1 k

fixed adaptable
Depth

M

F

Figure 2. Overview of ShaRPy. First, a network based on Yolact [2] detects hands and regresses features in a correspondence space. The
outputs and the depth map are used in a subsequent energy minimization framework for pose and shape estimation. Lastly, we detect
uncertainties with respect to the pose parameters. As the network weights are learned, the first part of the pipeline is fixed at inference time.
However, the remaining parts are still adaptable at inference time, i.e., the weights can be individually tuned for different hand scenes in
clinical setups to improve performance.

of life [14]. This would allow for early therapy adjustment
and potentially improve the prediction of increased risk of
joint destruction. In clinical practice, functional assess-
ments are mainly based on subjective questionnaires [24] or
manual tests [10] that can discriminate between healthy in-
dividuals and patients, but lack sensitivity for disease mon-
itoring over time [23]. The gold standard for objective
hand motion assessment is marker-based motion captur-
ing [17]. Other methods use gloves and inertial measure-
ment units [9, 25] to record or monitor hand motion. A ma-
jor drawback of these technologies is that they are contact-
based, time-consuming to set up, and do not provide direct
and intuitive visual feedback options. Furthermore, they
are not suitable for patient monitoring at home. Hence,
simple markerless hand movement assessments based on
consumer-friendly sensor systems such as RGB-D cameras
are desirable and show promising potential to be applied in
the future [21].

In the computer vision community, camera-based hand
reconstruction has a rich history [29]. Hand pose esti-
mation algorithms usually reconstruct hands as a set of
keypoints [34, 7]. However, the visual interpretability of
keypoints is limited (cf. Figure 1) as they do not reflect
shape and shape-dependent pose. For example, the neu-
tral posture with all fingers closed of a thick hand is identi-
cal to a thin hand with a slight abduction in the Metacar-
pophalangeal (MCP) joints. Another line of work fo-
cuses on estimating the pose of parametric hand models
including shape [13, 32, 6, 19]. Commonly, a neural net-
work [13, 32] is trained, which is fixed at inference time
and restricted in its generalization capability with respect
to unseen shapes, poses, and viewpoints. Alternative ap-
proaches are based on energy optimization [6, 19], which
can be adjusted to individual video sequences and extended
to fit clinical requirements, e.g., including anthropometric

hand constraints. Furthermore, in setups with only a sin-
gle RGB [13, 34, 7] camera, it is challenging to estimate
the parameters in a metrically accurate 3D space because
the depth of a hand can only be estimated up to a certain
scale. To avoid complex setups with multiple cameras, we
prefer to use additional depth information of a single RGB-
D [6, 20, 27] sensor. The common goal of all the above
approaches is to estimate the most plausible pose of the
hand and its skeleton. However, in difficult cases (cf. Fig-
ure 1), this means that the finger segments can be misla-
belled, point into the wrong direction, or are speculated at
positions that are not visible. In clinical setups, besides
accuracy, it is important to identify and discard unreliable
measurements and avoid false positives in the assessment
of hand functions.
To tackle all these limitations, we propose, to the best of
our knowledge, the first markerless hand tracking method,
which provides accurate hand pose and shape parameters
and estimates the uncertainty that remains in those in order
to discard unreliable predictions, e.g., when a finger is hid-
den or its estimate is inconsistent with the observations in
the input. Our approach requires only a single RGB-D cam-
era, which makes it easily applicable and allows us to deter-
mine a metrically accurate hand shape and pose. ShaRPy
makes the following contributions:

• We present the first framework that utilizes dense
correspondence predictions to estimate uncertainty
through unobserved and error-prone regions of a para-
metric hand model after shape and pose optimization.

• We introduce a novel correspondence space with se-
mantic encodings, which can be directly transformed
into a hand part segmentation. The transformation
enables a consistent coarse-to-fine mapping between
hand segments and their respective features within



each segment, and is utilized for precise correspon-
dence matching and uncertainty estimation.

• We demonstrate the benefits of our approach in the
context of markerless hand function assessments as
a method to monitor the activity of musculoskeletal
rheumatic diseases as well as through a state-of-the-art
pose estimation benchmark.

2. Overview

An overview of ShaRPy is shown in Figure 2. First, a
pre-trained multi-task network [2] predicts for each hand
in an RGB image I its bounding box, a label indicating
whether it is the left or right hand, a segmentation mask
M , and a correspondence image F . The correspondence
image assigns each pixel of the hand to a unique feature in a
novel correspondence space with semantic encodings (Sec-
tion 3). Subsequently, the optimal pose and shape param-
eters of a parametric hand model are found in a two-stage
energy minimization framework using the additional depth
image D (Section 4). Lastly, we estimate the uncertainty
through the calculation of unobserved and error-prone re-
gions on the surface of the hand model and visualize the re-
sults accordingly (Section 5). Our tracking approach lever-
ages the advantages of video data and reuses the network
output, e.g. the Region-Of-Interest (ROI) defined by the
bounding boxes, and hand model predictions of the previ-
ous frame at timestep k − 1 to improve the predictions in
the current frame k.

Hand Model. We employ the widely adopted MANO
model [22] as a parametric representation of the hand. The
model is represented by a set of vertices V ⊆ R3, deformed
by a kinematic tree of 15 finger joints J ⊆ R3, and a root
wrist joint. The rigid motion of the wrist is described by the
translation vector t ∈ R3 and rotation R ∈ R3 in axis-angle
notation. Similarly, the per-joint rotations are denoted as
the pose θ ∈ R3|J |, and the hand shape is parameterized by
β ∈ R10. A linear function maps the pose and shape param-
eters to joints and, subsequently, to vertices. As the model
is not anatomically constrained, the orientation of the joints
is not aligned with the natural bone structure. Together with
the high number of 3 Degrees-of-Freedom (DoF) per joint,
the parametrization can lead to unnatural poses. Inspired
by [32], we rephrase the orientation of a per-joint pose such
that the respective joint moves within the sagittal, coronal,
and transverse plane. Furthermore, we propose to limit the
DoF per joint with respect to anatomy considering the spe-
cial case of the thumb. In total, we reduce the number of
optimizable pose parameters from 3 · |J | = 45 to 23. The
optimized MANO model is shown in Figure 3 and enables
an anatomically correct pose parametrization. Please note

Figure 3. Left: The anatomical MANO model with exemplary
movements of joint i in the sagittal (θix) and coronal plane (θiy).
Middle: Dense correspondence encoding. Right: Segmentation
sets Si

3d computed from correspondence space.

that, in the following sections, we use θ ∈ R23 to denote
the anatomically optimal pose.

3. Dense Correspondence with Semantic En-
codings

Our goal is to fit the MANO model such that it best de-
scribes the observations in an RGB-D image. To this end,
we establish correspondences between a pixel (x, y) and a
vertex v ∈ V through a novel, shared canonical correspon-
dence space embedded in [0, 1]3. For this, we define the
function c : V → [0, 1]3, which maps v to its coordinate
in the correspondence space. As depicted in Figure 3, the
space is encoded into a Hue-Saturation-Value (HSV) color
cylinder wrapped around the flat rest pose of the model,
aligned such that the axes describe semantic features of the
hand. The hue describes the angle of a vertex in a circle
within the coronal plane and encodes the finger type. We
scale the range of [0◦, 360◦) to lie within the extent of the
MANO model to ensure space compactness. This is impor-
tant to distinguish between different fingers as small differ-
ences in values can lead to wrong assignments during the
correspondence prediction and matching (see Section 3.2).
The saturation is computed on each finger separately and
encodes the corresponding finger segment on an axis be-
tween the origin of the hand wrist and the fingertip. To dis-
tinguish between the front and back of the hand, the value
axis encodes the surface normal along the y-axis. In sum-
mary, our novel correspondence space encodes both, spatial
and semantic hand features while being compact, contin-
uous, and deterministic to compute. The semantic encod-
ing enables us to define a function d : [0, 1]3 → {1, ..., 20}
that computes a discrete segmentation label out of the con-
tinuous space, which is later used in Section 3.2 and Sec-
tion 5. Figure 3 shows the corresponding segmented vertex
sets S3d = {Si

3d}20i=1 with Si
3d = {v ∈ V | d(c(v)) = i},

of which 15 refer to the three segments of each finger, and
the remaining divide the large area of the wrist into 5 per-
finger regions.



3.1. Correspondence Regression

As depth-only datasets are limited in availability and
generalization across depth images of different sensor
types is challenging, we leverage a variety of RGB(-D)
datasets [18, 33, 11, 6, 7] to train our correspondence regres-
sion network only on RGB data in a fully supervised man-
ner, and leverage the additional depth component only at
test-time during energy minimization. We use a mixture of
automatically and semi-automatically labeled ground-truth
MANO parameters to transform the models to their posi-
tion in the image and render the parts of the visible surface
to obtain ground-truth correspondence images F . In order
to detect inconsistent per-pixel predictions of F at inference
time and relate them to certain regions of the hand, an ad-
ditional segmentation map of the visible parts of the hand
is required. As our novel correspondence space enables the
direct conversion from unique coordinates to coarse hand
segments, it is not necessary to predict an additional seg-
mentation mask, which could potentially lead to inconsis-
tent per-pixel predictions with F otherwise. Instead, for
each hand visible in an image I , our framework only pre-
dicts dense correspondences, of which we compute a seg-
mentation set Si

2d = {(x, y) | d(F (x, y)) = i} of pixels
(x, y) for each segmentation label i.

Our regression network is an extension of Yolact [2] to
which we add an additional branch for correspondence pre-
diction. It is trained by minimizing the smooth L1 loss be-
tween the predicted and ground-truth correspondence value
of each pixel within the ground-truth segmentation mask of
the hand. At inference time, we multiply the correspon-
dence values with the predicted mask M to acquire per-
pixel correspondences only for the hand.

3.2. Correspondence Matching

Correspondence pairs are established by comparing each
predicted cp = F (x, y) at pixel (x, y) with cv = c(v)
of every MANO vertex v. A common method to find a
match is a traditional nearest-neighbor search [19]. In par-
ticular for hands, this method can result in wrong corre-
spondence pairs at positions in between fingers. This is be-
cause, contrary to the continuous nature of the correspon-
dence space, the assignment of a pixel to a vertex of a spe-
cific finger is a discrete problem. We improve the quality
of correspondence pairs by using both, the correspondence
space and its discrete segmentation, and compute nearest-
neighbor matches only within the sets of segmented vertices
Si
3d and segmented pixels Si

2d that share the same segmen-
tation label. In other words, we first reject possible matches
on the coarse segmentation level in case they do not share
the same label and, subsequently, compute matches in the
correspondence space. A match between cp and cv is used
to construct a pair (p,v) of 3D correspondences between
v and an image point p ∈ R3, computed from the back-

projection of the depth value at D(x, y). Since cp is pre-
dicted in the view of the RGB camera, it is not exactly
aligned with the pixel positions of D. Particularly at the
edges of the hand silhouette, the predictions can map to er-
roneous points of the background. Hence, we first discard
pairs, in which D(x, y) deviates too far from the median
depth of the hand, determined by a threshold td. Second, we
filter out points at silhouette edges with degraded and noisy
depth by inspecting whether the angle of the point-wise nor-
mal computed from D exceeds a given threshold tn. Lastly,
we discard all pairs (p,v), of which the Euclidean norm of
their difference exceeds the 3D distance threshold t3d. The
final 3D correspondence set is denoted by C3d.

4. Pose and Shape Tracking
In this stage, we solve an energy-minimization prob-

lem to obtain the optimal MANO parameter set Ωk =
(Rk, tk, θk, βk) at timestep k:

argmin
Ωk

[
ω3dλE3d(C3d) + ω2dE2d(C2d) + Ereg(Ω

k,Ωk−1)
]

We denote the respective weights of a term E∗ as ω∗ and
define λ = exp (J + 1), where J is the Jaccard index of
the predicted mask M and the mask Mv of the rasterized
MANO model. We generate Mv by using the differen-
tiable rasterizer Nvdiffrast [12]. E3d and Ereg are similar
to Mueller et al. [19]: The data term E3d consists of a
point-to-point and point-to-plane error. The regularization
term Ereg enforces plausible poses and shapes, as well
as temporal smoothness, and consists of Eshape, Epose,
and Etemp. In contrast to [19], we use the anatomically
rephrased orientations of the MANO model such that Epose

enforces poses within anatomical limits. Furthermore, we
introduce the term E2d defined on the set of valid pixels
C2d within M and Mv . For each pixel (x, y) ∈ C2d,
the term penalizes the squared L2 norm between F (x, y)
and F v(x, y), where Fv is the correspondence image of
the rasterized hand. In other words, E2d enforces the
MANO model to lie within the predicted hand silhouette
and provides a more accurate estimation of β compared
to E3d. In our energy minimization framework, we
distinguish between the Initialization phase, which is only
executed in the first frame or when the tracking is lost, and
the Refinement phase, in which we iteratively minimize
E. During initialization, we first solve the orthogonal
Procrustes problem to obtain the initial wrist parameters
R and t. Secondly, we make use of an implicit pose prior
to initialize θ with plausible parameters. For this purpose,
we transform the anatomically rephrased θ into a PCA
space, which we pre-compute from annotated RGB(-D)
datasets [18, 33, 11, 6, 7]. Then, we solve the energy
formulation with respect to the PCA pose parameters
in order to obtain a plausible initialization of θ. As the
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Figure 4. Correspondence predictions (P) on images from
H2O [11] compared with their ground-truth (GT). Our network
was trained on HO3D [6], InterHand2.6M [18], H2O-3D [7] and
FreiHAND [33]. Inconsistencies in the regressed coordinates are
highlighted in red.

PCA pose space is not expressive enough to capture the
high variance of different hand poses, we refine θ in the
subsequent Refinement stage.

5. Uncertainty Estimation

As mentioned in Section 1, the generalization capability
of data-driven pose and shape estimation approaches is lim-
ited with respect to inputs that do not lie within the learned
data distribution, e.g., unseen hand poses or viewpoints.
Our approach poses no exception to this general limitation
and we observe correspondence mispredictions that exhibit
inconsistencies in the anatomic structure of the hand, which
is encoded by the correspondence space. These inconsis-
tencies are not only noticeable visually (see Figure 4) but
also during energy minimization. More specifically, we ex-
perience high residuals in regions, where it is not possible
to optimize the parameters of the anatomically constrained
MANO model such that its surface is optimal with respect
to the position in the image given by the pixels of the cor-
respondence pairs. Correspondence coordinates with a sig-
nificant deviation from their actual position in the space are
assigned to a wrong segmentation label through the dis-
cretization of d(·). Hence, hand segments can either be
over-saturated with mispredicted correspondences or have
no correspondences at all despite being visible in the input
image, as depicted in Figure 4. Based on these observa-
tions, we obtain an uncertainty value ui for each segment i
on the surface of the MANO model given by the segmenta-
tion sets Si

3d, which are computed from the predicted cor-
respondence image F . We compute the uncertainty value
such that:

ui =

{
1 if segment i unobserved or error-prone
0 else

Since a segment relates to the set of vertices deformed by
a particular joint, we can directly infer uncertainty with re-
spect to its respective pose parameter. We consider a seg-
ment i as unobserved if:

|Vi
vis|

|Si
3d|

< τv, with Vi
vis = {v ∈ Si

3d | (∗, v) ∈ C3d}

Further, we consider a segment i as error-prone if:

|P2d|
|Si

2d|
> τ2d or

|P3d|
|Si

3d|
> τ3d

We define Pi
2d = {(x, y) ∈ Si

2d | (x, y) ∈ C2d ∧
E2d(x, y) > ε2d} as the set of error-prone pixels and, anal-
ogously, Pi

3d = {v ∈ Si
3d | (∗,v) ∈ C3d ∧ Ez(v) > ε3d}

as the set of error-prone vertices. The term Ez(v) is defined
as the average L1 loss between the z-axis values of all pairs
in C3d, in which v is included.

6. Results
Our network is implemented and trained in PyTorch. At

inference time, it is embedded together with the rest of the
pipeline into a shared C++ framework, which utilizes the
libTorch library for automatic differentiation. During shape
and pose estimation, we initialize the tracking by using the
L-BFGS optimizer and then iteratively refine the energy
with Adam.

Experiments. The results are divided into two experi-
ments. First, we show the clinical applicability of our setup
(with V2) on a male, 61 years old PsA patient (Disease
Activity in Psoriatic Arthritis score: 17.52) and demon-
strate the reliability to discard invalid pose predictions
through the detection of uncertainty. Second, we quan-
titatively and qualitatively compare the accuracy of our
method with the state-of-the-art (SOTA). For the evalua-
tion, we apply three different training procedures, denoted
as V1, V2, and V3. In V1, we exclusively train on the
H2O [11] dataset. In V2, we train on all previously men-
tioned datasets [11, 6, 7, 18, 33]. In V3, we exclude H2O
and train on the remaining data [6, 7, 18, 33].

H2O. The H2O dataset is recorded from multi-view
RGB-D images of two hands manipulating objects that are
placed on a desk. It contains accurate 3D hand annotations
of egocentric views, which we find most similar to a top-
down view of a clinical setup for hand function assessments.
On top of that, the manipulation of objects besides hand
motion itself is interesting as an extension of hand function
assessments. In the corresponding H2O dataset benchmark
for hand pose estimation, the performance is measured with
respect to the Mean End-point Error (MEPE) and the Per-
centage of Correct Keypoints (PCK).
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sequence. Unobserved (grey hand surface) or error-prone (red surface) poses are listed as disconnected grey dots in the plots. Bottom:
Comparison of ShaRPy with OpenPose [3, 26].

6.1. Clinical applicability

Similar to clinical practice, we recorded a sequence of
the finger adduction and abduction together with the finger
hyperextension and assess the hand function by measuring
the angles of the fingers, using the middle finger as a refer-
ence. We achieve this by projecting the segments between
the proximal interphalangeal joints (PIP) and MCP joints
onto the wrist plane and computing the angle deviation from
the PIP-MCP segment of the middle finger. The results are
depicted in Figure 5. We are further able to visualize the
finger hyperextension due to the depth information, which
is not possible in RGB-only approaches. Next, we recorded
the patient holding a ball and rotating the wrist around the
camera. As we can assume that the fingers hardly move dur-
ing this task, we expect corresponding results in the finger
angles. We plot the angles of the pose θ around the MCP
of the thumb and the index and filter out all measurements,
in which one of the respective finger segments is marked

as uncertain within three consecutive frames. We compare
the results with unfiltered angle measurements and perceive
a significant decrease in angle variance from 112.55◦ to
18.16◦ on the middle finger and from 125.29◦ to 37.84◦

on the thumb, which was less visible and mainly close to
silhouette edges in the depth map.

6.2. Comparison with State-of-the-art

Since there is no established evaluation method for dense
pose and shape estimation with uncertainty estimation in
clinical applications, we compare our method with the
SOTA on pose estimation. Therefore, we evaluate the ac-
curacy of ShaRPy on the H2O [11] dataset, which contains
hand motion sequences of healthy subjects most visually
close to a clinical setting. In Figure 5, we compare the qual-
itative results of V2 with OpenPose [3, 26]. For a quanti-
tative comparison, our results are submitted and objectively
evaluated on a public leaderboard. The benchmark is tai-



MEPE (mm)↓ 3D PCK@15mm↑ 3D PCK@30mm↑
left right left right left right

Hasson et al. [8] 39.56 41.87 - - - -
Tekin et al. [28] 41.32 38.86 - - - -
Kwon et al. [11] 41.45 37.21 - - - -

Aboukhandra et al. [1] 36.80 36.50 - - - -
Cho et al. [4] 24.40 25.80 - - - -

Wen et al. [30]*, [31] 35.02 35.63 12.67 2.98 43.71 37.12
Cho et al. [5]* 14.40 15.90 70.75 54.61 93.81 95.08
Luo et al. [15]* 20.80 24.70 40.77 32.29 80.36 73.56

Ours (V1) 20.47 19.07 21.04 27.81 92.81 94.73
Ours (V3) 28.62 28.42 12.95 16.64 81.61 86.15

Table 1. Results on the H2O [11] hand pose challenge. For each metric, we indicate whether higher results (↑) or lower results (↓) are better.
The best results among accepted conference publications are highlighted in bold. For completeness, we also list workshop contributions,
which are tailored towards the H2O challenge, and denote them with *.

.

lored to RGB keypoint-based methods and evaluates the
plausibility of poses in the presence of strong occlusions.
Table 1 summarizes the results with respect to the MEPE
and the PCK. In summary, ShaRPy places first or third on
the leaderboard, even though we did not design our system
specifically for a keypoint-based pose estimation challenge,
do not focus on plausibility, and, solve a more challeng-
ing problem of indirectly estimating the pose through shape
along with the shape itself. On top of that, we show the
generalization ability of our version V3, which outperforms
most methods by placing third.

7. Conclusion

In this work, we proposed the first markerless hand
tracking approach, which calculates uncertainty in the pose
estimates. Our approach combines a data-driven dense
correspondence predictor with a flexible, generative energy
minimization framework to estimate the optimal hand
pose and shape that best explains the given observations.
Further, we detect uncertain poses through the detection of
unobserved and error-prone surface segments. We demon-
strate through quantitative and qualitative results that our
approach provides outstanding pose estimation accuracy,
on top of its generalization to both, unknown datasets
of healthy individuals and patient data. Furthermore, we
provide results of clinical hand function assessments and
show that, compared to other markerless approaches, our
approach has no limitation in terms of its applicability
and, instead, includes more favorable properties such as
additional shape estimation and the robust filtering of
uncertain poses. We believe our approach can be used to
drive further research in the context of markerless tracking
in clinical applications.

Data Use Declaration and Acknowledgments
The protocol was approved by the FAU ethics committee

(357 20B). Patient data was recorded after given written in-
formed consent. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) – SFB 1483 – Project-ID 442419336, EmpkinS.
This work used the German Research Foundation (DFG)
funded major instrument (reference number INST90 / 985-
1 FUGG) at the Institute of Applied Dynamics (Sigrid
Leyendecker), Friedrich-Alexander Universität Erlangen-
Nürnberg Germany. The authors gratefully acknowledge
the scientific support and HPC resources provided by the
Erlangen National High Performance Computing Center of
the Friedrich-Alexander-Universität Erlangen-Nürnberg.



References
[1] Ahmed Tawfik Aboukhadra, Jameel Malik, Ahmed Elhayek,

Nadia Robertini, and Didier Stricker. Thor-net: End-to-end
graformer-based realistic two hands and object reconstruc-
tion with self-supervision. In 2023 IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), pages
1001–1010, 2023.

[2] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee.
Yolact: Real-time instance segmentation. In ICCV, 2019.

[3] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.

[4] Hoseong Cho, Chanwoo Kim, Jihyeon Kim, Seongyeong
Lee, Elkhan Ismayilzada, and Seungryul Baek. Transformer-
based unified recognition of two hands manipulating objects.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4769–4778,
June 2023.

[5] Hoseong Cho, Donguk Kim, Chanwoo Kim, Seongyeong
Lee, and Seungryul Baek. Transformer-based global 3d hand
pose estimation in two hands manipulating objects scenarios.
arXiv e-prints, page arXiv:2210.11384, Oct. 2022.

[6] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. Honnotate: A method for 3d annotation of hand
and object poses. In CVPR, 2020.

[7] Shreyas Hampali, Sayan Deb Sarkar, Mahdi Rad, and Vin-
cent Lepetit. Keypoint transformer: Solving joint identifi-
cation in challenging hands and object interactions for ac-
curate 3d pose estimation. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
11080–11090, 2022.

[8] Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev,
Marc Pollefeys, and Cordelia Schmid. Leveraging photomet-
ric consistency over time for sparsely supervised hand-object
reconstruction. CoRR, abs/2004.13449, 2020.

[9] J Henderson, J Condell, J Connolly, D Kelly, and K Curran.
Review of Wearable Sensor-Based Health Monitoring Glove
Devices for Rheumatoid Arthritis. Sensors (Basel), 21(5),
2021.

[10] S C Higgins, J Adams, and R Hughes. Measuring hand grip
strength in rheumatoid arthritis. Rheumatol International,
38(5):707–714, 2018.

[11] Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo,
and Marc Pollefeys. H2o: Two hands manipulating objects
for first person interaction recognition. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10138–10148, October 2021.

[12] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transac-
tions on Graphics, 39(6), 2020.

[13] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In
CVPR, 2021.

[14] A M Liphardt, E Manger, S Liehr, L Bieniek, A Kleyer, D
Simon, K Taskilar, M Sticherling, J Rech, G Schett, and A J

Hueber. Similar Impact of Psoriatic Arthritis and Rheuma-
toid Arthritis on Objective and Subjective Parameters of
Hand Function. ACR Open Rheumatology, 2(12):734–740,
2020.

[15] Weixin Luo, Shuqiang Cao, Bairui Wang, Wei Zhang, Xi-
aolin Wei, and Lin Ma. Yolov7-3d: One-stage monocular 3d
hand pose estimation. In 2022 IEEE International Confer-
ence on Computer Vision (ICCV) Workshops: Human Body,
Hands, and Activities from Egocentric and Multi-view Cam-
eras (HBHA), 2022.

[16] Joseph F Merola, Espinoza Luis R, and Fleischmann Roy.
Distinguishing rheumatoid arthritis from psoriatic arthritis.
RMD Open, 2018.

[17] C D Metcalf, S V Notley, P H Chappell, J H Burridge, and
V T Yule. Validation and application of a computational
model for wrist and hand movements using surface markers.
IEEE Trans Biomed Eng, 55(3):1199–1210, 2008.

[18] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. Interhand2.6m: A dataset and baseline
for 3d interacting hand pose estimation from a single rgb im-
age. In European Conference on Computer Vision (ECCV),
2020.

[19] Franziska Mueller, Micah Davis, Florian Bernard, Olek-
sandr Sotnychenko, Mickeal Verschoor, Miguel A. Otaduy,
Dan Casas, and Christian Theobalt. Real-time Pose and
Shape Reconstruction of Two Interacting Hands With a Sin-
gle Depth Camera. ACM Transactions on Graphics (TOG),
38(4), 2019.

[20] Franziska Mueller, Dushyant Mehta, Oleksandr Sotny-
chenko, Srinath Sridhar, Dan Casas, and Christian Theobalt.
Real-time hand tracking under occlusion from an egocentric
rgb-d sensor. In Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), Oct 2017.

[21] Uday Phutane, Anna-Maria Liphardt, Johanna Bräunig, Jo-
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