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(a) Generation Examples from DnD-Transformer
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Figure 1: Generations from DnD-Transformers trained on class-conditional ImageNet256x256
(a.top) and unconditional arXiv images (a.bottom). Unconditional rich-text image generations by
trained diffusion (b.1) and autoregressive model (b.2), where autoregressive model has dominating
performance, showing a spark of vision-language intelligence after purely training on images.

7/



Published as a conference paper at ICLR 2025

ABSTRACT

This work tackles the information loss bottleneck of vector-quantization (VQ) au-
toregressive image generation by introducing a novel model architecture called
the 2-Dimensional Autoregression (DnD) Transformer. The DnD-Transformer
predicts more codes for an image by introducing a new direction, model depth,
along with the sequence length. Compared to 1D autoregression and previous
work using similar 2D image decomposition such as RQ-Transformer, the DnD-
Transformer is an end-to-end model that can generate higher quality images with
the same backbone model size and sequence length, opening a new optimiza-
tion perspective for autoregressive image generation. Furthermore, our exper-
iments reveal that the DnD-Transformer’s potential extends beyond generating
natural images. It can even generate images with rich text and graphical elements
in a self-supervised manner, demonstrating an understanding of these combined
modalities. This has not been previously demonstrated for popular vision gener-
ative models such as diffusion models, showing a spark of vision-language intel-
ligence when trained solely on images. Code, datasets and models are open at
https://github.com/chenllliang/DnD-Transformer.

1 INTRODUCTION

The field of autoregressive (AR) image generation is experiencing a resurgence of interest, largely
driven by groundbreaking advancements in large language models (LLMs), exemplified by the re-
lease of ChatGPT (OpenAl, [2022). Because typical AR image generation methods also predict
output in a next-token prediction manner, this resemblance has sparked significant efforts in two
main areas: 1) transferring advanced, large-scale training techniques and expertise from LLMs to
AR image generation models (Bai et al., 2023} [Tian et al., [2024; Sun et al., 2024), and 2) develop-
ing truly multimodal foundation models capable of both understanding and generating multimodal
information within a unified training framework (Lu et al., 2022;2023; [Team, 2024). These devel-
opments have the potential to lead to more versatile and powerful multimodal Al systems.

A review of the development history of AR image generation approaches reveals significant efforts
focused on finding better sequential decompositions of images and balancing reconstruction fidelity
with prediction difficulty. Early models, like PixelCNN (van den Oord et al.| 2016)), generated
images pixel by pixel. This approach was later enhanced by using vector-quantized variational
autoencoders (VQVAESs) to compress images and model the prior distribution of discrete tokens in
a compact latent space (Van Den Oord et al.| [2017). Vector quantization (VQ) paved the way for
notable models such as VQGAN (Esser et al., 2021), DALL-E (Ramesh et al.l 2021)), and MUSE
(Chang et al., |2023)), and it remains a core technique in recent AR image generation models like
VAR (Tian et al., 2024)) and LlamaGen (Sun et al., [2024)), and multimodal foundation models like
LVM (Bai et al., [2023)), Unified-IO (Lu et al.,[2022;|2023)), and Chameleon (Teaml [2024).

However, despite advancements in AR image generation, VQ-based autoregressive methods face
two persistent criticisms, especially juxtaposed with latent diffusion models (Rombach et al.| [2022):

1) Information loss inherent in the quantization process. Quantization, specifically in VQVAE,
introduces significant information loss. With a typical configuration (N=8192, f=16), the Informa-

tion Compression Ratio (ICR = 13%?7 , explained in Equation |1) is just 0.21%, drastically lower

than the 8.3% of Stable Diffusion’s VAEﬂ hindering fine-grained detail reconstruction. Accord-
ing to Chameleon (Team), 2024), the authors note that their VQ tokenizer struggles to reconstruct
finegrained details like text in images, which we believe is due to the low ICR of their tokenizer.

2) Substantially increased computational requirements for producing higher-quality images.
According to Equation[IT}Increasing ICR by expanding the latent space (N) is logarithmically limited

"The Stable Diffusion VAE (https://huggingface.co/stabilityai/sd-vae—ft-mse) uses
a downsampling factor (f) of 8 and 4 channels, with fp32 tensor precision (log N = 4 x 32).


https://github.com/chenllliang/DnD-Transformer
https://huggingface.co/stabilityai/sd-vae-ft-mse
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Figure 2: Illustration of the proposed DnD-Transformer. N denotes the number of depth autoregres-
sion. O-i denotes the transformer layer index for the i-th prediction head. Each transformer layer
predicts the corresponding depth code, achieving multi-code prediction within one forward pass.

and computationally expensive leading to potential codebook collapse and more embedding parame-
ters, while reducing the downscaling factor (f) significantly increases computational overhead due to
a longer token sequence of O(1/f?) and a higher transformer computation complexity of O(1/f4).

We draw inspiration from the Residual Quantization method 12022b), which provides
a new dimension for sequentially decomposing the image for better generation quality. However,
the proposed RQ-Transformer employs two separate transformer models. This structure presents
difficulties in integrating current LLMs for end-to-end training. In this work, we aim to solve the
problem covering the two mentioned concerns: Can we overcome the information loss of VQ-based
AR image generation without increasing overall computation budget in an end-to-end manner?

We propose a novel paradigm for AR image generation called 2-Dimensional Autoregression (DnD)
and DnD-Transformer, an end-to-end model architecture. DnD Autoregression introduces a new
depth dimension along with the original spatial dimension. In the depth dimension, the image patch
could be decomposed in any causal coarse-to-fine order, including the residual decomposition (Lee
2022b), Gaussian denoising decomposition and etc. With a depth of d and
other configurations unchanged, the ICR of DnD Autoregression becomes d x 1;’ T f];] , more effectively
reducing the information loss comparing to increasing the codebook size V.

The remaining problem is how to predict the d times more tokens effectively. We propose the DnD-
Transformer. As shown in Figure 2] it inserts multiple prediction heads into the backbone trans-
former decoder model to predict the depth codes and conduct additional autoregressive predictions
in each forward process. Different from RQ-Transformer 2022b), the DnD-Transformer
does not require additional modules or increased sequence length, making it applicable to any lan-
guage model architecture and efficiently generate more fine-grained images.

Our experiments show several interesting results: 1) superior reconstruction of fine-grained image
details using residual image decomposition in VQVAEs, disproving VQ’s limitations with text-rich
images; 2) more efficient and lower-entropy decomposition with DnD autoregression compared to
1D methods, evidenced by lower training cross-entropy loss despite predicting more codes; 3) sig-
nificant outperformance of the AR baseline on ImageNet 256x256 generation, achieving up to 1.54
FID and 82.6 IS improvements (XXL model, cfg=2) without increased model size or sequence
length, even surpassing larger LlamaGen model trained with longer sequence length; and 4) DnD-
Transformer shows that we can conduct accurate language modeling with pure image generation
model outperforming diffusion models like DDPM and Stable Diffusion on dedicated rich-text im-
age datasets, highlighting the distinct advantage of autoregressive models for multimodal modeling.
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1 D=8 (RQ) D=2 (RQ) D=1(VQ)
Ground Truth (512x512) | L2 Loss 0.0027 L2 Loss 0.0059 L2 Loss 0.0088
: PSNR 25.68 PSNR 23.27 PSNR 20.56

2 Relslod works

: D=8 (RQ) D=1 (VQ)
Ground Truth (512x512) | L2 Loss 0.0014 L2 Loss 0.0218 L2 Loss 0.0322
' PSNR 28.69 PSNR 16.61 PSNR 14.92

Figure 3: Performance of our visual tokenizers of different depths. The reconstruction of complex
features (i.e., eyes, mouse and text) gains significant improvement as the depth increases.

2 2D VISUAL TOKENIZER AND 2D AUTOREGRESSION

2.1 UNDERSTAND VQVAE AS COMPRESSION

We introduce the basics of AR generation in Section[A]in the appendix. We can better understand the
reconstruction ability of VQVAE from the lens of compression. Let us assume a VQVAE with down-
scaling factor f, codebook size IV, input image’s size of H x W, then the shape of the quantized
codeis h x w = (H/f) x (W/f). We assume that the code follows a uniform distribution, so each
code has log, N bits information. Its information compression ratio (ICR) is as follows.

(H/f) x (W/[f) x1ogy N logy N
H x W x 3 x log, 256 2412

ICR(N, f) = ()

A typical configuration (N=8192, f=16) results in 0.21% ICR. As a comparison, JPEG typically
achieves a far larger compression ratio from 5% to 10%, resulting in minimal perceptible loss in
image quality [1992). To increase ICR, the 1D AR method could increase N (might face the
codebook collapse problem (Mentzer et al.|[2023) and the improvement is logarithmically bounded)
or decrease f (more effective, but increases the token count quadratically).

2.2 IMAGES’ 2D DECOMPOSITION AND QUANTIZATION

As pointed out by Equation|[T] the information compression ratio of VQVAE is bounded by the size
of the codebook and the downscaling ratio. Residual Quantization proposes a
new direction to quantize the image feature with multiple residual codes to reduce the quantization
error and improve the quality of the reconstruction. For a feature map having h x w vectors, RQVAE
uses h X w x d codes to quantize the feature map, where d is the depth dimension of the code. For
each feature vector v, RQ finds d codes (q1, g2, ..., g4) by sequentially conducting d times residual
decomposition and quantization operation Q(z) as finding the closest entry to x from the codebook:

qd = Q(rd—l)v Tda =7d—1 —qd, To=YV ()

Consequently, the sum of the residual codes 2?21 q; 1s expected to approximate more closely the
feature vector v, thus reducing the quantization error. We generalize this process as two-dimensional
autoregression (DnD), which extends beyond Markov residual decomposition and can be applied to

any decomposition operation, such as the diffusion process (Ho et al.| 2020), etc.

DnD Autoregression quantizes a 2D feature map m € R/ by decomposing it in two directions.
First, m is divided into h - w feature vectors. Second, each vector v is decomposed into n codes
(g1, -+, @) using a function D" (v, Q) based on a codebook Q. The resulting quantized map q
has shape h - w - n and is predicted in depth-first-spatial-second order. This decomposition could
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Depth(RQVAE) ‘ ImageNet 256 %256 Depth(RQVAE) | Text256 Text512 arXiv512
|tFID| L2 Loss| Code Usage? \ rOCRT

1 2.98 0.11 100% 1 0.15 0.73 0.14

2 0.93 0.08 100% 1 0.00 0.00 0.00

4 0.60 0.05 100% 2 0.50 0.81 0.49

8 0.42 0.04 100% 8 0.80 0.83 0.67

SDXL 0.68 0.05 - SDXL 0.72 0.83 0.66
SD3 0.67 0.04 - SD3 0.82 0.83 0.74

(a) Reconstruction Performance on ImageNet (b) Reconstruction OCR Performance. 1 indicates
256256 Validation Set. zero-shot tokenizer trained on ImageNet.

Table 1: Ablation studies on the reconstruction performance of visual tokenizers. Our trained
tokenizers all have a f = 16 downscaling factor and N = 16384 codebook size.

Layerwise Code Usage of Different Visual Tokenizers Code Norm Distribution of Different Depths
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Figure 4: Analysis of visual tokenizers.

also be non-Markov, unlike RQVAE. The selection of potentially better decomposition functions
is left for future exploration. We use RQ-VAE as the implementation of 2D
decomposition method in our experiments. We still use the residual quantization from Equation 2]as
D™. DnD decomposition increases the ICR d times (Equation [3), more effectively than increasing
codebook size. The remaining challenge of predicting d times more codes is addressed by our
DnD-Transformer.

(H/f) x (W/f) xlogy N logy N

ICR(N, f,d) = d _
(N fod) = d X = 8 % Tog, 256 * 9up?

3)

2.3 RECONSTRUCTION PERFORMANCE

We evaluate the reconstruction performance of our trained visual tokenizers with varying maximum
codebook depths using the standard ImageNet dataset as the benchmark. All images are resized to
256x256 resolution. We train the different visual tokenizers using the same training objectives as in
(2022b), and assess the reconstruction Fréchet Inception Distance (rFID) on the ImageNet
validation set using ADM’s evaluation suite (Dhariwal & Nichol| 2021). The results are presented
in Table[Ta] For comparison, we include the rFID from the VAE of SDXL (Podell et al, 2023)) and
Stable-Diffusion 3 . Our findings demonstrate that our trained visual tokenizer
achieves an rFID lower than 1 with two or more codebook depths, even surpassing the performance
of SD3’s continuous VAE with less theoretical information loss. As shown in the example from
Figure[3] by increasing code depth, we could reconstruct more fine-grained details in the image.

Code Usage. We further analyze the code usage in each codebook layer, with results shown in
Figure [da] The analysis indicates that usage generally decreases as depth increases. This is due to
the diminishing diversity of code usage as the residual decomposition progresses deeper, resulting
in smaller feature norms and more centralized code usage according to Figure b} Interestingly, we
do not observe signs of codebook collapse with the DnD visual tokenizers, even when using a large
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Figure 5: Different explored multi-token prediction architectures for DnD-Transformer, which are
all designed to generate multiple codes with one forward pass.

codebook size (16384), as mentioned in previous work (Mentzer et al., 2023). While they reported
much lower code usage (< 50%), our tokenizer achieves 100% usage across all maximum depths.

2.4 VQVAES CAN PERFECTLY RECONSTRUCT RICH-TEXT IMAGES

A prevalent criticism of VQVAE has been its alleged intrinsic information loss problem, particularly
its inability to reconstruct images with fine details, such as those containing rich text (Team, [2024).
However, we argue that this claim is unfounded. Our findings suggest that VQVAE can indeed
achieve perfect reconstruction of detailed images, when provided sufficient data and an increased
number of codes used to represent each image. This demonstrates that the perceived limitations of
VQVAE can be overcome through appropriate data-centric adjustments and model scaling-up.

rOCR - A New Metric. We proposes rOCR, a novel metric for evaluating rich-text image re-
construction. Unlike rFID/L2 Loss, rOCR measures textual recognizability using the Qwen2-VL-
72B (Wang et al.,|2024a) visual language model for OCR. The metric computes the Rouge-L score
between recognized and groundtruth text (or original image OCR if groundtruth is unavailable).

Experiments and Results. Two rich-text image datasets, Text-Image and arXiv-Image (details in
Section 4.1)), were used to train visual tokenizers. Performance (rOCR scores) was evaluated on
both datasets’ 1K test sets, compared against ImageNet-trained tokenizers, SDXL’s (Podell et al.|
2023)) and Stable-Diffusion-3’s VAE (Esser et al., [2024). Text-Image was also tested at a reduced
256 %256 resolution to assess resolution impacts. Table|Ia]shows the rOCR results, with reconstruc-
tion examples in Figures[3]and[9] Results indicate more training data and deeper tokenizers improve
text reconstruction. Unlike |[Team|(2024)), our discrete visual tokenizers excel in rich-text image
reconstruction even compared to continuous VAEs.

3 THE DND-TRANSFORMER

Prior section showed DnD visual tokenizers effectively reconstruct fine details like text. However,
efficiently predicting the increased number of depth codes (d times more) remains challenging.
Existing methods, like RQ-Transformer, use a separate transformer for depth, hindering integration
with LLMs. We propose an efficient end-to-end architecture for multi-code prediction.

3.1 DND-TRANSFORMER DESIGN

Figure [5| shows DnD-Transformer and its variants: Parallel and Vertical Prediction. Parallel Predic-
tion adds multiple prediction heads for simultaneous multi-depth code prediction, similar to accel-
erated LLM inference (Cai et al.,|2024). However, this ignores the coarse-to-fine nature (Figure @])
of code distributions, where deeper codes have smaller norms and are more centered. Vertical Pre-
diction addresses this by sequentially predicting codes. Adding autoregression further refines this
by conditioning deeper code predictions on previous ones, achieving the best multi-layer code pre-
diction without increasing model parameters or sequence length. Ablation on the structure design is
shown in Table 3| from Appendix.
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3.2 IMPLEMENTATION DETAILS

As shown in Figure [5] the DnD-Transformer enhances the vanilla transformer decoder by adding
output heads and embedding addition operation. Assuming the linearized codemap’s length is
L = h x w and code depth is d, the DnD-Transformer performs L forward passes, generating d
codes sequentially during each pass. After generating for all depths, the embeddings are summed
to form the next input token. This allows the model to produce L x d tokens with just L forward
passes, improving generation quality without increasing inference costs. The only additional hyper-
parameter is the layer indexes for codes at different depths. We use the same architecture as the
LLaMA (Touvron et al.l[2023) transformer decoder; training details can be found in Appendix [E]

4 EXPERIMENTS AND FINDINGS

4.1 TASKS AND DATASETS

Class-Conditional Image Generation. We conduct standard conditional image generation task
with ImageNet-1k benchmark. Images are resized to 256 X256 resolution during training and evalu-
ation. We sample 50k images with classes uniformly distributed, and compute the FID, IS, Precision
and Recall aganist the training set data using the ADM evaluation tool Dhariwal & Nichol| (2021).

Unconditional Rich-Text Image Generation. We collect two datasets for this task. Dataset ex-
amples are shown in Figure[T0]in the Appendix. Models are trained in a unconditional setting in this
task. We aim to explore whether the tested vision generation models could understand and generate
the complex logical interrelation among the generated elements such as language.

1. Pure Text Images (Text-Image). The dataset is automatically rendered from a portion of
English wikipedia (Foundation), consisting of 2.4M images. Each image has a original
resolution of 512x512 and a font size of 32pt. We set a maximum of 100 words in each
image with a paddling margin of 20pt. We use the [PILLOW|library to render the image.

2. arXiv Images (arXiv-Image) we first download the papers in PDF format from arXiv.
org, and render the pages to image of A4 resolution (1260 x 1782) with PDF2IMAGE|tool.
We then randomly crop ten 512512 image from each pages and finally collect 2M images.

We developed an evaluation pipeline that combines Optical Character Recognition (OCR) and Per-
plexity Measurement to assess the quality of generated images, focusing on their textual content.
First, we use the state-of-the-art Vision-Language Model Qwen2-VL-72B to extract text from the
images. Then, we calculate the text’s perplexity using the Qwen2.5-72B model, treating it as the
evaluator. The resulting score, PP L., is compared to the score of ground truth data from the
training images to establish a performance upper bound.

4.2 MODELS

Visual Tokenizers. We train our visual tokenizer based on RQVAE:s (Lee et al., [2022b)). We train
tokenizers with code depths of {1, 2,4, 8} and scaling factor f = 16 across different experiments.
We choose the checkpoint with best rFID across 150 epochs. Performance comparison of different
visual tokenizers is shown in Table E} We follow |Lee et al.| (2022b)) to train the visual tokenizers.
Details of the training of visual tokenizers are listed in Appendix [B] Reconstruction performance of
the trained visual tokenizers is shown in Table [Tl

DnD-Transformer. We train two size of DnD-Transformers across our experiment, namely DnD-
Transformer-XXL (1.4B) and DnD-Transformer-XXXL (2.5B). Basically, DnD-Transformer in-
herits the LLaMA (Touvron et al. |2023) architecture. The XXL version strictly align with the
LlamaGen-XXL baseline to be fairly compared. Details of the model are shown in Appendix [E]

Implemented Baselines for Class-Conditional Image Generation. LlamaGen (Sun et al.,[2024)
is the major baseline and state-of-the-art model for AR image generation on ImageNet. Our imple-
mented code primarily refers to the same training codebase for fair comparison. LlamaGen could be
also viewed as a special version of DnD-Transformer where the decomposition depth equals to 1.
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Type | Model #Para. | FID| IS Precisiont Recallt
ADM (Dhariwal & Nichol}2021) 554M | 10.94 1010 0.69 0.63
Diffusion-Reported CDM (Ho et al. 2022 . - 4.88 158.7 - -
LDM-4 {Rombach et al. 2022} 400M | 3.60 247.7 - -
DiT-XL/Z (Peebles & Xiel[2023 675M | 227 2782 0.83 0.57
VQGAN (Esser et al.; 2021} 1.4B 520 2803 - -
RQTransformer (Lee et al.}2022a) 3.8B 7.55 1340 - -
LlamaGen-XXL (cfg=2) (Sun et al. /2024 1.4B 3.64  296.5 0.86 0.51
AR-Reported LlamaGen-XXL' (384384, cfg=2) (Sun et al.}2024] 1.4B 252 2954 0.84 0.56
LlamaGen-3B (cfg=2) (Sun et al.|[2024 3.1B 421 3252 0.87 0.49
LlamaGen-3BT (384 x 384, cfg=2) (Sun et al.;2024) 3.1B 281 3116 0.84 0.54
VAR (Tian et al.;2024) (with reject sampling) 2.0B 173 3502 0.82 0.60
HQ-Transformer (You et al.}}2022] (with reject sampling) 1.4B  4.35 - 0.73 0.55
MAR (Li et al.|[2024] (tramned Tonger, 400 epochs) 400M | 198  290.3 - -
LlamaGen-XXL (cfg=4) 1.4B 7.67  345.1 0.89 0.35
LlamaGen-XXL (cfg=2) 1.4B 412 266.9 0.83 0.49
DnD-Transformer-XXL (cfg=4) 1.4B 6.55 427.7 0.89 0.42
DnD-Transformer-XXL (cfg=2) 1.4B 2.58  295.6 0.83 0.56
AR-Implemented DnD-Transformer-XXL (cfg=1.7) 1.4B 2.78 2392 0.82 0.56
DnD-Transformer-XXL (cfg=1.5) 1.4B 296 2325 0.80 0.57
DnD-Transformer-XXXL (cfg=4) 2.5B 6.48  413.0 0.89 0.42
DnD-Transformer-XXXL (cfg=2) 2.5B 277  319.1 0.85 0.54
DnD-Transformer-XXXL (cfg=1.7) 258 | 221 2793 0.83 0.58
DnD-Transformer-XXXL (cfg=1.5) 2.5B 252 2442 0.80 0.59

Table 2: Model comparisons on class-conditional ImageNet 256x256 benchmark. The “Re-
ported” results refer to (Sun et al.| (2024). The “Implemented” results are conducted in this work. }
indicates that the model is unorthodoxly trained at 384 x 384 resolution, which requires 2.25 times
longer sequence length compared to our implemented models. “cfg” means the scale of classifier-
free guidance. The number of depth autoregression is 2 for DnD-Transformers.

Comparison of FIDs along Training on ImageNet Comparison of PPL along Training on Text-Image
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Figure 6: Curves during training.

Implemented Baselines for Rich-Text Image Generation. We select multiple diffusion models
as the baselines, including DDPM (Ho et al., 2020), Stable Diffusion XL (SDXL) (Podell et al.,
2023)) and Stable Diffusion v3.0 (SD3) (Esser et al., 2024). For DDPM, we train the model on the
dataset from scratch. For SDXL and SD3, we finetune the checkpoints from the official websites.

4.3 RESULTS OF CLASS-CONDITIONAL IMAGE GENERATION

As demonstrated in Table 2] our DnD-Transformer significantly outperforms the 1D autoregressive
baseline LlamenGen across various scales and generation evaluation metrics, including FID and IS.
This superior performance is achieved while maintaining the same number of parameters in the back-
bone model, based on our reported and implemented results. It is noteworthy that our 2.5B model,
trained with a sequence length of 256, even outperforms the 3.1B LlamaGen model, which was
trained with a much longer image sequence length of 576. This result demonstrates that the DnD-
Transformer can effectively predict a greater number of tokens within a shorter sequence length,
highlighting its significant potential to revolutionize the one-dimensional autoregressive paradigm.
We randomly sample some generation results as shown in Figure[T]and compare the generation per-
formance with 1D-AR in Figure [TT|[12]and [I3|from the Appendix. The comparative analysis clearly
illustrates the effectiveness of our approach to generate high-quality images.

4.4 RESULTS OF RICH-TEXT IMAGE GENERATION

Generation Results on Text-Image. A DnD-Transformer (depth 1) and a DDPM model were
trained on the same text-image dataset. Comparing 250 randomly sampled images from each, the
AR model significantly outperformed the diffusion model in generating coherent text (lower OCR
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Figure 7: Comparison of Unconditional Rich-Text Image Generation on the more complex arXiv-
Image dataset. SD3 is hard to generate valid words, while DnD-Transformer demonstrates an ability
to generate semantically appropriate phrases. as marked in blue. More baselines are in Figure @
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Figure 8: Analysis of code depths and domains during training DnD-Transformers.

perplexity [6b} Generation examples [T] [I5] [16] [I7] and [I8] ). This suggests the AR model’s dis-
crete token reconstruction enables effective autoregressive modeling. We also find that with a lower

sampling temperature, the model would generate text images with lower PPL just like LLMs. Con-
versely, the diffusion model’s simultaneous generation hinders text coherence.

Generation Results on arXiv-Image. An 8-layer visual tokenizer and corresponding DnD-
Transformer trained on arXiv-Image outperformed diffusion model baselines, generating more valid
words and phrases (Figure[/). However, arXiv-Image generation lagged behind Text-Image genera-
tion, suggesting joint language and figure modeling is more challenging. More results and baselines
are in Figure[T4]and [T9] While SD3’s VAE reconstructs arXiv images well (Table[Tb), its generative
performance is inferior to DDPM and AR, suggesting its latent space is less suitable for language
modeling comparing to pixel or discrete space.

A Spark of Vision-Language Intelligence. Autoregressive (AR) image generation exhibits a
marked advantage over diffusion models in producing text-rich images, as demonstrated by our
results. The pixel-level language generation inherent to AR models facilitates this capability. De-
spite limitations imposed by our current training data and model size (preventing direct comparison
with large language models), these findings suggest a promising pathway towards vision-language
intelligence where language understanding emerges directly from visual perception. Further-
more, our pure image learners display behaviors mirroring language model issues such as repetition
and hallucination (Figure 20), implying the potential for integrating pure language modeling into a
unified autoregressive framework for joint vision-language image modeling.

4.5 TRAINING BECOMES EASIER WHEN PREDICTING MULTIPLE CODES, SAMPLING NOT

Deeper DnD-Transformer codes achieve lower cross-entropy loss during training (Figure [8a)), indi-
cating lower entropy image decompositions. However, despite this, increased depth doesn’t improve
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ImageNet generation fidelity, possibly due to the larger sampling space. Exploring this multi-depth
sampling space for better generation is a promising research direction.

4.6 AR TRAINING L0OSS FOR DIFFERENT DOMAINS ALIGN WITH INNER RANDOMNESS

Training loss for the same DnD-Transformer varies significantly across datasets (Figure [8b), being
notably higher for ImageNet than rich-text images. While rich-text image loss nears that of LLMs,
ImageNet loss sits between text and natural image datasets. The AR model’s LLM-like training
suggests it learns language from visual input alone, implying language’s visual representation has
lower entropy than natural images, easing the learning process.

5 RELATED WORK

Image Generation with VQVAE. The vector quantization (VQ) method has been pivotal in
the development of generative models (Chen et al.| |2024; Ramesh et al., 2021} [Yu et al.| 2022
Chang et al., [2023)), which achieve image generation through the prediction of discrete image to-
kens. Efforts in this area focus on two main directions: the optimization of image tokenization
techniques (Esser et al., 2021} Mentzer et al., 2023} [Yu et al., 2023} 2024} Weber et al., 2024;
You et al., 2022), and the strategic planning of effective decompositions of image tokens, such as
MaskGit (Chang et al.l [2022) and VAR (Tian et al.,|2024) or incorporating a diffusion loss such as
MAR (Li et al.| [2024). Meanwhile, alongside the advancement of large language models, there is
growing interest in autoregressive image generation, which predicts image tokens sequentially (Tian
et al.l 2024; |Sun et al., [2024). Recent research has also focused on developing multimodal founda-
tion models (Lu et al.} |2023}; |Kondratyuk et al., 2024; Wang et al.,|2024b) that integrate both under-
standing and autoregressive image generation capabilities. They typically convert images or videos
into sequences of discretized tokens and train over combined text-image/video token sequences
within the AR modeling framework (Lu et al.l 2022; Bai et al.l 2023 Xie et al.,[2024; [Team, [2024)).
However, these models struggle with inherent information loss during the image quantization and
the significantly increased computational demands when generating higher-quality images.

Rich-Text Image Generation. Despite recent significant progress in image generation, the task
of rich-text generation within images remains a persistent challenge (Chen et al., 2023b; Ma et al.,
2024; |OpenAll 2024). Most advancements have been witnessed in diffusion models (Betker et al.,
2023} [Saharia et al., 2022bga), these models either leverage large language models to enhance the
character spelling capabilities of generative models (Saharia et al.,[2022b} Balaji et al.,[2023; [Saharia
et al.,2022a) or attempt to explicitly control the position and content of the text using additional su-
pervision from different modules (Tuo et al., 2024} [Yang et al.l [2023} [Liu et al.| [2024)). However,
most diffusion-based methods have primarily focused on text rendering|Chen et al.| (2023afb)); Balaji
et al.|(2023)); Saharia et al.| (2022a)) in image generation, often limited to generating short words for
logos and posters (Yang et al., 2023} Ma et al., 2023} 2024)). The full potential of rich-text image
generation remains largely unexplored. Our methods, which build on the foundation of DnD Au-
toregression, show substantial progress in generating rich-text images in an unconditional manner,
highlighting the feasibility of conducting joint vision-language modeling tasks using purely images.

6 CONCLUSION

This paper investigated the limitations of autoregressive (AR) image generation methods, partic-
ularly the information loss and computational burden associated with vector quantization (VQ).
We introduced 2-Dimensional Autoregression (DnD) and a novel end-to-end architecture, DnD-
Transformer, which leverages a depth dimension autoregression alongside the spatial dimension to
mitigate these limitations. Our experiments demonstrate that DnD-Transformer achieves significant
improvements in image quality, outperforming strong baselines like LlamaGen without increasing
model size or sequence length. Notably, DnD-Transformer showcases emergent vision-language
intelligence, generating text-rich images unconditionally, a known weakness of diffusion models.
These findings highlight the potential of DnD for efficient and high-quality AR image generation
and underscore the promise of this approach for advancing multimodal foundation models.
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A  PRELIMINARY: AUTOREGRESSIVE IMAGE GENERATION

In this section, we introduce the fundamentals of autoregressive image generation. The pipeline is
rooted in the Vector Quantized Variational Autoencoder (VQVAE) (Van Den Oord et al.,[2017) and
the autoregressive Transformer (Vaswani et al.| [2017). This approach has been adopted from the
early DALLE (Ramesh et al.,|[2021)) to the latest LlamaGen (Sun et al., 2024).

A.1 STEP1: TRAIN THE VISUAL TOKENIZER AND TOKENIZE THE IMAGES

Images initially exist in the pixel-level RGB color space, which consists of little semantic infor-
mation and makes it challenging to directly model prior knowledge. For example, an image with
a resolution of 256 x 256 comprises 256 x 256 x 3 = 196, 608 distinct values, representing the
individual red, green, and blue intensities for each pixel. The large sequence length makes it diffi-
cult to train in autoregressive manner similar to language models’ technique. Van Den Oord et al.
(2017) proposed the Vector Quantized Variational Autoencoder (VQVAE), which significantly alle-
viates the problem. It downscales and tokenizes the image from the original sparse RGB space into a
dense and discrete representational space (codebook) Q by finding the nearest entry. The VQVAE is
typically implemented in an encoder-decoder architecture, with its primary training objective being
to minimize the image reconstruction loss. You could refer to [Van Den Oord et al.[(2017) for details
in training a standard VQVAE.

A.2 STEP2: LEARN THE PRIOR DISTRIBUTION OF IMAGE TOKENS

Having tokenized the source images into discrete tokens and trained a visual decoder to map these
tokens back to real images, the next crucial step is to learn the prior distribution of the discrete
tokens. This distribution enables the sampling process, which is essential for generating new images.
AR Image generation generally first linearizes the i x w image tokens ¢ € Q in a raster scan order
and formalize 1D sequence (q1, g2, 3, ---, @hxw) for the transformer (Vaswani et al.,|2017) model to
learn.
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During training, the training objective is the same as GPT’s next token prediction task
2018), that the model is required to predict the next image token given the previous tokens

and class or text conditional tokens Hflew (gt | g<t,c). After training, we can generate images
by autoregressively sampling & X w tokens from the model. The sampled 1D sequence of image
tokens is then reshaped to 2D code map with height A and width w. This reshaped token map is
subsequently fed into the trained VQVAE decoder, which reconstructs the final image from the code
representation.

Classifier-Free Guidance As a technique to enhance the visual quality and text-image alignment,
classifier-free guidance (Ho & Salimans| [2022) has been adopted across the diffusion models
[pach et al.| 2022} [Podell et al., 2023), VQ models (Chang et all, [2023)) and autoregressive mod-
els (Sun et al., for image generation. During the training, the model is exposed to data with
and without conditioning: the conditioning is randomly discarded from a fraction of the training
samples. We have implemented this approach in our model as well. Specifically, during training,
we randomly replace the conditional embedding with a learnable unconditional embedding in 10%
of the cases. At the inference stage, the logits ¢, are recalculated for each generated token. We form
the £, by subtracting the unconditional logits £,, by conditional logits £, with the guidance scale ¢
through the following equation:

byg="Lly+ (b —14,) x t 4

B TRAINING DETAILS OF VISUAL TOKENIZERS

We follow (Lee et al to train the 2D tokenizers with residual decomposition a combined
objective of 12 loss, GAN loss and perceptual loss. Codes from different depth share the same
codebook. We train all tokenizers a fixed learning rate of 4e-5, a total batch-size of 256 for 100
epochs and select the one with lowest validation loss as the final tokenizers. We conduct all training
on 8xA100 GPUs.

C RECONSTRUCTION RESULTS OF TEXTS

Figure[9] shows the reconstruction result on arXiv images of different visual tokenizers.
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2. Related works

Text-to-i i Text-to-i

26 (T2I) genera-
tion models have evolved and iterated through several pop-
ular model architectures in the deep learning era. An early
work is the Generative Adversarial Network (GAN) [3, 16,
26], which trains a generator for image generation and a
discriminator to distinguish between real and generated im-
ages, in parallel (also see [32, 38, 47, 55, 60, 62] among
others). Another category of generation models develops
from variational auto-encoders (VAEs) [21, 29, 48], which
optimize evidence lower bound (ELBO) for the likelihood
of the image data.

Most recently, Diffusion Models (DMs) [22, 36, 41, 46]
have emerged as the state-of-the-art (SOTA) for Image Gen-
eration [13]. DMs are trained to generate images progres-
sively from random noise, with the ability to capture more
diversity than GANs and achieve good sample quality [13].
Latent Diffusion Models [41] are a further refinement that
performs the diffusion process in a compact latent space for
more efficiency.

No arXiv Data
D=1 (VQ)

Add arXiv Data
D=1 (VQ)

Add arXiv Data
D=8 (RQ)

Figure 9: Reconstruction Results of Texts. With training data and enough depths of codes, RQ visual
tokenizers can well reconstruct the text in the images.
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Model Parameters FID IS Precison Recall
1D 1.4B 4.12 266.9 0.83 0.49
2D Parallel 1.4B 6.32 232.1 0.79 0.44
2D Vertical 1.4B 3.18 289.7 0.83 0.57
DnD-Transformer 1.4B 2.58 295.6 0.83 0.56

Table 3: Ablation of DnD-Transformer Architecture on ImageNet dataset. All models follow
the same training setting as in Appendix@}

D ABLATION ON DND-TRANSFORMER’S STRUCTURE

E DETAILS OF HYPER-PARAMETERS OF DND-TRANSFORMER

Table [] shows the hyper-parameters of our trained models. The XXL model has the same set-
ting as in GPT2 (Radford et al., [2019) and LlamaGen (Sun et al.| [2024)) for fair comparisons. For
DnD-Transformer with multiple prediction heads, the prediction layers’ indexes are set to [39, 48]
when there are two heads, [39,42,45, 48] when there are 4 heads in the ImageNet experiments,
[27, 30, 33, 36, 39, 42, 45, 48] when there are 8 heads in the arXiv-Image experiments.

Model Parameters Layers Hidden Size Heads

XXL 1.4B 48 1536 24
XXXL 2.5B 48 2048 32

Table 4: Model sizes and architecture configurations

All transformer models were trained using settings similar to LlamaGen (Sun et al., 2024)): a base
learning rate of 10~4 per 256 batch size, the AdamW optimizer with 8; = 0.9, 52 = 0.95, and a
weight decay of 0.05, along with gradient clipping at 1.0. A dropout of 0.1 was consistently applied
to the input token embedding, attention module, and feed-forward network (FFN) module. Similarly,
a dropout of 0.1 was used for the class condition embedding for classifier-free guidance. Training
was performed for 300 epochs, and the final checkpoint was used for performance evaluation.
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F EXAMPLES OF RICH-TEXT DATASET

Figure [T0]show examples from the collected Text-Image dataset and arXiv dataset.

albedo), albedo refers to the entire 3
m). This spectrum includes visible
light (0.40.7 m), which explains
why surfaces with a low albedo
appear dark (e.g., trees absorb most
radiation), whereas surfaces with a
high albedo appear bright (e.g.,
snow reflects most radiation).
Icealbedo feedback is a positive
feedback climate process where a
change in the area of ice caps,
glaciers, and sea ice alters the albedo
and surface temperature of a planet.

Tation based on (he connection between them. This
leads to the fallowmg way of defining the context:

T3 ([fae) o
(12)
= wa g(xi).
In fact, such an ldea of deﬁnmg the context as
a weighted bi n of ing words is

not new — it recurs in !he literature of language
modeling (Bengio et al., 2003; Mnih and Teh,
2012), word embedding learning (Mikolov et al.,
2013a,b), and graph representation learning (Cao
etal., 2016).

Interestingly, the hidden states in the RNNG, as
shown in Equation 9, also suggest exactly the same
way of defining this left context. Indeed, when
using RNNG for language modeling, each hidden

state is exaclly servil he context representation
P g tha =,

Ice is very reflective, therefore it

Text

Figure 10: Data examples in of the collected Text-Image and arXiv-Image image datasets.

G GENERATION RESULTS OF DND-TRANSFORMERS

DnD-Tra nsforer-XXL (d=2)

lamaGen-XXL (d=1)

Figure 11: Conditional generation comparisons between LlamaGen-XXL and DnD-Transformer-
XXL on class “golden retriever” from ImageNet. We random sampled 16 images with cfg=4. DnD-
Transformer generates images with higher quality than the 1D AR model.

H EXPERIMENTS WITH DIT

We conduct additional experiments on DiT-XL model (the largest model supported by (Peebles &
Xie| [2023)) to conduct unconditional rich-text image generation. We use the VAE from SD3 (Esser
et al., 2024), which has better text reconstruction ability than the RQ-Tokenizers used by DnD-
Transformer. We use the same training setting as (Peebles & Xie), [2023)). The results are shown in

Figure 21| and Figure 22}
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LlamaGen-XXL (d=1) DnD-Transformer-XXL (d=2)

Figure 12: Conditional generation comparisons between LlamaGen-XXL and DnD-Transformer-
XXL on class “volcano” from ImageNet. We random sampled 16 images with cfg=4. DnD-
Transformer generates images with higher quality than the 1D AR model.

LlamaGen-XXL (d=1) DnD-Transformer-XXL (d=2)

Figure 13: Conditional generation comparisons between LlamaGen-XXL and DnD-Transformer-
XXL on class “husky” from ImageNet. We random sampled 16 images with cfg=4. DnD-
Transformer generates images with higher quality than the 1D AR model especially for the more
complex eyes of husky.

I TRAINING/INFERENCE BUDGETS

We compare the training/inference budgets of DnD-Transformer and different baseline models as
shown in Table[5} DnD-Transformer almost does not introduce an increase in the number of param-
eters and inference/training budgets compared to the baseline LlamaGen architectures.
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Figure 14: Comparison of Unconditional Rich-Text Image Generation on the more complex arXiv-
Image dataset. All models are trained on the same dataset. The generated images are all in 256x256
resolution. Diffusion-Family models are hard to generate valid words, while DnD-Transformer
demonstrates an ability to generate semantically appropriate phrases, as evidenced by the correct
clause it should be” observed in the second example.

Imagenet(256x256) | Total Training FLOPs | Num-Parameters | gFID | Inference-Time(second/image) | Training-Time (minutes/epoch)
DnD-Transformer(depth-2) 1.02x (2.57e17) 1.44B 2.58 4.23s 23min
DnD-Transformer(depth-3) 1.04x (2.62¢17) 145B 2.53 4.48s 25min
LlamaGen(depth-1) 1x (2.52e17) 1.43B 4.12 4.05s 22min

DiT XL \ m - 675M 227 15.45s (100 steps) -

SD3 (Esser et a 024 - 3B - 10.78s (28 steps) -

Table 5: The training and inference budget of different models.

J COMPARISON OF DIT AND DND-TRANSFORMER WITH TOKENIZERS BOTH
TRAINED ON PIL-TEXT.

We compare the performance of DiT and DnD-Transformer by training their tokenizers on the PIL-
Text dataset for the same number of epochs and subsequently evaluating their generation capabil-
ities. For the VAE tokenizer in DiT, we employ a VAE architecture identical to SD3
2024)), configured with a scaling factor of 8 and 16 channels. The training objective combines MSE
loss with KL divergence loss. Our trained VAE achieves an impressive rOCR score of 0.88 on the
Text512 dataset, surpassing both our best RQVAE and the VAE from the SD3 checkpoint. Follow-
ing this, we conduct unconditional generation experiments with DiT, with the results presented in
Figure[23] Despite utilizing a VAE trained on exclusively rich-text images, the LDM struggles with
this task, significantly underperforming compared to our DnD-Transformer.
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Figure 15: Unconditional Generation examples of DDPM on Image-Text.
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Figure 17: Unconditional Generation examples of DnD-Transformer

ture=0.5.
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Figure 18: Unconditional Generation examples of DnD-Transformer on Image-Text with tempera-
ture=1.0.
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Figure 19: Unconditional Generation examples of DnD-Transformer on arXiv data with tempera-
ture=1.
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courthouse on the campus of the
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demolished in 1975 to make way for
the construction of new buildings.
See also National Register of
Historic Places listings in Pittsburgh
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Pennsylvania Court houses in_
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Hallucination

Figure 20: Some cases of the generated text images. We witness similar error pattern to LLMs such
as repetition and hallucination in our trained model during sampling.
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Figure 21: The results of DiT-XL on rich-text (PIL-Text) generation tasks.
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Figure 22: The results of DiT-XL on rich-text (arXiv-image) generation tasks.
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the player must find a particular
team may five direct teams.
However, the entirely buricd
procedure is that a''ine' was used is
not that any game may begin
playing in the comic plains - the
other is usually a part-time
procedure. The game also hands
only however bus homes will use
the same procedure to gain access to
the machine. In a game, teams
playing only two most positioned
machines (except for a drive-out
many attackers), in one reason an

the production of the company
somewhat referred to using
machines as a explailant, an
exotic-beauty package. In this case
the restaurant extends on a welding
of the architecture of camera, low
volume (exciting cameras), and
several various adventures organize
to the fountain on an emplace
participated in the portrayal of
cartoonists. The parade seems far
from the rear keys intended to see
the company’s depth and wavepower
as a means of competent many

Robert Henry Barrett (born 1955) is
an American modernist, theorist,
prominent Anishikan and superbagi.
Barrett is the author of many books
and many artistic, careers and vision
in the longterment area, scienties
and the arts. Barrett's first book
appeared in modern women and
modern politics in June 1992, and
was advertising the careers of
women, and nuancinso and
married-couples. He was a leading
senator, spending two and seven
services at an early later intoxiled

the original characters were not
were observed the images and
images were removed in
NovemberOctober 14. Casting
through Sandra Manning may
contain variation, less vagueness or.
However, the title of the series is
featured as a rework where the
characters are set in. The series, the
most prestigiously trying to show
the characters in the series, is
contended to compose more of
their final Movies covers and

Tommy in Majorca (Various
Prod were admitted to ban

company was sold to Paris Brothers
the same production. As a result,
Gama revenues drop-owning sales
and products had players given the
same amount of amount any
amount, in related version in an
extended period of time, hardly
restored in the northern routes in a
single year. The extensive
-equivoxious modernization is and
the prespure of anart couples is
more common in the special areas
of the stock market and the higher
prices of the total numbers of food

Figure 23: We compare DiT and DnD-Transformer when their tokenizers are both trained on PIL-
Text dataset and evaluate the generation performance. According to the generation results, even
with a VAE trained on pure rich-text images, the LDM (DiT) still could not conduct this task well,
lagging far behind our DnD-Transformer.
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