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Abstract

Solving math word problems depends on how001
to articulate the problems, the lens through002
which models view human linguistic expres-003
sions. Real-world settings count on such a004
method even more due to their lexical sophis-005
tication on the same mathematical operations.006
Earlier works constrain available thinking pro-007
cesses by repeatedly training the patterns or008
relations between quantities without consider-009
ing their validity in the context of the problems.010
We tackle the above challenges and propose011
Attention-based THought Expansion Network012
Architecture (ATHENA) to learn mathemat-013
ics so that it can be practical enough in real-014
world settings. We introduce thought expan-015
sion that maximizes feasible reasoning path-016
ways by mimicking human thinking mecha-017
nisms. Thought expansion generates candidate018
thoughts carrying consistent representation for019
each mathematical expression and yields rea-020
sonable thoughts, filtered by solidly updated021
reasoning vectors. Our experiments show that022
ATHENA achieves a new state-of-the-art stage023
toward the ideal method that is compelling in024
variant questions even when the informative-025
ness in training examples is restricted. 1026

1 Introduction027

Math word problem (MWP) solving is one of the028

fundamental reasoning tasks of answering a mathe-029

matical question by understanding a complex, intri-030

cate system of human lexical expressions. Models’031

ability to solve a problem depends on a method032

that articulates the problem, the lens through which033

they view human lexical expressions. Ideal MWP034

methods produce decent outputs in real-world sit-035

uations that require more lexically sophisticated036

on the same mathematical expressions than artifi-037

cially generated problem sets. For example, “×”038

can count all elements equally divided in multiple039

1The code will be provided via GitHub once the work is
published.

Context The school playground was originally [80] meters long 
and [40] meters wide. Later when the school is remodeled, the 
length is increased by [10] meters and the width is increased by 
[15] meters.

Thoughts from context
[80] original length 

[40]

[10]

[15]original width

increased length

increased width

[80+10] total increased length

[80×40] original area

[40+15] total increased width

[(80+10)×(40+15)] total increased area

[(80+10)×(40+15)-(80×40)] increased area from original

Answer
Question How many square meters are increased by the current 
playground area compared to the original one?

Figure 1: Visualization of thoughts constructed for solv-
ing a problem sample from the UnbiasedMWP dataset,
one of our benchmarks.

boxes but calculate area from length and width or 040

measure tax fee from the tax rate. 041

It is significant how we can estimate if the model 042

has learned mathematical reasoning to qualify for 043

the ideal MWP methods. We state that the ideal 044

methods that learn mathematics must be able to 045

solve previously unseen problems if they are ap- 046

plications of mathematical operations that models 047

have already seen or soundly solve problems even 048

when given examples to learn are restricted. 049

Prior approaches mostly concentrate on enhanc- 050

ing translation by giving problem-level knowledge 051

or quantity relations, not extracting the real-world 052

concepts of individual operations. We observe the 053

following limitations of the approaches. First, they 054

typically stick with one option involving a particu- 055

lar order when generating the structure, leading to 056

constraining other available thinking processes. For 057

example, prior works do not take into account the 058

counter-intuitive approach once they determine to 059

generate a certain mathematical operation as their 060
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Context The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the
length is increased by [10] meters and the width is increased by [15] meters.

Train on an example of a question-solution pair under the context above.

Question How many square meters is the original playground
area?

Solution (80× 40)

Test on variant questions that share the context above.

Q0 How many times the length of the original playground was the width?
DeductReasoner ATHENA
UnbiasedMWP (80 + 10) × (40 + 15) − (80 × 40) (X) UnbiasedMWP (80 + 10) × (40 − 15) (X)
UnbiasedMWP (1:N) 80 ÷ 40 (O) UnbiasedMWP (1:N) 80 ÷ 40 (O)

Q1 How many square meters is the current playground area?
DeductReasoner ATHENA
UnbiasedMWP (80 + 10) × (40 + 15) − (80 × 40) (X) UnbiasedMWP (80 + 10) × (40 + 15) (O)
UnbiasedMWP (1:N) 80 × 40 (X) UnbiasedMWP (1:N) (80 + 10) × (40 + 15) (O)

Q2 How many square meters are increased by the current playground area compared to the original one?
DeductReasoner ATHENA
UnbiasedMWP (80 + 10) × (40 + 15) − (80 × 40) (O) UnbiasedMWP (80 + 10) × (40 + 15) − (80 × 40) (O)
UnbiasedMWP (1:N) 80 × 40 (X) UnbiasedMWP (1:N) (80 + 10) × (40 + 15) − (80 × 40) (O)

An example with a lexically similar context to that of above from the UnbiasedMWP

Context The school basketball court was [20] meters long and [12] meters wide. After the renovation, the length is increased by
[8] meters, and the width increases by [3] meters.
Question How many square meters are increased? Solution (20 + 8)× (12 + 3)− (20× 12)

Table 1: Predictions of DeductReasoner (Jie et al., 2022) and ATHENA on a sample that has variant questions
while sharing the common context for the problems. The observation above is when models use RoBERTa-large on
UnbiasedMWPs.

first step, which limits the reasoning capability in061

the end. Second, they repeatedly train the patterns062

or relations among the quantities that appear in the063

given problem text without confirming their valid-064

ity with the context of the problem. As a result,065

although they achieve high performance on some066

benchmarks, their performances show poor perfor-067

mance on simple elementary-level problems that068

do not share lexical patterns (Patel et al., 2021).069

We tackle the above challenges and propose070

ATHENA to learn mathematics so that it can be071

practical enough in real-world settings. Inspired072

by Johnson-Laird (2008), we focus on thoughts073

before considering goals to mimic human thinking074

processes of reasoning. We develop ATHENA us-075

ing the thoughts within a thought expansion mech-076

anism that is maximizing the feasible reasoning077

paths. From the novel approach, we generate can-078

didate thoughts that are consistent for each quan-079

tity within the thought expansion, and reasonable080

thoughts that are filtered by solidly updated reason-081

ing vectors and robust regardless of training bias to082

reach our goal.083

Our experiments show that our approach is084

strong at predicting mathematical expressions re-085

quiring their complicated combinations as shown086

in Table 1. We observe that ATHENA produces a087

solid performance when the model needs to deal088

with previously unseen questions. ATHENA is also 089

very compelling to solve variant questions once 090

it has learned one question established from the 091

shared context. From the experimental results, we 092

conclude that ATHENA reaches another new state- 093

of-the-art stage toward the ideal MWP method that 094

we define as the one that can learn mathematical 095

reasoning. 096

2 Math Word Problem 097

Math word problem (MWP) solving is a task of an- 098

swering a mathematical question by understanding 099

natural language descriptions. 100

2.1 Problem Formulation 101

Our task of solving math word problems is defined 102

as follows. Each example in the MWP dataset D 103

has a problem sequence S in natural language as 104

input and an equation E as expected output. D 105

consists of K (problem, question, equation) triples 106

where K is the number of examples: 107

D = {(S(i), E(i))}i=1,...,K . 108

We use a pre-trained language model (PLM) to em- 109

bed S. Let P = (t1, t2, . . . , tn) denote a tokenized 110

sequence of S where ti represents each subword 111

token. PLM output of sequence P is denoted as 112

X = (x1, x2, . . . , xn), where xi represents an em- 113

bedding vector of each token ti. 114
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2.2 Related Work115

MWP problems have begun with feature engi-116

neering via hand-crafted rules or statistical con-117

cepts (Bakman, 2007; Hosseini et al., 2014; Mitra118

and Baral, 2016). Early works have adopted neu-119

ral network approaches through end-to-end learn-120

ing strategies such as sequence-to-sequence or121

sequence-to-tree. They use sequence networks or122

manipulate the representation with tree or graph123

templates to generate mathematical equations in124

a structurally sophisticated manner (Wang et al.,125

2017; Zhang et al., 2020). Having developed126

and become accessible to pre-training and transfer127

learning, many works have promoted their perfor-128

mance with pre-trained language models (Liang129

et al., 2022; Shen et al., 2021; Yu et al., 2021;130

Huang et al., 2021). Most of them aim to en-131

hance the encoder with pre-trained embeddings.132

Recent work has made a key contribution by utiliz-133

ing additional knowledge such as semantic mean-134

ing. Some take advantage of structural information135

such as hierarchical dependency, formula structure,136

graph-edge connection information, order relation-137

ships among quantities, and more (Lin et al., 2021;138

Wu et al., 2021; Huang et al., 2020; Zhang et al.,139

2020). The reasoning extraction method has re-140

cently reached decent performance by consider-141

ing the operation orders and omitting unnecessary142

steps of creating already generated mathematical143

sub-expressions (Jie et al., 2022).144

3 ATHENA145

Attention-based THought Expansion Network146

Architecture (ATHENA) is an architecture that ex-147

pands its thoughts to solve the math word problem.148

Figure 2 illustrates the overall process of ATHENA.149

ATHENA extracts initial thoughts from PLM and150

expands them with reasoning to reach the final151

thought. We first clarify what is a thought as a152

foundational ingredient of our model, and explain153

the reasoning and goal vectors that measure the154

thoughts.155

Thought. A thought is an embedding of a possi-156

ble math expression derived from quantities in a157

problem representing the contextual meaning of the158

expression. Let θ denote a thought with hidden size159

H corresponding to an expression E(θ). A goal of160

the model is to find a thought θ∗ that satisfies the161

ground-truth expression E∗:162

E(θ∗) ≡ E∗.163

Reasoning Vector. A reasoning vector represents 164

premises to evaluate and filter candidate thoughts 165

in each depth. Let Rd denote a reasoning vector for 166

depth d. We set an initial reasoning vector R0 with 167

the [CLS] token from the problem descriptions. 168

Goal Vector. A goal vector plays a role as ground- 169

truth measurement to evaluate if a thought is an 170

appropriate answer to the question. We set a goal 171

vector G with a tokenized embedding of the punc- 172

tuation mark in the question description. 173

3.1 Initial Thought 174

An initial thought is an embedding that carries 175

each quantity representation illustrated in a con- 176

text or question description. We mask quantities 177

with [MASK] token and obtain the embeddings 178

that capture contextual information from the per- 179

spective of corresponding quantities. We denote a 180

set of thoughts in the initial depth by Θ0: 181

Θ0 = {xi | xi ∈ X, ti ∈ P, ti = [MASK]}. 182

Certain quantity representations such as π are 183

necessary for generating mathematical expressions 184

despite not being presented in the contexts or ques- 185

tions. We collect them from a training set and 186

randomly initialize their embeddings. We also put 187

their embeddings to initial thoughts Θ0. 188

3.2 Thought Expansion 189

In each depth, thought expansion constructs can- 190

didate thoughts Θd and filters them to obtain the 191

reasonable thoughts Θ∗
d. Reasonable thoughts are 192

the waypoint thoughts to reach the final thought. 193

The two stages in a thought expansion are: (1) 194

our model generates candidate thoughts Θd from 195

previous thoughts Θ∗
d−1 through the operations and 196

(2) it reasons about the candidates if they are worth 197

to be reasonable thoughts Θ∗
d. Expansion keeps 198

going until finding one of the reasonable thoughts 199

qualified to be a final thought θ∗. 200

3.2.1 Candidate Thought 201

Our model generates a set of possible new thoughts 202

Θd from the previous thoughts Θ∗
d−1 as the candi- 203

dates. A new thought θ′ is a thought of a math ex- 204

pression that two previous thoughts θi, θj ∈ Θ∗
d−1 205

combine with an arithmetic operation: 206

E(θ′) = E(θi) ◦ E(θj) where ◦ ∈ {+,−,×,÷}. 207

To make a new thought, we introduce two oper- 208

ation layers whose combination can represent the 209
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Context   The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the length is 
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Question   How many square meters are increased by the current playground area compared to the original one?
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Figure 2: Overall process of ATHENA. First, extract initial thoughts, an inital reasoning vector, and a goal vector
from PLM. Second, expand thoughts by transform (d = 1, 3, 5, . . . ) or merge (d = 2, 4, 6, . . . ) and generate
candidate thoughts. Third, reason on candidate thoughts and obtain new reasonable thoughts. Last, give the
reasonable thoughts to the next expansion. Repeat until meeting a thought that answers the goal vector.

arithmetic operations: merge M and transform T.210

These layers aim to maximize the reflection of the211

characteristics of arithmetic operations rather than212

the separate layers of individual arithmetic opera-213

tions. The definitions of merge and transform are214

shown below.215

Merge. Merge layer M merges a pair of thoughts216

(θi, θj) into a new thought θ′ such that E(θ′) applies217

addition and multiplication to E(θi) and E(θj):218219
op

M : θi, θj 7→ θ′220

s.t. E(θ′) = op(E(θi), E(θj)) where op ∈ {+,×}.221

Transform. Transform layer T transforms a222

thought θ into a new thought θ′ such that E(θ′)223

applies inverse operations of addition and multipli-224

cation to E(θ):225226
op

T : θ 7→ θ′227

s.t. E(θ′) = op(E(θ)) where op ∈ {−·, ·−1}.228

We use FeedForward Network (FFN) and multi-229

head attention inspired by Vaswani et al. (2017)230

for the implementation of the operation layers. We231

use FFN referred to as FF for transform layer T.232

Using multi-head self-attention Aself and layer nor-233

malization ℓ, we implement merge layer M(θi, θj)234

followed by:235

M(θi, θj) = FF(θi+θj+ℓ(1⊤2 A
self

([θi; θj ]))W+b)236

where W ∈ RH×H , b ∈ RH .237

This implementation satisfies Mop to be commu- 238

tative for op ∈ {+,×}: 239

240
op

M(θi, θj) =
op

M(θj , θi) and 241

E(
op

M(θi, θj)) = E(
op

M(θj , θi)). 242

We apply transform layer T for depth d = 2n− 1 243

and merge layer M for depth d = 2n to generate the 244

candidates. In the case of the beginning depth d = 245

0, we use the initial thoughts Θ0 as the candidates. 246

3.2.2 Reasonable Thought 247

Our model iteratively yields reasonable thoughts 248

Θ∗
d that constitute the final thought θ∗. It reasons to 249

select reasonable thoughts from the candidates Θd. 250

Reason. Our model reasons on the candidate 251

thoughts Θd to evaluate if they are reasonable by 252

calculating the correlation between the reasoning 253

vector Rd and each thought θ ∈ Θd using multi- 254

head attention A(Q,K = V ) and feed-forward 255

network FF with sigmoid σ: 256

257

reason(Rd, θ) = σ(A(FF(θ),Rd)Wr + br) 258

where Wr ∈ RH×1, br ∈ R. 259

A thought θ is reasonable if reason(Rd, θ) exceeds 260

a fixed threshold tr. The reasonable thoughts Θ∗
d 261

become the input of the next iteration and keep 262

proceeding with the thought expansion. 263
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Algorithm 1 Thought Expansion Process of ATHENA

Input: Θ0,R0,G
Output: E∗

d← 0
Θ∗

0 ← {θ | θ ∈ Θ0, reason(R0, θ) ≥ tr}
while d ≤ D or ∃θ ∈ Θ∗

d(answer(G, θ) > tf ) do
Rd+1 ← Rd ∥A(FF([Θ∗

d]),Rd)
d← d+ 1
if d = 1, 3, 5 . . . then

Θd ←
⋃

op∈{−·,·−1}{T
op(θ) | θ ∈ Θ∗

d−1}
else if d = 2, 4, 6 . . . then

Θd ←
⋃

op∈{+,×}{M
op(θi, θj) | θi, θj ∈ Θ∗

d−1}
end if
Θ∗

d ← Θ∗
d−1 ∪ {θ | θ ∈ Θd, reason(Rd, θ) ≥ tr}

end while
θ∗ ← argmaxθ∈Θ∗

d
answer(G, θ)

return E(θ∗)

Update. Our model updates the reasoning vec-264

tor that was initially created or was given by the265

previous iteration, with the reasonable thoughts266

Θ∗
d obtained in the current depth d. We gain the267

updated reasoning vector for the next depth Rd+1,268

by concatenating all reasonable thoughts Θ∗
d after269

multi-head attention layer A applied in reason:270

Rd+1 = Rd ∥A(FF([Θ∗
d]),Rd).271

3.3 Final Thought272

A final thought θ∗ is the answer to the question.273

When the thought expansion process finishes, our274

model decides the final thought by selecting a275

thought with the maximum score. We have two cri-276

teria to terminate the iteration; (1) when the depth277

reaches the maximum expansion depth D; (2) if278

there is a thought with the score that exceeds a con-279

fidence threshold tf on iteration. We calculate the280

score of each reasonable thought θ ∈ Θ∗
d using the281

multi-head attention A and feed-forward network282

FF with the goal vector G, activated by sigmoid σ:283

284

answer(G, θ) = σ(A(FF(θ),G)Wa + ba)285

where Wa ∈ RH×1, ba ∈ R.286

A thought with the maximum score in the rea-287

sonable thoughts becomes a final thought θ∗:288

θ∗ = argmax
θ∈Θ∗

d

(answer(G, θ)) .289

Our model bestows the final thought the fidelity to290

shape the answer to the target question. In sum-291

mary, we show the overall process to reach the final292

thought θ∗ in Algorithm 1.293

4 Experiments 294

We conduct experiments across a comprehensive 295

range of math word problem (MWP) solving tasks 296

to show that ATHENA outperforms strong base- 297

lines in both full datasets and variant versions of 298

the original datasets while being more interpretable 299

in terms of intermediate steps toward the answers. 300

4.1 Experimental Setups 301

Baselines. We select four representative ap- 302

proaches as the baselines to compare with 303

ATHENA: Transformer (Vaswani et al., 2017)2, a 304

goal-driven tree-structured model (GTS) (Xie and 305

Sun, 2019), Graph-to-Tree (Zhang et al., 2020)3 306

and DeductReasoner (Jie et al., 2022).4 Trans- 307

former is a sequence-to-sequence approach that 308

uses multi-head attention mechanism while GTS is 309

a strong baseline of sequence-to-tree model. Graph- 310

to-Tree is another approach that adds a graph en- 311

coder on top of GTS. We adopt DeductReasoner 312

as an additional baseline that introduces a complex 313

relation extraction method for deductive steps and 314

hence achieves the state-of-the-art performance. 315

Implementation Details. We use RoBERTa-base 316

and RoBERTa-large as our base pre-trained em- 317

beddings (Liu et al., 2019) and Chinese-RoBERTa 318

(Cui et al., 2019) for Chinese benchmarks to com- 319

pare our baselines. We use pre-layer normalization 320

(Xiong et al., 2020) for our multi-head attention 321

method to fully leverage a dynamic range of em- 322

beddings. We set tr = 0.5, tf = 0.95 and train 323

our model by giving ideal accepted prior thoughts 324

Θ∗
d−1 and labels of reason and answer in each 325

depth to calculate the loss with binary cross entropy 326

over all labels.5 Our experiments are performed 327

with Nvidia RTX 3090 GPU. 328

Dataset. We test the benefits of ATHENA on 329

standard MWP benchmarks that are known as 330

classic and relatively new benchmarks that con- 331

tain various linguistic expressions in contexts or 332

2We follow hyperparameters by Lan et al. (2022) for both
vanilla transformer and RoBERTa-based transformer.

3We follow the best hyperparameter settings in Patel et al.
(2021) for both vanilla models and RoBERTa-based models.

4We use their hyperparameter setups. We use the MAWPS
setup for testing ASDiv-A, and use the Math23k setup for
UnbiasedMWP. Since the authors do not provide setups for
RoBERTa-large, we optimize the model and report the best
score with half batch size and half learning rate from those
used in the RoBERTa-base setup.

5We explain detailed training settings and hyperparameters
in Appendix A
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MAWPS ASDiv-A Math23k SVAMP UnbiasedMWP SVAMP (1:N) UnbiasedMWP (1:N)
Language English English Chinese English Chinese English Chinese

Random embedding

Transformer 85.6 59.3 61.5 20.7 20.5±0.73 9.7±0.19 (14.9) 16.9±0.31 (51.5)
GTS 82.6 71.4 75.6 30.8 26.2±0.20 12.2±0.37 (43.8) 22.8±0.22 (65.0)
Graph-to-Tree 83.7 77.4 77.4 36.5 27.2±0.37 25.3±0.12 (52.5) 24.3±0.25 (66.4)
RoBERTa-base

R-Transformer 88.4 72.1 76.9 30.3 18.3±0.15 13.5±0.33 (33.4) 14.9±0.20 (53.1)
R-GTS 88.5 81.2 - 41.0 - 40.9±0.50 (64.4) -
R-Graph-to-Tree 88.7 82.2 - 43.8 - 31.8±0.36 (66.7) -
DeductReasoner 92.0±0.20 83.1±0.24 85.1±0.24 45.0±0.10 31.6±0.51 42.5±0.41 (69.1) 26.5±0.55 (79.5)
ATHENA(Ours) 92.2±0.10 86.4±0.11 84.4±0.24 45.6±0.50 36.2±0.67 52.5±0.50 (70.1) 35.4±0.45 (80.5)
RoBERTa-large

DeductReasoner 92.6±0.16 89.1±0.46 85.8±0.42 50.3±0.30 34.9±0.11 51.6±0.38 (75.4) 33.7±0.60 (83.2)
ATHENA(Ours) 93.0±0.20 91.0±0.13 86.5±0.25 54.8±0.63 42.0±0.57 67.8±0.58 (79.8) 48.4±0.38 (84.8)

Table 2: Comparison of MWP methods. We use MAWPS, ASDiv-A, and Math23k for standard evaluation,
SVAMP and UnbiasedMWP to evaluate the ability to solve entirely unseen, various expressions, and SVAMP and
UnbiasedMWP with the one-to-many test to estimate the adaptability of confusing linguistic subtlety.

questions for mathematical reasoning. The stan-333

dard benchmarks are MAWPS (Koncel-Kedziorski334

et al., 2016), ASDiv-A (Miao et al., 2020), and335

Math23k (Wang et al., 2017). MAWPS is an En-336

glish corpus collected from the online math word337

problem repository, and Math23k is a Chinese cor-338

pus crawled from online posts. ASDiv-A is an339

acronym of An arithmetic subset of Academia340

Sinica Diverse dataset (ASDiv-A), consisting of341

diverse English lexical patterns.342

The relatively new benchmarks either alter the343

standard benchmarks or vary the grounded ex-344

pressions from the collected data to evaluate the345

model performance without bias from learned346

data. SVAMP (Patel et al., 2021) varies in347

the components of one of the standard bench-348

marks, ASDiv-A to evaluate various contextual349

expressions on elementary-level arithmetic prob-350

lems.UnbiasedMWP (Yang et al., 2022) is an351

online-crawled Chinese corpus that augments the352

questions from the same context to evaluate models353

if they are able to generate adequate correspond-354

ing mathematical expressions. We split MAWPS,355

ASDiv-A, Math23k, SVAMP, following Jie et al.356

(2022) and Patel et al. (2021), respectively.357

One-to-Many Test. We conduct one-to-many358

variants tests to measure model generalization to359

many variant questions from one example within360

the common context. We select two datasets361

SVAMP and UnbiasedMWP to apply for this test.362

Each example in the dataset has a problem se-363

quence that is composed of context and question364

descriptions. Within the groups by context, we365

split the examples one-to-many. One example per366

group goes to a training set while the multiple ex- 367

amples move to a test set. We use examples that 368

do not have other variants within the context group 369

as a validation set. We name the resorted SVAMP 370

and UnbiasedMWP using the one-to-many setup 371

as SVAMP(N:1) and UnbiasedMWP(N:1). 372

4.2 Results 373

We repeat our experiments 5 times with different 374

random seeds and report the average answer accu- 375

racy with the standard error. We report results on 376

multiple benchmarks, variants splitting tests, the 377

impact of pre-trained language models depending 378

on their size, and ablation tests. 379

Overall Performance. Table 2 shows the per- 380

formance of different methods on 7 benchmarks. 381

As seen from the table, ATHENA establishes 382

new state-of-the-art results for overall benchmarks. 383

ATHENA outperforms prior MWP methods on all 384

occasions with one exception of its performance 385

on Math23k when trained on the RoBERTa-base 386

model. When compared to the most competitive 387

work DeductReasoner, ATHENA obtains a relative 388

improvement of 3.84%p on total benchmarks. 389

Performance on One-to-Many Test. We note 390

that ATHENA achieves huge performance gains 391

compared to the second-best method, from 42.5% 392

to 52.4% and from 26.5% to 35.0% on SVAMP 393

(1:N) and UnbiasedMWP (1:N), respectively. As 394

illustrated in section 4.1, we evaluate our model on 395

SVAMP (1:N) by training with one example per 396

problem set to test how well ATHENA reasons on 397

the questions that use the same textual descriptions 398
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0% 10% 20% 30% 40% 50%

ATHENA

DeductReasoner

R-Transformer

Graph-to-Tree

GTS

Transformer
+1.3

+0.8

+1.9

+1.4

+2.0

+6.9

15.6

21.6

22.4

13.5

24.5

28.5

-0.8

-3.0

-2.0

+7.0

+17.5

+24.8

10.5

15.2

18.3

15.5

25.0

27.7

SVAMP (1:N) w/o adding

SVAMP (1:N)

UnbiasedMWP (1:N) w/o adding

UnbiasedMWP (1:N)

Figure 3: Accuracy changes when adding one example
per context into the training set by applying the one-to-
many test.

but ask for different target answers. We observe399

from Tabel 3 that the results show ATHENA is400

strong at applying mathematical reasoning that is401

formed by unlearned patterns once the model has402

learned the context. Our approach is distinguished403

from other baselines including RoBERTa-GTS and404

DeductReasoner which show the opposite phenom-405

ena. Other baselines are relatively stronger on orig-406

inal benchmarks than on the benchmark variants407

including those with the one-to-many Test. Hence408

we reach the conclusion that ATHENA has the supe-409

riority of acknowledging the subtlety of contextual410

information governed by the required mathematical411

operations.412

Dependence on Training Set. We observe that413

ATHENA performs well on datasets that apply414

the one-to-many test because our model has a415

sense of subtlety in terms of distinct question con-416

cepts, not because our model is reluctant to follow417

learned expressions. Figure 4 illustrates where the418

wrong prediction for the question variant experi-419

ments comes from. If a model outputs equations420

that are labeled for questions with shared contexts421

when being trained, this indicates that the model422

relies on training data points, especially on con-423

text contents regardless of different question ex-424

pressions. The result shows that our model also425

has the least accuracy for a golden training exam-426

ple. It is notable that ATHENA has the least score427

for following the trained expressions while Deduc-428

tiveReasoner predicts the highest scores among429

other baselines that use RobBERTa, even higher430

than those of R-GTS or R-Graph-to-Tree on Unbi-431

asedSVAMP(1:N). This shows that while Deudc-432

tiveReasoner can learn to solve mathematical prob-433

lems, it also easily falls into learning shortcuts.434

0% 20% 40% 60% 80% 100%

ATHENA

DeductReasoner

R-GTS

R-Graph-to-Tree

R-Transformer

Graph-to-Tree

GTS 58.9

40.2

48.4

32.8

34.4

38.8

25.3

n/a

n/a

31.6

29.9

36.9

39.3

22

All Incorrects of SVAMP(1:N)

Incorrect by trained expression of SVAMP(1:N)

All Incorrects of UnbiasedMWP(1:N)

Incorrects by trained expression of UnbiasedMWP(1:N)

Figure 4: The percentage the incorrect answers match
with the answers to different questions that share the
context from the training set. The less the percentage
scores, the less the method unnecessarily leans on the
training bias.

Different Sizes of PLMs. We estimate the base- 435

lines both on RoBERTa-base and RoBERTa-large 436

models to examine the influence of the model sizes. 437

As expected, Table 2 shows that the bigger the 438

model size is for the embedding, the better the 439

model performance reaches. When we estimate 440

the accuracy gaps by increasing the model size, 441

ATHENA achieves relatively better performance 442

gains (7.26%p) on average for the entire bench- 443

marks than DeductReasoner does (4.6%p). We can 444

observe that on dataset variants, ATHENA obtains 445

relatively more benefits from bigger model sizes 446

(14.15%) than DeductReasoner does (8.15%p), 447

while both are still taking great advantage of the 448

rich model parameters to understand the question 449

better and to solve those confusing questions. It 450

also shows that DeductReasoner fails to improve 451

performance on question variants from the origi- 452

nal datasets leveraging the additional training sets 453

in large-scale PLM. In short, our model leverages 454

large-scale PLM much more efficiently than the 455

competitive model. 456

Visualization of Thoughts. We interpret the 457

thoughts using attention scores between reason- 458

able thoughts and the problem sequence. 6 As 459

illustrated in Figure 5, we observe how the thought 460

relates to the words. Most of the initial thoughts are 461

related to the “playground”, while the thoughts car- 462

rying the meaning of increased size show a strong 463

6We use answer layer to calculate the attention score, giv-
ing the problem sequence embedding as an input, instead of
the goal vector.
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is[80] remodel

[40]

[10]

[15]

[80+10]

[40+15]

[80×40]

[(80+10)×(40+15)]

[(80+10)×(40+15)-(80×40)]

playground area square meter

playgroundLater school

Later width

Problem The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the length is 
increased by [10] meters and the width is increased by [15] meters. 
How many square meters are increased by the current playground area compared to the original one?

isplayground

widthschool

playground

square meterare

squarearea

playground area

school

meters

playground area

compared

squarecomparedmeters

meters
Attention scores of reasonable thoughts 

Initial thoughts from PLM

Thoughts generated from ATHENA

Figure 5: Visualization of reasonable thoughts from ATHENA with calculating attention score of the tokens in the
problem sequence on RoBERTa-large.

MAWPS ASDiv-A SVAMP Math23k UnbiasedMWP SVAMP (1:N) UnbiasedMWP (1:N) Average
Avg depth 3.87 3.46 3.47 5.18 4.44 3.47 4.44 4.05

ATHENA 92.2 86.4 45.6 85.1 36.2 52.5 35.4 62.0
− update 92.1 84.8 44.9 82.7 34.9 52.4 34.7 60.9
−(reason+update) 90.6 85.0 44.7 65.7 36.3 51.5 34.6 58.3

Table 3: Ablation studies on reasonable thought mechanism

correlation to the word “Later”. The thoughts car-464

rying width sizes [15] and [40+15] show high atten-465

tion scores on “width”, while the other thoughts do466

not have high attention scores on them. Thoughts467

that calculate the area produce high attention scores468

on words “square meter” or “area”. The final469

thought marks a high score on “compared”, which470

asks for the difference between the increased and471

original areas.472

Ablation on Reasonable Thought. We conduct473

an ablation study to evaluate how ATHENA com-474

poses the reasonable thought mechanism to ulti-475

mately generate optimal final thoughts. For evalu-476

ating the impact of component functions in gener-477

ating reasonable thoughts, we adopt two different478

settings:479

(1) we do not update reasoning vectors but use480

the initial reasoning vector (i.e., [CLS] token) in481

all expansion depths Rd = R0. We aim to see how482

the existence of thoughts that update the reasoning483

vector impacts models to help find solid reasonable484

thoughts. (2) we do not even start reasoning in the485

reasonable thought procedure and directly classify486

whether thoughts are usable for the next iteration:487

use(θ) = σ(θWr + br).488

Table 3 shows that ATHENA takes full advan-489

tage of the reasonable thought stage via reason-490

ing with the reasoning vector and their updating491

strategy. Despite slight fluctuations across differ-492

ent methods, ATHENA without reasoning func- 493

tion decreases the overall performances by up to 494

3.7%p compared to our proposed ATHENA. When 495

ATHENA does not update the reasoning vectors in 496

the thought expansion iteration while still adopting 497

the reasoning function, the performance decreases 498

relatively by 1.1%p. From those observations, we 499

conclude that the decent performance of ATHENA 500

comes from a grounded reasoning vector refined 501

by reasoning and updating strategies. 502

5 Conclusion 503

We state that an ideal MWP method needs to be 504

practical in real-world settings that are critical to 505

capture the lexical sophistication of the same math- 506

ematical operations. For this reason, we conclude 507

that ATHENA with thought expansion reaches 508

significant improvements toward the ideal WMP 509

method due to its decent performance on unseen 510

problems or restricted examples to learn. 511

Limitations 512

This work only considers arithmetic problems, not 513

algebraic, calculus, or other topics of mathemati- 514

cal problems. As many other works do, we only 515

consider math word problem datasets having single 516

equations and we do not verify with any dataset for 517

multiple equations. 518
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Appendices 680

A Training Details 681

In this section, we provide detailed information about our training settings. 682

Loss. Given an answer equation E , let 1reason(θ) denote the target of reason for a thought θ and 683

1answer(θ) denote the target of the final decision answer for a thought θ: 684

1reason(θ) = 1(E(θ) ⊂ E), 1answer(θ) = 1(E(θ) ≡ E), 685

where E(θ) ⊂ E denotes that E contains the sub-expression E(θ) (e.g., (a+ b) ⊂ (a+ b)× c). 686

Let BCE denote the binary cross entropy function, the training objective is to minimize the loss L: 687

L =

∑
θ∈

⋃
d Θd

BCE(reason(θ), 1reason) +
∑

θ∈Θ∗
d

BCE(answer(θ), 1answer)

|
⋃

dΘd|+Θ∗
d

. 688

Optimizer. We use AdamW optimizer (Loshchilov and Hutter, 2017) with weight decay ω = 1e − 5. 689

Learning rate lre for each epoch e is decayed every Slr epoch with factor γ starting from lr: 690

lre = lr · γ[e/Slr]. 691

Regularization. We adopt dropout with probability p to every layer and stochastic weight averaging 692

(Izmailov et al., 2018) for last epochswa epochs. 693

Hyperparameters. We present our experiments for hyperparameters in Table 4, with the bold text 694

denoting the best performance. We train our model for 100 epochs. In the result, we observe that 695

RoBERTa-base and RoBERTa-large share the best hyperparameter settings except for the learning rate lr. 696

Batch Size lr Slr γ p epochswa

RoBERTa-base [4, 8] [5e-6, 7e-6, 1e-5, 1.3e-5, 1.5e-5, 2e-5] [10, 15, 20] [0.5, 0.7] [0.1, 0.5] [30, 50, 70]
RoBERTa-large [4, 8] [5e-6, 7e-6, 1e-5, 1.3e-5, 1.5e-5, 2e-5] [10, 15, 20] [0.5, 0.7] [0.1, 0.5] [30, 50, 70]

Table 4: Hyperparameter search spaces of ATHENA

B Statistics of One-to-Many Split 697

In Section 4.1, we explain building one-to-many dataset splits. We provide how many groups and examples 698

are made from the contexts in Table 5. 699

SVAMP (1:N) UnbiasedMWP (1:N)

# examples in original split 3138 / 0 / 1000 2507 / 200 / 685
# groups of single examples 438 45
# groups of multiple examples 205 154
# examples in one-to-many split 3343 (+205) / 438 (+438) / 357 (-562) 2661 (+154) / 245 (+45) / 486 (-199)

Table 5: Statistics of one-to-many test splits

C Statistics of Thoughts 700

In this section, we show various statistics of thoughts and reasoning that each dataset requires. While 701

Math23k requires a large number of candidate thoughts in total depth, we show a thought expansion in 702

each depth does not require huge memory space. Therefore, efficient implementation strategies such 703

as removing unselected candidate thoughts from memory space are enough to manage computational 704

resources. 705
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Dataset # candidates in total depth # in a reasoning path # candidates in last depth depth of reasoning path

min average max min average max min average max min average max
MAWPS 17 45.40±0.46 192 2 4.52±0.03 12 4 9.49±0.08 48 2 3.87±0.03 11
ASDiv-A 16 26.86±0.42 71 3 4.10±0.03 7 6 9.65±0.09 22 1 3.46±0.02 5
SVAMP 2 28.09±0.44 70 1 4.23±0.03 7 2 10.54±0.10 22 1 3.47±0.03 5
Math23k 4 65.1±0.31 939 1 6.33±0.02 29 2 14.85±0.06 108 1 5.18±0.01 41
U.MWP 5 47.0±0.47 214 1 5.18±0.03 13 2 11.67±0.11 48 1 4.44±0.02 11

Table 6: Statistics of thoughts that are required for each dataset

D Effect of Punctuation Mark706

In Section 3, we initialize goal vector G with the punctuation mark of the question sequence or the707

last punctuation mark (i.e., the question mark in most cases). The motivation of this strategy is from708

Clark et al. (2019) showing the punctuation mark gets high attention from other tokens in the last layers.709

Intuitively, high attention can generalize the question sequence, so we conduct experiments to evaluate the710

generalization ability of the punctuation mark compared to using all question sequences as a goal vector711

G. We conduct experiments for all datasets except Math23k (Wang et al., 2017) since it does not provide712

the explicit question sequence annotation.713

As shown in Table 7, using the punctuation mark effectively generalize the question to represent a714

goal in most cases. It shows even better performances than using the question sequence. Intuitively the715

question sequence holds some tokens that are not informative for reasoning, so generalizing with the716

punctuation mark helps the model to focus on a goal of reasoning.717

MAWPS ASDiv-A SVAMP UnbiasedMWP SVAMP (1:N) UnbiasedMWP (1:N) Average
Avg depth 3.87 3.46 3.47 4.44 3.47 4.44 4.05

RoBERTa-base

punctuation mark 92.2 86.4 45.6 36.2 52.5 35.4 58.1
question sequence 92.0 86.3 44.9 36.3 51.0 33.4 57.3

RoBERTa-large

punctuation mark 93.0 91.0 54.8 42.0 67.8 48.4 66.2
question sequence 92.9 91.2 54.4 41.0 66.9 46.8 65.5

Table 7: Comparing goal vector using the whole question sequence from the punctuation mark
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