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Abstract

Solving math word problems depends on how
to articulate the problems, the lens through
which models view human linguistic expres-
sions. Real-world settings count on such a
method even more due to their lexical sophis-
tication on the same mathematical operations.
Earlier works constrain available thinking pro-
cesses by repeatedly training the patterns or
relations between quantities without consider-
ing their validity in the context of the problems.
We tackle the above challenges and propose
Attention-based THought Expansion Network
Architecture (ATHENA) to learn mathemat-
ics so that it can be practical enough in real-
world settings. We introduce thought expan-
sion that maximizes feasible reasoning path-
ways by mimicking human thinking mecha-
nisms. Thought expansion generates candidate
thoughts carrying consistent representation for
each mathematical expression and yields rea-
sonable thoughts, filtered by solidly updated
reasoning vectors. Our experiments show that
ATHENA achieves a new state-of-the-art stage
toward the ideal method that is compelling in
variant questions even when the informative-
ness in training examples is restricted. !

1 Introduction

Math word problem (MWP) solving is one of the
fundamental reasoning tasks of answering a mathe-
matical question by understanding a complex, intri-
cate system of human lexical expressions. Models’
ability to solve a problem depends on a method
that articulates the problem, the lens through which
they view human lexical expressions. Ideal MWP
methods produce decent outputs in real-world sit-
uations that require more lexically sophisticated
on the same mathematical expressions than artifi-
cially generated problem sets. For example, “x”
can count all elements equally divided in multiple

'"The code will be provided via GitHub once the work is
published.

Context The school playground was originally [80] meters long
and [40] meters wide. Later when the school is remodeled, the
length is increased by [10] meters and the width is increased by
[15] meters.

Thoughts from context
[89] ------- original length [IQ] ------- increased length

[40] w0+ original width {15] ------- increased width

total increased leng@

-:--.total increased width )

v*([80><40] ------- original area

N

Question How many square meters are increased by the current )
playground area compared to the original one? Answer

Figure 1: Visualization of thoughts constructed for solv-
ing a problem sample from the UnbiasedMWP dataset,
one of our benchmarks.

boxes but calculate area from length and width or
measure tax fee from the tax rate.

It is significant how we can estimate if the model
has learned mathematical reasoning to qualify for
the ideal MWP methods. We state that the ideal
methods that learn mathematics must be able to
solve previously unseen problems if they are ap-
plications of mathematical operations that models
have already seen or soundly solve problems even
when given examples to learn are restricted.

Prior approaches mostly concentrate on enhanc-
ing translation by giving problem-level knowledge
or quantity relations, not extracting the real-world
concepts of individual operations. We observe the
following limitations of the approaches. First, they
typically stick with one option involving a particu-
lar order when generating the structure, leading to
constraining other available thinking processes. For
example, prior works do not take into account the
counter-intuitive approach once they determine to
generate a certain mathematical operation as their



Context The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the
length is increased by [10] meters and the width is increased by [15] meters.

Train on an example of a question-solution pair under the context above.

Question How many square meters is the original playground  Selution (80 x 40)

area?

Test on variant questions that share the context above.

Q0 How many times the length of the original playground was the width?

DeductReasoner
UnbiasedMWP (80 + 10) x (40 4+ 15) — (80 x 40) (X)
UnbiasedMWP (1:N) 80 = 40 (O)

ATHENA
UnbiasedMWP (80 + 10) x (40 — 15) (X)
UnbiasedMWP (1:N) 80 = 40 (O)

Q1 How many square meters is the current playground area?
DeductReasoner

UnbiasedMWP (80 + 10) x (40 + 15) — (80 x 40) (X)
UnbiasedMWP (1:N) 80 x 40 (X)

ATHENA
UnbiasedMWP (80 + 10) x (40 + 15) (O)
UnbiasedMWP (1:N) (80 + 10) x (40 + 15) (O)

Q2 How many square meters are increased by the current playground area compared to the original one?

DeductReasoner
UnbiasedMWP (80 + 10) x (40 + 15) — (80 x 40) (O)
UnbiasedMWP (1:N) 80 x 40 (X)

ATHENA
UnbiasedMWP (80 + 10) x (40 + 15) — (80 x 40) (O)
UnbiasedMWP (1:N) (80 4+ 10) x (40 4 15) — (80 x 40) (O)

An example with a lexically similar context to that of above from the UnbiasedMWP

Context The school basketball court was [20] meters long and [12] meters wide. After the renovation, the length is increased by

[8] meters, and the width increases by [3] meters.
Question How many square meters are increased?

Solution (20 + 8) x (12 + 3) — (20 x 12)

Table 1: Predictions of DeductReasoner (Jie et al., 2022) and ATHENA on a sample that has variant questions
while sharing the common context for the problems. The observation above is when models use RoBERTa-large on

UnbiasedMWPs.

first step, which limits the reasoning capability in
the end. Second, they repeatedly train the patterns
or relations among the quantities that appear in the
given problem text without confirming their valid-
ity with the context of the problem. As a result,
although they achieve high performance on some
benchmarks, their performances show poor perfor-
mance on simple elementary-level problems that
do not share lexical patterns (Patel et al., 2021).

We tackle the above challenges and propose
ATHENA to learn mathematics so that it can be
practical enough in real-world settings. Inspired
by Johnson-Laird (2008), we focus on thoughts
before considering goals to mimic human thinking
processes of reasoning. We develop ATHENA us-
ing the thoughts within a thought expansion mech-
anism that is maximizing the feasible reasoning
paths. From the novel approach, we generate can-
didate thoughts that are consistent for each quan-
tity within the thought expansion, and reasonable
thoughts that are filtered by solidly updated reason-
ing vectors and robust regardless of training bias to
reach our goal.

Our experiments show that our approach is
strong at predicting mathematical expressions re-
quiring their complicated combinations as shown
in Table 1. We observe that ATHENA produces a
solid performance when the model needs to deal

with previously unseen questions. ATHENA is also
very compelling to solve variant questions once
it has learned one question established from the
shared context. From the experimental results, we
conclude that ATHENA reaches another new state-
of-the-art stage toward the ideal MWP method that
we define as the one that can learn mathematical
reasoning.

2 Math Word Problem

Math word problem (MWP) solving is a task of an-
swering a mathematical question by understanding
natural language descriptions.

2.1 Problem Formulation

Our task of solving math word problems is defined
as follows. Each example in the MWP dataset D
has a problem sequence S in natural language as
input and an equation £ as expected output. D
consists of K (problem, question, equation) triples
where K is the number of examples:

D= {(S(i)ag(i)>}i:1,...,l(-
We use a pre-trained language model (PLM) to em-
bed S. Let P = (t1,ta,...,t,) denote a tokenized
sequence of S where t; represents each subword
token. PLM output of sequence P is denoted as
X = (x1,x9,...,2,), Where z; represents an em-
bedding vector of each token ¢;.



2.2 Related Work

MWP problems have begun with feature engi-
neering via hand-crafted rules or statistical con-
cepts (Bakman, 2007; Hosseini et al., 2014; Mitra
and Baral, 2016). Early works have adopted neu-
ral network approaches through end-to-end learn-
ing strategies such as sequence-to-sequence or
sequence-to-tree. They use sequence networks or
manipulate the representation with tree or graph
templates to generate mathematical equations in
a structurally sophisticated manner (Wang et al.,
2017; Zhang et al., 2020). Having developed
and become accessible to pre-training and transfer
learning, many works have promoted their perfor-
mance with pre-trained language models (Liang
et al., 2022; Shen et al., 2021; Yu et al., 2021;
Huang et al., 2021). Most of them aim to en-
hance the encoder with pre-trained embeddings.
Recent work has made a key contribution by utiliz-
ing additional knowledge such as semantic mean-
ing. Some take advantage of structural information
such as hierarchical dependency, formula structure,
graph-edge connection information, order relation-
ships among quantities, and more (Lin et al., 2021;
Wu et al., 2021; Huang et al., 2020; Zhang et al.,
2020). The reasoning extraction method has re-
cently reached decent performance by consider-
ing the operation orders and omitting unnecessary
steps of creating already generated mathematical
sub-expressions (Jie et al., 2022).

3 ATHENA

Attention-based THought Expansion Network
Architecture (ATHENA) is an architecture that ex-
pands its thoughts to solve the math word problem.
Figure 2 illustrates the overall process of ATHENA.
ATHENA extracts initial thoughts from PLM and
expands them with reasoning to reach the final
thought. We first clarify what is a thought as a
foundational ingredient of our model, and explain
the reasoning and goal vectors that measure the
thoughts.

Thought. A thought is an embedding of a possi-
ble math expression derived from quantities in a
problem representing the contextual meaning of the
expression. Let 6 denote a thought with hidden size
H corresponding to an expression £(#). A goal of
the model is to find a thought 6* that satisfies the
ground-truth expression £*:

£(6%) = &

Reasoning Vector. A reasoning vector represents

premises to evaluate and filter candidate thoughts
in each depth. Let R, denote a reasoning vector for
depth d. We set an initial reasoning vector Ry with
the [CLS] token from the problem descriptions.

Goal Vector. A goal vector plays a role as ground-
truth measurement to evaluate if a thought is an
appropriate answer to the question. We set a goal
vector G with a tokenized embedding of the punc-
tuation mark in the question description.

3.1 [Initial Thought

An initial thought is an embedding that carries
each quantity representation illustrated in a con-
text or question description. We mask quantities
with [MASK] token and obtain the embeddings
that capture contextual information from the per-
spective of corresponding quantities. We denote a
set of thoughts in the initial depth by Oq:

@0 = {xz | x; € X,ti S P,ti = [MASK}}

Certain quantity representations such as 7 are
necessary for generating mathematical expressions
despite not being presented in the contexts or ques-
tions. We collect them from a training set and
randomly initialize their embeddings. We also put
their embeddings to initial thoughts ©.

3.2 Thought Expansion

In each depth, thought expansion constructs can-
didate thoughts ©4 and filters them to obtain the
reasonable thoughts ©7. Reasonable thoughts are
the waypoint thoughts to reach the final thought.

The two stages in a thought expansion are: (1)
our model generates candidate thoughts ©4 from
previous thoughts ©7;_; through the operations and
(2) it reasons about the candidates if they are worth
to be reasonable thoughts ©7. Expansion keeps
going until finding one of the reasonable thoughts
qualified to be a final thought 6*.

3.2.1 Candidate Thought

Our model generates a set of possible new thoughts
© from the previous thoughts ©7_; as the candi-
dates. A new thought ¢’ is a thought of a math ex-
pression that two previous thoughts 0;,6; € ©7_,
combine with an arithmetic operation:

E(0) = E(0;) 0 £(0) where o € {+, —, x,+}.

To make a new thought, we introduce two oper-
ation layers whose combination can represent the



Context The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the length is

increased by [10] meters and the width is increased by [15] meters.

Question How many square meters are increased by the current playground area compared to the original one?

Answer
(80+10)x(40+15)
-(80%40) = 1750«
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Figure 2: Overall process of ATHENA. First, extract initial thoughts, an inital reasoning vector, and a goal vector
from PLM. Second, expand thoughts by transform (d = 1,3,5,...) or merge (d = 2,4,6,...) and generate
candidate thoughts. Third, reason on candidate thoughts and obtain new reasonable thoughts. Last, give the
reasonable thoughts to the next expansion. Repeat until meeting a thought that answers the goal vector.

arithmetic operations: merge M and transform T.
These layers aim to maximize the reflection of the
characteristics of arithmetic operations rather than
the separate layers of individual arithmetic opera-
tions. The definitions of merge and transform are
shown below.

Merge. Merge layer M merges a pair of thoughts
(63, 6;) into a new thought ¢’ such that £(6") applies
addition and multiplication to £(¢;) and £(6;):

ﬁ : 91',9]' — 0
s.t. £(0") = op(E(;), E(H;)) where op € {+, x}.

Transform. Transform layer T transforms a

thought ¢ into a new thought 6 such that £(6')
applies inverse operations of addition and multipli-
cation to £(6):

op
T:0—0
s.t. £(0') = op(£(0)) where op € {—-,-71}.

We use FeedForward Network (FFN) and multi-
head attention inspired by Vaswani et al. (2017)
for the implementation of the operation layers. We
use FFN referred to as FF for transform layer T.
Using multi-head self-attention Ag¢ and layer nor-
malization ¢, we implement merge layer M(6;, 6;)
followed by:

M(0;,0;) = FE(0:+0,+0(15 A ([0:56;])W+)

where W € RIXH p ¢ RH,

This implementation satisfies M°P to be commu-
tative for op € {+, x }:

op op
M(Ql, Qj) = M(Gj, 91) and
op op
EM(6:,05)) = E(M(8;, 6:))-

We apply transform layer T for depth d = 2n — 1
and merge layer M for depth d = 2n to generate the
candidates. In the case of the beginning depth d =
0, we use the initial thoughts @ as the candidates.

3.2.2 Reasonable Thought

Our model iteratively yields reasonable thoughts
©7 that constitute the final thought 6. It reasons to
select reasonable thoughts from the candidates ©,.

Reason. Our model reasons on the candidate
thoughts O, to evaluate if they are reasonable by
calculating the correlation between the reasoning
vector Ry and each thought § € ©, using multi-
head attention A(Q, K = V) and feed-forward
network FF with sigmoid o:

reason(Ry, 0) = o(A(FF(0), Rq) W, + b;)

where W, € R*1 b, € R.

A thought 6 is reasonable if reason (R4, #) exceeds
a fixed threshold ¢,.. The reasonable thoughts ©7
become the input of the next iteration and keep
proceeding with the thought expansion.



Algorithm 1 Thought Expansion Process of ATHENA

Input: ©¢,Ro, G
Output: &
d<0
O < {0 | 0 € ©g,reason(Ro, 0) > t,}
while d < D or 36 € ©(answer(G, 0) > ty) do
Rat1 < Ra || A(FF([©7]), Ra)
d<—d+1
ifd=1,3,5... then
B4 Uope{_.,.—l}{Top(Q) | 0e 6271}
elseif d =2,4,6... then
C"‘)d — Uop6{+,x}{Mop(9i79j) I 91703 € @271}
end if
O+ 05_,U{0]| 0 € Og,reason(Rg,0) >t}
end while
0" + arg maxpe g« answer(G, 0)
return £(0")

Update. Our model updates the reasoning vec-
tor that was initially created or was given by the
previous iteration, with the reasonable thoughts
» obtained in the current depth d. We gain the
updated reasoning vector for the next depth Ry 1,
by concatenating all reasonable thoughts ©7 after
multi-head attention layer A applied in reason:

Rat1 = Ra || A(FF([©7]), Ra).

3.3 Final Thought

A final thought 6* is the answer to the question.
When the thought expansion process finishes, our
model decides the final thought by selecting a
thought with the maximum score. We have two cri-
teria to terminate the iteration; (1) when the depth
reaches the maximum expansion depth D; (2) if
there is a thought with the score that exceeds a con-
fidence threshold ¢ on iteration. We calculate the
score of each reasonable thought § € ©; using the
multi-head attention A and feed-forward network
FF with the goal vector G, activated by sigmoid o

answer(G, 0) = o(A(FF(0), G)W, + b,)
where W, € R7X1 1, € R.

A thought with the maximum score in the rea-
sonable thoughts becomes a final thought 6*:

0" = arg max (answer(G, 6)) .
oce;

Our model bestows the final thought the fidelity to
shape the answer to the target question. In sum-
mary, we show the overall process to reach the final
thought 6* in Algorithm 1.

4 Experiments

We conduct experiments across a comprehensive
range of math word problem (MWP) solving tasks
to show that ATHENA outperforms strong base-
lines in both full datasets and variant versions of
the original datasets while being more interpretable
in terms of intermediate steps toward the answers.

4.1 Experimental Setups

Baselines. We select four representative ap-
proaches as the baselines to compare with
ATHENA: Transformer (Vaswani et al., 2017)2, a
goal-driven tree-structured model (GTS) (Xie and
Sun, 2019), Graph-to-Tree (Zhang et al., 2020)3
and DeductReasoner (Jie et al., 2022).* Trans-
former is a sequence-to-sequence approach that
uses multi-head attention mechanism while GTS is
a strong baseline of sequence-to-tree model. Graph-
to-Tree is another approach that adds a graph en-
coder on top of GTS. We adopt DeductReasoner
as an additional baseline that introduces a complex
relation extraction method for deductive steps and
hence achieves the state-of-the-art performance.

Implementation Details. We use RoBERTa-base
and RoBERTa-large as our base pre-trained em-
beddings (Liu et al., 2019) and Chinese-RoBERTa
(Cui et al., 2019) for Chinese benchmarks to com-
pare our baselines. We use pre-layer normalization
(Xiong et al., 2020) for our multi-head attention
method to fully leverage a dynamic range of em-
beddings. We set t, = 0.5,y = 0.95 and train
our model by giving ideal accepted prior thoughts

u_1 and labels of reason and answer in each
depth to calculate the loss with binary cross entropy
over all labels.> Our experiments are performed
with Nvidia RTX 3090 GPU.

Dataset. We test the benefits of ATHENA on
standard MWP benchmarks that are known as
classic and relatively new benchmarks that con-
tain various linguistic expressions in contexts or

2We follow hyperparameters by Lan et al. (2022) for both
vanilla transformer and RoOBERTa-based transformer.

3We follow the best hyperparameter settings in Patel et al.
(2021) for both vanilla models and RoBERTa-based models.

*We use their hyperparameter setups. We use the MAWPS
setup for testing ASDiv-A, and use the Math23k setup for
UnbiasedMWP. Since the authors do not provide setups for
RoBERTa-large, we optimize the model and report the best
score with half batch size and half learning rate from those
used in the RoBERTa-base setup.

SWe explain detailed training settings and hyperparameters
in Appendix A



MAWPS ASDiv-A Math23k| SVAMP UnbiasedMWP | SVAMP (1:N) UnbiasedMWP (1:N)

Language English English Chinese English Chinese English Chinese
Random embedding
Transformer 85.6 59.3 61.5 20.7 20.5+0.73 9.7:0.19 (14.9) 16.9:031 (51.5)
GTS 82.6 71.4 75.6 30.8 26.2+0.20 12.20.37 (43.8) 22.8+0.22 (65.0)
Graph-to-Tree 83.7 77.4 77.4 36.5 27.2+037 25.3x0.12 (52.5) 24.310.25 (66.4)
RoBERTa-base
R-Transformer 88.4 72.1 76.9 30.3 18.3x0.15 13.52033 (33.4) 14.9:020 (53.1)
R-GTS 88.5 81.2 - 41.0 - 40.9:050 (64.4) -
R-Graph-to-Tree ~ 88.7 82.2 - 43.8 - 31.8+0.36 (66.7) -
DeductReasoner 92.0:020 83.1:024 85.1:024 |[45.0z0.10 31.6+051 42.5+0.41 (69.1) 26.5:055 (79.5)
ATHENA (Ours) 92.2:0.10 86.4:0.11  84.4+024 | 45.62050 36.2:0.67 52.5:050 (70.1) 35.4:045 (80.5)
RoBERTa-large
DeductReasoner 92.6:0.16 89.1:046 85.8+042 |50.32030 34.9+0.11 51.6x038 (75.4) 33.7x0.60 (83.2)
ATHENA (Ours) 93.0:020 91.0:0.13 86.5:025 | 54.820.63 42.02057 67.8+0.58 (79.8) 48.4-033 (84.8)

Table 2: Comparison of MWP methods. We use MAWPS, ASDiv-A, and Math23k for standard evaluation,
SVAMP and UnbiasedMWP to evaluate the ability to solve entirely unseen, various expressions, and SVAMP and
UnbiasedMWP with the one-to-many test to estimate the adaptability of confusing linguistic subtlety.

questions for mathematical reasoning. The stan-
dard benchmarks are MAWPS (Koncel-Kedziorski
et al., 2016), ASDiv-A (Miao et al., 2020), and
Math23k (Wang et al., 2017). MAWPS is an En-
glish corpus collected from the online math word
problem repository, and Math23k is a Chinese cor-
pus crawled from online posts. ASDiv-A is an
acronym of An arithmetic subset of Academia
Sinica Diverse dataset (ASDiv-A), consisting of
diverse English lexical patterns.

The relatively new benchmarks either alter the
standard benchmarks or vary the grounded ex-
pressions from the collected data to evaluate the
model performance without bias from learned
data. SVAMP (Patel et al.,, 2021) varies in
the components of one of the standard bench-
marks, ASDiv-A to evaluate various contextual
expressions on elementary-level arithmetic prob-
lems.UnbiasedMWP (Yang et al., 2022) is an
online-crawled Chinese corpus that augments the
questions from the same context to evaluate models
if they are able to generate adequate correspond-
ing mathematical expressions. We split MAWPS,
ASDiv-A, Math23k, SVAMP, following Jie et al.
(2022) and Patel et al. (2021), respectively.

One-to-Many Test. We conduct one-to-many
variants tests to measure model generalization to
many variant questions from one example within
the common context. We select two datasets
SVAMP and UnbiasedMWP to apply for this test.
Each example in the dataset has a problem se-
quence that is composed of context and question
descriptions. Within the groups by context, we
split the examples one-to-many. One example per

group goes to a training set while the multiple ex-
amples move to a test set. We use examples that
do not have other variants within the context group
as a validation set. We name the resorted SVAMP
and UnbiasedMWP using the one-to-many setup
as SVAMP(N:1) and UnbiasedMWP(N:1).

4.2 Results

We repeat our experiments 5 times with different
random seeds and report the average answer accu-
racy with the standard error. We report results on
multiple benchmarks, variants splitting tests, the
impact of pre-trained language models depending
on their size, and ablation tests.

Overall Performance. Table 2 shows the per-
formance of different methods on 7 benchmarks.
As seen from the table, ATHENA establishes
new state-of-the-art results for overall benchmarks.
ATHENA outperforms prior MWP methods on all
occasions with one exception of its performance
on Math23k when trained on the ROBERTa-base
model. When compared to the most competitive
work DeductReasoner, ATHENA obtains a relative
improvement of 3.84%p on total benchmarks.

Performance on One-to-Many Test. We note
that ATHENA achieves huge performance gains
compared to the second-best method, from 42.5%
to 52.4% and from 26.5% to 35.0% on SVAMP
(1:N) and UnbiasedMWP (1:N), respectively. As
illustrated in section 4.1, we evaluate our model on
SVAMP (1:N) by training with one example per
problem set to test how well ATHENA reasons on
the questions that use the same textual descriptions
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Figure 3: Accuracy changes when adding one example
per context into the training set by applying the one-to-
many test.

but ask for different target answers. We observe
from Tabel 3 that the results show ATHENA is
strong at applying mathematical reasoning that is
formed by unlearned patterns once the model has
learned the context. Our approach is distinguished
from other baselines including ROBERTa-GTS and
DeductReasoner which show the opposite phenom-
ena. Other baselines are relatively stronger on orig-
inal benchmarks than on the benchmark variants
including those with the one-to-many Test. Hence
we reach the conclusion that ATHENA has the supe-
riority of acknowledging the subtlety of contextual
information governed by the required mathematical
operations.

Dependence on Training Set. We observe that
ATHENA performs well on datasets that apply
the one-to-many test because our model has a
sense of subtlety in terms of distinct question con-
cepts, not because our model is reluctant to follow
learned expressions. Figure 4 illustrates where the
wrong prediction for the question variant experi-
ments comes from. If a model outputs equations
that are labeled for questions with shared contexts
when being trained, this indicates that the model
relies on training data points, especially on con-
text contents regardless of different question ex-
pressions. The result shows that our model also
has the least accuracy for a golden training exam-
ple. It is notable that ATHENA has the least score
for following the trained expressions while Deduc-
tiveReasoner predicts the highest scores among
other baselines that use RobBERTa, even higher
than those of R-GTS or R-Graph-to-Tree on Unbi-
asedSVAMP(1:N). This shows that while Deudc-
tiveReasoner can learn to solve mathematical prob-
lems, it also easily falls into learning shortcuts.

58.9
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aph-to-T
Graph-to-Tree 29.9
. 48.4
R-Transformer 36.9
32.8
R-Graph-to-Ti
taph-to-Tree |
34.4
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DeductReasoner 39.3
25.3
ATHENA | 2 | | |
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O Incorrect by trained expression of SVAMP(1:N)
O All Incorrects of UnbiasedMWP(1:N)
[ Incorrects by trained expression of Unbiased MWP(1:N)

Figure 4: The percentage the incorrect answers match
with the answers to different questions that share the
context from the training set. The less the percentage
scores, the less the method unnecessarily leans on the
training bias.

Different Sizes of PLMs. We estimate the base-
lines both on RoBERTa-base and RoBERTa-large
models to examine the influence of the model sizes.
As expected, Table 2 shows that the bigger the
model size is for the embedding, the better the
model performance reaches. When we estimate
the accuracy gaps by increasing the model size,
ATHENA achieves relatively better performance
gains (7.26%p) on average for the entire bench-
marks than DeductReasoner does (4.6%p). We can
observe that on dataset variants, ATHENA obtains
relatively more benefits from bigger model sizes
(14.15%) than DeductReasoner does (8.15%p),
while both are still taking great advantage of the
rich model parameters to understand the question
better and to solve those confusing questions. It
also shows that DeductReasoner fails to improve
performance on question variants from the origi-
nal datasets leveraging the additional training sets
in large-scale PLM. In short, our model leverages
large-scale PLM much more efficiently than the
competitive model.

Visualization of Thoughts. We interpret the
thoughts using attention scores between reason-
able thoughts and the problem sequence. ¢ As
illustrated in Figure 5, we observe how the thought
relates to the words. Most of the initial thoughts are
related to the “playground”, while the thoughts car-
rying the meaning of increased size show a strong

®We use answer layer to calculate the attention score, giv-

ing the problem sequence embedding as an input, instead of
the goal vector.



Problem The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the length is

increased by [10] meters and the width is increased by [15] meters.

How many square meters are increased by the current playground area compared to the original one?

Attention scores of reasonable thoughts
Initial thoughts from PLM

[80]

is remodel
[40] playground  area square meter

(O N T ORI TN N

[10] Later school playground area

[15] Later width  playground area

(T T BN |

Thoughts generated from ATHENA
[80+10] playground

meters s playground

[40+15]  school school ~ width playground area

(T EEETE T W O VEEN )

[80x40] are square meter

DY MR W T TN e

[(80+10)%(40+15)]  pheters compared ~ square

NN I 1 71 Than arn

[(80+10)x(40+15)-(80%40)]

meters compared square

Figure 5: Visualization of reasonable thoughts from ATHENA with calculating attention score of the tokens in the

problem sequence on RoOBERTa-large.

MAWPS ASDiv-A SVAMP Math23k UnbiasedMWP SVAMP (1:N) UnbiasedMWP (1:N) | Average
Avg depth 3.87 3.46 3.47 5.18 4.44 3.47 4.44 4.05
ATHENA 92.2 86.4 45.6 85.1 36.2 52.5 354 62.0
— update 92.1 84.8 44.9 82.7 349 524 34.7 60.9
— (reason+update) ~ 90.6 85.0 44.7 65.7 36.3 51.5 34.6 58.3

Table 3: Ablation studies on reasonable thought mechanism

correlation to the word “Later”. The thoughts car-
rying width sizes [15] and [40+15] show high atten-
tion scores on “width”, while the other thoughts do
not have high attention scores on them. Thoughts
that calculate the area produce high attention scores
on words “square meter” or “area”. The final
thought marks a high score on “compared”, which
asks for the difference between the increased and
original areas.

Ablation on Reasonable Thought. We conduct
an ablation study to evaluate how ATHENA com-
poses the reasonable thought mechanism to ulti-
mately generate optimal final thoughts. For evalu-
ating the impact of component functions in gener-
ating reasonable thoughts, we adopt two different
settings:

(1) we do not update reasoning vectors but use
the initial reasoning vector (i.e., [CLS] token) in
all expansion depths R4y = Ry. We aim to see how
the existence of thoughts that update the reasoning
vector impacts models to help find solid reasonable
thoughts. (2) we do not even start reasoning in the
reasonable thought procedure and directly classify
whether thoughts are usable for the next iteration:
use(0) = o(OW, + b,.).

Table 3 shows that ATHENA takes full advan-
tage of the reasonable thought stage via reason-
ing with the reasoning vector and their updating
strategy. Despite slight fluctuations across differ-

ent methods, ATHENA without reasoning func-
tion decreases the overall performances by up to
3.7%p compared to our proposed ATHENA. When
ATHENA does not update the reasoning vectors in
the thought expansion iteration while still adopting
the reasoning function, the performance decreases
relatively by 1.1%p. From those observations, we
conclude that the decent performance of ATHENA
comes from a grounded reasoning vector refined
by reasoning and updating strategies.

5 Conclusion

We state that an ideal MWP method needs to be
practical in real-world settings that are critical to
capture the lexical sophistication of the same math-
ematical operations. For this reason, we conclude
that ATHENA with thought expansion reaches
significant improvements toward the ideal WMP
method due to its decent performance on unseen
problems or restricted examples to learn.

Limitations

This work only considers arithmetic problems, not
algebraic, calculus, or other topics of mathemati-
cal problems. As many other works do, we only
consider math word problem datasets having single
equations and we do not verify with any dataset for
multiple equations.
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Appendices
A Training Details
In this section, we provide detailed information about our training settings.

Loss. Given an answer equation &, let 1 eas0n(f) denote the target of reason for a thought 6 and
Lanswer (¢) denote the target of the final decision answer for a thought :

Lreason(0) = L(E(0) C &), Lanswer(#) = 1(E(O) = E),

where £(0) C & denotes that £ contains the sub-expression £(0) (e.g., (a + b) C (a + b) X ¢).
Let BCE denote the binary cross entropy function, the training objective is to minimize the loss £:

Y>>  BCE(reason(0), licason) + Y. BCE(answer(6), Lanswer)
_ 0elU; 04 0co

[Uq ©al + 65

L

Optimizer. We use AdamW optimizer (Loshchilov and Hutter, 2017) with weight decay w = le — 5.
Learning rate {7, for each epoch e is decayed every Sy, epoch with factor y starting from [r:

Ire = lr - 1o/ 5],
Regularization. We adopt dropout with probability p to every layer and stochastic weight averaging
(Izmailov et al., 2018) for last epochy,, epochs.

Hyperparameters. We present our experiments for hyperparameters in Table 4, with the bold text
denoting the best performance. We train our model for 100 epochs. In the result, we observe that
RoBERTa-base and RoBERTa-large share the best hyperparameter settings except for the learning rate {7.

Batch Size Ir Sir vy D epochswa

RoBERTa-base [4, 8] [Se-6, Te-6, 1e-5, 1.3e-5, 1.5e-5, 2e-5] [10, 15, 20] [0.5,0.7] [0.1,0.5] [30, 50, 70]
RoBERTa-large (4, 8] [Se-6, Te-6, 1e-5, 1.3e-5, 1.5¢e-5, 2e-5] [10, 15,20] [0.5,0.7] [0.1,0.5] [30, 50, 70]

Table 4: Hyperparameter search spaces of ATHENA

B Statistics of One-to-Many Split

In Section 4.1, we explain building one-to-many dataset splits. We provide how many groups and examples
are made from the contexts in Table 5.

SVAMP (1:N) UnbiasedMWP (1:N)
# examples in original split 3138/0/1000 2507 /200 / 685
# groups of single examples 438 45
# groups of multiple examples 205 154

# examples in one-to-many split 3343 (+205) / 438 (+438) /357 (-562) 2661 (+154) / 245 (+45) / 486 (-199)

Table 5: Statistics of one-to-many test splits

C Statistics of Thoughts

In this section, we show various statistics of thoughts and reasoning that each dataset requires. While
Math23k requires a large number of candidate thoughts in total depth, we show a thought expansion in
each depth does not require huge memory space. Therefore, efficient implementation strategies such
as removing unselected candidate thoughts from memory space are enough to manage computational
resources.
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Dataset

| # candidates in total depth |

# in a reasoning path

| # candidates in last depth | depth of reasoning path

min average
MAWPS 17  45.40+0.46
ASDiv-A 16  26.86+0.42
SVAMP 2 28.09+0.44
Math23k 4 65.1+0.31
UMWP 5 47.0+£0.47

max
192
71
70
939
214

min  average  max
2 4.52+0.03 12
3 410003 7
1 4.23+0.03 7
1 6.33x0.02 29
1 5.18+0.03 13

min

average
9.49+0.08
9.65+0.09
10.54+0.10
14.85+0.06
11.67+0.11

max
48
22
22
108
48

min
2

—

average
3.87+0.03
3.46+0.02
3.47+0.03
5.18+0.01
4.44+0.02

max
11
5
5
41
11

Table 6: Statistics of thoughts that are required for each dataset

D Effect of Punctuation Mark

In Section 3, we initialize goal vector G with the punctuation mark of the question sequence or the
last punctuation mark (i.e., the question mark in most cases). The motivation of this strategy is from
Clark et al. (2019) showing the punctuation mark gets high attention from other tokens in the last layers.
Intuitively, high attention can generalize the question sequence, so we conduct experiments to evaluate the
generalization ability of the punctuation mark compared to using all question sequences as a goal vector

G. We conduct experiments for all datasets except Math23k (Wang et al., 2017) since it does not provide

the explicit question sequence annotation.
As shown in Table 7, using the punctuation mark effectively generalize the question to represent a
goal in most cases. It shows even better performances than using the question sequence. Intuitively the
question sequence holds some tokens that are not informative for reasoning, so generalizing with the
punctuation mark helps the model to focus on a goal of reasoning.

MAWPS ASDiv-A SVAMP UnbiasedMWP SVAMP (1:N) UnbiasedMWP (1:N) | Average
Avg depth 3.87 3.46 347 444 347 444 4.05

RoBERTa-base

punctuation mark ~ 92.2 86.4 45.6 36.2 52.5 354 58.1
question sequence  92.0 86.3 44.9 36.3 51.0 334 57.3
RoBERTa-large

punctuation mark ~ 93.0 91.0 54.8 42.0 67.8 48.4 66.2
question sequence  92.9 91.2 54.4 41.0 66.9 46.8 65.5

Table 7: Comparing goal vector using the whole question sequence from the punctuation mark
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