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Abstract
001

Event extraction aims to extract information of trig-002

gers associated with arguments from texts. Recent003

advanced methods consider the multi-modality to004

tackle the task by pairing the modalities without005

guaranteeing the alignment of event information006

across modalities, which negatively impacts on the007

model performances. To address the issue, we008

firstly constructed the Text Video Event Extraction009

(TVEE) dataset with an inner annotator agreement010

of 83.4%, containing 7,598 pairs of text-videos,011

each of which is connected by event alignments.012

To the best of our knowledge, this is the first mul-013

timodal dataset with aligned event information in014

each sentence and video pair. Secondly, we present015

a Contrastive Learning based Event Extraction016

model with enhancements from the Video modality017

(CLEEV) to pair videos and texts using event in-018

formation. CLEEV constructs negative samples by019

measuring event weights based on occurrences of020

event types to enhance the contrast. We conducted021

experiments on the TVEE and VM2E2 datasets by022

incorporating modalities to assist the event extrac-023

tion, outperforming SOTA methods with 1.0 and024

1.2 point percentage improvements in terms of F-025

score, respectively. Our experimental results show026

that the multimedia information improves the event027

extraction from the textual modality1.028

1 Introduction029

Event Extraction (EE) aims to identify triggers and030

associated arguments, playing crucial role in down-031

stream tasks such as timeline summarization (Li032

et al., 2021; Martschat and Markert, 2018) and text033

summarization (Daiya, 2020; Chen et al., 2021b).034

Most research focuses on textual modality of EE035

(Chen et al., 2015; Nguyen et al., 2016; Du et al.,036

1The dataset and code will be released based on accep-
tance.

The SpaceX craft was launched on a reusable Falcon 9 rocket on Friday.

Movement.Transport

(a)

Police used water cannon and tear gas to disperse the demonstrations in 
Brussels.

Conflict.Attack Conflict.Demonstrate

(b)

Figure 1: Two examples from the TVEE dataset. En-
tities from videos are annotated by boxes. Events
(i.e., “launched”, “disperse”, “demonstrations”) from
the sentences are highlighted using the underscores.

2021), leaving event information across additional 037

modalities such as image, video under investiga- 038

tion (Zhang et al., 2017; Li et al., 2020; Chen et al., 039

2021a). Multi-modal data, any combination of 040

texts, images and videos, most often contains more 041

information clues for event understanding than sin- 042

gle modality. For example, as shown in Figure 043

1 (a), the rocket launching event is described in 044

both text and video, the trajectory of the rocket 045

depicted in the video makes it easy to understand 046

that this is a Movement.Transport event rather than 047

others. However, it is difficult to obtain the event 048

with the left image only, where the rocket is static, 049

triggering the need of video modality in addition 050

to images for better event understanding. Initial 051

efforts on multi-modal EE mainly consider image 052

modality only without the video modality (Zhang 053

et al., 2017; Tong et al., 2020; Li et al., 2020). Con- 054

trative learning methods (Zolfaghari et al., 2021; ?; 055
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Zhang et al., 2021b) have been proven to be suc-056

cessful on cross-modality representation learning.057

Recent methods (Chen et al., 2021a) propose to058

pre-train on videos with their auto-generated ASR059

transactions in a contrastive learning manner to pair060

the modalities of texts and videos and use the text061

video pairs for further event extraction. However,062

those multi-modal contrastive methods pair across063

modalities without aligning the event information064

on the sentence level. This inevitably introduces065

mis-alignments of events for paired instances, nega-066

tively impacting the EE models. Furthermore, they067

construct negative samples without differentiating068

their event-specific contribution. This limits the069

learning ability of the contrastive methods since070

events composed in the video of negative samples071

carry different information, resulting into the dif-072

ferent contributions. For example, in Figure 1 (b),073

the Conflict.Attack event weights more than the074

Conflict.Demonstrate event.075

To address this issue, we firstly construct a novel076

dataset named TVEE, which is composed of pairs077

of sentences and videos with aligned event informa-078

tion, i.e. sentence and video in a pair are describ-079

ing the same events. To encode the task-specific080

(i.e., EE) multi-modal representation, we present081

a Contrastive Learning based Event Extraction082

model enhanced by Video modality (CLEEV) with083

two modules: Event Extractor (EvE) and Video084

enhanced Event Contrastive Learner (ViECL). The085

EvE responds for the extraction of event triggers086

and arguments from the textual modality with a087

stack of a BERT model and two CRF layers. The088

ViECL assigns the weights of the event information089

when learning the representation across modalities090

on top of the contrastive learning.091

We summarize our contributions as follows:092

• To the best of our knowledge, we provide a093

benchmark dataset named TVEE, which is the094

first dataset that pairs texts and videos using095

same event descriptions to guarantee the event096

alignment. The dataset consists of 7,598 pairs,097

which are annotated with 33 event types.098

• We present a contrastive model that weighs099

event information based on their occurrences100

to extract events by incorporating the video101

modality as assistance.102

• We conducted experiments on two bench-103

mark datasets TVEE and VM2E2 (Chen et al.,104

2021a) and improved the SOTA results with105

1.0 and 1.2 point percentage improvements 106

on event extraction in terms of F-score, show- 107

ing the effectiveness of the video modality for 108

event extraction in comparison with unimodal. 109

2 Proposed Model 110

We present the proposed model in Figure 2, which 111

contains two modules: (1) EvE is a stack of the 112

BERT model (Kenton and Toutanova, 2019) and 113

two CRF layers for labeling the input sequence 114

with event types and argument roles. (Section 2.2) 115

(2) ViECL contrasts pairs between videos and 116

texts by weighing event information based on 117

event occurrences when constructing negative sam- 118

ples(Section 2.3). We present the notations in the 119

model followed by the module details. 120

2.1 Notation 121

Inputs to the model are K pairs of sentences and 122

videos {(xi, vi)}Ki=1, where the kth sentence is de- 123

noted as xk = {w1, w2, ..., wn} with ground-truth 124

labels yk = {y1, y2, ..., yn} and the corresponding 125

video is presented as vk = {f1, f2, ..., fm} with m 126

frames. For simplicity, we omit the subscript k. In 127

addition, we use r ∈ R and e ∈ E to represent 128

each trigger and event type, respectively. 129

2.2 Event Extractor 130

The EvE deals with the extraction of triggers and ar- 131

guments from the textual modality using the trigger 132

extractor and argument extractor, respectively. 133

Trigger Extractor Given an input sentence x, we
firstly feed the sentence to the BERT model (i.e.,
text encoder) to produce the contextualized rep-
resentation s ∈ Rn×d, where d is the dimension.
Then a CRF layer is stacked on top of the text
encoder to label triggers with the following loss
equation:

Lt = −
K∑
i=1

n∑
j=1

logP (yj |si)

Argument Extractor Given a trigger r and its
event type e, we obtain the trigger vector repre-
sentation r using the span vector in s and embed e
with an Embedding Layer to get its representation
e. Then r and e are concatenated with the sequence
representation s. The argument entities are labeled
by another CRF layer:

La = −
K∑
i=1

n∑
j=1

logP (yj |si; ri; ei)
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[S1]People demonstrating 
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proposed tax form last 
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Figure 2: An overview of the proposed CLEEV model consisting of the event extractor EvE) (shown in (a)) and
video enhanced event contrasive learner (ViECL) (shown in (b)). (a) presents the event extraction including trigger
extractor and argument extractor. (b) presents the contrastive learning by incorporating event information. For
simplicity, we use the pair (V1, S1) as the positive instance, where V1 and S1 are paired with the rest sentences and
videos to construct negative examples.

2.3 Video Enhanced Event Contrastive134

Learner135

The ViECL aims to enhance event extraction us-136

ing the additional video modality by contrasting137

their event information. Specifically, we design138

two loss functions to enhance sentence and event139

representations respectively and incorporate event140

content to weigh negative samples. For a video141

v, we use a 3D-CNN based pre-trained model as142

video encoder and obtain its vector representation143

v ∈ Rm×d using a mean pooling layer.144

Contrastive losses Intuitively, the distance of rep-145

resentations between s and video v describing the146

same events should be closer in the shared em-147

bedding space than the distance between s and148

v
′

with unrelated events. Based on this intuition,149

a text-video contrastive loss function is defined,150

which leverages videos to enhance text representa-151

tion by matching texts and videos conditioned on152

their event content. Considering that event triggers153

of a specific event type may be diverse, it is not154

reasonable to represent events with their triggers.155

For example, parade and march are two triggers of156

the Demonstrate event type, however, the semantic157

and video descriptions of these two triggers are the 158

same. Therefore, we use the event type to present 159

a specific event. 160

Specifically, we set samples whose event type
sets are different from the anchor sample as nega-
tive samples, and others are positive. In this way,
vectors of text-video pairs with the same events are
pulled together, and pairs with different events are
pushed apart:

LT (s,v) = Es′ [µT (k, l)S(s
′
,v)− S(s,v) + ε]+

+Ev′ [µT (i, j)S(s,v
′
)− S(s,v) + ε]+

where i, j, k, l are the indexes of samples with 161

s, v
′
, s

′
and v respectively. S(·, ·) is the distance 162

function and µ(·, ·) is the negative sample weight- 163

ing function which will be introduced in detail in 164

the following content. 165

Argument extraction relies on representations
of both texts and events, where text is refined by
LT . Similar to contrastive text learning, represen-
tations of an event and the video depicting it are
tend to be closer than the videos do not contain this
event. We employ contrastive event learning by
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matching event-video pairs to enhance event repre-
sentations in this work. Specifically, for a specific
event type e, we push apart its representation from
the unmatched video representation v′

and bridge
the distance with the matched video v. The match
judgement principle is defined as: a video v and an
event type e are matched if e is in the event type
set of v, and meanwhile, the significance weight
we of e in this video should be larger than η, other-
wise they are mis-matched. The conrastive event
learning loss is defined as:

LE(e,v) = Ee′ [µE(e
′
, i)S(e

′
,v)− S(e,v) + ε]+

+Ev′ [µE(e, j)S(e,v
′
)−S(e,v) + ε]+

where i,j are the indexes of the samples with v and166

v
′
.167
The overall loss of ViECL is defined as:
LV CL =

∑
(s,v)∈D

λ1LT (s, v) +
∑
v∈D

∑
e∈Eall

λ2LE(e, v)

where λ1 and λ2 are learnable parameters to bal-
ance weights of LT and LE and D is the training
set.
Negative Sample Weighting As mentioned above,
treating negative samples chosen based on events
equally is not reasonable because negative samples
have various events with different significance lev-
els. To address this problem, we firstly weigh dif-
ferent event types in a sample: as the significance
of events is more intuitive describing in videos than
texts, we use videos to measure event significance
by passing video features to a linear model with
a Softmax layer. The weight of significance corre-
sponding to the kth event type ek in the oth sample
is presented as:

weok
=

exp(φ(vo)k)∑|E|
l=1 exp(φ(vo)l)

φ(vo) =Wvo + b

Then we assign weight scores to the negative
sample with index j by measuring the difference
between its event type set and the anchor sample
with index i. For LT , the weighting function can
be presented as:

µT (i, j) =

∑
e∈Ei\Ej

wei +
∑

e∈Ej\Ei
wej∑

e∈Ei
wei +

∑
e∈Ej

wej + δ

where δ is used to avoid the denominator to be 0.
For LE , the weighting function is calculated by:

µE(e
i
k, j) =

∑
e∈Ej−eik

wej

wei +
∑

e∈Ej−ei wej + δ

2.4 Training and Inference 168

During the training phase, parameters of the video
encoder are frozen and a linear layer is appended
to project video vectors to the shared embedding
space. We jointly optimize parameters of Trigger
Extractor and Argument Extractor with an Adam
optimizer to learn the EvE:

LEvE = Lt + La

The EvE loss and ViECL loss are jointly optimized:

L = LEvE + σLV iECL

where σ is a hyper-parameter to balance the losses. 169

In the inference phrase, only the sentences are
used to predict the most likely event:

e∗ = arg max P(e|s)

where e∗ is the event results predicted in a Sequen- 170

tial Labeling manner. 171

3 TVEE Dataset 172

3.1 Data Collection 173

Event schema We borrow the event schema from 174

the benchmark ACE2005 (Walker et al., 2006) as 175

our event schema, which contains 8 event types and 176

33 subtypes. 177

Data Source We collect data from the On Demand 178

News2 channel that contains international news 179

videos with a wide coverage of event types. In 180

addition, news from this channel generally have 181

multiple sentences describing events, which are 182

depicted in the videos at the same time. As a result, 183

a total of 24,129 news videos are collected and 184

further split into frames per second. As textual 185

sentences are binding with pictures, we therefore 186

employ the OCR tool 3 to extract sentences. Then 187

we drop the frames without sentence descriptions 188

and keep the video segments longer than 2 frames. 189

The rest 7,598 instances are kept as our sentence- 190

video pairs. 191

3.2 Data Annotation 192

We follow the ACE2005 (Walker et al., 2006) an- 193

notation guideline to annotate triggers, event types, 194

entities and argument roles in the sentences with a 195

two-stage iterative annotation method. To speed up 196

the annotation, we adopt the state-of-the-art infor- 197

mation extraction model ONEIE (Lin et al., 2020) 198

2https://www.youtube.com/c/ondemandnews
3https://cloud.tencent.com/product/ocr-catalog
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Item Statistics
Sentence Video

# Instances 7,598 7,598
# Events 6584 -

# Average Events / Instance 0.87 -
Average Length 17.0 6.7

Max Length 43 7
Min Length 12 4

Table 1: Statistics of TVEE. Lengths corresponding
to texts and videos are token and time second, respec-
tively. “-" means absent.

to obtain pseudo event annotations from raw sen-199

tences. In the first annotation stage, we employ200

ten expert annotators to correct the pseudo labels201

and supplement event annotations missed by the202

ONEIE model. To guarantee the annotation quality,203

three experienced annotators are invited to double204

check the annotations. Then we employed another205

two annotators to evaluate 100 sentences sampled206

from the dataset at random to calculate the Inter-207

Annotator Agreement(IAA), which is 83.4% . The208

statistics of TVEE is listed in Table 1.209

4 Experimental Settings210

4.1 Dataset211

We conduct experiments on the TVEE and VM2E2212

datasets. The TVEE is split into training, develop-213

ment and testing sets with a ratio of 8:1:1. VM2E2214

is a text-video multimodal event extraction dataset,215

where most sentences and videos are paired without216

strict event alignments. VM2E2 contains 13,239217

sentences and 860 videos. We follow the splitting218

setting from Chen et al. (2021a) to divide the data219

into training and testing sets.220

4.2 Evaluation221

We evaluate the model with Precision(P), Recall(R)222

and F-score(F1) for event extraction, where a trig-223

ger prediction is considered correctly extracted on224

the condition of the offset and event type are same225

with the corresponding golden triggers; an argu-226

ment is considered correctly extracted when the off-227

set, argument role and event type are same with the228

corresponding golden arguments (Li et al., 2013).229

4.3 Baselines230

For event extraction, we adopt two SOTA mod-231

els as our baselines: (1) We compare against the232

EEQA (Du and Cardie, 2020) model that performs233

SOTA on event extraction with the setting without 234

considering external entity information. Because 235

EEQA can not leverage videos as input, we trained 236

EEQA only on the text data of both TVEE and 237

VM2E2. (2) We compare the SOTA model of text- 238

video event extraction JMMT (Chen et al., 2021a) 239

on both TVEE and VM2E2. In particular, we use 240

JMMT to extract events only from text data for fair 241

comparison with our model. 242

4.4 Implementation Details 243

For texts, we use bert base model4 to produce con- 244

textualized representations, which are further pro- 245

cessed with mean pooling to calculate the sentence 246

representation. For videos, we adopt the ResNexT- 247

101 16 frames (Hara et al., 2018) model pre-trained 248

on Kinetics (Carreira and Zisserman, 2017) to cal- 249

culate the video representation with the same mean 250

pooling strategy. In our experiments, we set the 251

parameters λ1, λ2 to be 1.0 and σ as 1000. 252

4.5 Main Results 253

Table 2 presents the overall results of our model 254

in comparison with related work on TVEE and 255

VM2E2 test sets. Our model outperforms related 256

work in extracting both triggers and arguments in 257

terms of F1, thus achieving the best results for 258

event extraction. Compared with EEQA, our model 259

gains consistent improvements in terms of preci- 260

sion, recall and F1, indicating the effectiveness of 261

the model for extracting events. In addition, the 262

comparison with JMMT over F1 indicates the ef- 263

fectiveness of for improving event extraction. 264

4.6 Ablation Study 265

To verify the contribution of the contrastive mod- 266

ule, we conduct ablation studies with the follow- 267

ing six settings: (1) Text-only setting that trained 268

without videos using BERT+CRF structure; (2) 269

plain contrastive learning (PCL) contrasts repre- 270

sentation learning by pairing the anchor sentence 271

with the corresponding video as positive sample 272

while the rest videos as the negative samples; 273

(3) text contrastive learning (TCL) that contrasts 274

learning by appending the contrastive text learn- 275

ing loss mathcalLT ; (4) event contrastive learning 276

(ECL) that contrasts learning by appending the con- 277

trastive event learning loss mathcalLE ; (5) text 278

and event contrastive learning (TECL) that trained 279

with both contrastive text and event learning losses; 280

4https://huggingface.co/bert-base-uncased
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MODEL
TVEE VM2E2

Trigger Argument Trigger Argument
P R F1 P R F1 P R F1 P R F1

EEQA 79.8 85.7 82.6 72.8 59.2 65.3 43.4 37.8 40.3 19.2 15.4 17.0
JMMT 81.7 83.6 82.6 82.0 64.9 72.5 39.7 56.3 46.6 17.9 24.3 20.6
Ours 81.0 86.3 83.6 79.7 69.8 74.4 49.3 46.4 47.8 23.1 20.7 21.8

Table 2: The results of our model on test sets in comparison with related work. Best results are highlighted in bold.

MODEL Trigger Argument
P R F1 P R F1

Text-only 78.3 83.9 81.0 77.8 62.7 69.4
PCL 82.1 80.7 81.4 81.1 61.7 70.1
TCL 81.6 83.0 82.3 77.3 65.9 71.1
ECL 80.9 83.0 81.9 80.8 67.3 73.4

TECL 81.7 83.6 82.6 79.6 67.9 73.3
WTECL 81.0 86.3 83.6 79.7 69.8 74.4

Table 3: The results of ablation studies on the TVEE
test set.

Event Type Text-only WTECL Event Type Text-only WTECL
Business 4.0 0.0 Justice 83.5 82.3
Conflict 77.7 82.9 Contact 88.1 86.1

Personnel 64.5 68.5 Transaction 16.6 28.6
Life 94.4 95.1 Movement 76.0 79.5

Table 4: F1 scores of trigger extraction on different
event types with Text-only and WTECL settings.

(6) weighted text and event contrastive learning281

(WTECL) that introduces weights of negative sam-282

ples with contrastive text and event losses.283

Effects of event information on contrastive284

learning Results of the settings with contrastive285

learning outperform the Text-only setting, demon-286

starting that learning event extraction by contrast-287

ing text and videos has better performance than288

extracting events that only consider the text modal-289

ity. In comparison with the PCL setting, the intro-290

duce of event information based contrastive learn-291

ing helps the model to extract events on both trig-292

gers and arguments. Benefit on the event informa-293

tion, the TCL setting, which is learning text repre-294

sentation by contrasting event information obtains295

improvement on Trigger extraction and argument296

extraction in terms of F1 than PCL. Compared with297

TCL and PCL, the ECL improves much on argu-298

ment extraction performance, which shows the ef-299

fectiveness of learning event types by contrasting300

with videos for further argument extraction. Re-301

sults of TECL compared with TCL and ECL shows302

that the combination of contrastive text and event303

learning can benefit both trigger extraction and ar-304

gument extraction than only considering one learn-305

ing object. When introducing the negative sample306

weighting function, the WTECL model increases 307

the performances on F1 scores of trigger and ar- 308

gument extraction compared with TECL, which 309

shows the necessity of weighting negative samples 310

and measuring various event weights. 311

Effects of ViECL on different event types. We 312

compare the performance of Text-only setting and 313

WTECL setting on the 8 event types which is 314

shown in Table 4. The F-scores are improved with 315

WTECL on five event types, where Transaction and 316

Conflict events obtain the most improvement and 317

Business declines the most. By observing videos of 318

these event types, it turns out that that it is easier to 319

judge events from the videos corresponding the im- 320

proved event types than the declined ones. We list 321

two examples from TVEE in Figure 3, the crowd 322

gathered in (a) is the main content in the video, 323

which indicates a Conflict.Demonstrate event, how- 324

ever, in (b) the Business.Start-Org event can only 325

be identified by the red rope from the third frame. 326

Therefore, we can conclude that the performance of 327

video enhancement is based on the intuition level 328

of event contents: the more intuitional, the better it 329

performs. 330

5 Related Work 331

5.1 Event Extraction 332

Most event extraction research focuses on the sen- 333

tence level. Early efforts on event extraction mainly 334

used common CNN, RNN and their variants (Chen 335

et al., 2015; Nguyen and Grishman, 2015; Nguyen 336

et al., 2016) to tackle the extraction of triggers 337

and arguments. With the success of pretrained 338

language models (PLMs), research has employed 339

transformers-based models such as BERT to im- 340

prove the task Yang et al. (2019); Wadden et al. 341

(2019); Kenton and Toutanova (2019). To learn 342

better representation, Wang et al. (2021) leverage 343

contrastive learning to pre-train on the Automatic 344

Speech Recognition (AMR) of massive unsuper- 345

vised data. To utilize knowledge from other modal- 346

ities, some studies introduce multimedia data to 347
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In the immediate aftermath of the riot, pro-Trump protests[Conflict.Demonstrate] have 
been fairly small.

(a)

North Korea's new state of the art mountain resort has been opened[Business.Start-Org] by 
leader Kim Jong Un.

(b)

Figure 3: Two examples from the TVEE with
event types Conflict.Demonstrate and Business.Start-
Org with triggers marked in red color and arguments
are underlined. The main objects trigger the corre-
sponding events are labeled by red and green boxes.
We mask faces with purple boxes for privacy.

learn multi-modal event extraction. Zhang et al.348

(2017) demonstrates the effectiveness of extract-349

ing events with visually based entity data. Tong350

et al. (2020) proposes a dual recurrent multimodal351

model to improve text event detection with exter-352

nal news images. Li et al. (2020) extract events353

from both text and image data jointly by projecting354

them into a common embedding space in a unsuper-355

vised way. Most similar work to ours is Chen et al.356

(2021a), it propose a Transformer based model357

to jointly extract events from text and video data.358

Chen et al. (2021a) leverage a pretrained video-359

text retrieval model to match the most relevant text360

video clip pairs as the coreferential sentence and361

video segment. Our work are different from Chen362

et al. (2021a) in many aspects. Firstly, we also tar-363

get text and video pairs data but they are describing364

the same events content originally, so it doesn’t365

depend on the capacity of retrieval model. Further-366

more, we argue that the supplementary arguments367

in videos are negligible, so we soly focus on ex-368

tracting events from texts and videos are used to369

enhance learning in contrastive way.370

5.2 Contrastive Learning371

Contrastive learning methods have shown the ef-372

fectiveness in representation learning via pulling373

together positive samples with anchor samples and374

push apart negative samples in the representation375

space (Oord et al., 2018; Chen et al., 2020; He376

et al., 2020). Many specific tasks in NLP domain377

also have impressive performance based on con-378

trastive learning such as question answering (Yeh 379

and Chen, 2019) and information extraction (Peng 380

et al., 2020; Wang et al., 2021). 381

Constrastive learning also has been demon- 382

strated to perform greatly in multimodal domain 383

tasks. Zhang et al. (2021a) introduced a contrastive 384

learning based modal not only learn inter-modal 385

similarities but also take intra-modal representa- 386

tion into account. Zhang et al. (2021b) propose a 387

video-text match model exploiting rich information 388

in videos to learn better textual constituents rep- 389

resentation for unsupervised grammar induction. 390

However, Zhang et al. (2021b) only focus on lever- 391

aging videos to learn text representations. Mean- 392

while, they treat every negative sample equally that 393

don’t take the difference of negative samples into 394

account. Different from their work, in this paper, 395

we construct negative samples and weigh them by 396

measuring the difference between their event types. 397

Moreover, event representations are also learnt by 398

contrasting videos to improve argument extraction. 399

6 Conclusion and Future Work 400

In this work, we introduce the video modality to 401

assist event extraction by considering their events 402

information. We introduce a new dataset called 403

TVEE which is consists of pairs of sentence and 404

video which are describing the same events and is 405

annotated with event labels in sentences. We pub- 406

licly release the dataset to stimulate further research 407

on multimodal event extraction and other tasks. 408

Meanwhile, We proposed a contrastive learning 409

based model composed of two contrastive losses 410

and a negative sample weighting function. Experi- 411

ments on two multimodal event extraction datasets 412

shows that our model can improve event extraction 413

and outperforms the baselines on this task. Our cur- 414

rent did not consider other modalities such as the 415

auIn the future, we will consider more modalities 416

such as audio to enhance event extraction. 417
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