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Abstract

Advances in unsupervised learning of object-representations have culminated in the
development of a broad range of methods for unsupervised object segmentation and
interpretable object-centric scene generation. These methods, however, are limited
to simulated and real-world datasets with limited visual complexity. Moreover,
object representations are often inferred using RNNs which do not scale well to
large images or iterative refinement which avoids imposing an unnatural ordering
on objects in an image but requires the a priori initialisation of a fixed number of
object representations. In contrast to established paradigms, this work proposes
an embedding-based approach in which embeddings of pixels are clustered in a
differentiable fashion using a stochastic stick-breaking process. Similar to iterative
refinement, this clustering procedure also leads to randomly ordered object repre-
sentations, but without the need of initialising a fixed number of clusters a priori.
This is used to develop a new model, GENESIS-V2, which can infer a variable
number of object representations without using RNNs or iterative refinement. We
show that GENESIS-V2 performs strongly in comparison to recent baselines in
terms of unsupervised image segmentation and object-centric scene generation on
established synthetic datasets as well as more complex real-world datasets.

1 Introduction

Reasoning about discrete objects in an environment is foundational to how agents perceive their
surroundings and act in it. For example, autonomous vehicles need to identify and respond to other
road users (e.g. [1, 2]) and robotic manipulation tasks involve grasping and pushing individual objects
(e.g. [3]). While supervised methods can identify selected objects (e.g. [4, 5]), it is intractable to
manually collect labels for every possible object category. Furthermore, we often desire the ability
to predict, or imagine, how a collection of objects might behave (e.g. [6]). A range of works have
thus explored unsupervised segmentation and object-centric generation in recent years (e.g. [7–36]).
These models are often formulated as variational autoencoders (VAEs) [37, 38] which allow the joint
learning of inference and generation networks to identify objects in images and to generate scenes in
an object-centric fashion (e.g. [15, 17, 28]).

Moreover, such models require a differentiable mechanism for separating objects in an image. While
some works use spatial transformer networks (STNs) [39] to process crops that contain objects (e.g. [7–
15]), others directly predict pixel-wise instance segmentation masks (e.g. [16–27]). The latter avoids
the use of fixed-size sampling grids which are ill-suited for objects of varying size. Instead, object
representations are inferred either by iteratively refining a set of randomly initialised representations
(e.g. [19–24]) or by using a recurrent neural networks (RNN) (e.g. [16–18]). One particularly
interesting model of the latter category is GENESIS [17] can perform both scene segmentation and
generation by capturing relationships between objects with an autoregressive prior.
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As noted in Novotny et al. [40], however, using RNNs for instance segmentation requires processing
high-dimensional inputs in a sequential fashion which is computationally expensive and does not
scale well to large images with potentially many objects. We also posit that recurrent inference is not
only problematic from a computational point of view, but that it can also inhibit the learning of object
representations by imposing an unnatural ordering on objects. In particular, we argue that this leads to
different object slots receiving gradients of varying magnitude which provides a possible explanation
for models collapsing to a single object slot during training, unless the flexibility of the model is
restricted (see [18]). While iterative refinement instead infers unordered object representations, it
requires the a priori initialisation of a fixed number of object slots even though the number of objects
in an image is unknown.

In contrast, our work takes inspiration from the literature on supervised instance segmentation
and adopts an instance colouring approach (e.g. [40–43]) in which pixel-wise embeddings—or
colours—are clustered into attention masks. Typically, either a supervised learning signal is used to
obtain cluster seeds (e.g. [40, 41]) or clustering is performed as a non-differentiable post-processing
operation (e.g. [42, 43]). Neither of these approaches is suitable for unsupervised, end-to-end learning
of segmentation masks. We hence develop an instance colouring stick-breaking process (IC-SBP) to
cluster embeddings in a differentiable fashion. This is achieved by stochastically sampling cluster
seeds from the pixel embeddings to perform a soft grouping of the embeddings into a set of randomly
ordered attention masks. It is therefore possible to infer object representations both without imposing
a fixed ordering or performing iterative refinement.

Inspired by GENESIS [17], we leverage the IC-SBP to develop GENESIS-V2, a novel model that
learns to segment objects in images without supervision and that uses an autoregressive prior
to generate scenes in an interpretable, object-centric fashion. GENESIS-V2 is comprehensively
benchmarked against recent prior art [16, 17, 24] on established synthetic datasets—ObjectsRoom
[44] and ShapeStacks [45]—where it performs strongly in comparison to several recent base-
lines. We also evaluate GENESIS-V2 on more challenging real-world images from the Sketchy
[46] and the MIT-Princeton Amazon Picking Challenge (APC) 2016 Object Segmentation datasets
[47], where it also achieves promising results. Code and pre-trained models are available at
https://github.com/applied-ai-lab/genesis.

2 Related Work

Unsupervised models for learning object representations are typically formulated either as autoen-
coders (e.g. [7–10, 12–28]) or generative adversarial networks (GANs) (e.g. [29–36]). Typical GANs
are able to generate images, but lack an associated inference mechanism and often suffer from training
instabilities (see e.g. [48, 49]). A comprehensive review and discussion of the subject is provided in
Greff et al. [50].

In order to infer object representations, STNs [39] can explicitly disentangle object location by
cropping out a rectangular region from an input, allowing object appearance to be modelled in
a canonical pose (e.g. [7–10, 12–15]). This operation, however, relies on a fixed-size sampling
grid which is not well-suited if objects vary broadly in terms of scale. In addition, gradients are
usually obtained via bi-linear interpolation and are therefore limited to the extent of the sampling
grid which can impede training: for example, if the sampling grid does not overlap with any object,
then its location cannot be updated in a meaningful way. In contrast, purely segmentation based
approaches [16–27]) often use RNNs (e.g. [16–18]) or iterative refinement (e.g. [19–24]) to infer
object representations from an image. Other works either use a fixed number of slots [25, 26] or
group pixels in a non-differentiable fashion [27]. RNN based models need to learn a fixed strategy
that sequentially attends to different regions in an image, but this imposes an unnatural ordering on
objects in an image. Avoiding such a fixed ordering leads to a routing problem. One way to address
this is by randomly initialising a set of object representations and iteratively refining them. More
broadly, this is also related to Deep Set Prediction Networks [51], where a set is iteratively refined
in a gradient-based fashion. The main disadvantage of iterative refinement is that it is necessary
to initialise a fixed number of clusters a priori, even though ideally we would like the number of
clusters to be input-dependent. This is directly facilitated by the proposed IC-SBP. The IC-SBP and
GENESIS-V2 are in this respect also related to the Stick-Breaking VAE [52] which uses a stochastic
number of latent variables, but does not attempt to explicitly capture the object-based structure of
visual scenes.
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Unlike some other works which learn unsupervised object representations from video sequences
(e.g. [13, 14]), our work considers the more difficult task of learning such representations from
individual images alone. GENESIS-V2 is most directly related to GENESIS [17] and SLOT-ATTENTION
[24]. Like GENESIS, the model is formulated as a VAE to perform both object segmentation and
object-centric scene generation, whereby the latter is facilitated by an autoregressive prior. Similar to
SLOT-ATTENTION, the model uses a shared convolutional encoder to extract a feature map from which
features are pooled via an attention mechanism to infer object representations with a random ordering.
In contrast to SLOT-ATTENTION, however, the attention masks are obtained with a parameter-free
clustering algorithm that does not require iterative refinement or a predefined number of clusters.
Both GENESIS and SLOT-ATTENTION are only evaluated on synthetic datasets. In this work, we
use synthetic datasets for quantitative benchmarking, but we also perform experiments on two more
challenging real-world datasets.

3 GENESIS-V2

An image x of height H , width W , with C channels, and pixel values in the interval [0, 1] is
considered to be a three-dimensional tensor x ∈ [0, 1]H×W×C . This work is only concerned with
RGB images where C = 3, but other input modalities with a different number of channels could
also be considered. Assigning individual pixels to object-like scene components can be formulated
as obtaining a set of object masks π ∈ [0, 1]H×W×K with

∑
k πi,j,k = 1 for all pixel coordinate

tuples (i, j) in an image, where K is the number of scene components. Inspired by prior works (e.g.
[16, 22]) and identical to Engelcke et al. [17], this is achieved by modelling the image likelihood
pθ(x|z1:K) as an SGMM of the form

log pθ(x | z1:K) =

H∑
i=1

W∑
j=1

C∑
c=1

log

(
K∑
k=1

πi,j,k(z1:K)N (µi,j,c(zk), σ
2
x)

)
. (1)

The parameters θ of the model are learned σx is a fixed standard deviation that is shared across
object slots. The summation in Equation (1) implies that the likelihood is permutation-invariant
to the order of the object representations z1:K (see e.g. [53, 54]) provided that πi,j,k(z1:K) is also
permutation-invariant. This allows the generative model to accommodate for a variable number of
object representations.

To segment objects in images and to generate synthetic images in an object-centric fashion re-
quires the formulation of appropriate inference and generative models, i.e. qφ(z1:K | x) and
pθ(x | z1:K) pθ(z1:K), respectively, where φ are also learnable parameters. In the generative model,
it is necessary to model relationships between object representations to facilitate the generation of
coherent scenes. Inspired by GENESIS [17], this is facilitated by an autoregressive prior

pθ(z1:K) =

K∏
k=1

pθ(zk | z1:k−1) . (2)

GENESIS uses two sets of latent variables to encode object masks and appearances separately. In
contrast, GENESIS-V2 uses one set of latent variables z1:K to encode both, which increases parameter
sharing. The graphical model of GENESIS-V2 is shown next to related models in Appendix A.

While GENESIS relies on a recurrent mechanism in the inference model to predict segmentation masks,
GENESIS-V2 instead infers latent variables without imposing a fixed ordering and assumes object
latents z1:K to be conditionally independent given an input image x, i.e., qφ(z1:K |x) =

∏
k qφ(zk|x).

Specifically, GENESIS-V2 first extracts an encoding with a deterministic UNet backbone. This
encoding is used to predict a map of semi-convolutional pixel embeddings ζ ∈ RH×W×Dζ (see [40]).
Semi-convolutional embeddings are introduced in Novotny et al. [40] to facilitate the prediction of
unique embeddings for multiple objects of identical appearance. The embeddings are computed by
performing an element-wise addition of pixel coordinates to two dimensions of the embeddings. In this
work, we let the pixel coordinates be in the interval [−1, 1] relative to the image centre. Subsequently,
the IC-SBP converts the embeddings into a set of normalised attention masks m ∈ [0, 1]H×W×K

with
∑
kmi,j,k = 1 via a distance kernel ψ. The spatial structure of the embeddings should induce

the attention masks to be spatially localised, but this is not a hard constraint. In addition, we derive
principled initialisations for the scaling-factor of different IC-SBP distance kernels ψ in Section 3.2.
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IC-SBP

Figure 1: GENESIS-V2 overview. The image x is passed into a deterministic backbone. The resulting
encoding is used to compute the pixel embeddings ζ which are clustered into attention masks m1:K

by the IC-SBP. Features are pooled according to these attention masks to infer the object latents z1:K .
These are decoded into the object masks π1:K and reconstructed components x1:K .

Inspired by Locatello et al. [24], GENESIS-V2 uses the attention masks m1:K to pool a feature vector
for each scene component from the deterministic image encoding. A set of object latents z1:K is
then computed from these feature vectors. This set of latents is decoded in parallel to compute the
statistics of the SGMM in Equation (1). The object masks π are normalised with a softmax operator.
The inference and generation models can be jointly trained as a VAE as illustrated in Figure 1. Further
architecture details are described in Appendix B.

3.1 Instance Colouring Stick-Breaking Process

The IC-SBP is a stochastic, differentiable algorithm that clusters pixel embeddings ζ ∈ RH×W×Dζ
into a variable number of soft attention masks m ∈ [0, 1]H×W×K . Intuitively, this is achieved by (1)
sampling the location (i, j) of a pixel that has not been assigned to a cluster yet, (2) creating a soft or
hard cluster according to the distance of the embedding ζi,j at the selected pixel location to all other
pixel embeddings according to a kernel ψ, and (3) repeating the previous two steps until all pixels are
explained or some form of stopping condition is reached. Crucially, the stochastic selection of pixel
embeddings as cluster seeds leads to a set of randomly ordered soft clusters. Due to its conceptual
similarity, the method derives its name from more formal stick-breaking process formulations as can,
e.g., be found in Yuan et al. [11] or Nalisnick and Smyth [52].

The IC-SBP is described more formally in Algorithm 1. Specifically and inspired by Burgess et al.
[16], a scope s ∈ [0, 1]H×W is initialised to a matrix of ones 1H×W to track the degree to which
pixels have been assigned to clusters. In addition, a matrix of seed scores is created once by sampling
from a uniform distribution c ∼ U(0, 1) ∈ RH×W to perform the stochastic selection of pixel
embeddings. At each iteration, a single embedding vector ζi,j is selected at the spatial location (i, j)
which corresponds to the argmax of the element-wise multiplication of the seed scores and the current
scope. This ensures that cluster seeds are sampled from pixel embeddings that have not yet been
assigned to clusters. An alpha mask αk ∈ [0, 1]H×W is computed as the distance between the cluster
seed embedding ζi,j and all individual pixel embeddings according to a distance kernel ψ. The output
of the kernel ψ is one if two embeddings are identical and decreases to zero as the distance between a
pair of embeddings increases. The associated attention mask mk is obtained by the element-wise
multiplication of the alpha masks by the current scope to ensure that the final set of attention masks
is normalised. The scope is then updated by an element-wise multiplication with the complement of
the alpha masks. This process is repeated until a stopping condition is satisfied, at which point the
final scope is added as an additional mask to explain any remaining pixels.

In this work, we restrict ourselves to soft cluster assignment, leading to continuous attention masks
with values in mk ∈ [0, 1]H×W . Unless the attention masks take binary values, several executions
of the algorithm will lead to slightly different masks for individual objects. If the mask values are
discrete and exactly equal to zero or one, however, then the set of cluster seeds and the set of attention
masks are uniquely defined apart from their ordering. This can be inferred from the fact that if at
each step of the IC-SBP produces a discrete mask, then embeddings associated with this mask cannot
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Algorithm 1: Instance Colouring Stick-Breaking Process

Input: embeddings ζ ∈ RH×W×Dζ
Output: masks m1:K with mk ∈ [0, 1]H×W

Initialise: masks m = ∅, scope s = 1
H×W , seed scores c ∼ U(0, 1) ∈ RH×W

while not StopCondition(m) do
i, j = argmax(s� c);
α = DistanceKernel(ζ, ζi,j);
m.append(s� α);
s = s� (1− α);

end
m.append(s)

be sampled as cluster seeds later on due to the masking of the seed scores by the scope. A different
cluster with an associated discrete mask is therefore created at every step until all embeddings are
uniquely clustered. Another interesting modification would be to use continuous masks while making
the output of the IC-SBP permutation-equivariant with respect to the ordering of the cluster seeds.
This could be achieved either by directly using the cluster seeds for downstream computations or by
separating the mask normalisation from the stochastic seed selection. While the SBP formulation
facilitates the selection of a diverse set of cluster seeds, the masks could be normalised separately
after the cluster seeds are selected by using a softmax operation, for example. An investigation of
these ideas is left for future work.

In contrast to GENESIS, the stochastic ordering of the masks implies that it is not possible for
GENESIS-V2 to learn a fixed sequential decomposition strategy. While this does not strictly apply
to the last mask which is set equal to the remaining scope, we find empirically that models learn a
strategy where the final scope is either largely unused or where it corresponds to a generic background
cluster with foreground objects remaining unordered as desired. Unlike as in iterative refinement
where a fixed number of clusters needs to be initialised a priori, the IC-SBP can infer a variable
number of object representations by using a heuristic that considers the current set of attention masks
at every iteration in Algorithm 1. While we use a fixed number of K masks during training for
efficient parallelism on GPU accelerators, we demonstrate that a flexible number of masks can be
extracted at test time with minimal impact on segmentation performance.

3.2 Kernel Initialisation with Semi-Convolutional Embeddings

For semi-convolutional embeddings to be similar according to a distance kernel ψ, the model needs to
learn to compensate for the addition of the relative pixel coordinates. It can achieve this by predicting
a delta vector for each embedding to a specific pixel location, for example to the centre of the object
that the embedding belongs to. A corollary of this is that if embeddings are equal to the relative
pixel coordinates with the other dimensions being zero, then clustering embeddings based on their
relative distances results in “blob-like”, spatially localised masks. In this work, we make use of
this property to derive a meaningful initialisation for free parameters in the distance kernel ψ of the
IC-SBP. Established candidates for ψ from the literature are the Gaussian ψG [40], Laplacian ψL
[40], and Epanechnikov ψE kernels [55] with

ψG = exp
(
− ||u−v||

2

σG

)
, ψL = exp

(
− ||u−v||σL

)
, ψE = max

(
1− ||u−v||

2

σE
, 0
)
, (3)

whereby u and v are two embeddings of equal dimension. Each kernel contains a scaling factor
σ{G,L,E} ∈ R+. By initialising the model at the beginning of training so that the embeddings are
equal to the relative pixel coordinates with the other dimensions being zero, then σ{G,L,E} can be
initialised so that the initial attention masks are similarly-sized circular patches. In particular, we
initialise these scaling factors as

σ−1G = K ln 2, σ−1L =
√
K ln 2, σ−1E = K/2 , (4)

which is derived and illustrated in Appendix C. After initialisation, σ{G,L,E} is jointly optimised
along with the other learnable parameters of the model as in Novotny et al. [40].
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3.3 Training

Following Engelcke et al. [17], GENESIS-V2 is trained by minimising the GECO objective [56],
which can be written as a loss function of the form

Lg = Eqφ(z|x)[− ln pθ(x | z)] + βg ·KL[qφ(z | x) || pθ(z)] . (5)

The relative weighting factor βg ∈ R+ is updated at every training iteration separately from the
model parameters according to

βg = βg · eη(C−E) with E = αg · E + (1− αg) · Eqφ(z|x)[− ln pθ(x | z)] . (6)

E ∈ R is an exponential moving average of the negative image log-likelihood, αg ∈ [0, 1] is a
momentum factor, η ∈ R+ is a step size hyperparameter, and C ∈ R is a target reconstruction error.
Intuitively, the optimisation decreases the weighting of the KL (Kullback-Leibler) regularisation
term as long as the reconstruction error is larger than the target C. The weighting of the KL term is
increased again once the target is satisfied.

In some applications, a practitioner might only require segmentation masks in which case, so having
to reconstruct the entire input would be rather inefficient. While we observed that the attention masks
m are correlated to the object masks π, they do not align as closely with object boundaries. We
conjecture that this is a consequence of the large receptive field of the UNet backbone which spatially
dilates information about objects. Consequently, we also conduct experiments with an additional
auxiliary mask consistency loss that encourages attention masks m and object masks π to be similar.
This leads to a modified loss function of the form

L′g = E + βg ·
(
KL[qφ(z | x) || pθ(z)] + KL[m || nograd(π)]

)
, (7)

in which m and π are interpreted as pixel-wise categorical distributions. Preliminary experiments indi-
cated that stopping the gradient propagation through the object masks π helps to achieve segmentation
quality comparable to using the original loss function in Equation (5).

4 Experiments

This section presents results on two simulated datasets—ObjectsRoom [44] and ShapeStacks [45]—as
well as two real-world datasets—Sketchy [46] and APC [47]—which are described in Appendix D.
GENESIS-V2 is compared against three recent baselines: GENESIS [17], MONET [16], and SLOT-
ATTENTION [24]. Even though SLOT-ATTENTION is trained with a pure reconstruction objective and
is not a generative model, it is an informative and strong baseline for unsupervised scene segmentation.
The other models are trained with the GECO objective [56] following the protocol from Engelcke
et al. [17] for comparability. We refer to MONET trained with GECO as MONET-G to avoid conflating
the results with the original settings. Further training details are described in Appendix E.

Following prior works (e.g. [17, 18, 22, 24]), segmentation quality is quantified using the Adjusted
Rand Index (ARI) [57] and the Mean Segmentation Covering (MSC). The MSC is derived from
Arbelaez et al. [58] and described in detail in Engelcke et al. [17]. These are by default computed
using pixels belonging to ground truth foreground objects (ARI-FG and MSC-FG). Similar to Greff
et al. [22], these are averaged over 320 images from respective test sets. We also report the Evidence
Lower Bound (ELBO) averaged over 320 test images as a measure how well the generative models
are able to fit the data. Generation quality is measured using the Fréchet Inception Distance (FID)
[59] which is computed from 10,000 samples and 10,000 test set images using the implementation
from Seitzer [60]. When models are trained with multiple random seeds, we always show qualitative
results for the seed that achieves the highest ARI-FG. In terms of the two real-world datasets, there
are only ground truth segmentation masks available for the APC data, with the caveat that there is
only a single foreground object per image. In this case, when computing the segmentation metrics
from foreground pixels alone, the ARI-FG could be trivially maximised by assigning all image pixels
to the same component and the MSC-FG would be equal to the largest IOU between the predicted
masks and the foreground objects. When considering all pixels, the optimal solution for both metrics
is to have exactly one set of pixels assigned to the foreground object and another set of pixels being
assigned to the background. While acknowledging that segmenting the background as a single
component is arguably not the only valid way of segmenting the background, we report the ARI and
MSC using all pixels instead to develop a sense of how well foreground objects are separated from
the background.
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Figure 2: GENESIS-V2 learns better reconstructions and segmentations on ShapeStacks.

Table 1: Means and standard deviations of the segmentation metrics from three seeds. Bold values in
the first half of the table indicate the best values for the generative models; bold values in the second
half indicate any better values achieved by the additional non-generative baseline.

ObjectsRoom ShapeStacks

Model Generative ARI-FG MSC-FG ARI-FG MSC-FG

MONET-G Yes 0.54±0.00 0.33±0.01 0.70±0.04 0.57±0.12
GENESIS Yes 0.63±0.03 0.53±0.07 0.70±0.05 0.67±0.02
GENESIS-V2 Yes 0.85±0.01 0.59±0.01 0.81±0.01 0.67±0.01
SLOT-ATTENTION No 0.79±0.02 0.64±0.13 0.76±0.01 0.70±0.05

4.1 Benchmarking in Simulation

Figure 2 shows qualitative results on ShapeStacks and additional qualitative results are included in
Appendix F. GENESIS-V2 cleanly separates the foreground objects from the background and the
reconstructions. Interestingly, GENESIS-V2 is the only model that segments the entire background as a
single component. We conjecture that this behaviour is a consequence of the fact that the background
structures are of finite variety. As a result, even when viewing only a fraction of the background,
it is possible for the model to largely predict the appearance of the rest of the background. The
KL regularisation during training encourages efficient compression of the inputs, which penalises
redundant information between slots and might thus explain this behaviour. SLOT-ATTENTION is
trained without KL regularisation and the decoders of MONET-G as well GENESIS are possibly not
flexible enough to reconstruct the entire background as a single component (see Appendix B for
architecture details).

In terms of quantitative performance, Table 1 summarises the segmentation results on ObjectsRoom
and ShapeStacks. GENESIS-V2 outperforms the two generative baselines GENESIS and MONET-G
across datasets on all metrics, showing that the IC-SBP is indeed suitable for learning object-centric
representations. GENESIS-V2 outperforms the non-generative SLOT-ATTENTION baseline in terms of
the ARI-FG on both datasets. SLOT-ATTENTION manages to achieve a better mean MSC-FG. The
standard deviation of the MSC-FG values is much larger, though, which indicates training is not
as stable. While the ARI-FG indicates the models ability to separate objects, it does not penalise
the undersegmentation of objects (see [17]). The MSC-FG, in contrast, is an IOU based metric and
sensitive to the exact segmentation masks. We conjecture that SLOT-ATTENTION manages to predict
slightly more accurate segmentation masks given that is trained on a pure reconstruction objective
and without KL regularisation, thus leading to a slightly better mean MSC-FG. A set of ablations for
GENESIS-V2 is also included in Appendix F.

7



Table 2: Means and standard deviations of the segmentation metrics from three seeds for GENESIS-V2
with a fixed or flexible number of object slots. Highlighting follows an analogous scheme as in
Table 1.

Dataset Training Slots Avg. K ↓ MAE ↓ ARI-FG ↑ MSC-FG ↑
ObjectsRoom No mask loss Fixed 7.0±0.0 3.3±0.0 0.85±0.01 0.59±0.01

Flexible 5.0±0.9 1.7±0.9 0.84±0.01 0.51±0.10

ShapeStacks No mask loss Fixed 9.0±0.0 4.4±0.0 0.81±0.01 0.67±0.01
Flexible 6.3±0.3 1.9±0.3 0.77±0.02 0.63±0.01

With mask loss Fixed 9.0±0.0 4.4±0.0 0.81±0.01 0.68±0.00
Flexible 5.7±0.2 1.1±0.02 0.81±0.01 0.68±0.01

Table 3: Means and standard deviations of ELBO values and FID scores from three seeds.

Model ObjectsRoom ShapeStacks

ELBO ↑ FID ↓ ELBO ↑ FID ↓
MONET-G -7217±19 205.7±7.6 -7268±19 197.8±5.2
GENESIS -7023±2 62.8±2.5 -7082±15 186.8±18.0
SLOT-ATT. — — — —
GENESIS-V2 -7040±2 52.6±2.7 -7019±2 112.7±3.2

We also examine whether the IC-SBP can indeed be used to extract a variable number of object
representations. This is done by terminating the IC-SBP according to a manual heuristic and setting
the final mask to the remaining scope. Specifically, we terminate the IC-SBP when the sum of
the current attention mask values is smaller than 70 pixels for ObjectsRoom and 20 pixels for
ShapeStacks. A larger threshold is used for the former as the attention masks tend to be more
dilated (see Appendix F). The average number of used slots, the Mean Absolute Error (MAE) to
the ideal number of slots, and segmentation metrics are when using a fixed number and a variable
number slots after training are summarised in Table 2. On both datasets, allowing for a flexible
number requires fewer steps and achieves a smaller MAE. This is incurred, though, at a drop in
segmentation performance. When training GENESIS-V2 with the auxiliary mask loss as in Equation (7)
on ShapeStacks, the average number of steps and the MAE further decrease at no impact on the
segmentation metrics. On ObjectsRoom, the auxiliary mask loss appeared to deteriorate the learning
of good object segmentations and the associated results are therefore not included.

In terms of density estimation and scene generation, Table 3 summarises the ELBO values and FID
scores for GENESIS-V2 and the baselines on ObjectsRoom and ShapeStacks.2 GENESIS achieves a
slightly better ELBO than GENESIS-V2 on ObjectsRoom, but GENESIS-V2 performs significantly
better on ShapeStacks. We hypothesise that GENESIS benefits here from having a more flexible,
autoregressive posterior than GENESIS-V2. Regarding scene generation, GENESIS-V2 consistently
performs best with a particularly significant improvement on ShapeStacks. Results on ShapeStacks,
however, are not as good as for ObjectsRoom, which is likely caused by the increased visual
complexity of the images in the ShapeStacks dataset. Qualitative results for scene generation are
shown in Figures 3 and 4. Both GENESIS and GENESIS-V2 produce reasonable samples after training
on ObjectsRoom. For ShapeStacks, samples from GENESIS contain significant distortions. In
comparison, samples from GENESIS-V2 are more realistic, but also still show room for improvement.

2Note that in contrast to the MONET-G training objective, the decoded mask distribution rather than the
deterministic attention masks are used to compute the reconstruction likelihood in the ELBO calculation for
MONET-G. The KL divergence between the two mask distributions as used in the training objective is not part of
this ELBO calculation.
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(a) MONET-G

(b) GENESIS

(c) GENESIS-V2

Figure 3: ObjectsRoom samples.

(a) MONET-G

(b) GENESIS

(c) GENESIS-V2

Figure 4: ShapeStacks samples.
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Figure 5: In contrast to MONET-G and GENESIS, GENESIS-V2 as well as SLOT-ATTENTION are able
to learn reasonable object segmentations on the more challenging Sketchy dataset.

4.2 Real-World Applications

After validating GENESIS-V2 on two simulated datasets, this section present experiments on the
Sketchy [46] and APC datasets [47]; two significantly more challenging real-world datasets collected
in the context of robot manipulation. Due to the long training time on these datasets, each model is
only trained with a single random seed. While this makes it infeasible to draw statistically strong
conclusions, the aim of this section is to provide an indication and early exploration of how these
models fare on more complex real-world datasets. Reconstructions and segmentations after training
GENESIS-V2 on Sketchy and APC are shown in Figures 5 and 6. For Sketchy, it can be seen that
GENESIS-V2 and SLOT-ATTENTION disambiguate the individual foreground objects and the robot
gripper fairly well. SLOT-ATTENTION produces slightly more accurate reconstructions, which is likely
facilitated by the pure reconstruction objective that the model is trained with. However, GENESIS-V2
is the only model that separates foreground objects from the background in APC images. Environment
conditions in Sketchy are highly controlled and SLOT-ATTENTION appears to be unable to handle the
more complex conditions in APC images. Nevertheless, GENESIS-V2 also struggles to capture the
fine-grained details and oversegments one of the foreground objects into several parts, leaving room
for improvement in future work. Additional qualitative results are included in Appendix F.
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Figure 6: GENESIS-V2 is the only model that separates the foreground objects in images from APC.

Table 4: Segmentation metrics on APC.

ARI MSC

MONET-G 0.11 0.48
GENESIS 0.04 0.29
SLOT-ATT. 0.03 0.25
GENESIS-V2 0.55 0.67

Table 5: FID scores on Sketchy and APC.

Sketchy APC

MONET-G 294.3 269.3
GENESIS 241.9 183.2
SLOT-ATT. — —
GENESIS-V2 208.1 245.6

Table 4 reports the ARI and MSC scores computed from all pixels GENESIS-V2 and the baselines.
GENESIS-V2 stands out in terms of both metrics, corroborating that GENESIS-V2 takes a valuable
step towards learning unsupervised object-representations from real-world datasets. FID scores for
generated images are summarised in Table 5 and qualitative results are included in Appendix F.
GENESIS-V2 achieves the best FID on Sketchy, but it is outperformed by GENESIS on APC. Both
models consistently outperform MONET-G. All of the FID scores, however, are fairly large which is
not surprising given the much higher visual complexity of these images. It is therefore difficult to
draw strong conclusions from these beyond a rough sense of sample quality. Further work is required
to generate high-fidelity images after training on real-world datasets.

5 Conclusions

This work develops GENESIS-V2, a novel object-centric latent variable model of scenes which is able
to both decompose visual scenes into semantically meaningful constituent parts while at the same
time being able to generate coherent scenes in an object-centric fashion. GENESIS-V2 leverages a
differentiable clustering algorithm for grouping pixel embeddings into a variable number of attention
masks which are used to infer an unordered set of object representations. This approach is validated
empirically on two established simulated datasets as well as two additional real-world datasets. The
results show that GENESIS-V2 takes a step towards learning better object-centric representations
without labelled supervision from real-world datasets.

In terms of future work, there is still room for improvement in terms of reconstruction, segmentation,
and sample quality. It would also be interesting to investigate the ability of GENESIS-V2 and the
IC-SBP to handle out-of-distribution images that contain more objects than seen during training.
Moreover, several interesting variations of the IC-SBP were also already described in Section 3.1.
Additional promising avenues include the extension of GENESIS-V2 to learn object representations
from video (see e.g. [13, 14]) or to leverage recent advances in hierarchical latent variable models
such as Nouveau VAEs (NVAEs) [61].
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