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Abstract

We present a convolutional autoencoder (CAE) for single-carrier (SC) waveform
design in satellite links with nonlinear high-power amplifiers (HPAs). The CAE
jointly optimizes bit-error rate (BER), peak-to-average power ratio (PAPR), and
adjacent-channel power ratio (ACPR) via an augmented-Lagrangian objective. Us-
ing measured block-upconverter (BUC) data with AM/AM and AM/PM distor-
tions across temperature and frequency variations, we show consistent improve-
ments over conventional PAPR-reduction techniques and baselines, with strong
generalization across frequency and temperature variations. Experiments with
64-QAM demonstrate BER and spectral advantages at practical back-off levels
without explicit digital predistortion (DPD).

1 Introduction

High-throughput satellite systems employ high-order QAM to maximize spectral efficiency. In prac-
tice, single-carrier (SC) waveforms are attractive for satellite links due to their reduced sensitivity
to frequency offsets and phase noise, but they remain vulnerable to the nonlinearities of high-power
amplifiers (HPAs). High peak-to-average power ratio (PAPR) increases the impact of nonlinear dis-
tortion, causing constellation warping, adjacent-channel interference, and degraded bit-error rate
(BER). These challenges are especially pronounced in Ka-band block-upconverters (BUCs), where
amplifier responses vary significantly with temperature, frequency, and hardware aging.

Classical mitigation approaches include clipping-and-filtering (CF) [3, [10], selective mapping
(SLM) [10], and probabilistic shaping [7]. While effective in reducing PAPR, these techniques
often increase BER, require side information, or incur substantial complexity. Digital predistortion
(DPD) [9, 12, 4] remains the industry standard, but it is difficult to sustain accuracy near saturation
and across varying amplifier conditions.

Building on these limitations, recent work has explored deep learning (DL) for physical layer design.
Early applications demonstrated DL-based receivers, precoders, and OFDM waveform shaping [2,
11, [8]. More recently, convolutional autoencoders (CAEs) proved effective for PAPR reduction in
terrestrial OFDM [6], motivating their adaptation to SC satellite links. Unlike [12, 4], which rely on
explicit predistorter identification, the proposed framework learns waveform shaping directly from
measured HPA data, capturing realistic AM/AM and AM/PM effects without requiring closed-form
amplifier models.

This work proposes a CAE that jointly optimizes BER, spectral containment, and PAPR by embed-
ding these requirements into an augmented-Lagrangian loss. Trained directly on measured amplifier
responses, the CAE achieves robustness to hardware variability. The architecture is inspired by the
waveform learning framework in [1], and after exploring several alternatives, this design offered the
best balance of accuracy, complexity, and runtime.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Al and ML for Next-
Generation Wireless Communications and Networking (AI4NextG).



Main contributions: The proposed study advances end-to-end learning for satellite waveform
design by addressing both spectral and nonlinear challenges inherent in SC systems. The key contri-
butions are:

* An end-to-end CAE for SC waveforms that learns shaping directly under realistic AM/AM and
AM/PM distortions.

* A gradual loss training strategy to enforce spectral and power constraints during optimization.

* Evaluation on measured BUC data across diverse operating points, showing robust generalization.

* Demonstrated consistent gains in BER, PAPR, and PSD compared with CF, SLM, DPD, and a
no-mitigation baseline on 64-QAM.

2 System Model

We consider an SC communication system transmitting blocks of N symbols with oversampling
factor L and root-raised-cosine (RRC) pulse shaping. Let B € {0, 1}V *X denote the input bits per
block and s € CV the mapped 64-QAM symbols. After upsampling, the shaped waveform is
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where gix[m] is the RRC filter of length L.
The nonlinear HPA applies a memoryless transformation
zy = G(xy), )
capturing both AM/AM and AM/PM distortion. The channel then adds additive white Gaussian
noise (AWGN):
Y = a1 +wg, w; ~CN(0,02). 3)

At the receiver, matched filtering and downsampling yield an N-symbol sequence for detection.
Fig. [T shows the system architecture, including modulation, pulse shaping, nonlinear amplification,
channel noise, and receiver processing. We evaluate performance using several metrics:

BER. BER is measured after symbol detection and plotted versus the peak signal-to-noise ratio
(PSNR), defined for a normalized channel as
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where Pr is the maximum transmit power.
PAPR. For a length-N sequence z[n],
max,, |z[n]|?
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ACPR. ACPR quantifies spectral regrowth due to nonlinearities. From the output PSD Ps,(f),
S, Pes() df
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with F;, the in-band region and F,q; the adjacent-band region.
Output Back-Off (OBO). The amplifier operating point is expressed as
Psa
OBO [dB] = 10log,, < 5 t) : (7)
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where P, is the saturated output power and P, is the average output power. Lower OBO means
operation closer to saturation, improving efficiency but exacerbating nonlinear distortion. Together,
these metrics capture the trade-off between detection reliability (BER), power efficiency (PAPR,
OBO), and spectral compliance (ACPR) under nonlinear HPA conditions.
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Figure 1: General SC system model with nonlinear HPA and receiver detection.

3 CAE Architecture and Training

The CAE includes a convolutional encoder f(-) and decoder ¢(-), modeling the transmitter and re-
ceiver, respectively. Both are built with dilated ResNet blocks. Complex I/Q samples are represented
as real-valued channels (C2R at input, R2C where needed). A power-normalization layer enforces
unit average transmit power.

Design rationale. Both encoder and decoder employ ResNet blocks with separable convolutions,
batch normalization, ReLU activation, dilation, and skip connections [5], which mitigate vanishing
gradients and enable efficient identity mapping. Dilated convolutions expand the receptive field of
each layer, providing efficient representation of nonlinear distortion patterns across the waveform
block without requiring very deep stacks, while residual connections stabilize training under strong
nonlinearities. Alternative designs based on fully connected or attention layers consistently under-
performed in BER, runtime, and scalability. Figure [2b| details the encoder architecture, while the
decoder mirrors this design but omits the power normalization and R2C layers.

* Encoder (Tx): The encoder processes symbol sequences through stacked dilated ResNet blocks,
producing complex-valued waveforms using C2R split channels, with a final power-normalization
stage enforcing unit transmit power.

* Decoder (Rx): A symmetric ResNet-based convolutional structure reconstructs LLRs from re-
ceived waveforms, without the power normalization or R2C stages.

Training strategy. The HPA response, measured across frequencies and temperatures on Ka-band
BUC hardware, is spline-interpolated into a high-resolution LUT model. Training begins with a
warm-up phase minimizing only Lpcg, which prevents premature domination by spectral or PAPR
penalties. Constraints are then gradually enabled, allowing the model to balance detection accuracy,
PAPR, and ACPR objectives. Early stopping on a validation set avoids overfitting and ensures
generalization across amplifier realizations.

Loss function. Optimization employs an augmented-Lagrangian composite loss:
2 A

— 8
e ®

1
L = Lpck + X2 Lpapr + %HEPAPRHS + g(maX{O, A3+ p3 Lacpr})
3
with components:

* LpcEg: binary cross-entropy reconstruction loss between predicted and true bit labels,
* LpAPR = PAPR{xE} — PAPR;¢q: constraint on encoder output relative to a predefined threshold,

e Lacpr = ACPR{zl'} — ACPR,,: constraint on spectral leakage at the HPA output with respect
to adjacent-channel mask limits.

The augmented multipliers (\;, p;) adapt dynamically, enabling stable multi-objective optimization.
Training begins with Lpcgr only and gradually activates the PAPR/ACPR penalties. This staged
procedure proved essential to prevent collapse, ensure convergence across diverse HPA profiles, and
maintain computational efficiency for real-time satellite deployment.

4 Results and Insights

Setup. Experiments were conducted on SC blocks of N=1000 symbols with oversampling factor
L=4 and RRC pulse shaping. Independent training and test sets were generated with randomized
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Figure 2: Structure of the proposed CAE system. (a) End-to-end scheme. (b) Encoder block. (c¢) ResNet block.

symbol streams, AWGN realizations, and HPA instances to capture variability across hardware,
temperature, and frequency.

Baselines. Baselines. We compare the proposed CAE against classical approaches: CF, SLM
employing U=64 candidate phase sequences, DPD, a no-mitigation baseline (BL), and BL-IDEAL
(a distortion-free reference). All classical receivers use maximum-likelihood or LLR demapping as
appropriate.

Measured HPA model. The BUC originates from a Gilat Ka-band transceiver. AM/AM and
AM/PM responses were measured across —40°C—60°C and 29-30 GHz using a 67 GHz vector net-
work analyzer in mixer mode. The 1 dB compression point is 2.5 W, and a spline-interpolated LUT
captures fine nonlinearities. To isolate effects, we also consider a reduced AM/AM-only model (no
phase distortion).

BER and Generalization. Figure 3al shows BER for 64-QAM under mixed HPA training. Solid
lines denote mean performance, shaded areas indicate variability across amplifier realizations, out-
performing CF and SLM. CAE matches the noise-limited floor at low PSNR, then achieves substan-
tially lower BER as nonlinear distortion dominates. Narrow confidence bands confirm robustness
across diverse HPAs without per-device tuning, an essential property for satellite deployments where
amplifier responses drift with temperature, frequency, and aging.

PAPR and Spectral Containment. Figures 3B and 4al report PAPR CCDF and PSD. CAE shifts
the CCDF left, lowering PAPR by over 1dB relative to CF and SLM. Spectral regrowth is also
suppressed, with PSD comfortably within mask limits. Figure 4bl highlights the OBO-ACPR trade-
off: CAE consistently reaches a given ACPR target at lower output back-off (OBO), confirming that
it preserves spectral purity while operating closer to saturation, reflecting better efficiency—purity
balance. The flatter slope stems from training at zero input back-off (IBO), unlike classical methods
that rely on power back-off.

Comparison with DPD. We further benchmark against interpolation-based DPD, which con-
structs a spline-fitted LUT inverse from measured AM/AM and AM/PM curves. DPD effectively
compensates AM—PM by adjusting input phase, yielding competitive BER in moderate regimes, but
struggles near saturation where clipping and compression dominate. Figure [5| show that CAE con-
sistently outperforms DPD. Moreover, CAE inherently reduces PAPR, whereas DPD leaves peak
excursions largely unchanged. Importantly, DPD requires amplifier-specific calibration, limiting
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Figure 3: 64-QAM performance with mixed HPA training.
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Figure 4: 64-QAM spectral performance with mixed HPA training.
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Figure 5: BER vs. PSN R comparison: CAE vs. DPD, 64-QAM.

scalability in hardware-diverse systems. By contrast, CAE generalizes across amplifiers after a sin-
gle training phase, offering robustness without repeated recalibration.

Summary. CAE achieves consistent BER, PAPR, and ACPR gains across nonlinear regimes, gen-
eralizes across amplifiers, and surpasses both heuristic PAPR methods and classical DPD. These
results underline the feasibility of deploying NN-based waveform design in realistic satellite com-
munication systems, offering robustness and efficiency simultaneously.



5 Conclusion

This work presented a CAE that jointly optimizes BER, PAPR, and ACPR for SC waveform design
under nonlinear HPAs. Trained directly on measured BUC responses, the CAE consistently outper-
formed CF, SLM, and interpolation-based DPD across BER, spectral, and efficiency metrics, while
generalizing across frequency, temperature, and hardware variations. Unlike DPD, which requires
amplifier-specific calibration, the CAE scales across devices after a single training phase, reducing
deployment cost and complexity.

Beyond demonstrating technical feasibility, these results highlight the broader potential of learning-
based waveform design to complement or replace model-driven compensation in satellite systems.
Future work will extend the framework to coded operation with advanced FEC, integration into
non-terrestrial network (NTN) scenarios, and real-time implementation on DSP/FPGA platforms.
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