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Abstract

This paper considers the problem for finding the (δ, ǫ)-Goldstein stationary point
of Lipschitz continuous objective, which is a rich function class to cover a great
number of important applications. We construct a novel zeroth-order quantum
estimator for the gradient of the smoothed surrogate. Based on such estima-
tor, we propose a novel quantum algorithm that achieves a query complexity ofÕ(d3/2δ−1ǫ−3) on the stochastic function value oracle, where d is the dimension

of the problem. We also enhance the query complexity to Õ(d3/2δ−1ǫ−7/3) by
introducing a variance reduction variant. Our findings demonstrate the clear ad-
vantages of utilizing quantum techniques for non-convex non-smooth optimiza-
tion, as they outperform the optimal classical methods on the dependency of ǫ by

a factor of ǫ−2/3.

1 Introduction

In this paper, we study the following problem

min
x∈Rd

{f(x) ≜ Eξ [F (x; ξ)] }, (1)

where the stochastic component F (x; ξ) isL-Lipschitz continuous but possibly non-convex and non-
smooth. Such problem receives growing attention recently since it is general enough to cover many
important applications including deep neural networks [21, 40], reinforcement learning [9, 49], and
statistical learning [17, 39, 62].

Due to the absence of both smoothness and convexity in the objective function, neither the gra-
dient nor the sub-differentials are valid anymore to measure the convergence behaviour. Clarke
sub-differential is a natural extension for describing the first-order information of the Lipschitz con-
tinuous function [10], however, it is intractable for finding the near-approximate stationary point in
terms of the Clarke sub-differential as suggested by the hard instances [31, 50, 63]. Zhang et al.
[63] introduce the notion of (δ, ǫ)-Goldstein stationary point (cf. Section 2.2), which weakens the
traditional stationary point by considering the convex hull of the Clarke sub-differentials. Following
this, we focus on the problem of finding the (δ, ǫ)-Goldstein stationary points of the objective.

There are great many optimization methods for finding the (δ, ǫ)-Goldstein stationary points via
stochasic classical oracles [6, 14, 28, 31, 35, 47, 52, 63]. Zhang et al. [63] proposed stochastic in-
terpolated normalized gradient descent method (SINGD) with the first non-asymptotic result, which
has the stochastic first-order complexity of O(δ−1ǫ−4). Later on, Tian et al. [52] developed the
perturbed SINGD method which queries the gradient at the differentiable point and established the
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Table 1: We summarize the complexities of classical and quantum zeroth-order methods for finding
the (ǫ, δ)-Goldstein point of a non-smooth non-convex objective, where d is the dimension of the
problem.

Methods Oracle Query Complexity Reference

GFM classical O(d3/2δ−1ǫ−4) Lin et al. [35]

GFM+ classical O(d3/2δ−1ǫ−3) Chen et al. [6]

OptimalZO classical O(dδ−1ǫ−3) Kornowski and Shamir [32]

QGFM quantum Õ (d3/2δ−1ǫ−3) Theorem 4.1

QGFM+ quantum Õ (d3/2δ−1ǫ−7/3) Theorem 4.3

Table 2: We summarize the complexities of classical and quantum first-order methods for finding
the ǫ-stationary point of a smooth non-convex objective, where d is the dimension of the problem.

Methods Oracle Query Complexity Reference

SPIDER/PAGE classical O(ǫ−3) Fang et al. [18], Li et al. [34]

Q-SPIDER quantum Õ(d1/2ǫ−5/2) Sidford and Zhang [48]

QGM+ quantum Õ(d1/2ǫ−7/3) Theorem G.1

same complexity. Cutkosky et al. [13] improved the stochastic first-order oracle complexities toO(δ−1ǫ−3) by using the “online to non-convex conversation”, assuming f(⋅) is differentiable. This
improvement aligns with the theoretical lower bound [13].

Zeroth-order methods, which only query the function value oracle, are more practical for the Lip-
schitz continuous objective. This is because computing the first-order oracles can be extremely
challenging [29, 52] or even inaccessible for numerous real-world applications [16, 27, 43]. Lin
et al. [35] proposed a gradient-free method for finding the (δ, ǫ)-Goldstein stationary point withinO(d3/2δ−1ǫ−4) query complexity to the stochastic function value via a connection between the ran-
domized smoothing [41] and the Goldstein stationary point. This complexity was further improved

to O(d3/2δ−1ǫ−3) and O(dδ−1ǫ−3) by Chen et al. [6], Kornowski and Shamir [32] respectively.
However, all these methods using the classical oracles for finding the Goldstein stationary point face
a bottleneck of δ−1ǫ−3 due to the lower bound reported by [13].

Recently, we have witnessed the power of the quantum optimization methods by accessing the quan-
tum counterparts of the classical oracles for non-convex optimization [7, 23, 37, 48, 61, 64], convex
optimization [4, 5, 48, 55, 64], and semi-definite programming [1, 2, 53, 54]. However, most of these
results focus on the deterministic methods and the case that the objective function is smooth. Garg
et al. [19] and Zhang and Li [60] showed the negative results for non-smooth convex and smooth
non-convex optimization that quantum algorithms have no improved rates over the classical ones
when the dimension is large. Sidford and Zhang [48] proposed stochastic quantum methods which
show the advantage of using quantum stochastic first-order oracles for smooth objectives when the
dimension is relatively small. To the best of our knowledge, there have no work that shows the
quantum speedups for minimizing non-smooth non-convex objectives, which is the most general
and fundamental function class. Built upon this, it is a natural question to ask:

Can we go beyond the complexity of O(δ−1ǫ−3) for finding the (δ, ǫ)-Goldstein stationary point for
stochastic non-smooth non-convex optimization by involving quantum oracles?

We give an affirmative answer to the above question by proposing novel quantum zeroth-order meth-
ods and showing their explicit query complexities. We summarize our contributions as follows.

• We construct efficient quantum gradient estimators for the smoothed surrogate of the objectives
with O(1)-queries of the function value oracles, which allows us to construct efficient quantum
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zeroth-order methods. Moreover, we provide explicit constructions of quantum superposition
over required distributions. We present these results in Section 3 and Appendix A.

• We propose the quantum gradient-free method (QGFM) and fast quantum gradient-free method
(QGFM+) for non-smooth non-convex optimization. We achieve the query complexities ofO(d3/2δ−1ǫ−3) for QGFM and O(d3/2δ−1ǫ−7/3) for QGFM+ in finding the (δ, ǫ)-Goldstein sta-
tionary point using quantum stochastic function value oracle. The query complexity of QGFM+

surpasses the optimal result achieved by classical methods by a factor of ǫ−2/3. We compare our
methods with the classical zeroth-order methods in Table 1 and present the results in Section 4.

• We generalize the algorithm framework of QGFM+ for smooth non-convex optimization (i.e. the
gradient of the objective function is Lipschitz continuous). We propose the fast quantum gradient
method (QGM+), which takes the advantage of QGFM+ to choose the variance level adaptively.

QGM+ enjoys an improved complexity of Õ(d1/2ǫ−7/3) queries of the quantum stochastic gradi-
ent oracle, which outperforms the existing state-of-the-art method (Q-SPIDER [48]) by a factor

of ǫ−1/6. We compare our method with the classical and quantum first-order methods in Table 2.
A discussion on this is presented in Remark 4.5, and the formal results are stated in Appendix G.

2 Preliminaries

We introduce preliminaries for quantum computing model and non-smooth non-convex optimization
in this section.

2.1 Preliminaries for Quantum Computing Model

Here we formally review the basics and some concepts from quantum computing that we work with.
For more details, please refer to Nielsen and Chuang [42].

Quantum Basics. A quantum state can be seen as a vector x = (x1, x2, . . . , xm)⊺ in Hilbert spaceHm such that ∑i ∣xi∣2 = 1. We follow the Dirac bra/ket notation on quantum states, i.e., we denote

the quantum state for x by ∣x⟩ and denote x† by ⟨x∣ , where † means the Hermitian conjugation.

Given a state ∣ψ⟩ = ∑m
i=1 ci∣i⟩, we call ci ∈ C the amplitude of the state ∣i⟩. Given two quantum states∣x⟩ ∈ Hm and ∣y⟩ ∈ Hm, we denote their inner product by ⟨x∣y⟩ ≜ ∑i x

†
iyi. Given ∣x⟩ ∈ Hm and∣y⟩ ∈ Hn, we denote their tensor product by ∣x⟩⊗ ∣y⟩ ≜ (x1y1,⋯, xmyn)⊺ ∈ Hm×n. If we measure

state ∣ψ⟩ = ∑m
i=1 ci∣i⟩ in computational basis, we will obtain i with probability ∣ci∣2 and the state will

collapse into ∣i⟩ after measurement, for all i. A quantum algorithm works by applying a sequence of
unitary operators to a initial quantum state.

Quantum Query Complexity. Corresponding to the classical query model, quantum query com-
plexity considers the number of querying a black box of a particular function which needs to be
invoked in order to solve a problem. In many cases, the black box corresponds to the process that
has the highest overhead, and therefore reducing the number of queries to it will effectively reduce
the computational complexity of the entire algorithm. For example, if a classical oracle Cf for a
function f is a black box that, when queried with a point x, outputs the function value Cf(x) = f(x),
then the corresponding quantum oracle Uf is a unitary transformation that maps a quantum state∣x⟩ ∣q⟩ to the state ∣x⟩ ∣q + f(x)⟩. Moreover, given the superposition input∑x,q αx,q ∣x⟩ ∣q⟩, applying

the quantum oracle once will, by linearity, output the quantum state ∑x,q αx,q ∣x⟩ ∣q + f(x)⟩.
2.2 Preliminaries for Non-convex Non-smooth Optimization

We introduce the necessary background for non-convex non-smooth optimization, with the follow-
ing mild assumption that the objective function is Lipschitz continuous.

Assumption 1. We assume the stochastic component F (⋅; ξ) of the objective f(⋅) satisfies that∣F (x; ξ) − F (y; ξ)∣ ≤ L∥x − y∥ for every x,y ∈ Rd. Besides, we assume f ∶ Rd
→ R is lower

bounded and denote f∗ ≜ infx∈Rd f(x).
The Rademencher’s theorem indicates that f(⋅) is differentiable almost everywhere under Assump-
tion 1, which allows us to define its Clarke sub-differential as follows [10].
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Definition 2.1 (Clarke sub-differential). The Clarke sub-differential of a Lipschitz function at point
x is defined by ∂f(x) ≜ conv{g ∶ g = limxk→x∇f(xk)}.
We then introduce the Goldstein sub-differential [22] and the (δ, ǫ)-Goldstein stationary point [63].

Definition 2.2 (Goldstein sub-differential). The Goldstein sub-differential of a Lipschitz function at

point x is defined by ∂δf(x) ≜ conv{∪y∈Bδ(x)∂f(y)}.
Definition 2.3 ((δ, ǫ)-Goldstein stationary point). We call x the (δ, ǫ)-Goldstein stationary point
of a given Lipschitz function if it satisfies that dist(0, ∂δf(x)) ≤ ǫ, where ∂δf(x) is the Goldstein
sub-differential.

Next we define the smoothed surrogate of f(⋅) as follows.

Definition 2.4 (δ-smoothed surrogate). The δ-smoothed surrogate of f is defined by

fδ(x) ≜ Ew∼P [f(x + δw)] , (2)

where P is the uniform distribution on a unit ball.

Although f(⋅) is non-smooth, its smoothed surrogate fδ(⋅) enjoys some good properties as presented
in the following proposition [6, 15, 35, 59].

Proposition 2.1. If f(⋅) satisfies Assumption 1, its smoothed surrogate fδ(⋅) satisfies that:

• ∣fδ(⋅) − f(⋅)∣ ≤ δL and ∣fδ(x) − fδ(y)∣ ≤ L∥x − y∥.
• ∇fδ(⋅) is c

√
dLδ−1-Lipschitz for some constant c > 0, i.e. ∥∇fδ(x)−∇fδ(y)∥ ≤ c√dL∥x−y∥.

• ∇fδ(⋅) ∈ ∂δf(⋅), where ∂δf(⋅) is the Goldstein sub-differential.

Remark 2.2. Proposition 2.1 implies that the task of finding the (δ, ǫ)-Goldstein stationary point of
f(⋅) is equivalent to finding the ǫ-stationary point of a smoothed function fδ(⋅), i.e. finding some
point x such that ∥∇fδ(x)∥ ≤ ǫ.
3 Zeroth-order Based Stochastic Quantum Estimator

In this section, we present a novel quantum estimator for the gradient of the smoothed surrogate
fδ(⋅) by using the quantum stochastic function value oracle, which is essential for designing our
quantum algorithms for non-convex non-smooth optimization.

3.1 Quantum Estimators via Quantum Stochastic Function Value Oracle

In this section, we construct quantum estimators for the gradient of the smoothed surrogate byO(1)-
queries of quantum stochastic function value oracle.

We start with the definition of the stochastic function value oracle. Classically, a stochastic func-
tion value evaluation is defined as F (x, ξ) for a function f ∶ Rd

→ R with ξ being such that
Eξ[F (x, ξ)] = f(x). In this work, we assume the access of a quantum stochastic function value
oracle UF for f(⋅), which is defined as follows.

Definition 3.1 (Quantum stochastic function value oracle). For f ∶ Rd
→ R, the quantum stochastic

function value oracle, denoted by UF , works as: UF ∶ ∣x⟩⊗ ∣ξ⟩⊗ ∣b⟩ z→ ∣x⟩⊗ ∣ξ⟩⊗ ∣b + F (x, ξ)⟩,
where F (x, ξ) is sampled from a distribution pξ(⋅) such that Eξ[F (x; ξ)] = F (x).
It is common to construct the following stochastic gradient estimator for ∇fδ(⋅) [6, 32, 35, 36, 41]:

gδ(x;w, ξ) ≜ d

2δ
(F (x + δw; ξ) − F (x − δw; ξ)) ⋅w, (3)

where w ∈ R
d is uniformly distributed on a unit sphere. The following proposition shows that

gδ(x;w, ξ) is a good estimator of ∇fδ(⋅).
Proposition 3.1 ([6, Proposition 3 and 4]). Under Assumption 1, i.e. the random variable ξ satisfies
that

∣F (x; ξ) − F (y; ξ)∣ ≤ L∥x − y∥ and Eξ[F (x; ξ)] = f(x), (4)
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hold for all x,y ∈ Rd, then gδ(x;w, ξ) defined in eq. (3) satisfies that Ew,ξ[gδ(x;w, ξ)] = ∇fδ(x),
Ew,ξ[∥gδ(x;w, ξ)−∇fδ(x)∥2] ≤ cπdL2, and Ew,ξ[∥gδ(x;w, ξ)−gδ(y;w, ξ)∥2 ≤ d2L2

δ2
∥x−y∥2,

where c = 16
√
2π.

Next, to exploit the power of quantum algorithms, we generalize eq. (3) to its quantum counterpart.
Building on eq. (3) and Proposition 3.1, gδ(x;w, ξ) can be interpreted as a random variable. In
the quantum setting, accessing a random variable typically involves querying a quantum sampling
oracle, which returns a quantum superposition over the associated distribution.

Definition 3.2 (Quantum sampling oracle). For a random variable X with sample space Ω, its

quantum sampling oracle OX is defined as OX ∶ ∣0⟩z→ ∑x

√
Pr[X = x]∣x⟩⊗ ∣ψx⟩, where ∣ψx⟩ is

an arbitrary quantum state for every x.

The content in second quantum register can also be viewed as possible quantum garbage appeared
during the implementation of the oracle. Observe that if we directly measure the output of OX , it
will collapse to a classical sampling access to X that returns a random sample x with respect to
probability Pr[X = x]. Note that the output of OX can be represented as integral over continuous
random variables as well, as used in [8, 48].

Hence, based on our observation that gδ(x;w, ξ) can be viewed as a random variable, our target
oracle Ogδ

–quantum stochastic gradient oracle–is essentially a quantum sampling oracle. Given
upon this, we formally define the quantum δ-estimated stochastic gradient oracle as follows.

Definition 3.3 (Quantum δ-estimated stochastic gradient oracle). For fδ(⋅) ∶ Rd
→ R, its quantum

δ-estimated stochastic gradient oracle is defined as

Ogδ
∶ ∣x⟩⊗ ∣0⟩⊗ ∣0⟩z→ ∣x⟩⊗∑

ξ,w

√
Pr[w, ξ]∣gδ(x;w, ξ)⟩⊗ ∣ψw,ξ⟩,

where the random variable w is uniformly distributed on a unit sphere and ξ satisfies eq. (4).

Proposition 3.1 implies gδ(⋅) can serve as an estimator of ∇fδ , and it can be calculated with access
to a quantum δ-estimated stochastic gradient oracle as defined above. The following theorem shows
that such oracle can be built with only O(1) access to the quantum stochastic function value oracle.

Lemma 3.2. Given access to a quantum sampling oracle Oξ,w to the joint distribution on (ξ,w),
one can construct a quantum δ-estimated stochastic gradient oracle (as defined in Definition 3.3)
with two queries to the quantum stochastic function value oracle UF .

Remark 3.3. In Lemma 3.2, we assume a black box access to quantum sampling oracle Oξ,w fol-
lowing Sidford and Zhang [48]. We present the explicit construction of such oracle in Appendix A.

Similarly, we can also constructed the estimator of ∇fδ(x) −∇fδ(y) by the following oracle:

O∆gδ
∶ ∣x⟩⊗ ∣y⟩⊗ ∣0⟩⊗ ∣0⟩z→ ∣x⟩⊗ ∣y⟩⊗∑

ξ,w

√
Pr[w, ξ]∣gδ(x;w, ξ) − gδ(y;w, ξ)⟩⊗ ∣ψw,ξ⟩,

with only O(1)-queries of stochastic quantum function value oracle.

Corollary 3.4. Under the same condition as in Lemma 3.2, one can construct O∆gδ
with four

queries to the quantum stochastic function value oracle UF .

3.2 Mini-batch Quantum Estimators via Quantum Mean Estimation

We constructed the quantum oracles Ogδ
and O∆gδ

with O(1)-queries of quantum function
value oracles in Section 3.1. These oracles produce outputs in the form of random variables.
Specifically,Ogδ

provides an output with expectation ∇fδ(x) with the input x, and O∆gδ
provides

an output with the expectation ∇fδ(x) −∇fδ(y) for O∆gδ
with the inputs x and y.

The variance of the outputs can be reduced by constructing the mini-batch estimator. Inspired by
the recent advance on quantum mean estimation [11, 12, 48] which improve the classical mini-batch
estimator for multi-dimensional random variables, we construct improved estimators for ∇fδ(x)
and ∇fδ(x) −∇fδ(y). We formally present the results in the following theorem.

Theorem 3.5. Under Assumption 1, and given access to a quantum sampling oracle Oξ,w to the
joint distribution on (ξ,w), it holds that:
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Algorithm 1 Quantum Gradient-Free Method (QGFM)

1: for t = 0,1 . . . T

2: Construct gt as an unbiased quantum estimator of ∇fδ(xt) with variance at most σ̂2
t using

UF according to Theorem 3.5.

3: xt+1 = xt − ηgt

4: end for

1. there exists an algorithm that can construct an unbiased quantum estimator ĝ of ∇fδ(x) such

that E [∥ĝ −∇fδ(x)∥2] ≤ σ̂2
1 within Õ(dLσ̂−11 ) queries of UF in expectation.

2. there exists an algorithm that can construct an unbiased quantum estimator ∆g of ∇fδ(x) −
∇fδ(y) such that E [∥∆g − (∇fδ(x) −∇fδ(y))∥2] ≤ σ̂2

2 within Õ(d3/2L∥y − x∥σ̂−12 δ−1)
queries of UF in expectation.

Remark 3.6. Compared to the classical mini-batch estimator for∇fδ(x), which requireO(dL2σ̂−21 )
queries of CF to achieve σ̂2

1 variance level ([6, Corollary 2.1]), our mini-batch quantum estimator
for ∇fδ(x) in Theorem 3.5 reduces a factor of Lσ̂−11 without increasing the dimension dependency.

4 Quantum Algorithms for Finding the Goldstein Stationary Point

In this section, we develop novel quantum algorithms for finding the (δ, ǫ)-Goldstein stationary
point of a non-smooth non-convex objective f(⋅). Instead of finding the stationary point directly,
we consider finding the ǫ-stationary point of its smoothed surrogate fδ(⋅), which is equivalent to
the original problem according to Remark 2.2. The classical zeroth-order methods based on such
equivalence require to access the gradient estimator to ∇fδ(⋅) by stochastic function values [6, 32,
35, 36]. Different from the classical methods, we can take the advantage of the quantum estimators,
which can be constructed by accessing quantum stochastic function value oracles due to our novel
results in Section 3.

We first propose an algorithm which uses the quantum gradient estimator to replace ∇fδ(x) to do
the gradient descent step at each iteration. We present the quantum gradient-free method (QGFM) in
Algorithm 1. Given a desired variance level σ̂2

t , line 2 of Algorithm 1 can be constructed explicitly
and efficiently by the quantum stochastic function value oracles UF according to Theorem 3.5. The
following theorem gives the upper bound on the total UF that Algorithm 1 require to access for
finding the (δ, ǫ)-Goldstein stationary point.

Theorem 4.1. Under Assumption 1, by setting the parameter in Algorithm 1 as η =

δ/(2d1/2L) and σ̂2
t ≡ ǫ

2/2, then the total queries of stochastic quantum function value oracle UF

for finding the (δ, ǫ)-Goldstein stationary point of f(⋅) can be bounded by Õ (d3/2 (L3

ǫ3
+

L2∆
δǫ3
)) ,

where ∆ = f(x0) − f∗.
Remark 4.2. QGFM(Algorithm 1) speedups the gradient-free method (GFM) [35] for finding (δ, ǫ)-
stationary point by a factor of Lǫ−1.

Notably, Algorithm 1 utilized a simple gradient descent step can achieve Ω(δ−1ǫ−3), which is op-
timal for classical zeroth-order and first-order methods in terms of ǫ and δ. It is worth mentioning
that the classical methods that achieve this lower bound typically involve multiple loops [6] or rely
on additional online optimization algorithms [13, 32].

To further enhance the query complexity in Theorem 4.1, we propose the fast quantum gradient-
free method (QGFM+) by incorporating variance reduction techniques, as outlined in Algorithm 2.
QGFM+ can be seen as a quantum-accelerated version of GFM+ [6]. Unlike GFM+, which required
double loops, QGFM+ simplifies the implementation by utilizing a single loop based on the PAGE
framework [34]. Moreover, we replace all classical estimators with quantum estimators in line 6
and line 8 of Algorithm 2. These quantum estimators can be efficiently constructed using stochastic
quantum function value oracles with a desired variance level, as demonstrated in Theorem 3.5. We
present the total number of queries of UF for QGFM+ in the following theorem. We present the
total queries of UF for QGFM+ in the following theorem.
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Algorithm 2 Fast Quantum Gradient-Free Method (QGFM+)

1: Construct g0 as an unbiased estimator of ∇fδ(x0) with variance at most σ̂2
1,0.

2: for t = 0,1 . . . T

3: xt+1 = xt − ηgt

4: Flip a coin θt ∈ {0,1} where P (θt = 1) = pt
5: If θt = 1 then

6: Construct gt+1 as an unbiased quantum estimator of ∇fδ(xt+1) with variance at most
σ̂2
1,t+1 using UF according to Theorem 3.5.

7: else

8: Construct ∆gt+1 as an unbiased quantum estimator of ∇fδ(xt+1)−∇fδ(xt) with variance
at most σ̂2

2,t+1 using UF according to Theorem 3.5.

9: gt+1 = gt +∆gt+1.

10: end for

Theorem 4.3. Under Assumption 1, by setting the parameters in Algorithm 2 as follows

η = δ/(2d1/2L), pt ≡ ǫ
2/3/L2/3, σ̂2

1,t ≡ ǫ
2/2, and σ̂2

2,t = ǫ
2/3L4/3d∥xt − xt−1∥2/δ2,

then the total queries of stochastic quantum function value oracle UF for finding the (δ, ǫ)-Goldstein

stationary point of f(⋅) can be bounded by Õ (d3/2 (L7/3

ǫ7/3
+

L4/3∆
δǫ7/3

)) , where ∆ = f(x0) − f∗.
Remark 4.4. QGFM+ (Algorithm 2) speedups the GFM+ [6] for finding (δ, ǫ)-stationary point by a

factor of Lǫ−2/3.

We can see that QGFM+ achieves the query complexity of Õ(d3/2ǫ−7/3δ−1), which cannot be
achieved by any of the classical methods. Furthermore, we observe the applicability of our frame-
work to smooth non-convex optimization.

Remark 4.5. QGFM+ is different from the quantum speedups algorithm (Q-SPIDER) for non-
convex smooth stochastic optimization [48]: QGFM+ adjusts the variance level of ∆gt according to
the difference between the current iteration point and the previous one, while Q-SPIDER fixes the
variance levels. By using the adaptive variance level and QGFM+ framework, we can further accel-
erate the Q-SPIDER for smooth non-convex optimization. In Appendix G, we propose fast quantum

gradient method (QGM+) with the query complexity of Õ(√dǫ−7/3), which improves the one of

Õ(√dǫ−5/2) obtained in Sidford and Zhang [48].

5 Conclusion and Future Work

In this paper, we have presented quantum algorithms for finding the (δ, ǫ)-Goldstein stationary point
for a non-smooth non-convex objective. Our query complexities demonstrate a clearly quantum
speedup over the classical methods. In future work, it would be intriguing to explore the framework
without ideal distributions which is caused by the limitation of classical or quantum resources. It
is also interesting to figure out the quantum speedups for the deterministic methods [14, 28, 51]
or the NS-NC objective with constraints [38]. We are also interested to see if similar strategies
can be applied to the quantum online optimization with zeroth-order feedback [25, 26, 33, 56, 58].
The query complexity of the proposed methods still have heavy dependency on the dimension, it is
also possible to reduce the dimension dependency based on other quantum techniques and design
efficient first-order quantum methods.
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A Explicit Construction of Quantum Sampling Oracles

In this section, we propose a novel quantum process to realize quantum sampling oracle Ow,ξ ∶∣0⟩z→ ∑w,ξ

√
Pr[w, ξ]∣w, ξ⟩∣ψw,ξ⟩ with uniform distribution, where ξ is uniformly distributed on{0,⋯,N − 1} and w is sampled uniformly on a discrete unit sphere.

The uniform distribution of ξ in quantum state can be constructed by using Hadamard gates. The
construction of the uniform distribution on a discrete unit sphere is more tricky. Classically, such a
distribution can be constructed by sampling each coordinate from a standard Gaussian distribution,
and then normalize the vector to have unit length by dividing by its norm. However, preparing a
superposition state with Gaussian amplitudes is not trivial because Gaussian distribution is defined
in a infinite interval. Constructing such state with Grover’s method [24] will lead to some issues in
dealing with the domain and normalization of the measurement probability. Instead, here, starting
with the simple uniform superposition state, we use central limit theorem to construct the standard
Gaussian distribution.

The overall quantum algorithm proceeds as follows:

Step 1. Prepare initial quantum state ∣0⟩⊗m1
⊗ ∣0⟩⊗(dm2)

⊗ ∣0⟩⊗(d logm2). Set k = 0. ApplyH⊗m1⊗

H⊗dm2 ⊗ I , that is, apply Hadamard gates to the first and the second registers. Here,
m1,m2 ∈ N+.

Step 2. Define h ∶ {0,1}m2
→ R, h(j) = 2

√
m2 ( j1+j2+⋅⋅⋅+jm2√

m2

− 0.5). Apply I ⊗ U⊗dh , where

Uh, the unitary transform corresponding to h, maps quantum state ∣j⟩ ∣0⟩ to quantum state∣j⟩ ∣0 + h(j)⟩. The k-th Uh takes the k-th m2 qubits in the second register as input, and the
output is stored in the k-th logm2 qubits in the third register, for all k ∈ {0, . . . , d − 1}.

Step 3. Consider the third register as a d-dimension vector w′, with logm2 qubits to store each

coordinate w′k. Apply Unorm ∶ ∣w⟩ ∣0 + ∥w∥⟩, the result is stored in an additional ancillary
register. Then normalize w′ to have unit length by dividing by ∥w∥ in each component.

Analysis and Correctness. In Step 1, it starts with the quantum state ∣0⟩⊗m1
⊗ ∣0⟩⊗(dm2)

⊗

∣0⟩⊗(d logm2), where all of the registers are initialized to 0. The first register is prepared for cre-
ating the superposition of ξ, and the second and the third registers are prepared for creating the
superposition of w. We apply Hadamard gates to the first and the second registers, to obtain a
uniform superposition of computation basis, which gives

1√
2m1dm2

2m1−1∑
i=0
∣i⟩⊗ 1∑

j
(0)
1

,...,j
(0)
m2
=0
∣j(0)1 . . . j(0)m2

⟩⊗ ⋅ ⋅ ⋅ ⊗ 1∑
j
(d−1)
1

,...,j
(d−1)
m2

=0
∣j(d−1)1 . . . j(d−1)m2

⟩⊗ ∣0⟩ .

Let m1 = ⌈logN⌉, and we relabel the first register to obtain

1√
2m1dm2

∑
ξ

∣ξ⟩⊗ 1∑
j
(0)
1

,...,j
(0)
m2
=0
∣j(0)1 . . . j(0)m2

⟩⊗ ⋅ ⋅ ⋅ ⊗ 1∑
j
(d−1)
1

,...,j
(d−1)
m2

=0
∣j(d−1)1 . . . j(d−1)m2

⟩⊗ ∣0⟩ .

After Step 2, as each Uh operates in the same manner, we take one as an example,

1√
2m1dm2

∑
ξ

∣ξ⟩⊗ ⋅ ⋅ ⋅ 1∑
j1,...,jm2

=0
∣j1j2 . . . jm2

⟩ . . . ∣2√m2 (j1 + j2 + ⋅ ⋅ ⋅ + jm2√
m2

− 0.5)⟩ . . . .
Once measure, j1, . . . , jm2

are independent and identically distributed random variables with mean
of 0.5 and variance of 0.25. By the central limit theorem, the average of {ji}m2

i=1 approximates
the Gaussian distribution when m2 is large. We obtain the standard Gaussian distribution after

shifting and scaling the average of them. We denote w′k ≜ 2
√
m2 ( j(k)1

+j
(k)
2
+⋅⋅⋅+j(k)

m2√
m2

− 0.5), then the

measurement results of ∑j(k) ∣w′k⟩ follow the distribution of N (0,1).
After Step 3, the vector in the third register is mapped into the unit sphere, and the measurement
result follows the uniform distribution on a discrete unit sphere. Rearrange the order of the registers,
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denote all the garbage qubits as ∣ψw,ξ⟩, we obtain

∑
w,ξ

√
Pr[w, ξ] ∣w, ξ⟩ ∣ψw,ξ⟩ ,

where w =w′/∥w′∥ is uniformly distributed on a discrete unit sphere and ξ is uniformly distributed
on {0,⋯,N − 1}.
This realizes the discrete version of the quantum sample oracle Ow,ξ with uniform distribution.

Remark A.1. In the ideal scenario where we do not need to limit the number of qubits, allowing m1

andm2 to be sufficiently large, we can achieve ∫w∈Sd−1

√
µ(w)dw∣w⟩ as needed in Proposition 3.1.

Specifically, our process requires m1 +m2 × d Hadamard gates, O(dm2) fundamentally arithmetic
operations and 1 calls to the norm circuit. Here, m1 = ⌈logN⌉ and m2 is the number of random
variables which are used to approximate the Gaussian distribution. Note that many gates here can
be performed in parallel, for example, all the H gates can be performed simultaneously, and the
sum of m2 qubits can be implemented in a circuit of O(logm2) depth. The total depth complexity
is O(logm2 + log(d logm2)), which indicates that the circuit depth will remain small when m2

increases. This ensures that our construction is feasible even under the context of NISQ quantum
computer [3, 44], which only supports low depth circuits. Notably, this procedure does not require
querying UF , thereby not increasing the query complexity of UF . Nevertheless, it is still important
to give such a explicit and efficient construction to ensure that the quantum state preparation will not
ruin the quantum advantage for the overall time complexity.

Remark A.2. If ξ is sampled from distribution other than uniform distribution, there still exist quan-
tum techniques which can construct such quantum sample oracle. When the detailed classical sam-
pling circuits are known, we can make it reversible by replacing gates in the classical circuits with
reversible quantum gates such as Toffoli gate [42], so as to obtain a quantum circuit [57]. When
there is only a black box access to the classical circuit, we discuss the construction by cases. For the
continues case where the distribution is described by a probability density function, we can use the
Grover’s method [24], which requires an efficient integrating circuit. For the discrete case, we can
extend the Grover’s method by the QRAM data structure. The complexity of constructing QRAM
data structure depends linearly on the size of sample space. Once it is constructed, the complexity
of generating the quantum sample oracle depends only logarithmly on the size of sample space [30].

B The Proof of Lemma 3.2

Proof. First, we claim that a unitary operator Ug,δ for computing the stochastic gradient estimator
gδ(⋅;w, ξ) can be efficiently constructed. More precisely, we can construct

Ug,δ ∶ ∣x⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣b⟩z→ ∣x⟩⊗ ∣gδ(x;w, ξ)⟩⊗ ∣ψw,ξ⟩ (5)

with 2 queries to UF . Now we assume the access to Ug,δ and the description of its construction
will be deferred to the end of this proof. Next we show how this can lead to a quantum δ-estimated
stochastic gradient oracle Og,δ as defined in Definition 3.3. Given initial state ∣x⟩ ⊗ ∣0⟩ ⊗ ∣0⟩, we
can prepare the desired quantum state by first applying the quantum sampling oracle Ow,ξ and then
Ug,δ as follows:

Ug,δ ⋅ (I⊗Oξ,w ⊗ I)∣x⟩⊗ ∣0⟩⊗ ∣0⟩ =Ug,δ(∣x⟩⊗∑
ξ,w

√
p(ξ,w)∣ξ,w⟩⊗ ∣0⟩)

= ∑
ξ,w

√
p(ξ,w)Ug,δ(∣x⟩⊗ ∣ξ,w⟩⊗ ∣0⟩)

= ∣x⟩⊗∑
ξ,w

√
p(ξ,w)∣gδ(x;w, ξ)⟩⊗ ∣ψw,ξ⟩.

Next we finish the proof by presenting how to implement Ug,δ with two queries to UF . Since δ
and d are fixed and known beforehand, we can easily construct the following three operators via the
quantum unitary implementations of the corresponding classical arithmetic operations:

A+ ∶ ∣x⟩⊗ ∣w⟩⊗ ∣0⟩z→ ∣x⟩⊗ ∣w⟩⊗ ∣x + δw⟩, A− ∶ ∣x⟩⊗ ∣w⟩⊗ ∣0⟩z→ ∣x⟩⊗ ∣w⟩⊗ ∣x − δw⟩,
sub ∶ ∣a⟩⊗ ∣b⟩z→ ∣a⟩⊗ ∣a − b⟩, and Fmul ∶ ∣c⟩z→ ∣ δ

2d
c⟩ .

13



Let F ′(x;w, ξ) ≜ δ
2d
(F (x + δw; ξ) − F (x − δw; ξ)). Then we construct a unitary D as follows:

D ∶ ∣x⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣0⟩⊗ ∣0⟩⊗ ∣0⟩⊗ ∣0⟩
↦(a) ∣x⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣0⟩⊗ ∣0⟩⊗ ∣x − δw⟩⊗ ∣0⟩
↦(b) ∣x⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣F (x − δw; ξ)⟩⊗ ∣0⟩⊗ ∣x − δw⟩⊗ ∣0⟩
↦(c) ∣x⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣F (x − δw; ξ)⟩⊗ ∣F (x + δw; ξ)⟩⊗ ∣x − δw⟩⊗ ∣x + δw⟩
↦(d) ∣x⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣F ′(x;w, ξ)⟩⊗ ∣F (x + δw; ξ)⟩⊗ ∣x − δw⟩⊗ ∣x + δw⟩
= ∣x⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣F ′(x;w, ξ)⟩⊗ ∣ψ′w,ξ⟩ ,

(6)

where (a) follows by applying A− on the first, third and sixth registers; (b) uses the quantum
stochastic function value oracle UF on the second, fourth and sixth registers; (c) uses A+ and UF

in a way similar to steps (a) and (b); (d) applies sub on the fourth and fifth registers, and then
applies Fmul on the fourth register. It is easy to see that this unitary D uses only 2 queries to UF .

For any input state ∣x⟩⊗ ∣w, ξ⟩⊗ ∣0⟩⊗ ∣0⟩⊗d, apply D to obtain

∣x⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣F ′(x;w, ξ)⟩⊗ ∣ψ′w,ξ⟩⊗ ∣0⟩⊗d
= ∣x⟩⊗ ∣ξ⟩⊗ ∣w1,⋯,wd⟩⊗ ∣F ′(x;w, ξ)⟩⊗ ∣ψ′w,ξ⟩⊗ ∣0⟩⊗d (7)

Next we will utilize quantum multiplication operator Umul ∶ ∣a⟩ ⊗ ∣b⟩ ⊗ ∣c⟩ Ð→ ∣a⟩ ⊗ ∣b⟩ ⊗ ∣c ⊕ ab⟩.
This can be implemented by the quantization of classical multiplication algorithms, whose details
can be found in [20, 45, 46].

Applying Umul to each ∣wi, F
′⟩⊗ ∣0⟩ for all i ∈ [d] yields

∣x⟩⊗ ∣ξ⟩⊗ ∣w1,⋯,wd⟩⊗ ∣F ′(x + δw; ξ)⟩⊗ ∣ψ′w,ξ⟩⊗ ∣F ′(x + δw; ξ)w1,⋯, F
′(x + δw; ξ)wd⟩

= ∣x⟩⊗ ∣ξ⟩⊗ ∣w1,⋯,wd⟩⊗ ∣F ′(x + δw; ξ)⟩⊗ ∣ψ′w,ξ⟩⊗ ∣F ′(x + δw; ξ)w⟩
= ∣x⟩⊗ ∣ξ⟩⊗ ∣w1,⋯,wd⟩⊗ ∣F ′(x + δw; ξ)⟩⊗ ∣ψ′w,ξ⟩⊗ ∣gδ(x;w, ξ)⟩
= ∣x⟩⊗ ∣ψw,ξ⟩⊗ ∣gδ(x;w, ξ)⟩.

(8)

By swapping the last two quantum registers, we obtain ∣x⟩⊗ ∣g(x;w, ξ)⟩⊗ ∣ψw,ξ⟩. Hence, Ug,δ can
be implemented with two queries to UF .

C The Proof of Corollary 3.4

Proof. Analogous to eq. (5), we claim that the following unitary Vg,δ can be implemented with 4
queries to UF :

Vg,δ ∶ ∣x⟩⊗ ∣y⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣b⟩z→ ∣x⟩⊗ ∣y⟩⊗ ∣gδ(x;w, ξ) − gδ(y;w, ξ)⟩⊗ ∣ψw,ξ⟩.
With access to Vg,δ and Og,δ, we can construct O∆gδ

as

O∆gδ
=Vg,δ ⋅ (I⊗ I⊗Oξ,w ⊗ I).

Next, to implement Vg,δ with 4 queries to UF , we can first follow the steps in eq. (6), eq. (7) and
eq. (8) to get a unitary that performs the mapping below

∣x⟩⊗ ∣y⟩⊗ ∣ξ⟩⊗ ∣w⟩⊗ ∣0⟩⊗ ∣0⟩⊗ ∣0⟩⊗ ∣0⟩z→ ∣x⟩⊗ ∣y⟩⊗ ∣ψw,ξ⟩⊗ ∣gδ(x;w, ξ)⟩⊗ ∣gδ(y;w, ξ)⟩.
Then applying sub and a SWAP gate to the output above yields

∣x⟩⊗ ∣y⟩⊗∑
ξ,w

√
Pr[w, ξ]∣gδ(x;w, ξ) − gδ(y;w, ξ)⟩⊗ ∣ψw,ξ⟩.

D The Proof of Theorem 3.5

Before we present the proof, we first introduce the results for the quantum mean estimation by Sid-
ford and Zhang [48].
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Theorem D.1 ([48, Theorem 4]). For a random variable X with bounded variance such that

Var [X] ≤ L̂2, there exists an algorithm that can output an unbiased estimator µ̂ of µ = E [X]
satisfying E [∥µ̂ − µ∥2] ≤ σ̂2 using an expected Õ(L̂√dσ̂−1) queries of quantum sampling oracle
OX as defined in Definition 3.2.

Proof. According to Proposition 3.1, the quantum δ-estimated stochastic gradient oracle given the
input x satisfies that

E [gδ] = ∇fδ(x) and Var [gδ] ≤ 16√2πdL2.

Using Theorem D.1 with L̂ =
√
dL, it requires only Õ(dLσ̂−11 ) queries of Ogδ

to construct the

quantum estimator ĝ such that E [∥ĝ −∇fδ(x)∥2] ≤ σ̂2
1 . According to Lemma 3.2, we can construct

each Ogδ
by O(1)-queries of UF . Thus, it only requires Õ(dLσ̂−11 ) queries of UF to construct the

mini-batch quantum estimator ĝ.

Similarly, since we can construct the quantum estimator ∆gδ by O(1)-queries of UF according to
Corollary 3.4, with the following properties

E [∆gδ] = ∇fδ(x) −∇fδ(y) and Var [∆gδ] ≤ E [∥∆gδ∥2] ≤ d2L2δ−2∥x − y∥2,
then, using Theorem D.1 with L̂ = dLδ−1∥x − y∥ directly leads to second statement.

E The Proof of Theorem 4.1

Proof. According to the variance level we set, gt satisfies that

E [∥gt −∇fδ(xt)∥2] ≤ ǫ2
2
.

According to Proposition 2.1, fδ(⋅) is a nonconvex function, with (√dLδ−1)-Lipschitz gradient,
which implies that

fδ(xt+1) ≤ fδ(xt) + ⟨∇fδ(x),xt+1 − xt⟩ +
√
dLδ−1

2
∥xt+1 − xt∥2

= fδ(xt) − η⟨∇fδ(x),gt⟩ +
√
dLδ−1

2
∥xt+1 − xt∥2

Taking expectation on both sides of the above inequality, we have

fδ(xt+1) ≤ fδ(xt) − η∥∇fδ(xt)∥2 + η2
√
dLδ−1

2
E [∥gt∥2]

≤ fδ(xt) − η∥∇fδ(xt)∥2 + η2√dLδ−1 (∥∇fδ(xt)∥2 +E [∥gt −∇δ(xt)∥2])
≤ fδ(xt) − (η −√dLδ−1η2) ∥∇fδ(xt)∥2 +√dLδ−1η2 ⋅ ǫ2

2
,

We let η = δ

2
√
dL

, then it holds that

E [∥∇fδ(xt)∥2] ≤ 2√dLδ−1 (fδ(xt) − fδ(xt+1)) + ǫ2
4
.

Summing up the above inequality, we have

E [∑T
t=0 ∥∇fδ(xt)∥2

T
] ≤ 2

√
dLδ−1(fδ(x0) − f∗δ )

T
+
ǫ2

4
≤
2
√
dLδ−1(f(x0) − f∗ + 2δL)

T
+
ǫ2

4
.

By setting

T = ⌈2ǫ−2(4√dL2
+ 2
√
dLδ−1∆)⌉ ,

15



and choosing xout randomly from {x0,⋯,xT−1}, we have

E [∥∇fδ(xout)∥2] ≤ 1

T
E [ T∑

i=1
∥∇fδ(xt)∥2] ≤ ǫ2

4
+
ǫ2

2
≤ ǫ2.

Using Theorem 3.5, we require

b = Õ(dLǫ−1),
to achieve the desired variance level. Thus the total quantum query of UF can be bounded by

b ⋅ T = Õ (d3/2 (L∆
ǫ3δ
+
L2

ǫ3
)) .

F The Proof of Theorem 4.3

Proof. We denote Lδ ≜
√
dL
δ

. We also denote ĝt+1 as the unbiased estimator of ∇fδ(xt+1) we

have constructed in line 6 and ∆gt+1 as the unbiased estimator of ∇fδ(xt+1) − ∇fδ(xt) we have
constructed in line 8. We can see that gt+1 is equivalent to

gt+1 = { ĝt+1 with probability pt
gt +∆gt+1 with probability 1 − pt

.

According to the variance level we set in Theorem 4.3, we have

E [∥ĝt+1 −∇fδ(xt+1)∥2] ≤ σ̂2
1,t+1 =

ǫ2

2
,

and

E [∥∆gt+1 − (∇fδ(xt+1) −∇fδ(xt))∥2] ≤ σ̂2
2,t+1 = ǫ

2/3∥xt+1 − xt∥2L4/3d

δ2
.

According to Proposition 2.1, ∇fδ(⋅) is Lδ-Lipschitz continuous, which means

fδ(xt+1) ≤ fδ(xt) + ⟨∇fδ(xt),xt+1 − xt⟩ + Lδ

2
∥xt+1 − xt∥2

= fδ(xt) + ⟨∇fδ(xt) − gt,xt+1 − xt⟩ + ⟨gt,xt+1 − xt⟩ + Lδ

2
∥xt+1 − xt∥2

≤ fδ(xt) − η
2
∥∇fδ(xt)∥2 − η

2
∥gt −∇fδ(xt)∥2 − ( 1

2η
−
Lδ

2
)∥xt+1 − xt∥2.

(9)

On the other hand, we track the variance of gt+1 by

E [∥gt+1 −∇fδ(xt+1)∥2]
= ptE [∥ĝt+1 −∇fδ(xt+1)∥2]

+ (1 − pt)E [∥gt −∇fδ(xt) + (∆gt+1 − (∇fδ(xt+1) −∇fδ(xt)))∥2]
= ptǫ

2
+ (1 − pt)∥gt −∇fδ(xt)∥2 + (1 − pt) ⋅ L4/3ǫ2/3d

δ2
∥xt+1 − xt∥2.

(10)
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We have pt ≡ p and can denote Φt ≜ fδ(xt) − f∗ + η

2p
∥gt − ∇fδ(xt)∥2. Combining eq. (9) and

eq. (10), we have

E [Φt+1] = E [fδ(xt+1) + η

2p
∥gt+1 −∇f(xt+1)∥2]

≤ E [fδ(xt) − η
2
∥∇fδ(xt)∥2 − η

2
∥gt −∇fδ(xt)∥2 − ( 1

2η
−
Lδ

2
)∥xt+1 − xt∥2]

+
η

2p
E [pǫ2 + (1 − p)∥gt −∇fδ(xt)∥2 + (1 − p)L4/3dǫ2/3

δ2
∥xt+1 − xt∥2]

≤ E [Φt] − η
2
∥∇fδ(xt)∥2 − ( 1

2η
−
Lδ

2
−
η(1 − p)

p
⋅ (L4/3dǫ2/3

δ2
))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

∥xt+1 − xt∥2 + ηǫ2
2
.

(11)

We have chosen

η =
1

2Lδ

and p =
ǫ2/3

L2/3 , (12)

such that

A ≥

√
dL

2δ
−

δ

2
√
dL
⋅
L2/3

ǫ2/3
⋅
L4/3dǫ2/3

δ2
= 0.

Then, eq. (11) implies

E [∥∇fδ(xt)∥2] ≤ 2

η
E [Φt −Φt+1] + ǫ2. (13)

Since it holds that
2

η
E [Φ0 −ΦT ] ≤ 2

η
E [fδ(x0) − f∗δ + η

2p
∥ĝ0 −∇f(x0)∥2]

≤
2

η
E [f(x0) − f∗ + 2δL + η

2p
∥ĝ0 −∇f(x0)∥2]

≤
2

η
(∆ + 2δL) + 1

p
ǫ2,

summing up eq. (13) from t = 0,⋯, T − 1, we have

1

T

T−1∑
i=0

E [∥∇fδ(xi)∥2] ≤ 2

ηT
E [Φ0 −ΦT ] + ǫ2

2
.

By choosing

T = ⌈8Lδǫ
−2 (∆ + 2δL) + 4

p
⌉ , (14)

we have

E [∥∇fδ(xout)∥2] = 1

T

T−1∑
i=0

E [∥∇fδ(xi)∥2] ≤ 2

ηT
E [Φ0 −ΦT ] + ǫ2

2
≤
ǫ2

4
+
ǫ2

4
+
ǫ2

2
= ǫ2.

Using Theorem 3.5, the expectation queries of UF to construct ĝt is

b0 = Õ (dLσ̂−11,t) = Õ (dLǫ−1) ,
and the expectation queries of UF to construct ∆gt is

b1 = Õ (d3/2L∥xt−1 − xt∥σ̂−12,tδ−1) = Õ (dL1/3ǫ−1/3) .
Thus, the total quantum queries of UF for finding the (δ, ǫ)-stationary point of f(⋅) can be bounded
by

Õ(T (b0p + b1(1 − p))) = Õ (√dLǫ2(∆ + 2δL) ⋅ (dLǫ−1L−2/3ǫ2/3 + dL1/3ǫ−1/3))
= Õ (d3/2 (L4/3∆

ǫ7/3δ
+
L7/3

ǫ7/3
)) ,

which finishes the proof.
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Algorithm 3 Fast Quantum Gradient Method (QGM+)

1: Construct g0 as an unbiased estimator of ∇f(x0) with variance at most σ̂2
1,0.

2: for t = 0,1 . . . T

3: xt+1 = xt − ηgt

4: Flip a coin θt ∈ {0,1} where P (θt = 1) = pt
5: If θt = 1 then

6: Construct gt+1 as an unbiased quantum estimator of ∇f(xt+1) with variance at most
σ̂2
1,t+1.

7: else

8: Construct ∆gt+1 as an unbiased quantum estimator of ∇f(xt+1) − ∇f(xt) with variance
at most σ̂2

2,t+1.

9: gt+1 = gt +∆gt+1.

10: end for

G Improved Results for Quantum Stochastic Smooth Non-convex

Optimization

Sidford and Zhang [48] introduced Q-SPIDER for smooth non-convex optimization, with the query

complexity of Õ(d1/2ǫ−5/2) on the quantum stochastic gradient oracle. Using the same framework
of QGFM+, we propose the fast quantum gradient method (QGM+), which further improves the
query complexity of Q-SPIDER.

We present the QGM+ in Algorithm 3. The main difference between QGFM+ and QGM+ is that
QGM constructs the estimators for∇f(x) and∇f(x)−∇f(y) instead of their smoothed surrogates
in line 6 and line 8 by using the quantum stochastic gradient oracle directly [48, Definition 4]. We
present the setting for Q-SPIDER as follows for being self-contained.

Assumption 2 ([48, Setting of Theorem 7]). We assume that we are able to access the quantum
stochastic oracle that outputs ∇F (⋅; ξ) which is a stochastic gradient of f(⋅) that satisfies

Eξ[∇F (x; ξ)] = ∇f(x), Eξ [∥∇F (x; ξ) −∇f(x)∥] ≤ σ2,

and

Eξ [∥∇F (x; ξ) −∇F (y; ξ)∥2] ≤ l2∥x − y∥2.
We also present the definition of ǫ-stationary point of a smooth function.

Definition G.1. We say x is an ǫ-stationary point of a smooth function f(⋅), if it satisfies that∥∇f(x)∥ ≤ ǫ.
We present the query complexity of QGM+ in the following theorem.

Theorem G.1. Under the same setting of [48, Theorem 7] for Q-SPIDER, QGM+ (Algorithm 3)

finds the ǫ-stationary point of f(⋅) using an expected Õ(√dǫ−7/3) queries of quantum stochasic
gradient oracle by setting

η =
1

2l
, pt ≡ ǫ

2/3σ−2/3, σ̂2
1,t ≡

ǫ2

2
, and σ̂2

2,t =
l2ǫ2/3∥xt − xt−1∥

σ2/3 .

Proof. According to the variance level we set in Theorem G.1 We have

E [∥ĝt+1 −∇f(xt+1)∥2] ≤ σ̂2
1,t+1 =

ǫ2

2
,

and

E [∥∆gt+1 − (∇f(xt+1) −∇f(xt))∥2] ≤ σ̂2
2,t+1 =

l2ǫ2/3

σ2/3 ∥x − y∥2
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f(xt+1) ≤ f(xt) + ⟨∇f(xt),xt+1 − xt⟩ + l
2
∥xt+1 − xt∥2

= f(xt) + ⟨∇f(xt) − gt,xt+1 − xt⟩ + ⟨gt,xt+1 − xt⟩ + l
2
∥xt+1 − xt∥2

≤ f(xt) − η
2
∥∇f(xt)∥2 − η

2
∥gt −∇f(xt)∥2 − ( 1

2η
−
l

2
)∥xt+1 − xt∥2.

(15)

The variance of gt+1 can be traced by

E [∥gt+1 −∇f(xt+1)∥2]
= ptE [∥ĝt+1 −∇f(xt+1)∥2]

+ (1 − pt)E [∥gt −∇f(xt) + (∆gt+1 − (∇f(xt+1) −∇f(xt)))∥2]
= ptǫ

2
+ (1 − pt)∥gt −∇f(xt)∥2 + (1 − pt) l2ǫ2/3

σ2/3 ⋅ ∥xt+1 − xt∥2.
(16)

We let pt ≡ p and denote Φt ≜ f(xt) − f∗ + η

2p
∥gt − ∇f(xt)∥2. Combining eq. (15) and eq. (16),

we have

E [Φt+1] = E [f(xt+1) + η

2p
∥gt+1 −∇f(xt+1)∥2]

≤ E [f(xt) − η
2
∥∇f(xt)∥2 − η

2
∥gt −∇f(xt)∥2 − ( 1

2η
−
l

2
)∥xt+1 − xt∥2]

+
η

2p
E [pǫ2 + (1 − p)∥gt −∇f(xt)∥2 + (1 − p) l2ǫ2/3

σ2/3 ∥xt+1 − xt∥2]
≤ E [Φt] − η

2
∥∇f(xt)∥2 − ( 1

2η
−
l

2
−
η(1 − p)

p
⋅ ( l2ǫ2/3

σ2/3 ))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

∥xt+1 − xt∥2 + ηǫ2
2
.

(17)

Since we have chosen η = 1
2l

and p = ǫ2/3σ−2/3, it holds that

B ≥
l

2
(1 − ǫ2/3

pσ2/3 ) ≥ 0.
Thus we have:

1

T

T−1∑
i=0

E [∥∇f(xi)∥2] ≤ 2

ηT
E [Φ0 −ΦT ] + ǫ2

2

≤
2

ηT
E [f(x0) − f(xT ) + η

p
∥g0 −∇f(x0)∥2] + ǫ2

2

≤ ǫ2,

where the last inequality is by setting

T = ⌈8l∆ǫ−2 + 4σ2/3ǫ−4/3⌉ .
Below, we bound the total queries of quantum stochastic gradient oracles. The expectation oracles
to construct ĝt is

b0 = Õ (√dσσ̂−11,t) = Õ (σ√dǫ−1) ,
and the expectation queries to construct ∆gt is

b1 = Õ (√dl∥xt − xt−1∥σ̂−12,t) = Õ (√dσ1/3ǫ−1/3) .
Thus, the total stochastic quantum gradient oracles for finding the ǫ-stationary point of f(⋅) can be
bounded by

T (b0p + (1 − p)b1) = Õ (√d(l∆σ1/3ǫ−7/3 + σǫ−5/3)) .

Remark G.2. QGM+ (Algorithm 3) improves the quantum stochastic gradient oracle of Q-SPIDER

([48, Algorithm 7]) by a factor of ǫ−1/6.
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] This paper focus on the theory of solving nonlinear equations.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] We use open access datasets.
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• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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