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Abstract

Deep learning succeeds by doing hierarchical feature learning, yet tuning hyper-
parameters (HP) such as initialization scales, learning rates etc., only give indirect
control over this behavior. In this paper, we introduce a key notion to predict and
control feature learning: the angle θ` between the feature updates and the backward
pass (at layer index `). We show that the magnitude of feature updates after one
GD step, at any training time, can be expressed via a simple and general feature
speed formula in terms of this angle θ`, the loss decay, and the magnitude of the
backward pass. This angle θ` is controlled by the conditioning of the layer-to-
layer Jacobians and at random initialization, it is determined by the spectrum of a
certain kernel, which coincides with the Neural Tangent Kernel when ` = depth.
Given θ`, the feature speed formula provides us with rules to adjust HPs (scales
and learning rates) so as to satisfy certain dynamical properties, such as feature
learning and loss decay. We investigate the implications of our approach for ReLU
MLPs and ResNets in the large width-then-depth limit. Relying on prior work, we
show that in ReLU MLPs with iid initialization, the angle degenerates with depth
as cos(θ`) = Θ(1/

√
`). In contrast, ResNets with branch scale O(1/

√
depth)

maintain a non-degenerate angle cos(θ`) = Θ(1). We use these insights to recover
key properties of known HP scalings (such as µP), and also introduce a new HP
scaling for large depth ReLU MLPs with favorable theoretical properties.

1 Introduction

The ability of deep Neural Networks (NNs) to learn hierarchical representations of their inputs has
been argued to be behind their strong performance in data-intensive machine learning tasks [LeCun
et al., 2015]. Yet, the process via which gradient-based training leads to feature learning remains
mysterious and defies our intuition; some architectures can even reach zero loss without feature
learning at all [Jacot et al., 2018]. This limited understanding makes it difficult to design NNs
architectures and hyper-parameters (HP) scalings, and begs the development of tools to quantify
feature learning.

In this paper, we demonstrate that the backward-feature angle (BFA) θ` between the feature updates
and the backward pass (at layer index `) is a central object in this quest. Indeed, we show that the
magnitude of feature updates after one GD step, at any training time, can be expressed via a simple
feature speed formula in terms of this angle, the loss decay and the magnitude of the backward pass.
Given the knowledge of θ`, this leads to a general approach to quantify key dynamical properties
of the training dynamics of NNs – such as the speed of feature learning and loss decay – and to
characterize the HP scalings satisfying these properties.

Contributions Our contributions are the following:
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• We prove the feature speed formula (Thm 2.1) which quantifies the feature updates in terms
of the BFA θ`, the loss decay and the magnitude of the backward pass at layer `. This
formula, valid in any architecture and with an elementary proof, helps exploring the space
of HP scalings, and understanding when feature learning arises.

• In Section 3, we develop tools to quantify the BFA. In particular, we show that, in the
batch-size 1 case, θ` can be estimated in terms of the spectrum of the backward to feature
kernel (BFK) K` and is related to the conditioning of layer-to-layer Jacobians (Thm. 3.2).
We study the case of MLPs and ResNets at random initialization, and obtain that for a
depth L, cos(θL) = Θ(L−1/2) for ReLU MLPs (Prop. 5.1, exploiting a result in Jelassi et al.
[2023]) and that cos(θL) = Θ(1) for linear ResNets with branch scale O(L−1/2) (Prop. 5.2).

• In Section 4, we consider several properties of NN training dynamics that can be conveniently
studied with our tools, including feature learning and loss decay. Enforcing these properties
leads to explicit contraints on the magnitude of the forward, backward pass and learning
rates in general architectures (Prop. 4.1).

• In Section 5, we show how various HP scalings for large width-then-depth MLPs and
ResNets can be characterized by enforcing these properties. In particular we recover depth
µP [Bordelon et al., 2023, Yang et al., 2023b] for ResNets (Table 2) and, for ReLU MLP, we
introduce a scaling with output scale

√
depth
width (Table 1) that does not suffer from vanishing

loss decay, in contrast to the one studied in [Jelassi et al., 2023].

• Finally, in Section 6 we develop a more “axiomatic” approach: starting from a minimal list
of desiderata, which include a notion of gradient stability, we show that we recover, in a
certain extent, the convenient properties considered in Section 4. This section focuses on
homogeneous architectures for which we show, along the way, a backward speed formula
(Prop. 6.1) and an invariance under block-wise rescaling (Prop. 6.2).

Related work The theory of NNs has recently benefited from important insights from asymptotic
analyses in the large width and/or depth limits. Our work is in the continuity of those.

Analyses of wide and deep NNs at random initialization led to identifying critical initialization
scalings that enable signal propagation [Poole et al., 2016, Hanin and Rolnick, 2018, Hanin, 2018].
They also identified dynamical isometry [Pennington et al., 2018], namely the concentration of the
singular spectrum of the layer-to-layer Jacobians around 1, as an important indicator of training
performance. Our analysis gives a concrete justification of the link between dynamical isometry and
successful training, as we show that it is related to the alignment between the backward pass and
feature updates. These questions have also been studied in ResNets, see e.g. [Hayou et al., 2021,
Marion et al., 2022, Li et al., 2021] for signal propagation and [Tarnowski et al., 2019, Ling and Qiu,
2019] for dynamical isometry.

In 2018, two viewpoints for the dynamics of wide NNs were simultaneously introduced: a feature
learning limit for two-layer MLPs [Mei et al., 2018, Chizat and Bach, 2018, Rotskoff and Vanden-
Eijnden, 2018] and a limit without feature learning for general NNs [Jacot et al., 2018, Du et al.,
2018, Allen-Zhu et al., 2019]. These works highlighted the crucial role of HP scalings – learning
rates and initialization – in the behavior of large NNs [Chizat et al., 2019].

In order to classify HPs scalings, [Yang and Hu, 2021] formulated the maximal update µ-criterion (it
is part of the properties we study in Section 4). This criterion led to a full classification of HP scalings
in the infinite hidden width limit (at fixed depth), and singled-out the so-called µ-parameterization
(µP) as ideal for this criterion. We note that, provided alignment holds, our analysis allows in
particular to characterize µP in an elementary way. See also [Yang et al., 2023a] for another simple
derivation of µP using matrix spectral norms (but that does not give tight control on the magnitude of
feature learning and does not a priori apply to the large depth asymptotics). Several works have since
shown the practical value of these analyses in predicting the behavior of NNs [Vyas et al., 2023] and
improving HP tuning [Yang et al., 2021].

When restricted to the output layer of a NN, our notion of alignment/BFA coincides with that studied
in Baratin et al. [2021], Atanasov et al. [2021], Lou et al. [2022], Wang et al. [2022] and the BFK we
consider coincides with the NTK [Jacot et al., 2018]. We extend these concepts to study and quantify
feature learning at any layer (not just at the output layer). Here we focus on the batch-size 1 setting,
but the large batch-size setting of these works is a natural next direction for our analysis.
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Finally, several recent works have studied feature learning in infinite width and depth NNs, starting
with [Jelassi et al., 2023] for MLPs, and [Bordelon et al., 2023, Yang et al., 2023b] for ResNets. The
two latter identified the 1/

√
depth branch scaling as providing desirable properties, in particular that

of HP transfer [Yang et al., 2021]. These works take the infinite width limit as a first step in their
analysis, before studying the resulting objects, resulting in a technical analysis. In our approach,
we first take the step-size to 0 (as in [Jelassi et al., 2023]) and study in detail the structure of the
back-propagation equations, before taking the large width-then-depth limit, as a last step.

Notations For integers a, b ∈ Z, we write [a : b] = {a, . . . , b}. For any vector x ∈ Rm we denote
by ‖x‖rms := m−1/2‖x‖2 its root mean-square (RMS) norm. We use this as a proxy for the typical
entry size of a vector, which is justified as long as that vector is dense.

2 The Feature Speed Formula

Consider a depth-L NN architecture defined by the recursion, for ` ∈ [1 : L],
f0 ∈ Rm0 , f` = T`(f`−1, w`) ∈ Rm` , L = loss(fL) ∈ R (1)

where w` ∈ Rp` are trainable parameters and we assume that the maps T` : Rm`−1 × Rp` → Rm`

admit elementary (log-exp) selections1 [Bolte and Pauwels, 2020]. By flattening the tensors, one
can encode most practical NN architectures in Eq. (1). For instance, m0 is typically the product of
batch-size (or context length) with input dimension. We denote by b` =

(
∂L
∂f`

)> ∈ Rm` the vectors
of the backward pass. A gradient descent (GD) step with layerwise learning-rate (LR) η` · δt > 0 for
` ∈ [1 : L] consists in adding to each w` the update

δw` = −η` · δt · ∇`L = −η` · δt ·
( ∂L
∂w`

)>
.

We are interested on the evolution of the NN over a single GD step with infinitesimally small
step-size δt� 1. For any quantity x associated to the NN, we denote ẋ its instantaneous velocity
ẋ := limδt↓0

δx
δt when it exists. In particular, we have ẇ` = −η`∇`L.

The following identity is the seed of our approach. It expresses at any training time the speed of
features in terms of other interpretable quantities, including the backward to feature angle (BFA) θv .
Theorem 2.1 (Feature speed formula). Let v ∈ [1 :L]. If

∑
`≤v η`‖∇`L‖22 = 0 then ḟv = 0.

Otherwise, the (non-oriented) angle θv between ḟv and −bv is well defined in [0, π/2[ and it holds

‖ḟv‖2 =

∑
`≤v η`‖∇`L‖22

cos(θv) · ‖bv‖2
. (2)

Proof. By the chain rule, we have ḟv =
∑
`≤v

∂fv
∂w`

ẇ` = −
∑
`≤v η`

∂fv
∂w`

(
∂L
∂w`

)>
. It follows

−b>v ḟv =
∑
`≤v

η`
∂L

∂fv

∂fv
∂w`

( ∂L
∂w`

)>
=
∑
`≤v

η`

( ∂L
∂w`

)( ∂L
∂w`

)>
=
∑
`≤v

η`‖∇`L‖22. (3)

Clearly, if
∑
`≤v η`‖∇`L‖22 = 0 then ẇ` = 0 for ` ≤ v and thus ḟv = 0. Otherwise θv is well defined

and it holds ‖bv‖2‖ḟv‖2 cos(θv) = −b>v ḟv =
∑
`≤v η`‖∇`L‖22 and the claim follows. (In terms of

the BFK defined below, Eq. (3) is equivalent to b>v Kvbv =
∑
`≤v η`‖∇`L‖22, for v ∈ [1 :L].)

To better appreciate the content of Thm. 2.1, let us re-express it in terms of root mean-square (RMS)
norms. Let L̇≤v :=

∑
`≤v η`‖∇`‖22 be the contribution to the loss decrease of all the parameters

before fv in the forward pass, and note that L̇≤L = L̇. Then, the identity (2) rewrites as

‖ḟv‖rms

L̇≤v
=

1

cos(θv) ·mv · ‖bv‖rms
=: Sv. (4)

1This is a technical assumption that covers virtually all functions of interest in deep learning. In particular, the
maps T` admit selection derivatives that are compatible with the chain rule [Bolte and Pauwels, 2020, Prop. 4]
and that coincide almost everywhere with standard derivatives [Bolte and Pauwels, 2020, Prop. 3]. To simplify
our exposition, we always implicitly assume that we are at a differentiability point of the maps T`.
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Here Sv can be interpreted as the sensitivity (and, in the terminology of [Chizat et al., 2019], 1/Sv as
the laziness) of the feature v: it is the proportionality factor between loss decay and feature speed.
This formula is valid at any training time and involves three key quantities: the scale of the backward
pass ‖bv‖rms, the size of the feature mv , and the BFA θv . Let us now build tools to quantify the BFA.

3 Quantifying the backward-feature angles (BFA)

Information about the BFA θv can be gained from the Backward to Feature Kernel (BFK).

Definition 3.1 (Backward to Feature Kernel). For v ∈ [1 :L], the BFK is the psd matrix defined as

Kv :=
∑
`≤v

η`

( ∂fv
∂w`

)( ∂fv
∂w`

)>
∈ Rmv×mv . (5)

By construction, it holds ḟv = −Kvbv. In other words, the BFK takes a backward pass vector as
input and returns the (negative of the) feature velocity. For v = L, Kv coincides with the Neural
Tangent Kernel [Jacot et al., 2018]. We now show how the sprectrum of Kv relates to BFA.

Theorem 3.2. Let λ1 ≥ · · · ≥ λmv
≥ 0 be the sorted eigenvalues of Kv and let Mp := 1

mv

∑mv

i=1 λ
p
i

be its spectral moments. It holds λmv

λ1
≤ cos(θv) ≤ 1. Moreover, if bv is Gaussian and independent

from Kv , then as mv →∞,

cos(θv)
pr.→ M1√

M2

.

as soon as
√
M2/M1 and

√
M4/M2 are uniformly bounded (i.e. are upper bounded by some C > 0 with

probability going to 1 as mv →∞).

Proof of Thm. 3.2. By the chain rule, it holds

ḟv = −
∑
`≤v

η`
∂fv
∂w`

( ∂L
∂w`

)>
= −

∑
`≤v

η`
∂fv
∂w`

( ∂fv
∂w`

)>( ∂L
∂fv

)>
,

hence ḟv = −Kvbv . Denoting K
1/2
v the unique psd square-root of Kv , it follows

cos(θv) =
−b>v ḟv
‖ḟv‖2‖bv‖2

=
‖K1/2

v bv‖22
‖Kvbv‖2‖bv‖2

. (6)

The first claim follows from Eq. (6) and the worst-case bounds ‖Kvbv‖2 ≤ λ1‖bv‖2 and
‖K1/2

v bv‖2 ≥
√
λmv
‖bv‖2. The second claim is related to the trace estimation method via ran-

dom matrix-vector products [Martinsson and Tropp, 2020, Chap. 4]. We assume without loss of
generality that E[‖bv‖22] = 1 and by Lem. 3.3, we can write Z = ‖K1/2

v bv‖22 = a(1 + b) where
a = E[Z|Kv] = M1 and E[b2]→ 0 asmv →∞. An analogous decomposition holds for ‖Kv(bv)‖22
with a = M2 and the second claim follows.

Lemma 3.3. Let K ∈ Rm×m be a (potentially random) psd matrix and a ∼ N(0, 1
mIm) be

independent. Then E[‖Ka‖22 | K] = M2(K) and Var[‖Ka‖22 | K] = 2
mM4(K) where Mp(K) :=

1
m

∑m
i=1 λ

p
i and λ1, . . . , λm ≥ 0 are the eigenvalues of K.

The second claim expresses the BFA in terms of the spread of the spectrum of the BFK, in an
asymptotically exact way. Its assumptions hold at random initialization in the large width limit of
typical NNs, provided fv is directly followed by a weight-matrix multiplication in the forward pass,
so that bv is the output of a random matrix/vector multiplication. Asymptotic independence can be
guaranteed in quite general contexts, see Yang [2020]. For MLP or ResNets with batch-size one,
we show in Section 5 that cos(θv) is tightly related to the conditioning of layer-to-layer Jacobians,
studied in the dynamical isometry literature [Pennington et al., 2017].
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4 Ensuring feature learning in scaled NNs

4.1 Properties for scaled NNs

Consider a sequence of NNs and parameters as in (1) with some diverging architectural parameters
such as depth or width. We refer to such a sequence as a scaled NN. In search of the optimal scaling
of NNs, it is crucial to understand how HP scalings influence the properties of the training dynamics.
In this section, we discuss the following properties:

(SP) Signal propagation. It holds ‖fv‖rms = Θ(1) for v ∈ [1 :L− 1].

(FL) Feature learning. It holds ‖ḟL−1‖rms = Θ(1).

(LD) Loss decay. It holds −L̇ = Θ(1).
(BC) Balanced contributions. It holds η`‖∇`L‖22 = Θ(η`′‖∇`′L‖22) for any `, `′ ∈ [1 :L].

We discuss these specific properties because they are amenable to our tools and enforcing them
requires (L− 1) + 1 + 1 + (L− 1) = 2L degrees of freedom, which exactly matches the number of
free HPs if one counts one scale HP (such as the variance of the weights) and one LR per block. One
may wonder if property (BC) is truly desirable: this is the topic of Section 6, where we adopt a more
axiomatic approach and recover, for homogeneous architectures, (a more general version of) property
(BC) as a consequence of enforcing gradient stability. Also, while enforcing these properties is
reasonable when increasing depth and width, they should be rethought for other asymptotics.

Property (SP) specifies L− 1 scale HPs , but leaves the scale of fL free. The reason for not including
fL in (SP) is that ‖fL‖rms = o(1) does not lead to vanishing gradient in general, so this behavior
should not be excluded a priori. How should one then fix the scale of the output? The next proposition
shows that for property (FL) to hold, the quantity that should be suitably normalized is the norm of
the backward pass.
Proposition 4.1. A scaled NN (1) satisfies (FL), (LD), and (BC) if and only if

‖bL−1‖rms = Θ
( 1

mL−1 · cos(θL−1)

)
(7)

and

∀` ∈ [1 :L], η` = Θ
( 1

L‖∇`L‖22

)
. (8)

Proof. Property (LD) requires
∑L
`=1 η`‖∇`L‖22 = −L̇ = Θ(1) and (BC) requires the terms in the

sum to be balanced, this leads to Eq. (8). Now by Thm. 2.1, property (FL) requires

‖ḟL−1‖rms =

∑L−1
`=1 η`‖∇`L‖22

cos(θL−1) ·mL−1 · ‖bL−1‖rms
= Θ(1) (9)

which leads to (7). Conversely, it is clear that Eq. (8) and (7) imply (FL), (LD) and (BC).

4.2 Towards automatic HP scaling

The criterion of Prop. (4.1), complemented with the property (SP), suggest a method to automatically
adjust the scales and learning rates in any architecture. In general, properties (SP), (FL), (BC) and
(LD) can be enforced as follows:

• (SP): Forward layer normalization. Enforcing property (SP) can be done along with the
computation of the forward pass, this is the usual layer normalization.

• (FL): Backward layer normalization. Provided θL−1 is known or measured, Eq. (7) can
be enforced via a backward analog to layer normalization: one inserts a scaling factor in the
forward pass between fL−1 and fL, adjusted so that Eq. (7) holds.

• (BC) & (LD): Scale invariant learning rates. Directly tune the LRs via Eq. (8).

We refer to the resulting scaling as FSC as it normalizes the Forward pass, the Sensitivities and the
Contributions. Let us make some observations regarding the scale invariant LRs:
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• Link with Polyak step-size. In convex optimization, to minimize a convex and Lipschitz continu-
ous function f : Rd → R such that minx∈Rd f(x) = 0, the Polyak-step-size [Polyak, 1987, Hazan
and Kakade, 2019] for the GD algorithm xt+1 = xt − ηt∇f(xt) is given by ηt = f(xt)

‖∇f(xt)‖22
. With

this step-size, GD achieves the optimal convergence rate for first order methods over the class of
convex and Lipschitz functions. Eq. (8) require a layerwise version of this step-size schedule.

• Interplay with adaptive methods (Adagrad [Duchi et al., 2011], ADAM [Kingma and Ba,
2015]). Adaptive gradient method typically divide the gradient by a quantity which grows linearly
rather than quadratically with the norm of the gradient, such as δW` = −η̃` · ∇`L

‖∇`L‖2 . For such an
algorithm, properties (BC) and (LD), suggests the LR η̃` = Θ( 1

L·‖∇`L‖2 ), in place of Eq. (8).

• Scale invariance and −2 homogeneity. These LRs arise naturally when one wants to make
the gradient descent invariant to how scale is enforced (via initialization scale or via scaling
factors). We show in App. C that any choice of LR that leads to this invariance must be a positively
homogeneous function of the layer-wise gradient of degree −2, as in Eq. (8). We also show in
Prop. 6.2 that these LRs make homogeneous architectures invariant to the choice of layer-wise
scalings σ1, . . . , σL, given a fixed global scale

∏L
`=1 σ`.

5 Scaling width and depth of MLPs and ResNets

5.1 BFA for single input MLPs and ResNets at initialization

Multilayer Perceptron Consider a ReLU MLP architecture with a single input x = g0 ∈ Rd and a
forward pass given, for ` ∈ [1 :L− 1], by

f` = W`g`−1, g` = φ(f`), fL = WLgL−1, L = loss(fL) (10)

where φ(u) = max{0, u} is the ReLU nonlinearity and acts entrywise on vectors. The architecture
HPs are the input width m0 = d, the widths of the hidden layers m1 = · · · = mL−1 = m (assumed
equal), the output width mL = k. The trainable parameters are ∀` ∈ [1 :L], W` ∈ Rm`×m`−1 . Such
NNs are of the form (1) and are thus covered by Thm. 2.1. Let us study their properties at random
initialization under the following assumptions:

(H1) the weights W` are independent N(0, σ2
` ) random variables for ` ∈ [1 :L].

(H2) either k = Θ(1) or the loss is linear.

In this setting, the following statements gather consequences of results from the literature on random
NNs and of Thm. 3.2 to derive the scale of the forward and backward passes and the BFA. We require
(H2) as a technical assumption to avoid dealing with cases where bL strongly depends on the forward
pass, where different scalings may arise2.

In what follows we write A = Θ(B) when there exists c, C > 0 independent of d,m, k, L, ‖x‖2
and ‖bL‖2 such that the probability that A/B ∈ [c, C] goes to 1 in the specified asymptotic. The
new result in the following proposition is the BFA estimate, which relies crucially on a delicate
computation due to [Jelassi et al., 2023].

Proposition 5.1 (Large width and depth MLP). Assume (H1-2) and for ` ∈ [1 :L − 1], let σ` =√
2/m`−1. As m→∞, it holds

‖fv‖rms = Θ(‖x‖rms), ‖bv‖2 = Θ(
√
mσL ‖bL‖2). (11)

Moreover, if (BC) holds then cos(θv) = Θ(v−1/2).

ResNets Consider now a ResNet with a branch scale parameter β ∈ [0, 1], as in Li et al. [2021]:
with a single input x = f0 ∈ Rd, the forward pass is given, for ` ∈ [2 : L− 1], by

f1 = W1x, f` =
√

1− β2f`−1 + βW`φ(f`−1), fL = WLfL−1, L = loss(fL) (12)

2Say, if loss(f) = 1
2
‖f‖22, we have ‖bL−1‖rms = ‖W>L WLfL−1‖rms = Θ(σL max{1,

√
k/m}‖bL‖2)

(by Lem. 3.3 and properties of the Marcenko-Pastur law), while under (H2) we have ‖bL−1‖rms = Θ(σL‖bL‖2).
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(a) BFA vs. layer (L = 200) (b) Output BFA vs. depth (c) Output BFA vs. scale

Figure 1: Backward-Feature Angle (BFA) θv observed at initialization in MLPs (β = 1) and ResNets
(width m = 200), for a few random realizations. (a) for all architectures, BFA θv varies in the first
few layers and then stabilizes. (b) BFA at output layer θL−1 is asymptotically independent of depth,
with a non-trivial angle only when β ∝ 1/

√
L (same color scheme as (a)). (c) for a branch scale

β = c/
√
L, the factor c directly determines asymptotic output BFA θL−1 (averaged over 5 draws).

where φ(u) = u in our theoretical results. The architecture HPs are the input width m0 = d, the
widths of the hidden layers m1 = · · · = mL−1 = m, the output width mL = k. The trainable
parameters are ∀` ∈ [1 :L], W` ∈ Rm`×m`−1 . When β = 1, we recover a MLP.

Here we limit ourselves to the case of linear activation where we can directly apply a result from [Mar-
ion and Chizat, 2024] to estimate the BFA. We believe that the same result and proof technique extend
to the ReLU activation and other variants of ResNets; these extensions are left to future work.
Proposition 5.2 (Large width and depth linear ResNet). Assume (H1-2), let φ(x) = x, β = O(1/

√
L)

and for ` ∈ [1 : L− 1], let σ` = Θ(1/
√
m`−1). As m→∞ it holds:

‖f`‖rms = Θ(‖x‖rms), ‖b`‖2 = Θ
(√

mσL‖bL‖2
)
. (13)

Moreover, if (BC) holds then cos(θv) = Θ(1).

Numerical experiments We consider3 one GD step in the model (12) with ReLU nonlinearity,
without training W1 (input dimension d = 10, output dimension k = 1, master LR δt = 0.001).
Fig. 1, represent BFA, computed via θv ≈ arccos(−b>v δfv) where δfv is the change of feature fv
after one GD step. The results are consistent with Prop. 5.1 and 5.2. Interestingly, the last plot
suggests that there exists a function ϕ : R+ → ]0, π/2[ such that for a branch scale β = c/

√
L, the

BFA converges to ϕ(c) (it can be conjectured numerically that cos(ϕ(c)) ≈ c−1/2 for c� 1).

5.2 Characterizing HP scalings for MLPs

Let us now discuss specific choices of HP scalings for single-input MLP architectures as in Eq. (10)
(or Eq. (12) with β = 1) and at initialization. We consider 6 HPs: the scale of initialization σ1 and
LR η1 of the input layer, the scale σhid := σ2 = · · · = σL−1 and LRs ηhid := η2 = · · · = ηL−1 of
the hidden layers, and the scale σL and LR ηL of the output layer. The HP scalings mentioned in the
next theorem are the following (see Table 1):

• NTK: the standard scaling with LRs adjusted to satisfy (LD) and (BC) [Jacot et al., 2018];
• MF+µP: the scaling proposed in [Jelassi et al., 2023] constructed by imposing the so-called

“mean-field” output scale σL ∝ 1/m and then enforcing (FL) by adjusting the learning rates;
• FSC: the HP scaling singled-out by Prop. 5.3, obtained by adjusting the Forward scales,

Sensitivities, and Contributions.

The properties of HP scalings depend on ‖x‖2 and ‖bL‖2. We consider two typical settings:

• (Dense) Where ‖x‖2 =
√
d and ‖bL‖2 = 1√

k
. This is representative of a dense whitened

input and a RMS loss loss(fL) = ‖fL − y‖22/k for some dense signal y ∈ Rk with
‖y‖rms = Θ(1) as, e.g., in image generation applications.

3Link to the Julia code to reproduce the experiments: https://github.com/lchizat/2023-BAFU
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Table 1: HP scalings for MLPs under the dense setting (for the sparse setting, replace k and d by 1).
For L fixed, both MF+µP and FSC coincide with µP. Values in red are exact, the others are up to a
multiplicative factor in Θ(1).

Input Hidden Output

FS
C init. std. σ` 1/

√
d

√
2/m

√
kL/m

LR η` m/L2d 1/L2 k/Lm

M
F+
µ

P init. std. σ` 1/
√
d

√
2/m

√
k/m

LR η` m/L3/2d 1/L3/2 k/L3/2m
N

T
K init. std. σ` 1/

√
d

√
2/m 1/

√
m

LR η` 1/Ld 1/Lm k/Lm

Table 2: FSC scalings identified in Prop. 5.4 for ResNets. All HPs are specified up to a multiplicative
factor in Θ(1). When β = Θ(L−1/2) and k = d = Θ(1), these scalings coincide with the so-called
“depth µP” introduced in [Bordelon et al., 2023] and also studied in Yang et al. [2023b].

Input Hidden Output

init. std. σ` 1/
√
d 1/

√
m

√
k/m

LR η` m/Ld 1/β2L k/Lm

• (Sparse) Where ‖x‖2 = 1 and ‖bL‖2 = 1. This is representative of a one-hot encoding
input and the multiclass logistic loss (aka cross-entropy where ‖bL‖2 = Θ(log(k))). This
setting is typical of natural language processing tasks.

The scalings are reported in Table 1. We have also introduced scalings in terms of output width k for
NTK and MF + µP to ensure a non-degenerate behavior as k � 1, although these are generally not
written in the literature.

Proposition 5.3 (MLP scalings). Under the assumptions of Prop. 5.1, the following hold at random
initialization:

(i) The scaling MF+µP satisfies (SP), (BC) , (FL) but not (LD);

(ii) The scaling NTK satisfies (SP), (BC), (LD) but not (FL);

(iii) Properties (SP), (BC), (LD), (FL) hold if and only if the scaling is FSC.

This theorem identifies the new HP scaling FSC for deep ReLU MLP where the scale of the output
layer depends on the depth. We compare empirically the sensitivities (Eq. (4)) of the various scalings
in Fig. 2, and the results are consistent with theory. Finally, let us mention that even though FSC
fixes some degeneracies of deep MLPs, other problems arise when considering multiple inputs,
such as degeneracy of the conjugate kernel and NTK [Hayou et al.], which make ReLU MLPs a
fundamentally flawed model at large depth. Hence, the analysis of large depth scalings for MLPs is
mostly of theoretical interest.

5.3 Characterizing HP scalings for ResNets

We now discuss HP scalings for single-input ResNets (Eq. (12)) with β = O(1/
√
L).

Proposition 5.4 (ResNets scalings). Take β = O(1/
√
L), consider the same 6 degrees of freedom

as in the previous section and assume that the conclusions of Prop. 5.2 holds. Then properties (SP),
(BC), (LD) and (FL) hold at initialization if and only if the scalings are those given in Table 2.
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(a) ReLU MLP (β = 1) (b) ReLU ResNet

Figure 2: Sensitivities SL−1 (see Eq. (4)) of the last layer of activations (gL−1 in the MLP and fL−1
in the ResNet) computed via the formula ‖δfL−1‖rms/|δL| where δ denotes the change after one
GD step (master learning rate δt = 0.01, d = 10, n = 1 input sample on the unit sphere and k = 1).
(a) ReLU MLP of width m = 400. From our theory we have for NTK, S = Θ(1/

√
m) (close to 0

and constant with depth); for MF+µP S = Θ(
√
L) and for the FSC S = Θ(1) (b) ReLU ResNet of

width m = 400: for both choices of branch scale, the sensitivities is stable around a nonzero value.

6 Minimal desiderata and stability under homogeneity

It is not clear a priori why the property (BC) studied in Section 4should be enforced. In this section,
we consider homogeneous architectures, such as ReLU MLPs, and show that a slightly more general
version of (BC) is a related to a notion of gradient stability.

6.1 Stability and backward speed formula

For a general architecture of the form Eq. (1), consider the following stability property (S), which
is necessary if one wants to have comparable behavior between the first GD step and the next. It is
related to the usual notion of smoothness in optimization:

(S) Stability. It holds ‖ d
dt∇`L‖2/‖∇`L‖2 = O(1) for ` ∈ [1 :L].

We will study this property in a ReLU MLP with a single input as in Eq. (10) (the extension to
linear ResNets is simple as only the BFAs change). In this case we have ∇`L = b`g

>
`−1 and thus

‖∇`L‖F = ‖b`‖2‖g`−1‖2. It follows

‖ d
dt∇`L‖F
‖∇`L‖F

≤ ‖ḃ`‖2‖g`−1‖2 + ‖b`‖2‖ġ`−1‖2
‖b`‖2‖g`−1‖2

=
‖ḃ`‖2
‖b`‖2

+
‖ġ`−1‖2
‖g`−1‖2

.

We can thus ensure the gradient stability by ensuring, for all ` ∈ [1 :L],

(FS) Forward stability. It holds ‖ġ`−1‖2
‖g`−1‖2 = O(1) for ` ∈ [1 :L], and

(BS) Backward stability. It holds ‖ḃ`‖2‖b`‖2 = O(1) for ` ∈ [1 :L].

We focus on these simpler desiderata (FS) and (BS) instead of (S) for the rest of the discussion.
To estimate ḃv, we rely on a “backward” version of the feature speed formula that holds in 1-
homogeneous NNs.

Proposition 6.1 (Backward speed formula). Consider a general architecture of the form (1), take
v ∈ [1 :L] and assume that the map fv → fL is positively 1-homogeneous4. If −f>L∇2loss[fL]ḟL +∑
`>v η`‖∇`L‖22 = 0 then ḃv = 0. Otherwise, the (non-oriented) angle θ̃v between fv and ḃv is well

defined in [0, π/2[ and it holds

‖ḃv‖2 =
−f>L∇2loss[fL]ḟL +

∑
`>v η`‖∇`L‖22

‖fv‖2 cos(θ̃v)
.

4For Euler’s identity to hold, we also assume that its selection [Bolte and Pauwels, 2020] is 0-homogeneous.
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In the context of ReLU MLPs with a linear loss, we have by differentiating the back-propagation
recursion and noticing that all terms involving φ′′ are zero almost surely5 that:

ḃv =
∑
`>v

η`

(∂g`−1
∂fv

)>
g`−1b

>
` b` =

∑
`>v

η`‖b`‖22
(∂g`−1
∂fv

)>(∂g`−1
∂fv

)
fv = K̃vfv (14)

where the last expression defines K̃v . Reasoning as in Thm. (3.2), since fv is Gaussian at initialization
and noticing that K̃v has a structure similar to that of KL−v, we have that cos(θ̃v) = Θ(

√
L− v),

see the details in Lem. A.1. We can thus estimate ḃv just as well as ḟv .

6.2 Scale invariance for homogeneous architectures

Homogeneous architectures such as ReLU MLP satisfy scale invariance properties that are important
to take into account in our discussion. The following result presents a general invariance under
blockwise rescaling, provided one uses scale-invariant LRs. This is related to known invariance
results under global rescaling for scale invariant losses [Van Laarhoven, 2017, Li et al., 2022, Wan
et al., 2020].
Proposition 6.2 (Invariance under block-wise rescaling). Consider a function fL(w1, . . . , wL) (the
NN, in our context) which is separately positively 1-homogeneous in each of its blocks of parameters
w` ∈ Rp` . Let θ0 = (w1(0), . . . , wL(0)) and let θ̃0 = σ � θ0 := (σ1w1(0), . . . , σLwL(0)) for some
scale factors σ ∈ RL+. Let θ(t) and θ̃(t) be the iterates of GD on L : θ 7→ loss(fL(θ)) with LR
satisfying η`(t)‖∇`L(θ(t))‖22 = η̃`(t)‖∇`L(θ̃(t))‖22 and starting from θ0 and θ̃0 respectively. If∏L
`=1 σ` = 1 then θ̃(t) = σ � θ(t) for all t ≥ 1.

6.3 Characterization of admissible scalings for ReLU MLPs

In view of Prop. 6.2, for homogeneous architectures, one can ignore (SP) since any GD dynamics is
equivalent to a dynamics where (SP) holds at initialization. However, if the scale of the forward pass
is not normalized, (FL) needs now to be adapted to a scale-free version, as follows:

(RFL) Relative feature learning. It holds ‖ḟL−1‖2/‖fL−1‖2 = Θ(1).

We are finally in position to gather all these insights and characterize all admissible scalings for ReLU
MLPs, i.e. scalings that satisfy the minimal desiderata (RFL), (LD), (FS) and (BS) at initialization.
Theorem 6.3 (Minimal desiderata for MLPs). Consider a ReLU MLP with 6 degrees of freedom:
three initialization scales σ1, σhid, σL and three LRs η1, ηhid, ηL. Assume ‖bL‖2 = ‖g0‖rms = 1
and a linear loss for simplicity. Then the minimal desiderata (RFL), (LD), (FS) and (BS) hold at
initialization in the limit m→∞ then L→∞ if and only if

(
√
dσ1) · (

√
m/2σhid)L−2 · σL = Θ(

√
L/m), C1 + Chid = Θ(1) and CL = O(1),

where C1 = η1‖∇1L‖22, Chid =
∑L−1
`=2 ηhid‖∇`L‖22 and CL = ηL‖∇LL‖22. In particular, the

scaling FSC (Table 1) satisfies these desiderata.

7 Conclusion

Starting from the feature speed formula, our approach allows to conveniently recover and characterize
in an elementary fashion certain properties of existing HP scalings and to discover new ones, with
essentially all the technical difficulty contained in the estimation of the BFA. The limitations of our
approach are related to the blind spots of Thm. (2.1): it can only quantify feature speed for (S)GD
(and does not apply to variants in its current form) and at “cut nodes” in the NN architecture, where
all the signal goes through (in particular, it does not apply inside the blocks of a ResNet).

In future works, besides removing these limitations, it would be interesting to have a better under-
standing of the BFA, both from a quantitative and a qualitative viewpoint.

5A downside of this computation is that, because of its local nature, it ignores the contributions of the
Jacobian’s discontinuities to ḃL, while they do have a “macroscopic” effect with a non-vanishing step-size. For
instance, taking first the infinite width and then the small step-size limit, would give a different expression.
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A Proofs omitted from the main text

Proof of Lem. 3.3. WritingK = V DV > withD = diag(λ1, . . . , λm) and V ∈ Rm×m orthonormal,
we have ‖Ka‖22 = a>V D2V >a. Conditioned on K, the vector u = V >a is isotropic Gaussian so
Eu2i = 1

m for i ∈ [1 : m]. Hence, on the one hand

E[‖Ka‖22 | K] = E
[ m∑
i=1

λ2iu
2
i | (λi)mi=1

]
=

m∑
i=1

λ2iE[u2i ] =
1

m

m∑
i=1

λ2i .

On the other hand, using the fact that the variance of a chi-square random variable is 2,

Var[‖Ka‖22 | K] = E
[( m∑

i=1

λ2i (u
2
i − 1/m)

)2
| (λi)mi=1

]
=

m∑
i=1

λ4iE[(u2i − 1/m)2] +

m∑
i 6=j

λ2iλ
2
jE[(u2i − 1/m)(u2j − 1/m)] =

2

m2

m∑
i=1

λ4i .

Proof of Prop.5.1. When β = 1, Eq. (11) is classical from the signal propagation literature [Poole
et al., 2016, Hanin and Rolnick, 2018, Hanin, 2018] (the fluctuations around the limit have also been
studied in Hanin and Nica [2020]). Note that these results are proved with k = Θ(1), but Hanin
[2018] allows to conclude as well when k diverges at least if the initial gradient bL =

(
∂L
∂fL

)> ∈ Rk
is independent of the randomness of the weights, which is what (H2) guarantees. We note that
analogous results have been derived for a variety of activation functions, and we focus on ReLU only
for conciseness.

Let us now discuss the BFAs, assuming for simplicity that η1 = 0 as the contribution ofw1 to the BFK
is asymptotically negligible assuming (BC). We consider the BFA at gv and denote zv := (∂L/∂gv)

>.
The main result of [Jelassi et al., 2023] can be restated as follows: with k = d = Θ(1), the choice
σL = 1

m and learning-rates η` = Θ(L−3/2), it holds ‖ġL−1‖rms = Θ(1). In view of (11), it holds in
their setting for ` ∈ [2 :L− 1]

‖∇`L‖22 = ‖b`g>`−1‖22 = ‖g`−1‖22‖b`‖22 = Θ(m`−1 ·mL−1 · σ2
L) = Θ(m`−1/mL−1).

Using η` = Θ(L−3/2), it follows
∑L−1
`=2 η`‖∇`L‖22 = Θ(L−1/2). By Thm. 2.1 and using

mL−1‖zL−1‖rms = Θ(1), we get

‖ġL−1‖rms =

∑
`≤L η`‖∇`L‖22

cos(θL−1) ·mL−1 · ‖zL−1‖rms
= Θ(1) ⇒ cos(θL−1) = Θ(L−1/2).

This shows the result for the BFA at gL−1 and the result holds as well for the BFA at fL−1 up to
hidden constants.

Interestingly, in view of Thm. (3.2), we can interpret the result of [Jelassi et al., 2023] as a computation
on the spectral moments of a certain random matrix, as stated in the following lemma.

Lemma A.1 (Spectrum of BFK and FBK in ReLU MLPs). For a ReLU MLP at random initialization
satisfying (SP) and (BC), consider the BFK (at gv instead of fv):

Kv =
∑
`≤v

η`

( ∂gv
∂w`

)( ∂gv
∂w`

)>
and θv the (non-oriented) angle between ġv and z` := (∂L/∂gv)

>. Then, in the notations of
Thm. (3.2), it holds as hidden width diverges cos(θv) =

(
M1(Kv)/

√
M2(Kv)

)
= Θ(v−1/2).

Consider also, for a linear loss, the kernel K̃v such that ḃv = K̃vfv (see Eq. (14)) and θ̃v the
(non-oriented) angle between fv and −ḃv. Then it holds, as hidden width diverges, cos(θ̃v) =

Θ
(
M1(K̃v)/

√
M2(K̃v)

)
= Θ((L− v)−1/2).
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Proof. We have already seen in the proof of Prop.5.1 that cos(θv) = Θ(v−1/2). It thus remains to
see that the assumptions of Thm. (3.2) are satisfied: the independence of z` follows from [Hanin
and Nica, 2020, Prop. 2] and the Gaussianity of z` is direct since z` = W>`+1b`+1 where W`+1 is
Gaussian and independent from b`+1. Also, we have the more explicit expression

Kv =

v∑
`=1

η`‖g`−1‖22
(∂gv
∂f`

)(∂gv
∂f`

)>
where ∂gv

∂f`
= DvWv . . . D`+1W`+1D` and Di = diag(φ(fi)) (by [Hanin and Nica, 2020, Prop. 2],

these matrices can be taken as matrices with Bernoulli random variables on the diagonals, independent
from everything else). Since under (SP) and (BC) we have that η`‖g`−1‖22 is constant for ` ∈ [1 :L−1],
it follows

Kv ∝
v∑
`=1

(DvWv . . . D`+1W`+1D`)(DvWv . . . D`+1W`+1D`)
>.

For the second claim, we have (see Section 6) K̃v =
∑L
`=v+1 η`‖b`‖22

(
∂g`−1

∂fv

)>(∂g`−1

∂fv

)
. Under

(SP) and (BC), we have η`‖b`‖22 is constant for ` ∈ [2 :L], hence it follows

K̃v ∝
L∑

`=v+1

(D`−1W`−1 . . .Wv+1Dv)
>(D`−1W`−1 . . .Wv+1Dv).

By comparing the expressions for Kv and K̃v, we see that K̃v has the same distribution of nonzero
eigenvalues as KL−v (potentially up to a global multiplicative factor) and the conclusion follows.

Proof of Prop. 5.2. The estimate for ‖f`‖rms is classical, see e.g. Li et al. [2021]. For the backward
pass estimate, we rely on [Marion and Chizat, 2024, Lem. 3] (see also Zhang et al. [2022] for
related results with the ReLU activation function), which implies that σmin(` → v) = Θ(1) and
σmax(`→ v) = Θ(1), where σmin(`→ v) and σmax(`→ v) are the smallest, respectively largest
singular value of ∂fv∂f`

. The estimate on b` =
(
∂fL
∂fv

)>
bL directly follows.

For the BFA, we will apply the first bound of Thm. 3.2, namely cos(θv) ≥ λmin(Kv)/λmax(Kv)
where λmin(Kv) and λmax(Kv) are the smallest, respectively largest, eigenvalues of Kv. In the
forward pass (12), let us write g` = φ(f`) and h` = W`g`−1. By direct computations, it holds (here
w` is the vectorization of W`):

Kv =

v∑
`=1

η`

( ∂fv
∂w`

)( ∂fv
∂w`

)>
=

v∑
`=2

η`‖g`−1‖22
(∂fv
∂h`

)(∂fv
∂h`

)>
=

v∑
`=2

η`β
2‖g`−1‖22

(∂fv
∂f`

)(∂fv
∂f`

)>
.

Using the inequalities

λmin(K) ≥ β2
v∑
`=2

η`‖g`−1‖22σmin

(∂fv
∂f`

)2
, λmax(K) ≤ β2

v∑
`=2

η`‖g`−1‖22σmax

(∂fv
∂f`

)2
we deduce cos(θv) ≥ λmin(Kv)/λmax(Kv) = Θ(1).

Proof of Prop. 5.3. In this proof, we say that a claim is found “by direct computation” when it can be
directly deduced from the conclusion of Prop. 5.1. In particular, for the computation of scale invariant
LRs, we use the fact that ‖∇`L‖2 = ‖b`g>`−1‖F = ‖b`‖2 · ‖g`−1‖2. Also, by Prop. 5.1, under (SP)
and (BC) it holds cos(θL−1) = Θ(L−1/2).

(i) One has that MF+µP satisfies (SP), (BC) by direct computation, and (FL) by Prop. 4.1. We have
seen in the proof of Prop. 5.1 that −L̇ = Θ(L−1/2), so (LD) does not hold.

(ii) For NTK, (SP), (LD) and (BC) can be checked by direct computation. For (FL), we have
‖bL−1‖rms = Θ(1/

√
m) so :

‖ḟL−1‖rms = Θ
( 1

cos(θv) ·m · ‖bL−1‖rms

)
= Θ

( 1

cos(θL−1) ·
√
m

)
.
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But in the considered asymptotics
√
m · cos(θL−1) = Θ(

√
m/L)→∞ so ‖ḟL−1‖rms = o(1).

(iii) Properties (SP) specifies σ1 and σ2 = · = σL−1, and Prop. 4.1 gives, with (FL), ‖bL−1‖rms =

Θ( 1
cos(θL−1)m

) = Θ(
√
L/m) which imposes σL =

√
kL/m. Then the LR are given by (8).

Proof of Prop. 5.4. Properties (SP) specifies σ1 and σhid = σ2 = · = σL−1, and Prop. 4.1 gives,
with (FL), ‖bL−1‖rms = Θ( 1

cos(θL−1)m
) = Θ(1/m) which requires σL =

√
k/m. Then the LR are

characterized by (8).

Proof of Prop. 6.1. By the chain rule and Euler’s identity for positively 1-homogeneous functions, it
holds

b>v fv =
∂L

∂fv
fv =

∂L

∂fL

∂fL
∂fv

fv =
∂L

∂fL
fL.

Now, by differentiating in time both sides we get

ḃ>v fv + b>v ḟv = f>L∇2loss[fL]ḟL +
∂L

∂fL
ḟL = f>L∇2loss[fL]ḟL + L̇.

We have L̇ = −
∑L
`=1 η`‖∇`L‖22 and moreover, from the proof of Thm. 2.1, −b>v ḟv =∑

`≤v η`‖∇`L‖22. So we deduce

−ḃ>v fv = −f>L∇2loss[fL]ḟL +
∑
`>v

η`‖∇`L‖22.

We conclude by writing −ḃ>v fv = ‖ḃv‖2‖fv‖2 cos(θ̃v) and rearranging.

Proof of Prop. 6.2. By assumption at time t = 0, it holds θ̃(0) = σ�θ(0) so let us prove the result by
recursion. Assume that the claim is true at iteration t. Since

∏
σ` = 1, it holds fL(θ(t)) = fL(θ̃(t)).

Moreover, since ∂fL
∂w`

is 0-homogeneous in w` and separately 1-homogeneous in (wi)i 6=`. It follows

∇`L(θ̃(t)) =
(∂fL
∂w`

[θ̃(t)]
)>
∇loss(fL(θ̃(t)))

= (
∏
i 6=`

σi)
(∂fL
∂w`

[θ(t)]
)>
∇loss(fL(θ(t))) =

1

σ`
∇`L(θ(t)).

In particular, we deduce that the LRs are related by η̃(t)
η(t) =

‖∇`L(θ(t))‖22
‖∇`L(θ̃(t))‖22

= σ2
` . It follows, for any

` ∈ [1 :L],

w̃`(t+ 1) = w̃`(t)− η̃(t)∇`L(θ̃(t)) = σ`w`(t)− σ2
` η(t)

1

σ`
∇`L(θ(t)) = σ`w`(t+ 1).

This proves θ̃(t+ 1) = σ � θ(t+ 1) and the claim follows by recursion.

B Initializing with zero output weights

Let us mention an interesting degree of freedom for FSC in Table 1: up to adjusting the initial LR,
it is possible to initialize the output layer with 0 while still satisfying FSC at the next step. If one
initializes the output layer WL with 0 then all gradients are 0 at time 0 except that for WL which
leads to the update (non-infinitesimal in this paragraph):

δWL(0) = −ηL(0) · bL(0)g>L−1(0).

The second forward pass is the same as the first one, with the only difference that

fL(1) = −ηL(0)‖gL−1(0)‖22bL(0).

Assuming bL(0) = bL(1) (linear loss) for simplicity, this leads to a second backward pass:

zL−1(1) :=
( ∂L

∂gL−1
(1)
)>

= (−ηL(0)bL(0)gL−1(0)>)>bL(0) = −ηL(0) · ‖bL(0)‖22gL−1(0).
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For the second GD step to satisfy (FL), we just need to ensure

m‖zL−1(1)‖rms = Θ(
√
L) ⇔ ηL(0) = Θ

( √
L

m‖bL(0)‖22

)
.

This is the LR to be used at time 0, for the second step to satisfy (SP), (FL), (LD) and (BC).

Proof of Thm. 6.3. Prop. 6.2 shows that in fact only the product σ1 · σL−2h · σL is a relevant degree of
freedom of scale. We can thus fix (arbitrarily) σ1 = 1/

√
d and σhid = 2/

√
m so that (SP) is satisfied;

we then have ‖bv‖2‖fv‖2 = Θ(mσL) for v ∈ [1 :L− 1]. Desideratum (RFL) requires

‖ḟL−1‖2
‖fL−1‖2

=
C1 + Ch

cos(θL−1)‖bL−1‖2‖fL−1‖2
= Θ(1) ⇔ σL � (C1 + Ch)

√
L

m
.

using that cos(θL−1) = Θ(1/
√
L). Moreover, (LD) requires C1 + Ch + CL = Θ(1). At this stage,

the output scale σL is not yet entirely determined since C1 + Ch = o(1) is not excluded. This is
where (BS) comes into play. It requires in particular

‖ḃ1‖2
‖b1‖2

=
Chid + CL

cos(θ̃1)‖b1‖2‖f1‖2
= O(1) ⇔ (Chid + CL)

√
L

m
= O(σL)

using that cos(θ̃1) = Θ(1/
√
L) by Lem. A.1. Combining both conditions for σL imply, on the

one hand, that Ch + CL = O(C1 + Chid) hence C1 + Chid = Θ(1) and σL = Θ(
√
L
m ), which are

equivalent to the constraints written in the theorem. Conversely, it is not difficult to see that these
constraints lead to satisfying (RFL), (LD), (FS) and (BS).

C Characterization of reparameterization invariant LR

Consider a function f :
∏L
`=1 Rp` → R admitting a (selection) derivative and, for a fixed scale vector

α ∈ (R∗+)L consider the function g(y) = f(α · y) where α · x denotes (α1x1, . . . , αLxL). Consider
one step of GD on the two functions, given for ` ∈ [1 : L], by

x′` = x` − η`∇`f(x), y′` = y` − η`∇`g(y)

with identical starting points, that is x` = α` · y` for ` ∈ [1 :L].
Proposition C.1. Consider adaptive learning rates, which are of the form η` = η`(∇f(x)). Then
x′ = α · y′ for all α ∈ (R∗+)L if and only if η` is (−2)-homogeneous in∇`f(x) and 0-homogeneous
in∇`′f(x) for ` 6= `′.

One such LR is precisely that suggested by Prop. 4.1: η` ∝ ‖∇`f(x)‖−22 .

Proof. For ` ∈ [1 : L], it holds

α`y
′
` = α`y` − α`η`(∇g(y))∇`g(y) = x` − α2

`η`(α · ∇f(x))∇`f(x).

Then α · y′ = x′ for all α ∈ (R∗+)L is equivalent to

α2
`η`(α · ∇f(x)) = η`(∇f(x)), ∀α ∈ (R∗+)L

which is the claimed homogeneity property.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?

17



Answer: [Yes]

Justification: Some of the proofs are deferred to the appendix, but all are provided.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiments (with synthetic data) corroborate closely the theoretical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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material?

Answer: [Yes]

Justification: A link with the code to reproduce the experiments is provided.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are given either in the captions of the plots or in the main
text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: our plots include several random runs (which is more precise than error bars).
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: the experiments are small scale and run in less than 10 minutes on a personal
laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

21

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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