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Abstract

Deep learning models are often trained to approximate dynamical systems that can be mod-
eled using differential equations. Many of these models are optimized to predict one-step
ahead; such approaches produce calibrated one-step predictions if the predictive model can
quantify uncertainty, such as Deep Ensembles. At inference time, multi-step predictions
are generated via autoregression, which needs a sound uncertainty propagation method to
produce calibrated multi-step predictions. This work introduces an alternative Predictor-
Corrector approach named HopCast that uses Modern Hopfield Networks (MHN) to learn
the errors of a deterministic Predictor that approximates the dynamical system. The Cor-
rector predicts a set of errors for the Predictor’s output based on a context state at any
timestep during autoregression. The set of errors creates sharper and well-calibrated pre-
diction intervals with higher predictive accuracy compared to baselines without uncertainty
propagation. The calibration and prediction performances are evaluated across a set of dy-
namical systems. This work is also the first to benchmark existing uncertainty propagation
methods based on calibration errors. We also evaluate HopCast as a substitute for Deep
Ensembles within a model-based reinforcement learning planner, demonstrating improved
performance across multiple control tasks.

1 Introduction

Approximating dynamical systems that can be modeled using differential equations has many applications
in systems biology (Wang et al., 2021; Brauer & Kribs, 2016), control (Moerland et al., 2023; Lu et al.,
2021), economics (Tu, 2012), and cyber-physical systems (Bilal Shahid & Fleming, 2025; Shahid et al., 2024;
Robison et al., 2024). Many deep learning approaches to approximate dynamical systems optimize the
model to predict one-step ahead during training (Khansari-Zadeh & Billard, 2011; Coates et al., 2008; Ko
et al., 2007). The multi-step predictions are generated via autoregression at inference time (Lu et al., 2021).
In doing so, the model error accumulates over time, resulting in multi-step predictions diverging from the
ground truth (Venkatraman et al., 2015; Janner et al., 2021). Hence, it is imperative to develop methods to
generate accurate and calibrated multi-step predictions.

State-of-the-art methods for generating accurate and calibrated predictions include Probabilistic Ensembles
(Deep Ensembles) (Lakshminarayanan et al., 2017). To approximate the dynamics typically associated with
differential equations, these models are optimized to predict one-step ahead during training and then autore-
gressively generate multi-step predictions at inference time. To generate calibrated multi-step predictions,
Probabilistic Ensembles need sound uncertainty propagation methods such as Trajectory Sampling (Chua
et al., 2018a).

In contrast, we introduce a Predictor-Corrector mechanism to produce accurate and calibrated multi-step
predictions for dynamical systems without the need for uncertainty propagation. The Predictor is optimized
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to predict a one-step ahead point estimate of the next state of the system during training and produce multi-
step predictions via autoregression at inference time. Our Corrector is based on the idea that similar states
of a system lead to similar errors. This idea was leveraged by Auer et al. (2023) to build calibrated prediction
intervals for one-step prediction utilizing Modern Hopfield Networks (MHN). However, the same state may
not lead to the same error for multi-step predictions for dynamical systems. In such situations, the error
also depends on how the system arrives at that state, i.e., where the system started and when it reached the
state. To that end, we introduce the concept of context state, assuming that similar context states lead to
similar errors. The Corrector, utilizing MHN, learns similarity between context states in terms of errors. At
any timestep during autoregression, the Predictor predicts, and the Corrector generates prediction intervals
for the prediction. To control the width of prediction intervals for calibration, we introduce the concept of
Attention Span. We name our approach HopCast.

Our contributions are:

• the introduction of the Predictor-Corrector mechanism, where the Predictor autoregressively gen-
erates the next state for a dynamical system, and the Corrector predicts a set of errors for the full
forecasting horizon. The expected error corrects the prediction, while the set of errors generates the
calibrated prediction intervals.

• a method – HopCast – that has no assumptions about the Predictor except that it predicts a
point estimate of the next state of the system. It is therefore a general framework that can provide
multi-step calibrated predictions irrespective of the form or capability of the underlying Predictor.

• lower calibration and prediction error across several benchmarks, without the use of complex uncer-
tainty propagation techniques. Unlike uncertainty propagation methods, HopCast creates sharper
prediction intervals based on context state instead of accumulating uncertainty over time during au-
toregression. We also test HopCast as a replacement for Probabilistic Ensembles in a model-based
reinforcement learning planner, achieving strong performance on standard control tasks.

2 Related Work

Since we propose a mechanism to quantify the predictive uncertainty and generate calibrated prediction
intervals, the related works include those from the uncertainty quantification (UQ) and model calibration.
In UQ, there are two lines of work: Bayesian and Ensemble methods.

Bayesian Methods. In Bayesian models, a distribution over the parameters of the underlying model is
learned, called posterior distribution. At inference time, multiple samples of parameters can be taken from
the posterior distribution using an accurate sampling method, such as Hamiltonian Monte Carlo (HMC)
(Betancourt, 2017). These samples serve as multiple predictive models and give us the desired diversity
in the predictive variable of interest. A notable method from this domain is Bayes by Backprop (Blundell
et al., 2015), which learns an approximate posterior distribution over the weights of a feedforward model via
Variational Inference (VI) by optimizing the evidence lower bound (ELBO) (Kingma et al., 2015).

Ensemble Methods. In classical ensemble methods, an ensemble of models is trained with variations
in the data for each model in the ensemble to train robust predictors (Davison & Hinkley, 1997). Deep
Ensembles, however, are constructed using modern deep learning models with random initializations in the
parameter space. These over-parametrized models, when initialized randomly, converge to different local
minima, giving us the desired diversity in the predictive variable (Fort et al., 2019) These models were first
presented by Lakshminarayanan et al. (2017) in the context of predictive uncertainty estimation. A notable
extension of that is Neural Ensemble Search (Zaidi et al., 2021), which uses different architectures for models
in an ensemble and improves upon deep ensembles. The Deep Ensemble is a scalable way of quantifying
uncertainty compared to Bayesian methods (Wilson & Izmailov, 2020). Hence, these are used as baseline
models with different uncertainty propagation methods in the current work.

Model Calibration. Calibration has been studied widely for classification models. In binary classification,
Platt Scaling (Platt et al., 1999) and isotonic regression (Niculescu-Mizil & Caruana, 2005) have been used
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successfully for recalibration. There are extensions of such works to multi-class classification problems
(Zadrozny & Elkan, 2002). In the context of regression, Gneiting & Raftery (2007) proposed several proper
scoring rules to evaluate the calibration of a probabilistic model for continuous variables. Those scoring rules
have been used in the literature as loss functions, for example, continuous ranked probability score (CRPS)
(Gasthaus et al., 2019). Calibration has also been discussed in the literature on probabilistic forecasting,
mainly in the context of meteorology (Gneiting & Raftery, 2005), resulting in specialized calibration systems
(Raftery et al., 2005). An approach called calibrated regression was proposed by Kuleshov et al. (2018),
which used isotonic regression to recalibrate Bayesian models. In contrast, our work turns a deterministic
Predictor into a calibrated Predictor via a Predictor-Corrector mechanism. Also, we focus on Predictors
that autoregressively generate the next state of a dynamical system, a setting rarely addressed in the model
calibration literature to the best of our knowledge.

3 Problem Description

Consider a dynamical system described by a multivariate ordinary differential equation (ODE).

ẋ(t) = dx(t)
dt

= f(x(t)) (1)

where x(t) ∈ RD denotes the state of a D-dimensional system at time t and ẋ(t) ∈ RD is its first order time
derivative. The f(x(t)) specifies the vector-valued time derivative function. The state of a dynamical system
at time t can be obtained by integrating the ODE as:

x(t) = x0 +
∫ t

0
f(x(τ))dτ (2)

The ODE is integrated forward in time starting from the initial condition x(0) = x0. We assume that the
vector field f is unknown, but it can be learned based on observed data. The goal of a predictive model is
to predict x(t) as accurately as possible, for as long as possible, that is, to minimize the distance between
the prediction x̂(t), and ground-truth trajectory, x(t). Additionally, in this work, for D predictions of each
variable in x(t), we wish to create a set of models that correct such predictions, Mi(t) for i ∈ {1, . . . , D}.

The following exposition describes the data generation process and nomenclature for Predictors, Correctors,
trajectory types, errors, and so forth. The method is general and can be used for any D-dimensional problem
as in equation (1). For ease of exposition and without loss of generality, we select a two-dimensional ODE to
describe the inner workings and preliminaries. The Lotka-Volterra (LV) system is used here and in section 4
for illustrative purposes; subsequent sections show experimental results for a variety of systems. LV dynamics
can be written as:

dx

dt
= αx− βxy (3)

dy

dt
= δxy − γy (4)

The state of this system can be defined as: s̃ = (x, y). We assume a set of ground-truth N trajectories of
T timesteps IN = {τn}Nn=1 where τn = {(snt , snt+1)t}Tt=1 and snt = (xnt , ynt ). This dataset can be generated
by solving the equations with a numerical ODE solver such as solve_ivp from scipy with random initial
conditions. To simulate measurement noise, we perturb each state post-integration with additive Gaussian
noise, i.e., s = s̃ + ϵ, where ϵ ∼ N (0, σ ∗ Σ) and Σ = diag(σx, σy). The σ is the scaling factor. We name
IN an Integrated dataset. We assume that there is a Predictor B (a learned representation of vector-valued
function f), trained on IN , that predicts s̄t+1

1 given s̄t, autoregressively generating a predicted set of N
trajectories starting from the same initial conditions. Precisely, AN = {τ̄n}Nn=1 where τ̄n = {(̄snt , s̄nt+1)t}Tt=1
and s̄nt = (x̄nt , ȳnt ). We call AN an Autoregressive dataset. The error (ent ) is the difference between tth

1The overhead bar over a variable shows that it belongs to Autoregressive dataset.
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timestep of nth trajectory from Integrated and Autoregressive, that is, ent = (exn
t
, eyn

t
) where ent = snt − s̄nt .

Therefore, the set of errors of N trajectories is FN = {{ent }Tt=1}Nn=1.

For the LV example, we assume two correction models, Mx and My, corresponding to each output of the
Predictor B. Mx and My will predict a set of errors Ex̄ = {εix̄t+1

}si=1 and Eȳ = {εiȳt+1
}si=1 associated with

tth timestep of a trajectory at inference time, respectively. The z% prediction interval, i.e., PIzx̄t+1
and PIzȳt+1

for x̄t+1 and ȳt+1 at tth timestep can be generated as follows:

PIzx̄t+1
= x̄t+1 + [Qα(Ex̄), Q1−α(Ex̄)] (5)

PIzȳt+1
= ȳt+1 + [Qα(Eȳ), Q1−α(Eȳ)] (6)

where α = 1−z
2 . For example, a 90% prediction interval corresponds to α = 0.05. The Qα denotes the α-

quantile. We generate prediction intervals for the outputs of PredictorB at tth timestep during autoregression
solely based on the set of errors predicted by correction models (Mx and My), thereby avoiding uncertainty
propagation.

4 HopCast

The proposed methodology, HopCast, consists of a Predictor-Corrector mechanism shown in Fig. 1. At
any timestep (t) during autoregression, the Predictor B produces a point forecast of the next state of the
system (x̄t+1, ȳt+1) given previous state (x̄t, ȳt). The Corrector retrieves context-dependent errors (Ex̄ and
Eȳ) to correct the forecast and quantify uncertainty. In particular, the Corrector consists of correction
models (Mx and My), one for each output of the Predictor B. Each correction model (M) consists of an
Encoder (m) and an MHN (Ramsauer et al., 2020; Auer et al., 2023). The Encoder (m) is a fully connected
feedforward model. Architectural details are included in Appendix E.1. We frame correction as a pattern
retrieval task (Ramsauer et al., 2020). Precisely, Mx and My take in the context state (x̄1, ȳ1, x̄t, ȳt, t) as a
pattern and outputs Ex̄ and Eȳ, respectively. Ex̄ and Eȳ contain errors associated with similar context states
from the past. The context state is the input of Predictor B (x̄t, ȳt) augmented with the initial condition
(x̄1, ȳ1) and time step (t). The context state captures both local and trajectory-level structure, enabling
the Corrector to retrieve errors specific to the current dynamical regime. The Ex̄ & Eȳ are used to derive
prediction intervals.

Figure 1: Predictor-Corrector mechanism

The remainder of this section consists of three subsections. Section 4.1 discusses the shuffling of IN , AN , &
FN datasets to train correction models for pattern retrieval tasks. Section 4.2 then discusses the training
of the correction model (Mx), and section 4.3 describes the inference with Mx where we generate the set of
errors (Ex̄) given the context state.
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4.1 Shuffled Data

The MHN in HopCast is trained as a pattern–retrieval model rather than a sequence model. To this end,
we break every trajectory into independent context–error pairs and shuffle them, so the model learns to
retrieve errors based on the similarity of context, rather than the temporal ordering of the data. We explain
that below.

Shuffled Queries (SQ). Before training the correction model (Mx), the states of the system from Au-
toregressive (AN ) dataset are augmented with context information, that is, initial condition and time step.
Appendix E.2 emphasizes the importance of adding initial condition as a context. Specifically, the tth

timestep of nth trajectory τ̄n from AN , i.e., (x̄nt , ȳnt ), will be c̄nt = (x̄n1 , ȳn1 , x̄nt , ȳnt , t) after adding context
information. The tuple (x̄n1 , ȳn1 ) is the initial condition of trajectory τ̄n. The c̄nt denotes the context state
associated with the tth timestep of nth trajectory. The set of all context states constructed from dataset
AN is {{c̄nt }Tt=1}Nn=1. This nested set of context states is flattened and shuffled randomly to form a new set

SQ = Shuffle
(

N⋃
n=1
{c̄nt }Tt=1

)
. Appendix E.7 highlights the importance of shuffling the data.

Shuffled Keys (SK). Likewise, we construct the context states {{cnt }Tt=1}Nn=1 for Integrated (IN ) dataset
as well, where cnt = (xn1 , yn1 , xnt , ynt , t). Similar to SQ, we flatten the nested set {{cnt }Tt=1}Nn=1 and randomly

shuffle it to form SK = Shuffle
(

N⋃
n=1
{cnt }Tt=1

)
.

Shuffled Values (SVx
& SVy

). Given errors FN = {{ent }Tt=1}Nn=1 where ent = (exn
t
, eyn

t
), FN can be split

into two sets of errors F xN = {{exn
t
}Tt=1}Nn=1 and F yN = {{eyn

t
}Tt=1}Nn=1. Recall that we train separate

correction models (Mx and My) for each output of Predictor B. F xN and F yN are flattened and shuffled to

form SVx = Shuffle
(

N⋃
n=1
{exn

t
}Tt=1

)
and SVy = Shuffle

(
N⋃
n=1
{eyn

t
}Tt=1

)
.

Once we have SQ, SK , SVx
, SVy

, they are split into train/test with an 80/20 split. To train Mx, we need
dataset Dx = {(Q,K,Vx)i} comprising triplets (Q,K,Vx). Each triplet of Q, K, and Vx are constructed
by sampling SL (Sequence Length) number of elements from sets STrain

Q , STrain
K , and STrain

Vx
, respectively.

For instance, one triplet with SL = 5 is: Q = (c̄3
4, c̄1

5, c̄5
7, c̄3

2, c̄7
1)⊤, K = (c3

4, c1
5, c5

7, c3
2, c7

1)⊤, and Vx =
(ex3

4
, ex1

5
, ex5

7
, ex3

2
, ex7

1
)⊤. The error ex3

4
= x3

4 − x̄3
4 denotes the error of Predictor B at 4th timestep of 3rd

trajectory. Likewise, we construct Dy = {(Q,K,Vy)i} using STrain
Q , STrain

K and STrain
Vy

. The 20% split with
inference data is used for final evaluation.

4.2 Training

Figure 2 illustrates how the correction model (Mx) retrieves context-dependent errors using an Encoder
(mx) and a Modern Hopfield Network (MHNx): (i) the mx maps each context state into a d-dimensional
embedding, and (ii) the MHNx forms associations between embedded queries and keys and retrieves the
corresponding error values. Specifically, the mx takes in as input the context state, such as c3

4, and outputs
a d-dimensional embedding. We choose d = 4 in our experiments, though other values of d are expected
to perform comparably [Appendix E.6]. We use the same mx to construct embedded queries Qψ and keys
Kψ from Q and K, respectively. These appear as row/column labels in the Training block of Fig. 2. The
MHNx uses an attention mechanism (Vaswani, 2017) to construct an association matrix (ASL×SL) based on
the similarity of elements in Qψ with elements in Kψ. Mathematically,

ASL×SL = softmax

(
QψK⊤

ψ√
d

)
(7)

V̂x = ASL×SL .Vx (8)

L = 1
SL
∥Vx − V̂x∥2

2 (9)
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The association matrix (ASL×SL) is shown in the Training block of Fig. 2 with SL = 5. We mask the
association from Autoregressive context state to its Integrated context state. This masking is reflected in
the zeroed diagonal entries of the association matrix. The (i, j)th entry of ASL×SL shows the similarity of
ith element of Qψ with jth element of Kψ. We use softmax over ASL×SL [i, :] to get association weights for
ith element of Qψ. Therefore, each row of ASL×SL sums up to one. The loss function L is used to learn the
parameters of the mx via backpropagation, where the V̂x denotes the predicted errors.

Figure 2: Training and Inference with Correction Model (Encoderx + MHNx).

4.3 Inference

At inference time, the correction model (Mx) retrieves past er-
rors based on the similarity between the encoded query and the
encoded keys stored in the MHNx Association memory. To
build the Association memory, a set of K keys (Kmem) with
the corresponding values (Vx

mem) is sampled from STrain
K and

STrain
Vx

, respectively. For instance, a randomly sampled set of keys
and values would be Kmem = (c3

4, c1
5, c5

7, · · · , c2
5) and Vx

mem =
(ex3

4
, ex1

5
, ex5

7
, · · · , ex2

5
), respectively. The trained Encoder mx is

used to encode the Kmem as Kψ
mem. The Kψ

mem and V xmem con-
stitute the Association memory of MHNx. It is shown in the
Inference block in Fig. 2. We loaded 2000 keys in memory for
evaluation [Appendix E.5]. Once the memory is set up, the cor-
rection model (Mx) takes in the context state (x̄1, ȳ1, x̄t, ȳt, t) as
a query Qt at tth time step during autoregression and encodes it
as Qψ

t . The association weights (atx) at tth timestep are,

atx = softmax

(
Qψ
t Kψ

mem√
d

)
(10)

Figure 3: An example set of errors (Ex)
sampled from Association Memory at
Timestep 106 during autoregression for
the x-output of the Predictor for the
Lorenz system, where the red dotted
line denotes the ground truth error.
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where atx = (p1, · · · , pK),
∑K
i=1 pi = 1, and K denotes the number of keys in memory. The weights

atx show how strongly the query Qψ
t matches each entry in Kψ

mem. A set of s categories is sampled as:
{bi}si=1 ∼ Categorical(atx). We select s = 1000 in our experiments [Appendix E.3]. A set of errors (Ex̄) is
selected from Vx

mem based on sampled categories {bi}si=1, i.e., Ex̄ = {V xmem[bi]}si=1. A sampled set of errors
Ex̄ is shown in Fig. 3 for the x-output of the Predictor B for the Lorenz system. An alternative approach to
sampling from atx is to retrieve top-k probabilities. We provide an ablation study on this in Appendix E.4.

We have discussed the training of Mx and how to utilize it to obtain a set of errors (Ex̄) for the x-output of
the Predictor B at the inference time. To obtain Eȳ by training My, we repeat the same procedure stated
in section 4.2 and section 4.3 with dataset Dy, and this can be done for an arbitrary number of dimensions
depending on the system dynamics.

5 Experiments

5.1 Evaluation Metrics

We propose three metrics to evaluate the quality of HopCast against the benchmarks.

Calibration Error (Kuleshov et al., 2018) (CE). A calibrated model has observed fractions (p̂) of
its predicted random variable match with the expected fractions (p). The difference between these two is
calibration error. To evaluate CE, w(= 9) equally spaced prediction intervals are chosen from 10% to 90%.
For each prediction interval, we count the number of times the observed variable falls between intervals.
Mathematically, CE =

∑w
i=1(p̂i − pi)2.

Prediction Interval Width (Auer et al., 2023) (PI-Width). A calibrated model should also be sharp.
Sometimes, it is trivial to reduce the CE by always predicting the expected value of a random variable
(Kuleshov et al., 2018). A good predictor should be calibrated and sharp. Hence, we propose to use PI-
Width as a measure of sharpness. Mathematically,

PI-Width = 1
w

1
v

w∑
i=1

v∑
j=1
|U ij − Lij |, (11)

where w = 9 is for equally spaced PI, and v denotes the number of validation data points; i.e., v = |SInference
Q |.

Mean Squared Error (MSE). MSE is used to evaluate the predictive accuracy of the proposed approach
against the baselines.

5.2 Datasets

We have discussed one dynamical system, i.e., LV, in section 3. Other dynamical systems include Lorenz,
FitzHugh-Nagumo (FHN), Lorenz95, and the Glycolytic Oscillator. To generate datasets, we randomly
sample N initial conditions from within a specified range for the state variables of each system. The
solve_ivp method from scipy is used to integrate the dynamics with the adaptive-step RK45 solver. To
produce uniformly sampled trajectories, system states are extracted at fixed time intervals ∆t as mentioned
in Table 4. For Lorenz and LV, the dynamics of both system states and their derivatives are modeled,
whereas the dynamics of states are modeled for the rest of the systems. The mathematical forms of each
dynamical system, ranges of initial conditions, and parameter values are given in Appendix B.

5.3 Baselines

The baseline methods include three uncertainty propagation approaches, i.e., Expectation, Moment Match-
ing, and Trajectory Sampling. These approaches are used to propagate uncertainty with Probabilistic En-
sembles (Chua et al., 2018a). The details of Probabilistic Ensembles’ training and uncertainty propagation
methods are presented in Appendix A.

7



Published in Transactions on Machine Learning Research (12/2025)

6 Results

Overall Comparison As shown in Table 1, HopCast outperforms the baseline approaches in terms of CE
and MSE in the vast majority of cases. It achieves the lowest average CE of 0.046 among all, with the second-
best approach being the Trajectory Sampling with CE of 0.075. In terms of MSE, HopCast outperforms
in 11 out of 15 cases, showing the effectiveness of our Predictor-Corrector mechanism. The Expectation and
Moment Matching do not perform well in terms of CE and MSE. These two approaches generate conservative
intervals with average PI-Widths of 7.56 and 3.63, respectively, resulting in overconfident models. The
overconfidence is evident in the calibration curves of Expectation and Moment Matching in Fig. 6. The
average CE of these two approaches is 0.21 and 0.68, respectively, showing high miscalibration compared to
Trajectory Sampling and HopCast. PI-Width is only useful when discussed in conjunction with CE as it
is trivial to reduce the PI-Width while being overconfident and miscalibrated.

Table 1: Prediction Interval Widths (PI-Widths) and Calibration Error (CE) metrics of HopCast and
baseline approaches with different scaling factor (σ) across various dynamical systems. The results are
averaged across 3 runs of the same experiment. All of the CEs within 5% of the best one in a row are
highlighted. The PI-Width is only used as a tie-breaker if there are different models with CEs within 5% of
the best. In that case, the best-performing model based on CE is denoted with an asterisk and PI-Width is
highlighted. For MSE, we simply highlight anything within 5% of the best one in a row.

Model HopCast
Probabilistic Ensemble (PE)

Expectation Moment Matching Trajectory Sampling

Metrics MSE PI-Width CE MSE PI-Width CE MSE PI-Width CE MSE PI-Width CE

Lotka
Volterra

σ = 0.05 6.87± 0.32 2.93± 0.17 0.022± 0.004 20.58± 1.25 4.01± 0.40 0.017± 0.009 28.9± 1.04 0.65± 0.06 0.56± 0.12 19.45± 0.36 5.43± 0.10 0.22± 0.11

σ = 0.1 6.10± 0.20 1.88± 0.05 0.0070± 0.002 24.1± 0.15 0.83± 0.02 0.47± 0.17 23.9± 0.04 0.96± 0.04 0.41± 0.14 21.01± 0.27 5.87± 0.59 0.18± 0.10

σ = 0.3 9.69± 0.23 3.19± 0.12 0.0051± 0.004 25.6± 0.09 2.13± 0.02 0.21± 0.05 25.4± 0.08 2.93± 0.02 0.059± 0.02 23.3± 0.05 6.19± 0.22 0.13± 0.07

Lorenz

σ = 0.05 1126± 7.97 28.76± 0.74 0.011± 0.006 1101.9± 28.3 30.37± 0.80 0.002± 0.001 1991.3± 4.03 4.45± 0.009 1.23± 0.07 1080.10± 5.59 38.79± 0.49 0.16± 0.04

σ = 0.1 1248.17± 15 38.66± 0.38 0.019± 0.03 1413.1± 38.83 35.49± 1.11 0.011± 0.015 2579.7± 48.7 8.78± 0.01 1.21± 0.08 1314.60± 3.80 45.28± 0.69 0.078± 0.03

σ = 0.3 1681± 46.36 40.44± 0.91 0.019± 0.004∗ 1848.5± 15.8 25.9± 1.43 0.38± 0.10 2098.5± 18.08 23.13± 0.06 0.58± 0.30 1788.6± 10.9 48.52± 0.35 0.018± 0.016

FHN

σ = 0.05 0.076± 0.002 0.20± 0.005 0.091± 0.004 0.68± 0.13 1.13± 0.061 0.044± 0.034 0.95± 0.45 0.28± 0.007 0.91± 0.42 0.66± 0.04 1.25± 0.007 0.054± 0.026

σ = 0.1 0.17± 0.03 1.03± 0.05 0.32± 0.05 1.39± 0.17 0.76± 0.064 0.38± 0.19 2.21± 0.13 0.38± 0.003 1.42± 0.086 0.83± 0.005 1.35± 0.003 0.051± 0.02

σ = 0.3 0.57± 0.04 1.27± 0.03 0.11± 0.02 1.53± 0.086 1.009± 0.046 0.39± 0.13 1.25± 0.003 1.52± 0.010 0.108± 0.019 1.12± 0.008 1.55± 0.004 0.061± 0.011

Lorenz95

σ = 0.05 10.44± 0.08 4.41± 0.13 0.007± 0.003 10.11± 0.21 3.25± 0.015 0.13± 0.017 14.11± 0.48 1.84± 0.009 0.62± 0.04 9.30± 0.031 4.90± 0.023 0.022± 0.007

σ = 0.1 13.98± 0.11 5.78± 0.018 0.0028± 0.007 13.31± 0.20 3.29± 0.05 0.27± 0.025 17.38± 1.14 3.24± 0.03 0.35± 0.06 11.63± 0.11 5.44± 0.04 0.004± 0.003

σ = 0.3 16.44± 0.66 6.08± 0.06 0.0015± 0.001 17.46± 0.11 4.61± 0.04 0.13± 0.029 16.37± 0.23 6.01± 0.03 0.0036± 0.003 15.13± 0.075 6.49± 0.047 0.009± 0.006

Glycolytic
Oscillator

σ = 0.05 0.03± 0.001 0.20± 0.007 0.043± 0.018 0.10± 0.006 0.24± 0.02 0.07± 0.04 0.13± 0.019 0.056± 0.002 1.35± 0.32 0.09± 0.004 0.36± 0.006 0.06± 0.026

σ = 0.1 0.072± 0.003 0.25± 0.007 0.018± 0.006 0.12± 0.005 0.21± 0.01 0.10± 0.03 0.15± 0.005 0.08± 0.004 0.99± 0.18 0.10± 0.001 0.41± 0.01 0.07± 0.03

σ = 0.3 0.11± 0.001 0.37± 0.008 0.016± 0.003∗ 0.18± 0.001 0.23± 0.01 0.62± 0.28 0.25± 0.002 0.21± 0.003 0.54± 0.07 0.17± 0.005 0.46± 0.003 0.015± 0.01

Average - - 9.03 0.046 - 7.56 0.21 - 3.63 0.68 - 11.48 0.075

Attention Span HopCast lets us control the confidence of the model with precise control over the width
of PI based on a concept we introduce called Attention Span. The Attention Span can be increased/decreased
by increasing/decreasing the SL of Q and K in ASL×SL . To demonstrate that, we collect a dataset H =
{(xi, yi)}6000

i=1 using the sine function with heteroscedastic noise (Chua et al., 2018a) shown in equation 12
and Fig. 4(a). The xi’s are uniformly sampled from the following domain [− 5π

2 ,−π] ∪ [π, 5π
2 ].

(x, y)→
(
x, y +N

(
0, 0.2

∣∣∣∣sin(3
2x+ π

8

)∣∣∣∣)) (12)

We use the same correction model (Mx) consisting of Encoder (mx) and MHNx with the same training
and inference procedures described in section 4.2 and 4.3, respectively. The only exception is that the
set of triplets {(Q,K,V)i} are constructed from dataset H. For instance, a triplet with SL = 4 is: Q =

8
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(x10, x13, x14, x1), K = (x10, x13, x14, x1), and V = (y10, y13, y14, y1). We trained two Mx models with SL
of 3 & 8. At the inference time, the Mx is given a data point x = 3.28 as a query to be associated with
the keys in memory based on similarity in terms of y. The keys from memory are sampled based on their
association weights. The frequency plots of sampled keys for SL of 3 & 8 are in Fig. 4(b) & (c), respectively.
For SL = 3, the sampled keys are clustered around 3.28 in Fig. 4(b), which are the most similar keys to
the query x = 3.28. As we increase SL to 8, the Mx expands its Attention Span by picking other keys from
memory around x = −3.2 & 6.5 that have nearly similar y values as shown in Fig. 4(c).

Figure 4: (a) Upper center: Sine function with heteroscedastic noise (b) Lower left: Attention Span for
x = 3.28 as a query with SL = 3 (c) Lower right: Attention Span for x = 3.28 as a query with SL = 8

Calibration Performance The reason HopCast performs well in terms of CE compared to baselines is
owing to the SL that can be increased/decreased to increase/decrease the diversity of sampled errors Ex̄ from
MHN memory. As we increase the SL, the Mx starts to expand its Attention Span by associating other keys
from memory (Kψ

men) to the query (Qψ
t ) based on their similarity in terms of errors, effectively controlling

the width of prediction intervals. We train separate correction models (e.g., Mx and My) for each output of
the Predictor and tune their SL separately. The SL hyperparameter and number of models in a Probabilistic
Ensemble for each setting are shown in Appendix C. For the baseline approaches, we tune the number
of models in an ensemble. In general, we observed that the Probabilistic Ensembles tend to increase the
uncertainty (or widen their prediction intervals) as we increase the number of models, and the uncertainty
plateaus at some point. Therefore, if the uncertainty plateaus and the model is overconfident, adding more
models to the ensemble will not make it a calibrated model. This was observed in the calibration curves
of Expectation and Moment Matching in Fig. 6. Trajectory Sampling, in contrast, provided calibrated
uncertainty with few models in the ensemble (i.e., 3 or 4) in most cases. It is owing to its nature of taking
predicted uncertainty into account during propagation.

Predictive Performance HopCast outperforms in most cases in terms of MSE because we proposed
a Corrector that predicts a set of errors, and prediction intervals are a side effect of the approach. Also,
our model generates a smaller PI-width in most cases because we generate prediction intervals based on
the context state (x0, y0, xt, yt, t) at any timestep during autoregression. On the other hand, uncertainty
propagation approaches generate intervals based on uncertainty accumulated due to propagation up to a
certain time step (t = t′) starting from t = 1. A manifestation of that is shown in Fig. 5 (b) & (d). For Fig.
5(a), the output of Predictor B is shown in the dark, and the Mean indicates the prediction after adding
the expected error (

∑s
i=1 atx[bi]Ex[i]) from the Corrector. For Fig. 5(b), (c), & (d), the Mean indicates the

expected prediction from all models in a Probabilistic ensemble. Fig. 5(a) shows that HopCast reduces
its PI-Width around time step 270 due to smaller error, resulting in sharper intervals. On the other hand,
Expectation and Trajectory Sampling have wider PI due to accumulated uncertainty up to that time step,
even though the Mean is close to the ground truth.

9
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Figure 5: (a). Upper left: HopCast (b). Upper right: Expectation (c). Lower left: Moment Matching (d).
Lower right: Trajectory Sampling. A comparison of prediction intervals generated by HopCast and three
uncertainty propagation approaches. The x-axis denotes the time steps, and the y-axis shows the x output
of the Lorenz system. The Upper PI and Lower PI show the m = 9 equally spaced prediction intervals from
10% to 90%.

Figure 6: The calibration curves of HopCast and three uncertainty propagation methods for Glycolytic
Oscillator at σ = 0.3. The dark dotted line corresponds to the perfect calibration. The calibration curves
are shown separately for seven states of the system.

Trajectory Sampling vs. Counterparts On average, Trajectory Sampling performs better than its
counterpart baselines–Expectation and Moment Matching–in terms of CE, owing to how it propagates un-
certainty. It takes into account the predicted uncertainty of the model while propagating uncertainty from
time step t to t+1. It samples the state for the next step from the predicted Multivariate Normal distribution
rather than propagating just the predicted mean like the Expectation. Moment Matching also samples the
next state from the predicted Multivariate Normal distribution, just like Trajectory Sampling. However, it
recasts prediction from all models in an ensemble at every timestep (t) to a Multivariate Normal distribution
and then resamples next states before propagation. This results in overly conservative PI, as shown in Fig.
5(c), and evidenced by the PI-Width of 3.63 in Table 1.

10
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7 Hyperparameter Tuning

SL (Sequence Length) is a hyperparameter that must be tuned
for calibrated uncertainty. We propose Algorithm 1 to tune it
based on the intuition that uncertainty typically increases with
larger SL (Section 6; Fig. 7). A small value (e.g., 10) produces
overconfident estimates, while a large value (e.g., 1000) leads to
underconfidence. Intermediate values such as SL = 500 yield
near-perfect calibration, whereas SL = 400 and SL = 600 show
overconfidence and underconfidence, respectively. We iteratively
refine SL with the calibration curve and typically converge to an
optimal setting within a few trials. Appendix E.9 provides addi-
tional experiments.
The number of models in an ensemble is a hyperparameter. As
discussed in the section 6, the ensembles tend to build up the
uncertainty until it plateaus [Appendix E.8]. We keep adding
models to the ensemble until it provides calibrated uncertainty.
In some cases, the uncertainty saturates while the model is over-
confident. In those cases, the number of optimal models is very
high, e.g., 8 or 7. Appendix F contains additional details about
hyperparameters.

Figure 7: Calibration curves of the y-
output of Lorenz for different SL.

Algorithm 1 SL Tuning for Calibration
1: Initialize OptimalSL← True
2: Pick a large SL & a small SL
3: Pick an SL between large and small SL
4: while OptimalSL do
5: Three possibilities on Calibration Curve
6: if Calibrated Uncertainty then
7: OptimalSL← False
8: else if Underconfidence then
9: Decrease SL

10: else if Overconfidence then
11: Increase SL
12: end if
13: end while

8 Model-Based Reinforcement Learning

We compare the performance of HopCast and Probabilistic Ensembles as the uncertainty-aware dynamics
models within a model-based reinforcement learning (RL) algorithm. PETS (Probabilistic Ensembles with
Trajectory Sampling) is a widely used model-based RL algorithm that relies on Probabilistic Ensembles to
model the transition dynamics and propagate uncertainty for planning via Model Predictive Control (MPC)
(Chua et al., 2018b). In PETS, the planning quality is heavily influenced by the accuracy and calibration of
the dynamics model, model bias compounds rapidly during long-horizon rollouts, and miscalibrated dynamics
models lead the planner to choose overly optimistic or overly conservative action sequences.

Our earlier experiments in Table 1 demonstrate that HopCast produces more accurate and better-calibrated
multi-step predictions than Probabilistic Ensembles, which utilize different uncertainty propagation methods,
i.e., Expectation (E) A.1, Moment Matching (MM) A.3, and Trajectory Sampling (TS) A.2. In Table 2, we
show the performance of HopCast on four standard control tasks when it is used as a drop-in replacement for
the Probabilistic Ensembles in the PETS algorithm. The results for baselines, i.e., Probabilistic Ensembles &
Deterministic Ensembles, with three uncertainty propagation methods, i.e., Expectation, Moment Matching,
& Trajectory Sampling, are taken from Chua et al. (2018b) 2. The HopCast yields comparable performance

2Code available at: https://github.com/kchua/handful-of-trials
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to Probabilistic Ensembles on Cartpole and 7-DOF Reacher, while it outperforms on 7-DOF Pusher and Half-
Cheetah tasks. The Probabilistic Ensembles, which utilize uncertainty propagation methods, outperform on
Cartpole and 7-DOF Reacher, showing their competitiveness against HopCast. However, the Deterministic
Ensembles exhibit competitive performance in a relatively low-dimensional setting, such as Cartpole, but
show performance degradation on high-dimensional tasks. These experiments demonstrate the efficacy of
our proposed methodology HopCast within a model-based RL algorithm on various control tasks.

Table 2: The performance of different tasks in terms of rewards with different dynamics models, i.e., Proba-
bilistic Ensembles (PE) & Deterministic Ensembles (DE), and various uncertainty propagation methods, i.e.,
Expectation (E), Moment Matching (MM), & Trajectory Sampling (TS). The HopCast shows the results
with our proposed methodology as a drop-in replacement of PE within the PETS planning algorithm. The
best results are shown in bold.

Task
Model

HopCast PE-E PE-MM PE-TS DE-E DE-MM DE-TS

Cartpole 181± 2.3 180 181 183 179 177 181

7-DOF Pusher −45± 4.3 −48 −46 −46 −95 −97 −93

7-DOF Reacher −44± 3.4 −44 −45 −43 −93 −94 −96

Half-cheetah 7170± 40 5700 200 7100 3800 190 3950

9 Conclusions

We proposed a Predictor-Corrector mechanism for autoregressive dynamics models to correct the Predictors’
predictions and generate calibrated prediction intervals for it at any timestep during autoregression. Hop-
Cast performs competitively well against the alternative approach (i.e., uncertainty propagation), giving
accurate and calibrated autoregressive dynamics models. Out of three uncertainty propagation approaches,
i.e., Trajectory Sampling, Moment Matching, and Expectation, Trajectory Sampling performs competitively
well against ours. This is due to its nature of taking predicted uncertainty into account during propagation.
HopCast offers a lower calibration and prediction error with sharper prediction intervals. The sharper
prediction intervals result directly from modeling context-specific errors, and the lower prediction error is
the consequence of modeling errors in the form of a Corrector. In addition, we introduce a concept called
Attention Span that gives precise control over the width of prediction intervals with a hyperparameter we in-
troduce called Sequence Length (SL). We also deploy HopCast within a model-based reinforcement learning
planner as an alternative to Probabilistic Ensembles, demonstrating its competitive performance on diverse
control tasks.

Limitations and Future Directions One of the limitations of our work is due to the use of explicit
timestep IDs (i.e., t =1,2,3, etc.) in the context state (cnt ). At inference time, the Corrector will only generate
calibrated prediction intervals for a trajectory length equal to or less than what it was trained on. Moreover,
the Corrector was trained on trajectories sampled at a fixed time interval ∆t and does not generalize to
other sampling intervals. A modified version of the Corrector could be made discretization-invariant. We
hand-tuned the SL hyperparameter, training multiple models to get a lower calibration error. An alternative
approach to obtaining calibrated uncertainty with HopCast without tuning the SL hyperparameter is an
interesting area for future work.
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A Baseline Methods

This section will discuss how we propagate uncertainty with Probabilistic Ensembles using three uncertainty
propagation methods, i.e., Expectation. Moment Matching and Trajectory Sampling. These will be discussed
with reference to the Lotka-Volterra (LV) system, whose state at time step (t + 1) is st+1 = (xt+1, yt+1).
We will see how to generate z% prediction intervals associated with st+1 (PIzst+1

) at any timestep during
autoregression with these approaches.

Probabilistic Ensembles To construct Probabilistic Ensembles, we train a population of fully connected
feedforward models, i.e., Ω = {fi}i, where fi represents the ith model within the population. Each model
is trained with Gaussian negative log-likelihood (NLL) loss as demonstrated in Lakshminarayanan et al.
(2017). Each model predicts a Multivariate Normal (MVN) over the next state st+1 given the previous
state of the system st. Formally, st+1 ∼ MVN(µt+1,Σt+1). For the LV system, µt+1 = (µxt+1, µ

y
t+1) and

Σt+1 = diag(σxt+1, σ
y
t+1).

Uncertainty Propagation At inference time, a sample of M models {fm}Mm=1 can be taken from the
population (Ω) to form a Probabilistic Ensemble. All three propagation approaches use a particle-based
approach, where the core idea is to generate multiple trajectories via autoregression starting from the same
initial condition (Chua et al., 2018a). Let sp,mt denote the state of the system associated with pth particle
from mth model at tth time step. Each model fm receives P copies of the same initial condition {sp,mt=0}Pp=1,
where P denotes the number of particles assigned to model fm. The propagation of uncertainty starts
with P ∗M copies of the same initial conditions across {fm}Mm=1 models and results in P ∗M number of
trajectories. The diversity in these trajectories will come from two sources, i.e., M different models and their
probabilistic predictions. These diverse trajectories will be used to derive prediction intervals. In contrast,
HopCast used a set of errors (e.g., Ex̄ & Eȳ) to derive prediction intervals.

The rest of the section discusses the algorithmic details of three propagation approaches and the construction
of prediction intervals using the outputs of three algorithms.

A.1 Expectation

The Expectation method always uses P = 1 particle for each model fm. This is because the predicted
uncertainty (Σp,m

t+1) is ignored, and the predicted mean (µp,mt+1) is propagated to the next time step. Therefore,
assigning more than one particle to a model fm will not generate diverse trajectories from that model. Even
though this approach ignores predicted uncertainty (Σp,m

t+1) during propagation, it will be used to generate
prediction intervals as explained in section A.3. The overall procedure of this approach is in Algorithm 2.

Algorithm 2 Expectation

1: Input: Initial states {s1,m
t=0}Mm=1, models f1, . . . , fM , timesteps T

2: for t = 0 to T − 1 do
3: for m = 1 to M do
4: Predict µ1,m

t+1,Σ
1,m
t+1 ← fm(s1,m

t )
5: s1,m

t+1 = µ1,m
t+1 Propagate mean

6: end for
7: {s1,m

t+1}Mm=1 inputs to the next timestep
8: end for
9: return {s1,m

1:T }Mm=1 the 1 ∗M number of trajectories of length T

A.2 Trajectory Sampling

This method uses P particles for each model fm since it considers predicted uncertainty (Σp,m
t+1) while

propagating uncertainty to the next step. The overall procedure of this algorithm is summarized in Algorithm
3.
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Algorithm 3 Trajectory Sampling
1: Input: Initial states {{sp,mt=0}Pp=1}Mm=1, models f1, . . . , fM , timesteps T , particles P
2: for t = 0 to T − 1 do
3: for m = 1 to M do
4: for p = 1 to P do
5: Predict µp,mt+1 ,Σ

p,m
t+1 ← fm(sp,mt )

6: Sample sp,mt+1 ∼ MVN(µp,mt+1 ,Σ
p,m
t+1) considers predicted uncertainty

7: end for
8: end for
9: {{sp,mt+1}Pp=1}Mm=1 inputs to the next timestep

10: end for
11: return {{sp,m1:T }Pp=1}Mm=1 the P ∗M number of trajectories of length T

A.3 Moment Matching

This method uses P particles for each model m since it considers predicted uncertainty (Σp,m
t ) while prop-

agating uncertainty to the next step. This is different from Trajectory Sampling in that it fits a Gaussian
distribution to P ∗M predictions {{sp,mt+1}Pp=1}Mm=1 at tth timestep, that is, MVN(µt+1,Σt+1). We assume
independence between all P ∗M predictions. A set of P ∗M samples {{sp,mt+1}Pp=1}Mm=1 is taken from that
distribution which becomes input at the next time step. The overall procedure is summarized in Algorithm
4.

Algorithm 4 Moment Matching
1: Input: Initial states {{sp,m0 }Pp=1}Mm=1, models f1, . . . , fM , timesteps T , particles P
2: for t = 0 to T − 1 do
3: for m = 1 to M do
4: for p = 1 to P do
5: Predict µp,mt+1 ,Σ

p,m
t+1 ← fm(sp,mt )

6: Sample sp,mt+1 ∼ MVN(µp,mt+1 ,Σ
p,m
t+1)

7: end for
8: end for
9: {{sp,mt+1}Pp=1}Mm=1 fit a Gaussian distribution

10: µt+1 ← 1
P ·M

∑M
m=1

∑P
p=1 sp,mt+1 Mean

11: Σt+1 ← 1
P ·M

∑M
m=1

∑P
p=1(sp,mt+1 − µt+1)(sp,mt+1 − µt+1)T Variance

12: {{sp,mt+1}Pp=1}Mm=1 ∼ MVN(µt+1,Σt+1) sample inputs for the next timestep
13: end for
14: return {{sp,m1:T }Pp=1}Mm=1 the P ∗M number of trajectories of length T

Prediction intervals using uncertainty propagation All three approaches output P ∗M number of tra-
jectories of length T {{sp,m1:T }Pp=1}Mm=1. At any time step t during propagation, the (PIzst+1

) are generated using
{{sp,mt }Pp=1}Mm=1. Specifically, we construct a MVNnet whose parameters are: µnet = 1

P∗M
∑M
m=1

∑P
p=1 sp,mt

and Σnet = 1
P∗M

∑M
m=1

∑P
p=1

[
Σp,m
t + (sp,mt − µnet)(sp,mt − µnet)T

]
. For LV system, the µnet = (µxnet, µ

y
net)

and Σnet = diag(σxnet, σ
y
net). The prediction intervals for x and y are derived as follows:

PIzxt+1
= µxnet ± Φ−1(1− α)σxnet (13)

PIzyt+1
= µynet ± Φ−1(1− α)σynet (14)

where α = 1−z
2 for z% prediction intervals. The Φ−1 denotes the inverse cumulative distribution function of

the Standard Normal distribution. In contrast, equations 5 & 6 were used to generate prediction intervals
with HopCast.
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B Dynamical Systems

There are five dynamical systems studied in this paper. One of those is Lotka-Volterra (LV) equations, which
are already discussed in section 3 along with its closed form, parameters, and ranges of initial conditions.
Here, we repeat the description of the LV system and then describe the rest of the systems. We add zero-
mean additive Gaussian noise to each differential equation post-integration as discussed in section 3, with
the variance equal to the standard deviation of the variable modelled by the differential equation scaled by
a factor σ.

B.1 Lotka-Volterra (Wangersky, 1978)

dx

dt
= αx− βxy (15)

dy

dt
= δxy − γy (16)

Parameters: α = 1.1; β = 0.4; γ = 0.4; δ = 0.1
Initial Condition Ranges: x ∈ [5, 20]; y ∈ [5, 10]

B.2 Lorenz (Brunton et al., 2016)

dx

dt
= σ(y − x) (17)

dy

dt
= x(ρ− z)− y (18)

dz

dt
= xy − βz (19)

Parameters: σ = 10; ρ = 28; β = 8
3

Initial Condition Ranges: x ∈ [−20, 20]; y ∈ [−20, 20]; z ∈ [0, 50]

B.3 FitzHugh-Nagumo (FHN) (Izhikevich & FitzHugh, 2006)

dv

dt
= v − v3

3 − w + I (20)

dw

dt
= ϵ(v + a− bw) (21)

Parameters: a = 0.7;b = 0.8;ϵ = 0.08;I = 0.5
Initial Condition Ranges: v ∈ [−1.5, 1.5];w ∈ [−1.5, 1.5]

B.4 Lorenz95 (Lorenz, 1996)

dX1

dt
= (X2 −X5)X4 −X1 + F (22)

dX2

dt
= (X3 −X1)X5 −X2 + F (23)

dX3

dt
= (X4 −X2)X1 −X3 + F (24)

dX4

dt
= (X5 −X3)X2 −X4 + F (25)

dX5

dt
= (X1 −X4)X3 −X5 + F (26)

Parameters: F = 8
Initial Condition Ranges: Xi ∈ [−10.5, 10.5] where i ∈ {1, 2, 3, 4, 5}
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B.5 Glycolytic Oscillator (Daniels & Nemenman, 2015)

dS1

dt
= J0 −

k1S1S6

1 + (S6/K1)q (27)

dS2

dt
= 2 k1S1S6

1 + (S6/K1)q − k2S2(N − S5)− k6S2S5 (28)

dS3

dt
= k2S2(N − S5)− k3S3(A− S6) (29)

dS4

dt
= k3S3(A− S6)− k4S4S5 − κ(S4 − S7) (30)

dS5

dt
= k2S2(N − S5)− k4S4S5 − k6S2S5 (31)

dS6

dt
= −2 k1S1S6

1 + (S6/K1)q + 2k3S3(A− S6)− k5S6 (32)

dS7

dt
= ψκ(S4 − S7)− kS7 (33)

Parameters: J0 = 2.5; k1 = 100; k2 = 6; k3 = 16; k4 = 100; k5 = 1.28; k6 = 12; k = 1.8;κ = 13; q = 4;K1 =
0.52;ψ = 0.1;N = 1;A = 4
Initial Condition Ranges: S1 ∈ [0.15, 1.60];S2 ∈ [0.19, 2.16];S3 ∈ [0.04, 0.20];S4 ∈ [0.10, 0.35];S5 ∈
[0.08, 0.30];S6 ∈ [0.14, 2.67];S7 ∈ [0.05, 0.10]

C Hyperparameters

In Table 3, we provide the Sequence Length (SL) for each output of the Predictor and a number of models
in Probabilistic Ensembles for each experimental setting in Table 1.

D Data Generation

Table 4: Details about data generation

Model ∆t Timesteps Trajectories
Lotka Volterra 0.1 300 500

Lorenz 0.01 300 1000
FHN 0.5 400 350

Lorenz95 0.01 300 666
Glycolytic 0.01 400 750

E Ablation Studies

E.1 Encoder Architecture

As discussed in section 4, each correction model utilizes an Encoder with MHN. The architecture of the En-
coder (e.g., mx) is a fully connected feedforward network with one layer and 100 neurons for all experiments.
Here, we show the impact of adding more layers of fully connected neurons to the Encoder on the proposed
metrics. Table 5 shows that adding more layers doesn’t significantly impact the MSE and CE. However, the
MSE and CE increase considerably when the Encoder is removed from the correction models.
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Table 3: Sequence lengths (SL) for all outputs of Predictor and number of models in Probabilistic ensemble
across various dynamical systems and noise levels

Model HopCast
Probabilistic Ensemble

Expectation Moment
Matching

Trajectory
Sampling

Hyperparameter Sequence lengths Models Models Models

Lotka
Volterra

σ = 0.05 30,30,50,60 4 5 3
σ = 0.1 70,30,70,40 5 5 3
σ = 0.3 70,20,60,70 6 5 4

Lorenz

σ = 0.05 30,35,35,35,50,50,100 6 8 3
σ = 0.1 500,500,500,300,300,300 7 7 4
σ = 0.3 25,25,25,500,500,500 8 7 3

FHN

σ = 0.05 35,55 5 5 3
σ = 0.1 15,15 4 5 3
σ = 0.3 15,15 5 4 3

Lorenz95

σ = 0.05 2200 for all 6 7 3
σ = 0.1 2000 for all 6 5 4
σ = 0.3 2000 for all 7 6 4

Glycolytic
Oscillator

σ = 0.05 35,50,35,100,35,50,30 8 6 3
σ = 0.1 50,50,35,35,800,35,100 6 7 3
σ = 0.3 50 for all 7 8 3

Table 5: Effect of different Encoding network architectures on the proposed metrics. The results without
the Encoder are also included. The FC(100)1 means the fully connected feedforward model with one layer
of 100 neurons. The results are reported over three runs of the same experiment at random seeds.

Dynamical
System Lorenz Lotka

Volterra
Noise Level σ = 0.3 σ = 0.3

Metrics MSE PI-Width CE MSE PI-Width CE

Without Encoder 1907.07± 9.33 38.69± 0.42 0.06± 0.005 16.12± 0.36 3.37± 0.23 0.025± 0.012

FC(100)1 1681± 46.36 40.44± 0.91 0.019± 0.004 9.69± 0.23 3.19± 0.12 0.0051± 0.004

FC(100)2 1717.362± 30.3 41.84± 0.68 0.014± 0.002 9.43± 0.23 3.08± 0.09 0.006± 0.002

FC(100)3 1710.18± 46.19 42.45± 0.55 0.018± 0.002 9.37± 0.007 2.98± 0.07 0.0035± 0.001

E.2 Initial condition and context state (cnt )

As discussed in section 1, our context state (cnt ) comprises the initial condition, the current state of the
system, and the timestep ID. Here, we show the results on two systems without the initial condition a part
of the context state in Table 6. The MSE increases significantly for both cases, while the CE exhibits minor
changes. This shows the significance of making the initial condition a part of the context state.
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Table 6: Comparison of proposed metrics with and without initial condition included in the context state.
The results are averaged over three runs.

Dynamical
System

Glycolytic
Oscillator

Lotka
Volterra

Noise Level σ = 0.1 σ = 0.1
Metrics MSE PI-Width CE MSE PI-Width CE

With IC 0.072± 0.003 0.25± 0.007 0.018± 0.006 6.10± 0.20 1.88± 0.05 0.0070± 0.002

Without IC 0.176± 0.003 0.416± 0.003 0.027± 0.008 43.90± 1.09 5.17± 0.14 0.011± 0.002

E.3 Number of Retrieved Samples (s)

To generate calibrated prediction intervals, a set of s samples is drawn from atx as described in section 4.3.
Here, we analyze the sensitivity of proposed metrics with varying values of s = {100, 500, 800, 1000} for two
settings from Table 1. The results everywhere else in the paper are reported with s = 1000. In Table 7, it can
be seen that the results are largely unchanged as the number of samples varies from 1000 to 500. However,
at s = 100, we see a drop in performance in terms of MSE and CE, suggesting that too few samples limit
the diversity of error samples, negatively impacting the performance.

Table 7: Comparison of proposed metrics with varying number of retrieved residual samples (s) from MHN
memory. The results are averaged over three runs.

Dynamical
System

Glycolytic
Oscillator

Lotka
Volterra

Noise Level σ = 0.1 σ = 0.1
Metrics MSE PI-Width CE MSE PI-Width CE

1000 0.072± 0.003 0.25± 0.007 0.018± 0.006 6.10± 0.20 1.88± 0.05 0.0070± 0.002

800 0.070± 0.005 0.24± 0.009 0.018± 0.008 6.10± 0.2 1.89± 0.03 0.007± 0.003

500 0.071± 0.005 0.26± 0.003 0.015± 0.008 6.13± 0.20 1.87± 0.04 0.006± 0.005

100 0.096± 0.005 0.18± 0.006 0.025± 0.008 7.9± 0.17 0.69± 0.04 0.019± 0.004

E.4 Top-k retrieval

As discussed in section 4.3, the s samples are drawn from atx to generate calibrated prediction intervals.
Here, we analyze an alternative approach to sampling, i.e., using top-k probabilities from atx. Table 8 shows
the results on proposed metrics with varying values of k = {100, 500, 800, 1000}. The results remain largely
unchanged for k ≥ 500. At s = 100, the CE shows an increase for both settings, indicating that too few
samples lead to decreased diversity in sampled errors.

E.5 Size of Association Memory

In section 4.3, we discussed the inference with the correction model (Mx). A set of K keys (Kmem) with
the corresponding values (Vx

mem) is randomly sampled from STrain
K and STrain

Vx
, respectively and loaded into

the Association memory. Here, the impact of the size of Association memory on the proposed metrics will
be discussed. Table 9 shows the variation in proposed metrics as the number of keys in memory varies from
10 to 2000. For all systems, the MSE and CE improve significantly as the keys increase from 10 to 50. The
MSE and CE that showed a considerable change as the number of keys increases are shown in bold. As the
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Table 8: Comparison of proposed metrics based on top-k probabilities from axt instead of sampling. The
results are reported for k = {100, 500, 800, 1000}. The results are averaged over three runs.

Dynamical
System

Glycolytic
Oscillator

Lotka
Volterra

Noise Level σ = 0.1 σ = 0.1
Metrics MSE PI-Width CE MSE PI-Width CE

1000 0.67± 0.002 0.24± 0.007 0.011± 0.005 7.31± 0.99 2.38± 0.33 0.016± 0.003

800 0.067± 0.002 0.24± 0.01 0.011± 0.005 7.52± 1.18 2.41± 0.38 0.014± 0.004

500 0.069± 0.003 0.24± 0.009 0.017± 0.005 8.39± 2.50 2.53± 0.64 0.017± 0.008

100 0.07± 0.004 0.20± 0.005 0.06± 0.03 6.36± 0.22 1.24± 0.11 0.25± 0.036

keys increase beyond 50, not all systems’ MSE and CE showed a considerable increase. The MSE and CE
show insignificant changes as the number of keys increases beyond 100 until 2000. Thus, we fix the number
of keys to 2000 for our final evaluation of results.

Table 9: The results on proposed metrics with varying numbers of keys in memory. The MSE and CE that
showed a considerable improvement with the increase in the number of keys in memory are shown in bold.
The results are averaged over three runs.

Keys in
Memory Metric

Lorenz Glycolytic
Oscillator

Lotka
Volterra FHN Lorenz95

σ = 0.1 σ = 0.3 σ = 0.05 σ = 0.05 σ = 0.3

10
MSE 1765.48± 170.73 0.15± 0.009 26.86± 4.80 0.15± 0.03 24.81± 3.11

PI-Width 34.59± 5.69 0.37± 0.006 3.61± 1.06 0.24± 0.03 6.59± 0.69
CE 0.11± 0.03 0.080± 0.009 0.10± 0.04 0.24± 0.19 0.039± 0.05

50
MSE 1419.29± 103.78 0.13± 0.001 9.66± 1.51 0.072± 0.001 18.10± 1.75

PI-Width 37.64± 0.55 0.36± 0.008 2.90± 0.03 0.21± 0.012 5.98± 0.11
CE 0.025± 0.009 0.012± 0.002 0.038± 0.003 0.12± 0.02 0.016± 0.003

100
MSE 1285.90± 30.9 0.12± 0.002 7.76± 0.67 0.076± 0.001 18.57± 0.51

PI-Width 36.83± 0.39 0.36± 0.015 2.99± 0.06 0.21± 0.01 6.09± 0.15
CE 0.015± 0.007 0.018± 0.007 0.026± 0.006 0.111± 0.003 0.006± 0.005

500
MSE 1249± 11.03 0.12± 0.001 6.89± 0.30 0.076± 0.002 17.06± 0.86

PI-Width 38.19± 1.39 0.36± 0.001 2.85± 0.08 0.21± 0.006 6.02± 0.10
CE 0.020± 0.004 0.013± 0.003 0.022± 0.003 0.093± 0.03 0.0021± 0.003

1000
MSE 1241.72± 7.55 0.12± 0.003 7.08± 0.01 0.077± 0.001 16.91± 0.74

PI-Width 38.37± 1.91 0.37± 0.005 2.91± 0.093 0.21± 0.001 6.13± 0.09
CE 0.018± 0.001 0.017± 0.004 0.021± 0.004 0.092± 0.01 0.0020± 0.002

2000
MSE 1248.17± 15 0.11± 0.001 6.87± 0.32 0.076± 0.002 16.44± 0.66

PI-Width 38.66± 0.38 0.37± 0.008 2.93± 0.17 0.20± 0.005 6.08± 0.06
CE 0.019± 0.03 0.016± 0.003 0.022± 0.004 0.091± 0.004 0.0015± 0.001
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E.6 Embedding dimension

As discussed in section 4.2, the Encoder outputs a d-dimensional embedding given context state (cnt ), where
d = 4. Here, we want to show that the performance of correction models is insensitive to the embedding
dimension provided that the SL is retuned accordingly. In Table 10, the results on metrics and SL for LV
at σ = 0.1 in the first row are copied from Tables 1 & 3, respectively. Table 10 shows that the CE shows
a considerable increase from 0.0070 to 0.065 as we change the d to 5 from 4, while the MSE shows minor
changes. The last row shows the results at d = 5 when the SL is retuned, where the CE (i.e., 0.0098) is close
to what we had earlier at d = 4 (i.e., 0.0070).

Table 10: The impact of change in embedding dimension on the proposed metrics. The last row shows the
results when SL is retuned for the new embedding dimension (d = 5). The results are reported over three
runs.

Embedding
Dimension

(d)

SL of all
outputs

Lotka
Volterra
σ = 0.1

MSE PI-Width CE

d = 4 [70,30,70,40] 6.10± 0.20 1.88± 0.05 0.0070± 0.002

d = 5 [70,30,70,40] 6.75± 0.065 1.94± 0.02 0.065± 0.005

d = 5 [5,5,70,5] 6.98± 0.115 1.69± 0.01 0.0098± 0.003

E.7 Impact of shuffled data

As discussed in section 4.1, the dataset is shuffled before forming queries, keys, and values for training. Here,
we show that this shuffling brings two major benefits. One, the MSE and CE show significant improvement.
Second, CE and MSE show changes with respect to the number of keys in memory that are consistent across
different systems.

Table 11 shows the results on the proposed metrics for FHN and LV with and without shuffling the data.
The MSE and CE increase considerably for both systems when the data is not shuffled, irrespective of the
number of keys in memory. For LV, the MSE starts to decrease and CE starts to increase as we reduce
the number of keys in memory from 2000 to 10. For FHN, in contrast, MSE and CE begin to grow as the
number of keys goes down to 10 from 2000. On the other hand, the MSE and CE remain largely unchanged
for both systems as we reduce the number of keys from 2000 to 500 when the data is shuffled. For keys less
than 500, the MSE and CE show considerable change for both systems.

When the data is shuffled, the changes in MSE and CE as we reduce the number of keys show a generalizable
pattern for both systems. Hence, the guidelines regarding the number of keys in the memory at the inference
time are generalizable.

E.8 Number of models in Probabilistic Ensembles

As discussed in section 7, the Probabilistic Ensembles tend to saturate uncertainty after a certain number
of models in the ensemble. Here, we demonstrate that for all propagation approaches via calibration curves.
As shown in Fig. 8(a) for Expectation, the uncertainty goes up from overconfidence to underconfidence as
we increase the number of models in the Probabilistic Ensemble. The last three increments in the number
of models (13 to 15) don’t impact uncertainty much. For Moment Matching (Fig. 8(b)), the uncertainty
increases with the number of models and saturates later while the model is still overconfident. For Trajectory
Sampling (Fig. 8(c)), increasing the number of models leads to a marginal change in uncertainty and saturates
after four models.
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Table 11: Performance on proposed metrics at different numbers of keys in memory, with and without data
shuffling. The results are averaged over three runs.

Keys in
Memory Metric

Lotka-Volterra FHN
σ = 0.05 σ = 0.05

Shuffled Data Non-Shuffled Data Shuffled Data Non-Shuffled Data

10
MSE 26.86± 4.80 33.09± 0.009 0.15± 0.03 0.16± 0.01

PI-Width 3.61± 1.06 0.54± 0.001 0.24± 0.03 0.17± 0.005
CE 0.10± 0.04 0.98± 0.007 0.24± 0.19 1.15± 0.05

50
MSE 9.66± 1.51 32.91± 0.03 0.072± 0.001 0.12± 0.02

PI-Width 2.90± 0.03 0.49± 5.42 0.21± 0.012 0.18± 0.01
CE 0.038± 0.03 0.74± 0.005 0.12± 0.02 0.38± 0.06

100
MSE 7.76± 0.67 32.63± 0.09 0.076± 0.001 0.10± 0.02

PI-Width 2.99± 0.06 0.51± 0.001 0.21± 0.01 0.16± 0.01
CE 0.026± 0.006 0.72± 0.001 0.111± 0.003 0.46± 0.08

500
MSE 6.89± 0.30 42.14± 22.03 0.076± 0.002 0.12± 0.03

PI-Width 2.85± 0.08 3.32± 0.09 0.21± 0.006 0.18± 0.009
CE 0.022± 0.003 0.12± 0.06 0.093± 0.03 0.41± 0.09

1000
MSE 7.08± 0.01 34.80± 16.27 0.077± 0.001 0.092± 0.01

PI-Width 2.91± 0.093 3.36± 0.07 0.21± 0.001 0.27± 0.006
CE 0.021± 0.004 0.083± 0.053 0.092± 0.01 0.12± 0.12

2000
MSE 6.87± 0.32 60.84± 11.17 0.076± 0.002 0.091± 0.013

PI-Width 2.93± 0.17 4.77± 0.10 0.20± 0.005 0.37± 0.005
CE 0.022± 0.004 0.063± 0.015 0.091± 0.004 0.16± 0.042

Figure 8: The calibration curves of three propagation approaches for x-output of Lorenz (σ = 0.05) to
delineate the saturation of uncertainty as the number of models in an ensemble goes up from 2 to 15.

E.9 Sequence length (SL) & Calibration

The section 7 discusses the impact of varying SL on the model’s confidence for the y-output of Lorenz. Here,
we show the same for all outputs of the two systems, i.e., Lorenz and Glycolytic Oscillator. The calibrated
confidence of both systems with their optimal SL is shown in the middle plot of Fig. 9a & 9b. To show
underconfidence and overconfidence, we pick a small SL = 10 and a large SL = 1000. At small SL = 10, we
expect all outputs of both systems to be overconfident as shown in the leftmost plots of Fig. 9a & 9b. At
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large SL = 1000, we expect all outputs of both systems to be underconfident as shown in the rightmost plots
of Fig. 9a & 9b. It shows that the concept of the increase in uncertainty with the increase in SL generalizes
well across different outputs of different systems.

(a) Lorenz (σ = 0.1). The leftmost plot shows the overconfidence of all six outputs of Lorenz at small SL.
The middle plot shows the calibrated confidence for all outputs at optimal SL. The rightmost plot shows
the underconfidence of all outputs at large SL.

(b) Glycolytic Oscillator (σ = 0.3). The leftmost plot shows the overconfidence of all seven outputs at
small SL. The middle plot shows the calibrated confidence for all outputs at optimal SL. The rightmost
plot shows the underconfidence of all outputs at large SL.

Figure 9: Calibration curves of HopCast for two dynamical systems to demonstrate the impact of SL on
calibration. At the bottom of each plot, SL of all outputs are shown in ascending order such that the first
value corresponds to the first output, second to the second output, and so on.

F Implementation Details

This section contains details regarding the implementation of baselines and HopCast. All experiments were
run on NVIDIA A100-SXM4-80GB. PyTorch is used to implement baselines and HopCast.

F.1 Baselines Implementation

We train a population of 15 models for the Probabilistic Ensembles. Regarding architecture, two layers of
a fully connected feedforward model with 400 neurons each were used for LV and FHN, and three layers
with 400 neurons for Lorenz, Lorenz95, and Glycolytic Oscillator. The train/test datasets were prepared
following an 80/20 split. The batch size, learning rate, optimizer, and epochs were kept the same for all
experiments, and are 128, 0.001, Adam (Kingma & Ba, 2017), and 1000, respectively. The early stopping was
used as a criterion to train the Probabilistic Ensembles (Yao et al., 2007). The number of particles P for
each model in Probabilistic Ensembles was 1 for Expectation, and 20 for Moment Matching & Trajectory
Sampling (Chua et al., 2018a).
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F.2 HopCast Implementation

The Encoder was a fully connected feedforward model with one layer and 100 neurons. The section 7
contains details about tuning an important hyperparameter, i.e., SL, of HopCast. Table 3 has SL for each
output of all systems at various noise scaling factors σ. The learning rate of 0.001 and the optimizer AdamW
(Loshchilov & Hutter, 2019) were kept the same for all experiments. The batch size and epochs were different
for each experiment, and are provided in the form of yml files as a supplementary material along with other
hyperparameters for each system and noise scaling factor (σ).

The deterministic Predictor was a fully connected feedforward model of two layers with 400 neurons each
for LV and FHN, and three layers with 400 neurons for Lorenz, Lorenz95, and Glycolytic Oscillator.
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