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Abstract

Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, have enabled
the efficient adaptation of large language models (LLMs) by updating only a
small subset of parameters. However, their robustness under out-of-distribution
(OOD) conditions remains insufficiently studied. In this paper, we identify the
limitations of conventional LoRA in handling distributional shifts and propose
HiMoLE (Hierarchical Mixture of LoRA Experts), a new framework designed
to improve OOD generalization. HIMoLE integrates hierarchical expert modules
and hierarchical routing strategies into the LoRA architecture and introduces a two-
phase training procedure enhanced by a diversity-driven loss. This design mitigates
negative transfer and promotes effective knowledge adaptation across diverse data
distributions. We evaluate HIMoLE on three representative tasks in natural language
processing. Experimental results evidence that HIMoLE consistently outperforms
existing LoRA-based approaches, significantly reducing performance degradation
on OOD data while improving in-distribution performance. Our work bridges
the gap between parameter efficiency and distributional robustness, advancing the
practical deployment of LLM:s in real-world applications.

1 Introduction

Large language models (LLMs) have brought transformative advances across a wide range of domains.
However, their unprecedented scale incurs substantial computational and storage costs. To address
this issue, parameter-efficient fine-tuning (PEFT) techniques, such as LoRA [[1], have emerged as
practical solutions. By updating only a small subset of model parameters, PEFT methods reduce
storage and computational requirements while achieving performance comparable to full-model
fine-tuning. This efficiency makes them especially attractive for real-world deployments.

Despite these advantages, PEFT methods face a critical shortcoming: limited generalization under
out-of-distribution (OOD) conditions. While deep learning models typically perform well on in-
distribution (ID) data, their performance often degrades when faced with data that deviates from the
training distribution [2, 3]]. This issue persists even in LLMs after full fine-tuning and is particularly
pronounced in domains characterized by high heterogeneity [4} 5], such as biomedicine and the
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Figure 1: Robustness analysis of parameter-efficient fine-tuning. (a)—(c): In-distribution (ID) and
out-of-distribution (OOD) results for the Base, LoRA, and MixLoRA models on three representative
tasks: Named Entity Recognition (NER) in biomedicine, Sentiment Analysis (SA) in social science,
and Extractive Question Answering (EQA) in general domain. (d): Impact of routing granularity in
Mixture-of-LoRA-Experts, where "OOD" refers to an OOD validation dataset, while "ID1" "ID2"
"ID3" and "ID4" represent the four ID validation datasets. Token-level routing yields better ID
performance but fails to generalize to OOD data. In contrast, sentence-level routing improves OOD
robustness at the cost of ID accuracy.

social sciences. Surprisingly, although LoRA and related PEFT methods have gained widespread
adoption, their robustness to distributional shifts remains largely unexplored. Our empirical analysis
(Fig.[I(a)-(c)) reveals that standard LoRA suffers considerable accuracy drops when applied to tasks
requiring adaptation across diverse knowledge domains. These findings suggest intrinsic limitations
in LoRA’s ability to generalize beyond the training distribution, motivating the need for more robust
PEFT strategies.

Mixture-of-parameter-efficient-expert (MoPE) methods attempt to improve generalization by integrat-
ing the Mixture-of-Experts (MoE) framework with PEFT, demonstrating effectiveness in multi-task
settings [6l [7, [8, 9]. However, their effectiveness under OOD conditions remains underexplored.
As shown in Fig. [[(a)(b), both LoRA and MixLoRA suffer notable performance degradation in
knowledge-intensive tasks (e.g., Named Entity Recognition (NER) in biomedicine and Sentiment
Analysis (SA) in social science) when evaluated on OOD data. As shown in Fig.[I|c), in general-
domain tasks (e.g., Extractive Question Answering (EQA)), the gap between ID and OOD perfor-
mance persists, revealing limited robustness. In some cases, MixLoRA even underperforms standard
LoRA, suggesting potential overfitting. We identify a key source of this limitation: token-level
routing in MoPE models is prone to expert misallocation under distributional shift. Local token-level
features often fail to capture the global semantics necessary for robust generalization, resulting in
brittle routing decisions in unseen contexts. These observations motivate the central question of our
study: How can parameter-efficient fine-tuning methods be improved to enhance in-distribution
performance while also ensuring robustness to out-of-distribution data?

To address this issue, we propose HIMoLE (Hierarchical Mixture of LoRA Experts), a novel
framework that introduces structural sparsity and hierarchical design into the LoRA architecture.
HiMoLE extends conventional MoPE models via the hierarchical architecture which manifests in
two dimensions: hierarchical expert design and hierarchical routing strategy. To further improve
knowledge utilization and reduce redundancy, we introduce a two-phase training scheme augmented
with a diversity-promoting loss. In summary, our work makes the following key contributions:

* Empirical diagnosis of OOD limitations in LoRA. We systematically investigate the gen-
eralization performance of LoRA under distributional shift, revealing significant weaknesses
in its ability to transfer across heterogeneous domains.

* A novel hierarchical MoPE framework. We propose HiMoLE, which introduces hierar-
chical expert architectures and routing strategies into the PEFT paradigm. This structure
mitigates negative transfer and promotes positive transfer, offering a new direction for
improving PEFT robustness under distributional shift.

* Theoretical and empirical validation. We provide theoretical insights into the advantages
of hierarchical routing under distributional shift. Experiments across multiple domains show
HiMoLE improves OOD generalization while maintaining strong ID performance.



2 Background and Related Work

2.1 OOD Generalization

Out-of-distribution generalization is essential for deploying language models in real-world scenarios,
where data distributions are inherently diverse, non-stationary, and unpredictable [[10, [11]. This
need is especially pronounced in high-stakes domains such as clinical decision support and social
science analytics, where knowledge continuously evolves and data often deviate from training
distributions. In such contexts, models must demonstrate robustness to emergent semantic patterns,
novel entity relationships, and shifting contextual dependencies. Despite the remarkable progress of
large language models across a wide range of tasks and benchmarks, recent studies [4} 12, [13] have
revealed significant vulnerabilities under distributional shifts. These findings expose the limitations
of current fine-tuning strategies and underscore the urgent need for methods explicitly designed to
enhance OOD robustness.

2.2 Mixture of Parameter-efficient Experts

Parameter-Efficient Fine-Tuning (PEFT) As the scale of LLMs continues to grow, PEFT has
emerged as a practical and cost-effective adaptation strategy. PEFT techniques update only a small
subset of model parameters—such as adapter layers or low-rank matrices—while keeping the majority
of the pre-trained model frozen [[14} (15, [16]. A widely adopted PEFT method is LoRA [, which
inserts trainable low-rank adapters into pre-trained layers and updates them during fine-tuning. LoORA
achieves competitive performance with a substantially reduced memory footprint. However, PEFT
often struggles to generalize across new distributions. The limited number of trainable parameters
can restrict the model’s capacity to adapt to distributional shifts or novel task requirements.

Integrating MoE with PEFT (MoPE) To reconcile scalability and efficiency, recent work proposes
integrating MoE with PEFT techniques, resulting in the MoPE paradigm. In MoPE, each expert is
instantiated using a PEFT configuration (e.g., LoRA), and a routing module dynamically assigns
inputs to appropriate experts. This hybrid design seeks to combine the modular adaptability of MoE
with the resource efficiency of PEFT. MoPE methods differ in routing granularity. Token-level routing
operates at the sub-sentence level. For example, MixLoRA [6] combines multiple LoRA experts with
a shared FFN and incorporates an auxiliary load balancing loss to mitigate expert usage imbalance.
LoRAMOE [17] employs a router network to reduce knowledge forgetting. HydralLoRA [9] adopts
an asymmetric architecture with a shared LORA A matrix and expert-specific B matrices. In contrast,
sentence-level routing mechanisms operate at the input sentence level. MOELoRA [[18]] performs
explicit task-to-expert assignment using task metadata, deterministically routing input sentences
based on task identifiers. MOCLE [7] clusters instruction semantics and activates task-specific
experts by assigning inputs to their corresponding instruction cluster. Although MoPE frameworks
have demonstrated effectiveness in multi-task and in-distribution settings, their robustness under
distributional shifts remains largely unexplored. This motivates the need for architectures specifically
designed to handle complex domain shifts and enhance OOD generalization.

3 Method

3.1 Preliminaries

Formulation of OOD Generalization. Let = denote the input data and y the output. Out-of-
distribution generalization refers to scenarios where the test distribution Peg (2, y) differs from the
training distribution Pyyin (2, y), while preserving core semantic relationships. This work focuses on
the joint occurrence of two distributional shifts [19]:

1. Covariate Shift: The input distribution changes (Pesi (%) 7# Pirain()), but the conditional
distribution remains invariant(Pes (v | ) = Prain(y | 2))-

2. Concept Shift: The input-conditional distribution changes( Piest (¥ | ) # Pirain (¥ | @) ),
which may arise from label semantics or task definitions evolving across domains.

Robust generalization in this setting requires models to: (1) handle divergent input distributions
(covariate shift), and (2) adapt to latent conceptual variations (concept shift).



Identification of OOD Generalization Problem in PEFT Following the protocol established
by [4], we consider three key criteria for identifying OOD data: (1) diverse data sources, (2) low
SimCSE similarity [20] with the in-distribution dataset, and (3) measurable performance degradation
in models. However, in practice, we find that the second criterion—low SimCSE similarity—is
not always reliable, especially in knowledge-dense domains. Fine-tuned LLMs can still generalize
effectively even when SimCSE scores are low. As such, we primarily rely on criteria (1) and (3) in
our OOD dataset selection. Here, performance degradation refers to reduced model performance on
OOD data relative to ID data, which can manifest in two ways: (1) the model performs worse than
its pre-fine-tuned counterpart, and (2) the performance gain on OOD data is substantially smaller
than that on ID data. We fine-tune models using LoRA on each task’s ID dataset and evaluate them
on both ID and OOD test sets. As shown in Fig. a)(b)(c), LoRA fails to significantly enhance
OOD robustness. To further illustrate this, we analyze failure cases in a biomedical NER task. The
fine-tuned model demonstrates two main types of errors in OOD data: (1) failure to produce outputs
in the correct structured format, and (2) mislabeling of general-domain entities—for instance, tagging
symptoms as diseases (see Appendix [A]for detailed case studies).

Probing OOD Robustness in MoPE Prior research [21) 22] on neural network optimization
has shown that sparsely activated architectures often generalize better than dense ones, owing to
dynamic parameter specialization and reduced task interference. In LLMs, the MoE framework
embodies this principle by leveraging conditional computation through expert routing, enabling
scalable and efficient learning. Building on these insights, we investigate the OOD robustness of
various MoPE configurations, focusing on token-level and sentence-level routing strategies. As
illustrated in Fig.[T[d), our results highlight a key trade-off between routing granularities: Token-level
routing attains state-of-the-art performance on ID data by exploiting fine-grained contextual cues but
exhibits pronounced OOD performance degradation, suggesting overfitting to surface-level patterns.
Sentence-level routing offers improved OOD robustness by aligning with global semantics but suffers
from reduced ID performance due to its limited sensitivity to local details. This finding highlights the
necessity of developing a unified approach that can effectively integrate both routing granularities,
achieving high ID accuracy while maintaining strong generalization across OOD scenarios.

3.2 Architecture of HHIMoLE

In this subsection, we introduce HiMoLE, a Hierarchical Mixture of LoRA Experts model designed
to flexibly address the OOD robustness challenges inherent in LoRA-based fine-tuning. An overview
of the HIMoLE architecture is shown in Fig. Pfa).

Hierarchical Experts Our parameter-efficient expert architecture is organized into N Knowledge
Competition Groups (KCGs), each consisting of M Knowledge Collaboration Experts (KCEs). Since
domains with heterogeneous knowledge comprise multiple distinct subdomains, we assign each KCG
to a unique subdomain and initialize its parameters by fine-tuning on the corresponding sub-dataset
(as detailed in Section [3.3] Training Strategy). All KCEs within a KCG share the same initialization,
providing a consistent foundation of subdomain-specific knowledge. Each KCE is implemented as a
LoRA module, formally defined as:

E =BA,Ac R B e R < min(diy, dou)- (D)

The experts interact through three distinct modes. (1) Intra-group collaboration: KCEs within the
same KCG specialize in subdomain-specific patterns while leveraging shared knowledge, enabling
efficient adaptation and positive transfer. (2) Cross-group competition: Different KCGs compete
to route tokens to the most relevant KCEs, thereby reducing interference across subdomains and
mitigating negative transfer. (3) Cross-group collaboration: KCEs across different KCGs may
cooperate to improve generalization, promoting knowledge reuse and transferability. This structured
interplay between competition and collaboration ensures both specialization and synergistic learning
across knowledge boundaries.

Hierarchical Routing Strategy The core of HIMOLE lies in its hierarchical routing strategy, which
integrates sentence-level and token-level expert selection to achieve domain-aware and adaptive
inference. For a given input sentence, we first compute a sentence-level representation denoted by
hsen Via applying average pooling over the token-level hidden states hen. This pooled representation
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Figure 2: [llustration of the proposed HiMoLE. (a) Architecture of HIMoLE. Unlike MoLE, HiMoLE
combines hierarchical experts—organized as Knowledge Competition Groups (KCGs) and their
internal Knowledge Collaboration Experts (KCEs)—with a hierarchical routing strategy that performs
sentence-level coarse allocation followed by token-level refinement. This architecture is designed to
enhance OOD robustness in LoRA-based fine-tuning. (b) Training strategy of HiMoLE, which adopts
a two-stage training strategy: first, each KCG is trained independently on a clustered sub-dataset;
second, both the expert parameters and hierarchical routing components are jointly optimized.

is processed by a sentence-level router fy,(+) (implemented as a linear layer parameterized by Wiey),
to compute the initial allocation scores G, over KCGs:

Gsen - fsen(hsen) = Wsen : hsen- (2)

These sentence-level scores serve as a coarse-grained guide, determining which KCGs are most
relevant to the input. Subsequently, for each token in the sentence, a token-level router fioken(+)
(implemented as a linear layer parameterized by Wiken ) refines this allocation score by integrating
the token-specific hidden state Aen:

Gtoken = f token(hloken) = I/Vlokr:n : htoken~ (3)

The final gating weights matrix Gy are computed using a softmax-normalized fusion of G, and
Glioken» followed by top-k selection to ensure sparsity:

Ghie = KeepTop-k (Softmax (Gsen © Gioken)) - @
The forward process of the HIMoLE layer replaced the traditional FFN layer can be represented as:

NxM ]
0=Wohoken + Y Giit+ Ei - huggen, 5)
i=1
where W) is the parameter matrix of the original FFN layer of the LLM, and o denotes the output.
The scalar G}(lfz modulates the contribution weight of the i-th expert E;. We provide the definitions of
the symbols in Appendix [B]

In summary, the hierarchical routing mechanism enables HIMoLE to balance domain specialization
and generalization. Sentence-level routing assigns inputs to suitable KCGs based on coarse semantic



cues, while token-level routing fine-tunes expert selection for dynamic, context-aware feature fusion.
This design allows for flexible expert collaboration and competition, ultimately enhancing OOD
robustness and domain-adaptive inference.

3.3 Training Strategy

As shown in Fig. 2[b), we adopt a two-stage training strategy to construct and optimize the HIMoLE
framework. The first stage initializes the Knowledge Competition Groups (KCGs) with specialized
domain knowledge, while the second stage jointly optimizes both the expert networks and the
hierarchical routing mechanisms.

Stage 1: Initializing Knowledge Competition Groups We begin with the assumption that each
task may span multiple subdomains. To capture this diversity, we partition the training dataset into
N subsets, each corresponding to a distinct semantic cluster, and train N KCGs in parallel. To
perform data clustering, we first use a pre-trained encoder to obtain semantic embeddings for each
data instance. We then apply the K-means clustering algorithm to group the data into IV clusters.
Each cluster is treated as a sub-dataset, and a separate KCG is independently trained on it. This
process results in IV distinct groups of LoRA-based LLM experts, each specialized in a specific
knowledge subdomain.

Stage 2: Co-optimizing the Experts and Routers After initializing the N KCGs, we jointly
optimize the expert parameters and the hierarchical routing modules. To encourage diversity among
experts and reduce redundancy, we introduce a diversity loss Lgiverse.- Let €, denote the output of the
n-th KCG, computed as:

M
en =3 GUl - En - hioken, Where E,, € KCG,. (6)

m=1

We normalize each expert output as: e,, , where € is a very small number such as

€n
max(”enl‘zve)
10~8. We then compute pairwise cosine similarities S,,; = (e,,, ¢;) among all the KCG pairs, and
define the diversity loss as the average similarity across all unique expert pairs:

1 N N
»Cdiverse = m Z Z Snl' @)

n=11=1,l#n

To control computational cost, Lgiverse 1S computed every ten layers using a sampled subset of expert
outputs. The final training objective combines task loss Lk, auxiliary loss L,,x, which is employed
to mitigate the unbalanced load for experts (following [23]], see Appendix E] for details), and the
diversity loss:

L = Lok + oLoux + 5‘Cdiverse- 8)

3.4 Theoretical Analysis of Generalizability in Sparse Routing Systems

We analyze how hierarchical expert routing reduces generalization error by mitigating gradient
conflicts through structured sparsity in expert selection. Let ¢ index tokens and 6 be the parameters of
an expert E, which includes the low-rank matrices A and B as defined in Eq. |1} Let V¢ £(-) denote
the gradient of the loss with respect to . We define the expected pairwise gradient similarity as
follows:

SimGrad = Eyzp [cos (gt7gt/)] ,  where gy :=VoL(ht). 9)

Definition 1 (Gradient Conflict) Ler h; # hy be inputs from distinct tokens. A gradient conflict
occurs if cos (VoL (h¢), VoL (hy)) < 0.

In this context, a higher value of SimGrad indicates better alignment between token gradients and
thus fewer gradient conflicts [24].

Theorem 1 (Hierarchical Routing Mitigates Gradient Conflicts) Let SimGradp, and
SitmGradeken denote the expected pairwise gradient similarity under hierarchical and token-only



routing, respectively. Then hierarchical routing with composition fen(Psen) © froken(Proken) yields:
SimGrady,e = SimGradpren + Do, (10)

where Ay >= 0. Proof. See Appendix|D)

That is, hierarchical routing reduces the prevalence of conflicting gradients by inducing structural

sparsity in expert selection. We then connect gradient alignment to generalization through a bound
on the generalization error.

Lemma 1 (Generalization Bound via Gradient Variance [25]) Let g, := VoL(h:), and define
the gradient variance as V (g) := E [||(g¢ — E(g¢)||?]. Then, the generalization error of stochastic
gradient descent with additive Gaussian noise satisfies:

Gen < Z nT]E (11)

where R represents a constant related to the properties of the loss function and the data distribution,
and b denotes the number of training samples. T is the total number of iterations. 1, is the learning
rate at step T, and o is the standard deviation of the Gaussian noise at step T.

Theorem 2 (Gradient Conflict Reduction Enhances Model Generalization) Assume hierarchi-
cal routing achieves a lower gradient variance such that V (gpie) <= V (Gioken ), then under the condi-
tions of Lemmam hierarchical routing yields a tighter generalization bound, i.e., Geng;, < Genyen.

Proof. By monotonicity of the square root and the inequality on gradient variance, the result follows
directly from Lemmal(l] See Appendix D] for further discussion.

4 Experiments

4.1 OOD benchmark

Name Entity Recognition (NER). To emulate real-world data heterogeneity and enhance the
complexity of the NER task, we selected the biomedical domain as our experimental scenario—a
knowledge-intensive field characterized by diverse entity types and lexical variations. For the con-
struction of the ID dataset, we rigorously curated English-language resources from the BigBio
benchmark [26], with the corpora primarily sourced from PubMed Central (PMC), a premier reposi-
tory of peer-reviewed biomedical literature. This process resulted in BigBio-NER, the largest dataset
for biomedical NER. For the selection of OOD datasets, we adopted the criteria outlined in Sec-
tion [3.1] choosing the rare disease dataset [27] sourced from the National Organization for Rare
Disorders database [28]].

Sentiment Analysis (SA). To further enhance the complexity of the SA task and better simulate
real-world application scenarios, we frame our SA experiments within social science contexts, where
affective expressions exhibit heightened subjectivity and domain-specific connotations. We adopted
the sentiment analysis component in SOCIALITEINSTRUCTIONS [29] dataset as our ID dataset.
This comprehensive collection of socially-oriented textual interactions contains sentiment labels
across various social science scenarios. For the selection of OOD data, we adopted the criteria
outlined in Section[3.1]and chose the OPTIMISM [30] dataset.

Extractive Question Answering (EQA). Following previous work [4], we chose SQuAD [31]]
as the ID dataset, which constructs question-answer pairs based on Wikipedia passages. For the
selection of OOD data, we chose NewsQA [32]], which writes questions for CNN news articles, each
of which requires reasoning to answer.

4.2 Experimental Settings

Base Model and Data Separation For the NER task, we employ OneKE-13B [33] as our base
model, which is capable of generalized knowledge extraction across multiple domains and tasks. For



Table 1: Comparative performance of different LoORA methods under out-of-distribution scenarios.
Please refer to Appendix [E.3|for the metrics details and Appendix [E.5|for the complete results. The
best results on ID data and the best results on OOD data excluding the base model are highlighted in
boldface and underlined, respectively.

Task | NER SA | EQA

|
Dataset ID OOD ID OOD ID OOD
Metric F1 P R F1 P R |EM REM EM | EM ROUGE-2 EM ROUGE-2

Base Model | 52.5 56.2 51.7 65.8 63.1 764 |48.8 59.5 569 | 7.2 12.3 8.3 15.8
LoRA 739 775 733 619 56.0 77.8|66.7 557 55.0/]68.2 48.7 355 28.2

MixLoRA | 76.0 78.2 757 61.0 59.1 73.7|69.5 665 314|694 48.6 383 279
HydralLoRA | 77.3 784 76.7 629 594 755|703 67.2 304 |68.7 46.4 383 26.4

HiMoLE |77.9 78.7 773 653 644 743|733 688 32.8]70.5 49.8 38.9 28.7

the SA and EQA tasks, we utilize Llama-2-7B [34] as our base model. To separate in-distribution
data, we use BioBERT [35], BERTweet [36l, and DeBERTa-v3-large [37] as encoders to extract
sentence-level embeddings for the NER, SA and EQA tasks, respectively. Through sentence feature-
based K -means clustering, we obtain subsets of sizes 4, 3 and 3 for each task (see the visualization
of the clustering results in Appendix [E.T).

Baselines and Settings We compare our HIMoLE method against LoRA and traditional mixture
of LoRA experts. In our HIMoLE approach, each Knowledge Component Group consists of 4
Knowledge Component Experts. For the mixture of LoRA experts, we compared state-of-the-art
methods, including MixLoRA [6] and HydraLoRA [9]. In all mixture of experts methods, we
adopted the tok-£ routing and set k in tok-k to 2, while setting the LoRA rank r to 8. We apply MOE
to the FFN layer of every Transformer block. To maintain uniformity in parameter sizes across all
methods, we set the rank » to 80 in traditional LoRA.

4.3 Primary Results

In Table[I] we provide a comprehensive comparison of HIMoLE with various baselines. There
are several observations: (1) Overall, HIMoLE achieves the best performance across all tasks on
both ID and OOD datasets compared to other LoRA-based methods. Specifically, compared to
the best baseline, HIMoLE achieves improvements of up to 3.0% on ID datasets and 5.0% on
OOD datasets. (2) Although the recently proposed HydralLoRA and MixLLoRA suggest their ability
under multi-task learning scenarios, the lack of adequate sentence-level message integration for
routing creates a bottleneck under out-of-distribution data, even resulting in worse performance in
knowledge-intensive domains. (3) The generalization improvements from HiMoLE demonstrate
domain-dependent variability, showing more pronounced gains in knowledge-intensive domains, with
the performance enhancement compared to the best baseline increasing from 0.6% to 5.0% on OOD
datasets. (4) All MoPE-based methods still face limitations in enhancing generalization ability when
operating under a fixed number of parameters and limited data.

4.4 Effectiveness of HIMoLE on OOD samples

Hierarchical Experts To substantiate the superiority of our hierarchical expert design, we conduct
load balancing evaluations on out-of-distribution datasets. Through the visualization of expert selec-
tion logits from a randomly sampled OOD instance (Fig.[4] see the complete result in Appendix [E.5),
we observe that MixLoRA exhibits consistently severe load imbalance across layers compared to
HiMoLE, with this disparity intensifying at deeper layers- particularly in its final layer where 78.3%
of tokens disproportionately select Expert 4 with probabilities exceeding 0.85. Quantitatively, we
adopt the Max Viogjopat metric from [38] (see the definition in Appendix @I), to evaluate MoPE-layer
balancing. As displayed in Fig. ] HiMoLE consistently improved the Toad balancing among ex-
perts, with particularly notable improvements in knowledge-intensive domains (20.6% reduction
in biomedical entity recognition). These results indicates that HIMoLE’s hierarchical architecture
effectively reduces expert redundancy through structural sparsity constraints, thereby promoting
experts specialization and balanced expert utilization.
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Table 2: Robustness on character-level adversar- Table 3: Ablation study on the two stage training
ial attack. Reported results are accuracy scores. strategy and diverse loss. Reported results are
The Robustness Ratio is defined as adversarial ~ F1 scores. Please refer to Appendix [E.3|for the

sample accuracy divided by original accuracy. complete results.
Metric Base HiMoLE MixLoRA Dataset ID1 ID2 ID3 ID4 OOD
original 0.488 0.733 0.695 HiMoLE 87.6 64.0 753 79.6 653
attacked 0.196 0.330 0.280 -

. -w/o. Two-stage Training 77.7 32.1 64.1 60.8 53.5
Robustness Ratio 40.2% 451%  403% /5 Diverse Loss 87.0 63.1 747 782 650

Hierarchical Routing Strategy To further investigate the robustness of the hierarchical routing
strategy, we compared its performance against the token routing method (MixLoRA) in the sentiment
analysis task. This assessment involved generating adversarial out-of-distribution samples using the
TextBugger tool. Specifically, we randomly sampled 500 instances from the in-distribution test
set and injected token-level noise via character-level perturbations.

As shown in Table 2] both routing strategies experienced significant performance degradation under
adversarial attacks; however, hierarchical router demonstrated not only a superior absolute perfor-
mance over token-level router, with a 6.0% improvement, but also exhibited a smaller decline in
performance, with a 4.8% improvement over the token routing method. This indicates that hierar-
chical router possesses markedly stronger robustness against adversarial samples when compared
to the base model and the token-level MoPE. The results further validate that HIMoLE, through its
integration of global features, maintains stable performance against local perturbations by selecting
appropriate experts via sentence-level semantic analysis, even in adversarial scenarios.

4.5 Ablations

Two-stage Training Strategy We investigated the influence of different training strategies on
model performance by conducting the experiment on the NER task. As evidenced in Table 3} when
using single-stage joint training without preliminary KCG initialization, we observed a dramatic
performance degradation of up to 31.9% F1 on the ID2 dataset. Furthermore, we examined the bad
cases and found that the proportion of incorrect formats had increased significantly (see Appendix [A].
These observations indicate that (1) unstable optimization trajectories were adopted when learning
router-expert interactions from random initialization, and (2) the absence of first-stage specialization
prevents KCGs from developing domain-specific inductive biases, resulting in ambiguous routing
signals. Thus, proper KCG initialization is critical for our hierarchical routing mechanism to function.

Diversity Loss We investigated the importance of diverse loss on model performance. As evidenced
in Table [3] omitting the diversity loss component leads to statistically significant performance
degradation across both ID and OOD data. This consistent pattern reveals that diversity regularization
can further mitigate expert group redundancy and improve model robustness.
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Figure 5: Hyper-parameter Analysis on LoRA rank r and Knowledge Collaboration Experts Numbers
M. Performance on OOD dataset are evaluated using REM (Appendix @)

4.6 Hyper-parameter Analysis

As illustrated in Figure[5] we further conduct hyper-parameter analysis on the sentiment analysis
task examine the impact of the LoRA rank r and the number of knowledge collaboration experts
M. In experiments, we fix » = 4 when analyzing M, and conversely maintain M = 4 when
investigating r. The results reveal that HHIMoLE demonstrates superior robustness against variations
in both parameters, consistently outperforming baseline methods across all configurations. Notably,
while competing approaches exhibit significant performance degradation on OOD data with reduced
LoRA ranks, HIMoLE achieves a remarkable OOD accuracy improvement from 31.3% to 60.0%,
conclusively validating our method’s effectiveness.

5 Conclusion

While PEFT methods like LoRA have significantly lowered the barriers for adapting large language
models to downstream tasks, our investigation exposes their critical vulnerability to distributional
shifts—particularly in knowledge-intensive domains. Our proposed HiMoLE framework alleviates
this fundamental problem with by integrating hierarchical experts with a hierarchical routing strategy.
This approach leverages sentence-level information to coarsely allocate experts to relevant subdomains
and then refines the routing weights using token-level information, enabling efficient acquisition of
new knowledge while preserving existing knowledge. By theoretically and empirically validating
this approach across three representative NLP tasks, we establish a new paradigm for developing
adaptable language models that achieve parameter efficiency with enhanced generalization capacity.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
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write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: In Section
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix [G|
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: In Section [3.4and Appendix
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: In Appendix [E.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets are open-source, and the code can be found in the supplemen-
tary materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental details can be found in Sectionf.2]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: All results from our experiments are presented as either the best or average
outcomes.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information on the computer resources can be found in Appendix [E.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We make sure the research is conducted in the paper , in every respect, with
the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.
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Justification: In Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models and the data are properly credited and the license and terms of use
are explicitly mentioned and properly respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There are no new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This study does not involve any research conducted with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This study does not involve any research conducted with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: The LLM is used only for formatting purpose.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Bad case studies

Incorrect Format In the training ID data, the presence of numerous duplicate entity objects in the
labels causes LoRA-based fine-tuning methods to inadvertently replicate this pattern. Consequently,
when applied to OOD data, the model tends to generate more entities than necessary, often resulting
in repetitive output behavior. This ultimately hinders its ability to produce correctly formatted JSON
outputs as instructed. As illustrated in Table[d] this issue is particularly pronounced with both simple
LoRA and token-level MoLE methods. In contrast, sentence-level MoLE and HiMoLE effectively
address this problem. Notably, sentence-level MoLE ensures that all examples produce correctly
formatted JSON outputs.

Table 4: Comparison of the Format Robustness

Method Base LoRA Token-MoLE Sentence-MoLE HiMoLE HIMOLE. .
- two stage training
Incorrect Format Ratio(%) 1.19 8.33 7.14 0.00 2.38 44.0

Misclassifications Analyzing the erroneous results revealed that models trained on ID data fre-
quently mislabel certain symptoms as diseases when assessed on OOD data, failing to apply the
general knowledge that differentiates the two. HiMoLE significantly mitigates this issue. Figure[6]
showcases several comparative results between MixLoRA and HiMoLE.

B Definitions of the Symbols

Table 5: Definitions of the Symbols used in the paper

Symbol Description

i,m,n,l the index number

B, A the low-rank matrices

E the weight matrix of a LoRA expert

7, din, dout, emb the LoRA rank, the dimension of the input and the output of FFN layer, the dimension of
the sentence embedding used for dataset clustering

N the number of the Knowledge Competition Groups

M the number of the Knowledge Collaboration Experts in a Knowledge Competition Group

Gloken; Gisen, Ghie  the gating weights matrix derived from the sentence-level router, the token-level router
and the hierarchical router, respectively

Wioken, Wien the learnable parameters of the sentence-level router and the token-level router
Srokeny fsen the representation of the sentence-level router and the token-level router

o the output of a FFN layer

Pioken token-level hidden representation

Rsen sentence-level hidden representation

e the output of a Knowledge Competition Group

S the cosine similarity between a pair of Knowledge Competition Groups

Liask, Laux, Ldiverse  the representations of overall loss, the task loss, the auxiliary loss and the diverse loss
VoL(-) the gradient of the parameter ¢ with the loss function £

SimGrad the expected pairwise gradient similarity from all different tokens

Vig) the variance of gradient

E the notation of the expectation

R the real number space
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MixLoRA

_ isarare
characterized by the accumulation of homogentisic acid in
the body. Affected individuals lack enough functional levels
of an enzyme required to breakdown homogentisic acid.
Affected individuals may have dark urine or urine that turns
black when exposed to air. However, this change may not
occur for several hours after urination and often goes
unnoticed. Aside from dark urine that is present from
infancy, affected individuals generally do not develop
symptoms (asymptomatic) during infancy or childhood and
often remain unaware of their condition until adulthood.
Affected individuals eventually develop ochronosis, which is
the bluish-black discoloration of connective and other
tissue within the body. Affected individuals may develop
discoloration of the skin overlying cartilage within the body
such as over part of the outer ear. In some cases, the whites
of the eyes (sclera) may also become discolored. In
adulthood, affected individuals also develop
of the spine and large joints. The HGD gene codes

for the enzyme required for the breakdown of homogentisic
acid. Mutations in the HGD gene cause _

affects males and females in equal numbers,
although symptoms tend to develop sooner and become
more severe in males. More than 1,000 affected individuals
have been reported in the medical literature. The exact
incidence of is unknown. In the United States
it is estimated to occur in 1 in 250,000-1,000,000 live births.

has been reported in all ethnic groups. Areas
with increased frequencies of the disorder have been
identified in Slovakia, the Dominican Republic and Germany.
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have been reported in the medical literature. The exact
incidence of is unknown. In the United States
it is estimated to occur in 1 in 250,000-1,000,000 live births.

has been reported in all ethnic groups. Areas
with increased frequencies of the disorder have been
identified in Slovakia, the Dominican Republic and Germany.
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is a rare disorder that occurs

almost exclusively in women. It is characterized by
inflammation of the membrane lining the stomach
(peritoneum) and the tissues surrounding the liver
(perihepatitis). The muscle that separates the stomach and
the chest (diaphragm), which plays an essential role in
breathing, may also be affected. Common symptoms
include severe pain in the upper right area (quadrant) of
the abdomen, fever, chills, headaches, and a general feeling
of poor health (malais is a
complication of , a general
term for infection of the upper genital tract in women.
Infection is most often caused by Neisseria gonorrhoeae
and Chlamydia trachomatis. A diagnosis of

is made through the exclusion of other causes of
upper right abdominal pain. A diagnosis may be confirmed
with a variety of specialized tests including x-ray
examination, diagnostic laparoscopy, and certain laboratory
exams. X-ray examination may include ultrasound, chest or
stomach radiographs, and computed tomography (CT)
scanning. X-rays are used to rule out other possible
conditions or reveal characteristic inflammation of the
perihepatic region. During a laparoscopy, a small, thing tube
is inserted in the abdominal cavity through a small incision
in the stomach. A laparoscopic exam allows a physician to
view the liver and surrounding tissue. Laboratory exams can
identify infection with Chlamydia trachomatis or Neisseria
gonorrhoeae.
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almost exclusively in women. It is characterized by
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(perihepatitis). The muscle that separates the stomach and
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examination, diagnostic laparoscopy, and certain laboratory
exams. X-ray examination may include ultrasound, chest or
stomach radiographs, and computed tomography (CT)
scanning. X-rays are used to rule out other possible
conditions or reveal characteristic inflammation of the
perihepatic region. During a laparoscopy, a small, thing tube
is inserted in the abdominal cavity through a small incision
in the stomach. A laparoscopic exam allows a physician to
view the liver and surrounding tissue. Laboratory exams can
identify infection with Chlamydia trachomatis or Neisseria
gonorrhoeae.
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in the stomach. A laparoscopic exam allows a physician to
view the liver and surrounding tissue. Laboratory exams can
identify infection with Chlamydia trachomatis or Neisseria
gonorrhoeae.
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hat only affects males. Physical
characteristics include moderate short stature (dwarfism),
moderate-to-severe spinal deformities, barrel-shaped chest,
disproportionately short trunk, and premature

osteoarthritis. does not exhibit any ethnic
predisposition. Affected individuals have been described in
European, American, Asian, and Australian populations (but
not in African-Americans to date). One estimate suggests
that the incidence is 2 persons per million.
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moderate-to-severe spinal deformities, barrel-shaped chest,
disproportionately short trunk, and premature
osteoarthritis. does not exhibit any ethnic
predisposition. Affected individuals have been described in
European, American, Asian, and Australian populations (but
not in African-Americans to date). One estimate suggests
that the incidence is 2 persons per million.
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) is a rare,

(SEDT; SEDL) i
hereditan hat only affects males. Physical

characteristics include moderate short stature (dwarfism),
moderate-to-severe spinal deformities, barrel-shaped chest,
disproportionately short trunk, and premature
osteoarthritis. does not exhibit any ethnic
predisposition. Affected individuals have been described in
European, American, Asian, and Australian populations (but
not in African-Americans to date). One estimate suggests
that the incidence is 2 persons per million.

Figure 6: Misclassifications Cases. Text highlighted in green represents correct entity annotations,
while yellow represents incorrect entity annotations.
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C Auxiliary Loss

Given N experts indexed by ¢ =1 to N and a batch B with T tokens. Let G(-) denotes the top-k router,
F; is the fraction of tokens dispatched to expert, and P; i is the fraction of the router probability
allocated for expert ¢. The final loss is then multiplied by the expert count N to keep the loss constant
as the number of experts varies, which can be formulated as following:

1 , L
F; = 7 Z}I(argmaxk R(z), =1i), P = T Z R(z;), (12)
z€B zeB
N
Caux:N'ZFi'Pia (13)
i=1

D Proof

Here we provide the proof of Theorem T}

Lemma 2 Let t represent distinct tokens and s represent sentences. To simplify, let’s assume that
the sample gradients are a set of independent and identically distributed unit vectors. In this case,
SimGrad can be expressed as ||E(Vg, L(hy))||?:

SimGrad = E(cos(gt, g1)) = E(g: - g/)
= Ey, (Ey [9¢ - 9¢19t]) = By, (9 - By, (9¢)) = By, (gt) - Eg,, (9¢7) (14)
= |[Eq,|1? = [[E(Ve, L(z:))|”
Proof D.1 For the i-th expert E;, let A, ; denotes 1 (Ez € argmaxy,(fsen(hs) © fmken(ht)))), B,

denotes 1 (E; € argmaxy,(fioken(ht))). For hierarchical router Gy, and token router Gpien, their
gradient operators can be written as follows:

Vo, Lhie = 1(E; € argmax;,(Gie)) - VO;L(hs )
= H<Ez S argmaxk(fsen(hs) ©) ftoken(ht))) . vezﬁ(hs,t) (15)
=As1 - VO, L(hsy)

Vo, Lioken = H(Ei € argmax;, (Gmken)) VO, L(zs )
= H(Ei € argmaxk(fmkg,,(xt))) -V0,L(hs ) (16)
= Bs; - VO, L(hsy)
Combining Lemma 2, Ag, can be written as follows:
Ay, = SimGradpe — SimGradioken
= [[E(Vo, Lnie)||* = [E(Vo, Lioken)||* (17
= [E(As,t)2 - E(Bs,t)2] 'E(veiL(h&t))g
Since Ag 4, Bs i € {0,1}, we have:
E(As)? = E(As ), E(Bs,)? = E(Bst)

Next, we analyze the relationship between A, and B, ;. The hierarchical router ensures that the
effective selection of token router is not overlooked by positively adjusting the scores. Additionally,
by introducing global information through sentence features, it uncovers experts that are neglected
under local token features, which guarantee that:

Bsiy=1= As;: =1, but notviceversa, As; =1# Bs; =1
As a result,
Aev = [E(As t)2 - E(Bs,t>2} . E(vezL(h‘; t))2

= [E(Avy) — B(Ba)] - B(VOL() 5= 0 e

)

23



Table 6: Description of Datasets used in experiments.

. . Test
Task ‘ Domain Train D 00D
NER Biomedical 35132  2060/1267/2764/2746 684
SA Social Science 11257 2374 1465
EQA General 87599 10570 3882

Now we turn to the proof of Theorem 2]

Lemma 3 Let g denotes the gradient, E(g) denote the average gradient and m denote the number of
tokens, then E(g)? can be written as follows:

Z lgell” 42 i - 9o (19)

t£t

Lemma 4 Let V(g) represents the gradient variance, then V(g) < —SimGrad:

V(g)

E [||(g: — E(g4)|I?] Z llg: — E(9)]?
(Ilgell* = 2g¢ - E(g) + E(9)?) (20)

> llgel® ~
t

3I=3=

Combing with Lemma 3, V (g) can be written as:

V(g) =

H2 - — th g x —SimGrad 1)
tAt

Proof D.2 By Theorem 1, SimGradp, >= SimGradie,. By lemma 4, higher SimGrad indicates
lower gradient variance, hence V (gnie) <= V (Groken)-

E Experiments Details

E.1 Datasets

Table [ summarizes the datasets used in our experiments, including their task names, respective
domains, the number of training and test sets. For Biomedical NER, the ID test data was partitioned
into 4 sub-datasets using feature-based K-means clustering. All datasets are downloaded from
HuggingFace using the DATASETS library in Python. Additionally, we provide a UMAP visualization
of the datasets in Fig.
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E.2 Hyperparameters and Implementation Details

Table 7: Hyperparameter configurations of LoRA, MixLoRA/Hydral.LoRA and HiMoLE for fine-
tuning LLaMA2-7B and OneKE-13B.

Metric \ LoRA | MixLoRA/HydraLoRA | HiMoLE

Cutoff Length 1024 1024 1024

Learning Rate 3e-4 3e-4 3e-4(stagel), 3e-5(stage2)
Optimizer AdamW AdamW AdamW

Batch size 16 16 16

Dropout 0.05 0.05 0.05

Where Up, Down, Gate Up, Down, Gate Up, Down, Gate
LoRA Rank 80 8 8

LoRA Alpha 160 16 16

Top-K - 2 2

We set a maximum of 10,000 training steps and perform evaluations on the validation sets of all
benchmarks every 50 steps. If there is no improvement on the validation set for 10 consecutive
evaluations, we will terminate the training early. The best checkpoint, identified by the highest
average accuracy across all benchmarks, is then selected for evaluation on the test set.

All experiments are conducted with GPUs having 24GB memory (RTX 4090) for 7B models, GPUs
having 40GB memory (RTX A100) for 13B models, and setup with Python 3.8 and Ubuntu 22.04 on
x86-64 CPUs.

E.3 Evaluation Metrics

Performance For the metrics in Table[l} In NER, F1 stands for the average F1 score, P stands
for the average precision, R stands for the average recall; In SA, EM stands for the exact match,
REM stands for the relaxed exact match( we treat the "positive’ label as synonymous with *optimism’
and the "negative’ label as synonymous with ’pessimism’); In QA, EM stands for the exact match,
ROUGE-2 is employed to captures phrases that hold vital context.

Load Balance MaxVio is used to quantify the degree of load balance of an MoE layer, defined
max; Load; —Load;
Loadi
i-th expert, and Load; denotes the expected expert load under perfect load balance.In MaxVio gjopal,

Load; is calculated on the whole validation set.

as MaxVio = ,» where Load; represents the number of tokens assigned to the

E.4 Additional Experiments and Analysis

Impact of Two-stage Training Strategy To disentangle the effects of initialization from our
hierarchical architecture, we add baseline comparisons where MixLoRA and HydralLoRA are trained
with the same Stage 1 initialization as HIMoLE on NER task. As shown in Table[§] although other
methods demonstrate improvements, the two-stage training approach combined with the hierarchical
mixture of LORA experts still delivers the best performance across both in-distribution and out-of-
distribution settings, with essential improvement under OOD setting.

Table 8: Impact of Training Strategy across mixture of LoRA experts methods. The reported
results(%) are F1.

HiMoLE | MixLoRA | HydraLoRA
ID OOD| ID OOD| ID OOD

two stage 779 653 |76.4 630 |77.2 713
one stage 61.7 535 |76.0 61.0 |77.3 629

Training Strategy ‘
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Inference Latency HiMoLE adds lightweight gating networks, maintaining nearly the same
parameter count as MixLoRA. For inference, the speed is primarily influenced by the base model.
Since the parameters of PEFT modules constitute a small fraction of the total model parameters
(ranging from 0.65% to 1.05% as shown in Table [9), the inference latency differences across are
minimal. Table 0] presents the latency and parameter count during inference using Llama2-7B with
different Mixture of LoRA Experts methods, evaluated on the OPTIMISM dataset using a single RTX
4090 GPU. Latency was recorded over 50 random samples. The results show nearly equal latency,
but HiIMoLE exhibits the highest model performance.

E.5 Complete Results
Table[I0| presents the complete results of the comparative performance for the NER task in Table [T}

Fig. 8| presents the complete results of the routing logits discussed in Section[#.3] Table[IT]displays
the complete results of the ablation experiments in Table [3]

F Training Strategy

Algorithm 1: HIMoLE Two-Stage Training

Input: LLM’s frozen weights Wy, training data D (composed of (s, y) pairs), pre-trained encoder
Encoder(-), cluster count N
Output: Optimized experts and routers

Stage 1: Knowledge Competition Group Initialization

foreach sentence s; € D do

| emb; < Encoder(s;) ; //Generate semantic embeddings
{C1,...,Cn} < K-means({emb;}, N) ; //Cluster embeddings
For k <~ 1to N in parallel
Di + {si,y:)|emb; € Cr} //Build sub-dataset
Okcg,, ¢+ argmin, Z(S,y)EDk Lask(fo(s),y) 3 //Train KCGs in parallel

Stage 2: Joint Optimization of Experts & Routers

Initialize routing parameters ¢, load pre-trained {fkce;, }f\r:xl M

while not converged do
for batch B C D do
foreach (s,y) € Bdo

g <+ Routery(s) ; //Routing weights
7 < Wos + valeM gifo,(s); //Weighted combination
ComPUte Liask = E(y% y)’ Lauxs Ldiverse //Compute loss

Update 6, ¢ — 9, Qb - nv([«task + alax + /B['diverse)

G Limitations and Future work

In this section, we discuss the potential limitations of our proposed method HiMoLE. Firstly, has
shown effectiveness in addressing simple OOD scenarios, it still struggles to deal with hard OOD
samples(e.g., in biomedical NER, it fails to outperform the base model on the OOD dataset). Future

Table 9: Inference Latency vs Performance across mixture of LoRA experts methods. The reported
performance is evaluated using REM.

HiMoLE MixLoRA HydraLoRA

9oParam 1.05 1.05 0.65
Latency(s) 127 119 122.0
Performance(%) 68.8 66.5 67.2
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Table 10: Complete NER Results

Dataset ID1 1ID2 1D3 ID4 OOD
Metric F1 P R F1 P R F1 P R F1 P R F1 P R
Base Model | 59.1 60.6 59.0 | 424 52.0 404|513 534 51.8|523 575 514|658 63.1 764
LoRA 859 86.7 86.0|61.4 68.8 602|782 80.0 78.1|662 72.1 650|619 56.0 77.8
MixLoRA | 874 884 873|606 642 599|734 758 73.0|773 795 77.0|61.0 59.1 73.7
HydralLoRA | 87.8 88.4 87.8|63.2 652 623|751 759 744|782 79.4 772|629 594 755

HiMoLE | 87.6 88.1 87.8|64.0 67.8 63.5|753 758 734|79.6 79.5 79.8|653 644 743

Table 11: Detailed Ablation Results

Dataset ID1 1D2 ID3 ID4 00D
Metric F1 P R F1 P R F1 P R F1 P R F1 P R
HiMoLE | 87.6 88.1 87.8|64.0 67.8 635|753 758 734|79.6 79.5 79.8|653 644 743
-two stage training | 77.7 80.5 77.0 | 32.1 452 30.5|543 62.0 532|608 66.0 60.1]|535 57.7 59.0
-diverse loss 87.0 87.5 873|627 662 624|749 772 748|782 79.8 784|650 62.8 76.7

work will incorporate data augmentation to handle with hard OOD samples. Secondly, we constrain
the model size to 13B and limit the number of LoRA experts to 16 due to resource and time limitations.
As expert numbers scale, the interaction mode among experts would be more intricate and more
sophisticated routing topologies like graph can be introduced to adapt to the nuanced patterns that
emerge. Subsequent research be will conducted on the larger LLMs and more LoRA experts with
more complex interaction mechanisms. This dual-axis expansion (model size + adaptive expert
management) could unlock new robustness frontiers without proportional computational overhead.
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Figure 7: UMAP visualization of the datasets.
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Figure 8: Expert Logits selection pattern.
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