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ABSTRACT

Machine learning models routinely automate decisions in applications like lending
and hiring. In such settings, consumer protection rules require companies that
deploy models to explain predictions to decision subjects. These rules are moti-
vated, in part, by the belief that explanations can promote recourse by revealing
information that individuals can use to contest or improve their outcomes. In
practice, many companies comply with these rules by providing individuals with a
list of the most important features for their prediction, which they identify based
on feature importance scores from feature attribution methods such as SHAP or
LIME. In this work, we show how these practices can undermine consumers by
highlighting features that would not lead to an improved outcome and by explaining
predictions that cannot be changed. We propose to address these issues by high-
lighting features based on their responsiveness score – i.e., the probability that an
individual can attain a target prediction by changing a specific feature. We develop
efficient methods to compute responsiveness scores for any model and any dataset.
We conduct an extensive empirical study on the responsiveness of explanations in
lending. Our results show that standard practices in consumer finance can backfire
by presenting consumers with reasons without recourse, and demonstrate how our
approach improves consumer protection by highlighting responsive features and
identifying fixed predictions.

1 INTRODUCTION

Machine learning models are routinely used to automate and support decisions about people in
consumer finance [30], employment [9, 47], and public services [64, 19, 27]. In these domains,
companies are increasingly expected – and in some cases legally required – to provide explanations
to individuals affected by their predictions [1, 61, 55, 20]. In the United States, for example, the
adverse action provision in the Equal Credit Opportunity Act mandates that lenders provide a list of
“principal reasons” to consumers who are denied credit [1]. In the European Union, Article 86 of the
AI Act [20] grants individuals a right to explanation in “high risk” domains [see Annex III of 20].

Explanations are a cornerstone of consumer protection in such settings because they may reveal
information that consumers can use to exercise broader rights [16]. In the United States, for example,
adverse action notices are meant to support: anti-discrimination by revealing that a prediction was
influenced by protected characteristics; rectification, by revealing that a prediction was based on
erroneous information; and recourse, by revealing how they could attain a desired prediction in the
future [54, 50]. In the European Union, the right to an explanation in the GDPR is meant to reveal
information that consumers could use to contest their decisions or request human review [33].

Many explainability mandates are developed in the absence of clear directives regarding the ap-
propriate structure and construction methodology for explanations. This ambiguity exists partly
because many mandates are new – with policy makers debating how to enforce them – or have not
yet become law. In the United States, where the adverse action requirement has been in place for
over half a century, companies provide consumers with feature-highlighting explanations that list the
most important features for their prediction. They typically generate these explanations using feature
attribution methods such as SHAP [40] and LIME [48], scoring features in terms of their relative
contribution to the prediction and including the top-scoring features in a letter to consumers. This
approach has been recognized as a principled attempt to identify “principal reasons” and has gained
wide-spread adoption due to its simplicity [see e.g., recommendations in 24].
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Feature-Highlighting Explanations with SHAP

Principle Reasons

1. HistoryOfLatePayment**

2. CreditUtilization

3. Age**

4. NumberOfDependents**

Feature-Highlighting Explanations with Responsiveness

Principle Reasons

1. MultipleCreditLines
2. MonthlyIncome

Figure 1: Feature-highlighting explanations for a person denied credit by an XGBoost model on the
givemecredit dataset (see Section 4). We construct each explanation by highlighting up to four features
with the largest SHAP scores (left) and responsiveness scores (right). As shown, an explanation built with
SHAP highlights four features that are immutable** (e.g., Age) or unresponsive – no intervention leads to a
target prediction (e.g., CreditUtilization). In contrast, an explanation built with responsiveness scores returns
the only 2 features that can be changed to attain a desired prediction: MonthlyIncome and MultipleCreditLines.
The score for MultipleCreditLines is 1, which means any intervention would lead to a target prediction.

In this work, we analyze how explanations can effectively achieve one of their goals: helping
consumers attain recourse. Our work is motivated by the fact that explainability mandates are
designed to achieve multiple goals and yet overlook implementation details. To this end, we assess
the efficacy of feature attribution methods in supporting recourse, and develop a targeted approach
for this objective. Our main contributions include:

1. We identify an inherent limitation of feature attribution methods in consumer-facing applications –
reasons without recourse – where we present features in explanations, yet modifying them yields
no path to the desired outcome.

2. We introduce a new approach to explain individual predictions by measuring feature responsiveness
– the probability of attaining recourse through a randomly chosen intervention on its features.

3. We conduct an empirical study on feature-highlighting explanations in consumer finance, finding
that standard methods can harm consumers by highlighting immutable and unresponsive features.
Our framework improves upon feature attribution methods, promoting recourse and transparency
by highlighting features that help attain target predictions and flagging predictions that are
difficult or impossible to change. Our analysis also reveals the need for additional information in
explanations to effectively facilitate recourse.

4. We include a Python library to compute feature responsiveness scores available on GitHub.
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Figure 2: Standard methods for re-
course provision return the closest
action that would attain the target
prediction aopt. Our method esti-
mates the proportion of actions on
each feature that attain the target pre-
diction. Here, µ1 = 3

4
and µ2 = 1

4
because x could attain the target pre-
diction through 3/4 possible actions
on x1 and 1/4 possible actions on x2.

Related Work Our work is broadly related to a stream of meth-
ods to explain individual predictions [see, e.g., 48, 40, 41, 36].
We identify these methods can inflict harm in consumer-facing ap-
plications by providing individuals with reasons without recourse.
We view reasons without recourse as a structural limitation that
affects how we operationalize explainability mandates, akin to
limitations of explainability that arise due to the multiplicity of
predictions [42, 60, 8], the indeterminacy of explanations [11, 39],
and the potential for fairwashing [4, 52, 28].

Our goal is broadly inspired by work in algorithmic recourse,
as we seek to highlight how individuals can change their predic-
tions [57, 34, 58]. Existing methods in this area are designed to
return an action that an individual could perform to attain a target
prediction. In contrast, our method estimates the proportion of
actions on each feature that lead to a target prediction (see Fig. 2).
We construct these estimates by sampling or enumerating a set
of reachable points [38] and can be adapted to address practi-
cal challenges related to causality [35, 14, 26] and distributional
robustness [45, 46, 56].
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2 PROBLEM STATEMENT Feature
Values

Label
Counts

Best
Predictions

age≥60 savings≥60K n0 n1 f(x1, x2)

0 0 40 10 0

0 1 10 30 1

1 0 20 10 0

1 1 30 10 0

Table 1: Stylized classification task where
the most accurate model assigns fixed predic-
tions due to the immutable feature age≥60.
We train a model to predict y = repayment

from binary features (x1, x2) = (age≥60,
savings≥60K) on a dataset with n0 negative
labels and n1 positive labels. Here, individ-
uals with age≥ 60 = 1 can change their fea-
ture values, but cannot change their predic-
tion as the model outputs f(x1, x2) = 0 for
(x1, x2) ∈ {(1, 0), (1, 1)}.

In what follows, we discuss how companies comply with
rules and regulations that require them to explain the pre-
dictions of a model to individuals. We consider a classi-
fication task where a company uses a model f : X → Y
to predict a label y ∈ Y from a set of d features x =
[x1, x2, . . . , xd] ∈ X ⊆ Rd. We restrict our attention to
tasks where each instance represents a person, and where
their features encode characteristics that are semantically
meaningful for the task at hand. In such tasks, we can
safely assume that features are bounded.1

We define the scope of explainability mandates in terms
of a target prediction ŷtarget ∈ Y . We assume that the
target prediction ŷtarget represents a desirable outcome,
e.g., f(x) = ŷtarget = 1 if a person with features x will
repay their loan, and that any other prediction represents
an adverse outcome. Under these conventions, companies
must provide explanations to all individuals with features x such that f(x) ̸= ŷtarget. Informally,
these practices would support recourse [57] if they include information that each person could use to
attain a target prediction – i.e., to update their features to a point x′ such that f(x′) = ŷtarget.

Feature-Highlighting Explanations Companies comply with explainability mandates by con-
structing a feature-highlighting explanation – i.e., a list that contains the most important features
that contribute to a prediction [5]. In practice, companies select which features to highlight based on
feature importance scores that they obtain from a feature attribution method [24, 22]:

Definition 1. Given a model f : X → Y and a point x ∈ X , a feature attribution method is a function
ϕ : X → Rd that returns a vector of feature importance scores ϕ(x; f) := [ϕ1(x; f), . . . , ϕd(x; f)]
where ϕj(x; f) reflects the relative contribution of feature j towards the prediction f(x). We write
ϕ(x) instead of ϕ(x; f) when f is clear from context.

We can use the function ϕ : X → Rd to represent major classes of local explainability methods:

• Local Surrogate Methods [48, 66, 65, 17, 53], which explain the prediction of a model f at a point
x by fitting an surrogate model to approximate the decision boundary of f near x. Given the
surrogate model, we can use its parameters to determine the importance of each feature ϕj(x).

• Shapley Value Methods [see e.g., 40, 31, 25], which cast the features of a model f as players in
a cooperative game, and estimate ϕj(x) as the marginal contribution of feature j towards the
prediction f(x) under axioms of social choice [51].

Scores from these models indicate relative importance due to the following properties:

• Relevance: A feature with an attribution score ϕj(x) = 0 can be changed arbitrarily without
changing the prediction for x [see e.g., the “missingness” axiom in 40].

• Strength: Given two features j, k ∈ [d] such that |ϕj(x)| > |ϕk(x)|, feature j has a stronger
contribution to the prediction than feature k [see e.g., 44].

Given top-scoring features, companies can automatically convert them into natural language explana-
tions for decision subjects [e.g., a reason code 21, 13].

Reasons without Recourse Feature attribution methods can highlight features that genuinely reflect
the “principal reasons" or “main factors" for each prediction. In practice, however, these methods
may fail to highlight features that lead to a desired outcome:

• Inability to Characterize Counterfactual Behavior: Feature attribution methods often assign high
importance scores to features that are not indicative of the model’s local behavior. Bilodeau et al.

1In practice, many features will be bounded by definition – e.g., a binary feature such as
recent_payment ∈ {0, 1}. In other cases, we can set loose bounds that apply to all decision subjects
– e.g., age ∈ [0, 120] or income ∈ [0, 109].
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Requirement Example Features Actionability Constraint

Immutability age cannot change xj = age vj = 0

Monotonicity recent_payment can only increase xj = recent_payment vj ≥ 0

Integrality late_payments must be positive integer ≤ 12 xj = late_payments vj ∈ Z+ ∩ [0− xj , 12− xj ]

Encoding
Validity

preserve one-hot encoding of categorical
feature housing ∈ {own, rent, other}

xk = 1[housing=own]

xl = 1[housing=rent]

xm = 1[housing=other]

vj + xj ∈ {0, 1} for j ∈ {k, l,m}∑
j∈{k,l,m} vj + xj = 1

Logical
Implication

if has_savings_account = TRUE

then savings_balance ≥ 0

else savings_balance = 0

xj = has_savings_account

xk = savings_balance

vj + xj ∈ {0, 1}
vk + xk ∈ [0, 1012]

vk + xk ≤ 1012(xj + vj)

Causal
Implication

if years_of_account_history increases
then age will increase commensurately

xj = years_of_account_history

xk = age

xj + vj ≤ xk + δk
δk ∈ [0, 100]

Table 2: Examples of actionability constraints on semantically meaningful features for a lending task. Each
constraint can be expressed in natural language and embedded into an optimization problem using standard
techniques in mathematical programming [see, e.g., 62]. See Appendix B for more examples.

[7] demonstrate that methods like SHAP suffer from under-specification – i.e., a feature with a
given level of responsiveness can receive different attribution scores – and are sensitive to baseline
values, which may not be relevant in describing model behavior locally.

• Ignorance of Actionability: Feature attribution methods do not account for how individuals can
change their features. This can lead them to highlight features that are immutable or even highlight
features when individuals are assigned fixed predictions – f(x′) ̸= ŷtarget ∀x′ (see Table 1).

Highlighting important but unresponsive features undermines the value of explainability mandates.
For example, feature attribution methods might highlight immutable features, even when recourse is
available through other features. Alternatively, they may highlight features that seem actionable but
do not lead to the desired prediction, causing individuals to focus on ineffective changes.

3 MEASURING FEATURE RESPONSIVENESS

Our goal is to measure the responsiveness of the model with respect to independent changes in each
feature. First, we characterize how each feature can be changed:

Characterizing Actionability Let x be the feature vector representing a person with the capability
of changing their associated data to new point x′:

x′ = x+ v + z(v) (1)

where v ∈ Rd is an intervention with one non-zero element vj , and z(v) is the downstream effect
of v that captures how other features change as a result of the intervention v. Given a model
that includes the features like yrs_account_history and age, an intervention that increases
yrs_account_history should lead to commensurate increase in age – a downstream effect.

Each feature is inherently constrained by physical limits (i.e., bounds), type (e.g., one-hot encoding),
or nature (e.g., monotonicity of ordinal encoding of education_level). As shown in Table 2, we can
elicit these constraints from human experts in natural language, and convert them into equations that
we can embed into optimization problems [e.g., to search for recourse actions 57, 38]. In fact, we
can extend beyond inherent constraints and encode non-trivial constraints like the causal relationship
between yrs_account_history and age mentioned earlier. We refer to the set of such constraints,
both inherent and non-trivial, as actionability constraints.

We describe the set of points we can reach by intervening on a feature j within these constraints:
Definition 2. Given a point x, we define the set of interventions on feature j ∈ [d]:

Vj(x) := {v ∈ Rd |vj ̸= 0, vj is feasible under the actionability constraints, vk = 0 for k ̸= j}
We also define the action set, which describes the set of points we can reach by intervening on j:

Aj(x) := {a = v + z(v) | v ∈ Vj(x)}

We are now ready to introduce our main technical contribution – the responsiveness score.
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Figure 3: Responsiveness scores for a stylized task with three features (n_loans, guarantor, age). We show all
points that can be reached for a person with features x = (3, 0, 24). Here, the reachable set Rj(x) for each of
the feature contains the set of points that can be reached through single feature interventions, and R3(x) = ∅
because age is immutable. Given these sets, we compute the responsiveness scores for each feature by querying
its predictions over points in their respective reachable set Rj(x).

Definition 3 (Responsiveness Score (µj(x))). Given a model f : X → Y that assigns an adverse
prediction to a point x ∈ X , we define the responsiveness score of feature j as:

µj(x | f,Aj(x)) := Pr(f(x+ a) = ŷtarget | a ∈ Aj(x))

We write µj(x) instead of µj(x | f,Aj(x)) when f and Aj(x) are clear from context.

Responsiveness scores reflect the proportion of single-feature actions on feature j that result in ŷtarget.
A score of µj(x) = 0 indicates that changing feature j cannot achieve ŷtarget, while µj(x) = 1 means
any intervention on it will. These values depend on actionability constraints, which, in the simplest
case, encode indisputable constraints related to feature encoding or physical limits, meaning that
µj(x) represents an upper bound on the true responsiveness of feature j.

µj(x) can be interpreted as the probability of a person x achieving ŷtarget after a random intervention
on feature j. Hence, feature-highlighting explanations using responsiveness scores is optimal
because these explanations do not specify the necessary degree of change; highlighting the most
responsive feature maximizes the likelihood of recourse. We only include features that, when changed
independently, lead to recourse, enabling consumers to choose any highlighted feature.

This approach offers stronger protections by: (1) providing explanations only to individuals with
recourse, and (2) detecting potentially misleading or uninformative feature-highlighting explanations.

Remark 1. Given a model f : X → Y , let µ1(x) . . . µd(x) denote the feature responsiveness scores
for an individual x ∈ X . If µj(x) = 0 for all j ∈ [d], then either: (a) f assigns a fixed prediction to
x, or (b) f can only provide recourse to x through a joint intervention on two or more features.

According to Remark 1, µj(x) = 0 for all j ∈ [d] in two scenarios. We can triage these cases to
mitigate harm. For fixed predictions (case (a)), we can withhold explanations and notify developers or
regulators. For predictions requiring joint interventions (case (b)), we can include a warning against
assuming feature independence.

3.1 COMPUTING SCORES WITH REACHABLE SETS

The key challenge in computing responsiveness scores is to include actionability constraints in the
calculation. As such, we present an alternative representation of actionability, a reachable set:
Definition 4. Given a point x, the reachable set for feature j contains all feature vectors that can be
attained through actions on feature j: Rj(x) := {x+ a | a ∈ Aj(x)}.

Given a reachable set Rj(x), we can calculate the responsiveness score for any model by querying
its predictions over reachable points (see Fig. 3) as

µj(x | f,Aj(x)) := Ex′∼Rj(x)

[
1[f(x′) = ŷtarget]

]
(2)

where 1 is the indicator function. In such cases, we only need to compute the reachable sets once
and use it to measure feature responsiveness for any model. This enables us to take responsiveness
into account in various stages of model development (i.e., model selection). Here, we outline two
methods to construct reachable sets and include additional details in Appendix A.1.
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Algorithm 1 Sample Reachable Points
Require: x ∈ X point
Require: Aj(x) action set for feature j

Require: N ∈ N sample size (see Appendix A.2)

R̂j ← ∅
1: repeat
2: â← SampleAction(x, Aj(x))
3: if CheckFeasibility(x, â, Aj(x)) then
4: R̂j ← R̂j ∪ {x+ â}
5: end if
6: until |R̂j | = N

Output R̂j N reachable points via actions on j

Algorithm 2 Enumerate Reachable Points
Require: x ∈ X point
Require: Aj(x) action set for feature j (discrete)

Require: Ṽj(x) finite set of interventions for feature j

Rj ← ∅
Aj ← Aj(x)

1: for each v ∈ Ṽj(x) do
2: repeat
3: a∗ ← Find1DAction(x,v, Aj)
4: Rj ← Rj ∪ {x+ a∗}
5: Aj ← Aj \ {a∗}
6: until Find1DAction(x,v, Aj) is infeasible
7: end for

Output Rj all reachable points via actions in j

Sampling We present a procedure to sample
reachable points in Algorithm 1. Given a point
x and the action set Aj(x), this procedure re-
turns a uniform sample of N reachable points
by rejection sampling. In Line 2, it calls the
SampleAction(x, Aj) routine to propose a can-
didate action vector â that obeys separable ac-
tionability constraints such as bounds and in-
tegrality constraints. In Line 3, it calls the
CheckFeasibility(x, â, Aj) routine to check if â
obeys joint actionability constraints by solving a
mixed-integer program. The procedure terminates
after it has found N feasible actions â ∈ Aj(x),
each of which can define a reachable point as x+â.
Given Rj(x), we can recover an unbiased esti-
mate for the responsiveness score for feature j for
a model f as µ̂j(x) :=

1
N

∑
x′∈R̂x(j)

1[f(x′) =
ŷtarget]. We can set the sample size N to control
the reliability with which we flag predictions that
satisfy the conditions in Remark 1, which warrant
more detailed explanations (see Appendix A.2).

Enumeration We present an alternative proce-
dure that can be used to enumerate a complete
reachable set in Algorithm 2 to enumerate Rj(x).
This procedure can only be applied to construct
a reachable set for features that are discrete and
whose downstream features are also discrete. The algorithm enumerates reachable points for a feature
j by repeatedly solving the discrete optimization problem:

Find1DAction(x,v, Aj) := argmin
a∈Aj(x)

∥a∥1 s.t. aj = vj

for each v ∈ Ṽj(x) (Line 1). Ṽj(x) is a superset of Vj(x) (i.e., Vj(x) ⊆ Ṽj(x)), where it con-
tains possibly infeasible interventions. Generally, we can deduce Ṽj(x) from feature bounds and
monotonicity constraints. We formulate Find1DAction(x,v, Aj) as a mixed-integer program that
we update at each iteration with a “no good constraint” to remove previous solutions (Line 5). We
store each of the enumerated actions into Rj(x), which can be used to calculate exact responsiveness
scores. The procedure adapts a method used to enumerate a complete reachable set for all features in
Kothari et al. [38], and is more tractable as we only enumerate single-feature interventions and their
downstream effects.

Extensions One of the benefits of using reachable sets to compute responsiveness scores is that we
easily customize scores to meet additional requirements (see e.g., Section 5). One such requirement
is monotonicity – i.e., whether a person would be guaranteed a target prediction after increasing (or
decreasing) a feature beyond threshold value. In general, we can account for such properties through
simple operations such as filtering or weighing reachable points. We can also apply these operations
to construct responsiveness scores that address practical challenges in settings where we are given
additional inputs:

• Individual Preferences: Given a cost function that captures the difficulty of actions in each direction,
we can highlight features that are easier to change (i.e., least costly k features) using a cost-weighed
score: µcost

j (x; cost) =
∑

a∈Aj(x)
cost(a;x) · 1[f(x+ a) = ŷtarget].

• Distributional Robustness: Given a general reachable set R(x) that contains all points that we can
reach, we can highlight features can be changed to attain a target prediction regardless of how other
features change by computing a robust score: µrobust

j (x) = minδ∈∆−j
Pr(f(x+ a+ δ) = ŷtarget |

a ∈ Aj(x)), Here, ∆−j := {δ ∈ Rd | δj = 0, ∥δ∥ < ε} is the set of perturbations on features
other than j given a budget ε > 0 [see e.g., 45].
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4 EXPERIMENTS

We present an empirical study on the responsiveness of explanations. Our goals are to demonstrate the
limitations of existing feature attribution methods, and show how our approach can support recourse
and flag fixed predictions. We include additional details and results in Appendix B, and code to
reproduce our results on GitHub.

Setup We work with three publicly available consumer finance classification datasets. Here, each
instance represents a consumer and the label indicates if they will repay a loan. We consider discrete
version of each dataset in which we can compute exact responsiveness scores and certify existence of
recourse. Given these features, we define inherent actionability constraints that reflect indisputable
requirements that apply to all individuals (e.g., that disallow changes to immutable attributes, preserve
feature encodings, and adhere to deterministic causal effects).

Dataset Metrics LR RF XGB

heloc

n = 5, 842

d = 43

FICO [23]

% Denied
↱

% No Recourse
↱

% 1-D Recourse
↱

% n-D Recourse

56.1%
22.2%
41.0%
36.8%

58.3%
31.3%
31.7%
37.0%

57.0%
53.1%
25.3%
21.6%

german

n = 1, 000

d = 36

Dua & Graff [15]

% Denied
↱

% No Recourse
↱

% 1-D Recourse
↱

% n-D Recourse

22.9%
7.4%

74.2%
18.3%

17.5%
28.6%
48.0%
23.4%

22.0%
11.8%
68.2%
20.0%

givemecredit

n = 120, 268

d = 23

Kaggle [32]

% Denied
↱

% No Recourse
↱

% 1-D Recourse
↱

% n-D Recourse

24.6%
15.6%
72.4%
12.0%

24.7%
0.2%

93.2%
6.6%

24.8%
11.5%
76.0%
12.5%

Table 3: Fraction of n individuals who
would receive an explanation as a result of
an adverse prediction (% Denied) for each
dataset and model. We characterize the poten-
tial to highlight features that lead to recourse
by reporting the following metrics:% Fixed,
% of denied individuals who with a fixed pre-
diction (in red) – i.e., who have no recourse
under any explanation; % 1-D, % of denied
individuals who can achieve recourse by in-
tervening on a single feature – i.e., who could
have recourse from feature-highlighting ex-
planations; and % n-D, the fraction of denied
individuals who can only achieve recourse by
changing 2 or more features;

We split each dataset into a training sample (80%; to train
models and tune parameters) and a test sample (20%; to
evaluate out-of-sample performance). We fit models using
(1) logistic regression (LR), (2) XGBoost (XGB), and (3)
random forests (RF). For each model, we construct feature-
highlighting explanations for each person who is denied
credit that highlight up to four features, which reflects the
recommended number of reasons to include in adverse
action notice by the U.S. Consumer Finance Protection
Bureau [see 2]. We include the top-4 scoring features from
the following methods:

• Feature Responsiveness (RESP): We compute respon-
sive scores by enumerating reachable sets using Algo-
rithm 2 with respect to inherent actionability constraints
in Appendix B.

• Standard Feature Attribution: We consider model-
agnostic methods that are widely used in the lending
industry [24]: SHAP [40]; and LIME [48].

• Actionable Feature Attribution: We consider action-
aware variants of feature attribution methods, SHAP-AW
and LIME-AW which aim to highlight more responsive
features by setting ϕj(x)← 0 for features that are not
actionable (i.e. can’t be changed).

On the Limits of Feature Highlighting Explanations Our results in Table 3 highlight how
widespread practices to comply with explainability mandates can help consumers achieve recourse.
For example, given an LR model on the heloc dataset, a lender would provide feature-highlighting
explanations to 56.1% of individuals who are denied a loan. Among them: 41.0% can change a
single feature to attain a desired prediction; 36.8% can only achieve recourse by changing 2 or more
features simultaneously; and 22.2% are assigned a fixed prediction. Although the magnitude of these
segments can vary considerably across datasets and model classes, there is no case where every
person who is denied credit can change their prediction with a single-feature intervention. Some will
require joint interventions. Others will have no path to recourse.

These results reflect best-case estimates of providing recourse with feature-highlighting explanations.
Specifically, the 41.0% of individuals who could achieve recourse by a single feature intervention
could only do so if we used an ideal method that assigns the highest scores to responsive features,
and did not face additional actionability constraints. They also characterize where feature attribution
methods may fail – i.e., 22.2% of denied individuals would be misled by any explanation as their
prediction is fixed. These results underscore the need to impose stricter guidelines on compliance and
devise an alternative notification framework for individuals fixed predictions.

On Explanations with Feature Attribution Scores Our results show how standard methods for
feature attribution can highlight features that are uninformative or misleading. Given the LR model
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LR XGB

All Features Actionable Features All Features Actionable Features

Dataset Metrics LIME SHAP LIME-AW SHAP-AW RESP LIME SHAP LIME-AW SHAP-AW RESP

heloc

n = 5, 842

d = 43 features
dA = 31 mutable
FICO [23]

% Presented with Explanations
↱

% All Features Unresponsive
↱

% At Least 1 Feature Responsive
↱

% All Features Responsive
↱

# Features Highlighted

100.0%
92.7%
7.3%
0.0%

4.0

100.0%
77.3%
22.7%
0.0%

4.0

100.0%
76.8%
23.2%

0.0%
4.0

100.0%
70.3%
29.7%
0.2%

4.0

41.0%
0.0%

100.0%
100.0%

2.3

100.0%
93.2%
6.8%
0.0%

4.0

100.0%
82.3%
17.7%
0.0%

4.0

100.0%
80.0%
20.0%

0.0%
4.0

100.0%
79.6%
20.4%
0.0%

4.0

25.3%
0.0%

100.0%
100.0%

2.5

german

n = 1, 000

d = 36 features
dA = 9 mutable
Dua & Graff [15]

% Presented with Explanations
↱

% All Features Unresponsive
↱

% At Least 1 Feature Responsive
↱

% All Features Responsive
↱

# Features Highlighted

100.0%
91.7%
8.3%
0.0%

4.0

100.0%
100.0%

0.0%
0.0%

4.0

100.0%
59.4%
40.6%

0.0%
4.0

100.0%
65.1%
34.9%
0.0%

4.0

74.2%
0.0%

100.0%
100.0%

1.8

100.0%
100.0%

0.0%
0.0%

4.0

100.0%
99.1%
0.9%
0.0%

4.0

100.0%
70.5%
29.5%
0.0%

4.0

100.0%
67.3%
32.7%
0.0%

4.0

68.2%
0.0%

100.0%
100.0%

1.8

givemecredit

n = 120, 268

d = 23 features
dA = 13 mutable
Kaggle [32]

% Presented with Explanations
↱

% All Features Unresponsive
↱

% At Least 1 Feature Responsive
↱

% All Features Responsive
↱

# Features Highlighted

100.0%
65.5%
34.5%
0.0%

4.0

100.0%
46.8%
53.2%
0.0%

4.0

100.0%
56.0%
44.0%

0.0%
4.0

100.0%
33.1%
66.9%
22.8%

4.0

72.4%
0.0%

100.0%
100.0%

2.4

100.0%
41.8%
58.2%
0.0%

4.0

100.0%
43.3%
56.7%
0.0%

4.0

100.0%
31.6%
68.4%

4.2%
4.0

100.0%
30.6%
69.4%
13.2%

4.0

76.0%
0.0%

100.0%
100.0%

2.6

Table 4: Responsiveness of feature-highlighting explanations for LR and XGB models for all methods and
datasets. We defer results for RF to Appendix C.1 for clarity. For each model, we generate explanations that
highlight up to 4 top-scoring features from a given method. We report the proportion of individuals receiving an
explanation (% Presented with Explanations) and the mean number of features in each explanation (# Features
Highlighted). We also show the proportion of instances where all features are unresponsive (% All Features
Unresponsive) highlighting positive values; at least one feature is responsive (% At Least 1 Feature Responsive),
or all features are responsive (% All Features Responsive) highlighting the best value.

on the heloc dataset, we find that 92.7% and 77.3% of explanations from LIME and SHAP fail to
include a single responsive feature. This stems from two issues:

• Low Scores for Responsive Features: Under the LR model on the heloc dataset, for example,
41.0% of denied individuals can achieve recourse by altering a single feature. However, LIME and
SHAP do not assign higher scores to these features (see plots in Appendix C.2).

• Fixed Predictions: Under the LR model on the heloc dataset, 22.2% of denied individu-
als are assigned a fixed prediction. These are instances where providing any explanation
can be harmful. However, LIME, SHAP and their variants still highlight important features.
For example, a SHAP explanation for a fixed prediction includes AvgYearsInFile and
NetFractionRevolvingBurden, which gives the impression that the individual could change
them to attain recourse.

Provided that feature attribution methods like LIME and SHAP can output unresponsive features by
overlooking actionability constraints, we study the potential to improve responsiveness using their
action-aware variants SHAP-AW and LIME-AW. We construct explanations using only actionable
features, following a common belief that we can account for actionability by post-processing [e.g.,
43]. Our results in Table 4 show that action-aware variants can highlight more responsive features.
For the LR model in heloc, 29.7% of SHAP-AW explanations contained at least one responsive
feature (c.f., 22.7% for SHAP), meaning that consumers are more likely to be informed of a feature
that can lead to recourse. One shortcoming of this approach is that we are required to filter features
based on their actionability at a global level (e.g., whether individuals can intervene on this feature in
principle). This is the most conservative approach in accounting for actionability, which does not
require additional assumptions about constraints at an individual-level.

On Explanations with Responsiveness Scores Our results in Table 4 show how our approach can
be used to comply with regulatory requirements and address the two limitations that affect feature
attribution methods. When we construct feature-highlighting explanations using responsiveness
scores, we present individuals with explanations that only contain responsive features, achieving
100% on the % All Features Responsive metric across datasets and models. In contrast, only 0.2% of
SHAP-AW explanations of the LR model in heloc were fully responsive. For the remaining 99.8%,
we are guaranteed that the explanation contains at least one unresponsive feature, potentially leading
individuals to intervene on them and still fail to attain recourse.

Furthermore, explanations based on responsiveness scores contain the most responsive features
that can be changed independently to obtain recourse. In effect, we only provide explanations to
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individuals who can achieve recourse with a single-feature action. This may result in explanations
that highlight fewer features on average – for example, individuals receiving explanations from the
LR model on heloc receive 2.3 out of 4 reasons on average. This behavior can mitigate harm as we
avoid presenting explanations to individuals with fixed predictions or those who require joint actions
to change their outcomes.

5 DISCUSSION

Our results in Section 4 show that feature attribution methods fail to highlight responsive features. In
principle, explanations should highlight features like income, that are responsive, that will lead to a
desired prediction when altered past (or below) a certain threshold, and that most people know they
should increase (or decrease). In practice, this may not be the case; features may have to be changed
in ways that are not monotonic (e.g., increase savings by at least $1,000 but not more than $2,500)
or not intuitive (i.e., decrease income to be approved for a loan). In what follows, we evaluate how
often explanations highlight features that meet these additional conditions. Our goal is to show how
such analyses can support the kind of information we must include in an explanation.

Setup We work with a version of the givemecredit dataset where we keep continuous features
as-is rather than binarize them (Appendix D). We use the same setup as in Section 4 to train an
XGB model and build feature-highlighting explanations using SHAP and LIME. We evaluate the
responsiveness of features using reachable sets built using Algorithm 1: for each individual with
an adverse prediction under the XGB model (n = 23, 459), we constructed a sampled reachable set
for each actionable feature. We chose the sample size N = 500 to ensure that the 100(1 − α)%
confidence interval in Appendix A.2 had an upper bound ≤ 0.01 when µ̂j(x) = 0 with α = 0.01.

On the Pitfalls of Missing Information Our results reveal how individuals who are shown a list of
responsive features can fail to attain a desired prediction due to missing information.

• Missing Information on Degree of Change: Explanations can often highlight features without
including information on how much to change them. As an example, 32.3% of SHAP explanations
highlight CreditUtilization, the proportion of available credit in use. In this case, the feature
is responsive in 10.7% explanations. However, 9% of individuals would only be approved if
they change this feature by specific amounts. As an example, we can point to an individual
with CreditUtilization = 0.99 who would only be approved by reducing this value to xj ∈
(0, 0.504) ∪ (0.651, 0.677) – i.e., they would be approved if they were to reduce to 0.66. but not
to 0.55. This is an instance where responsiveness isn’t monotonic – CreditUtilization is
responsive in disjoint intervals.

• Missing Information on Direction of Change: Explanations can also highlight features without
stating whether they must be increased or decreased. This can backfire when features have to
be changed in counterintuitive ways. As an example, we consider MonthlyIncome, which is
highlighted in 48.1% of SHAP explanations. In this case, the feature is responsive in 20.6% of
them. However, 10.7% of cases would only lead to approval if individuals were to decrease
MonthlyIncome. For example, we had an applicant with MonthlyIncome = 4100, that could get
approved for a loan but only if they were to decrease it by 581 or more.

We show how these pitfalls affect explanations from SHAP and LIME in Table 5. Our results show that
less than 7% of explanations highlight at least one feature that is responsive, monotonic and intuitive.
However, 0% of people are given feature-highlighting explanations where all features meet these
conditions. Hence, at least one feature in each explanation violate these conditions. These results
broadly highlight that there is no regime where an individual can reliably achieve recourse using a
standard feature-highlighting explanation, and underscore the need to include additional information
when explanations are meant to support recourse.

Discussion One of the consequences of building explanations using methods like SHAP and LIME is
that we cannot reliably tell when these conditions are met. We could impose some of these conditions
by enforcing conditions on how we train the model – i.e., we could ensure monotonicity by using a
linear classifier like LR rather than XGB. Alternatively, we could use custom responsiveness scores to
highlight features that meet all these conditions (i.e., is responsive, monotonic, and intuitive). RESP
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column in Table 5 show how effective custom responsiveness scores can be as a standalone solution.
It can highlight instances where there are no features that meet the these conditions (i.e., the “0” bar)
– at which point we could highlight features that achieve weaker forms of responsiveness alongside
additional information to help consumers. For example, if we find features that are responsive but
non-monotonic, then we may add additional information on the thresholds. This would provide
an alternative approach to ensure these conditions in a way that would not interfere with model
development.

6 CONCLUDING REMARKS
LIME SHAP RESP

Responsive

72%

23%
4% <1% 0%

0 1 2 3 4

72%

16% 11%
<1% <1%

0 1 2 3 4

31%26%21%
8% 14%

0 1 2 3 4

Responsive
+ Monotonic

92%

7% <1% <1% 0%

0 1 2 3 4

91%

8% <1% <1% 0%

0 1 2 3 4

54%

32%

11%
3% <1%

0 1 2 3 4

Responsive
+ Monotonic

+ Intuitive

94%

6% <1% <1% 0%

0 1 2 3 4

94%

6% <1% 0% 0%

0 1 2 3 4

68%

26%

5% <1% <1%

0 1 2 3 4

Table 5: Distribution of the number of features in feature-
highlighting explanations from LIME, SHAP and RESP for XGB
model on givemecredit that are: responsive (can change indepen-
dently to obtain recourse), monotonic (consistently responsive past
a threshold) and intuitive (responsive in a direction that aligns with
common expectations). We quantify to what extent explanations
highlight features that can reliably provide recourse without ad-
ditional information. We evaluate these characteristics using the
feature’s reachable set R̂j(x) (see Appendix D).

Explanations are essential for con-
sumer safeguards in domains like
lending and hiring, providing critical
information that enables consumers to
exercise their rights [16]. We demon-
strate how explanations can backfire
by highlighting unresponsive features
and by explaining fixed predictions.
Our work addresses these issues by
constructing explanations based on
feature responsiveness – the probabil-
ity that a feature can be changed to
attain a desired prediction. Our model-
agnostic framework can readily be
used in place of methods like SHAP
and LIME, which are currently being
used to comply with regulations. In
doing so, we can strengthen consumer
protection by highlighting responsive
features and flagging instances where
is no recourse.

Our results also underscore key lessons for how to design, enforce, and comply with explainability
mandates. Specifically, we show that these mandates should establish clearer guidelines pertaining to
the content of explanations and how they are constructed so that explanations serve their outlined
objectives – i.e., require companies to use tailored solutions that support recourse. This is especially
important as many of the other desiderata for explanations have standalone solutions – e.g., anti-
discrimination via auditing [49, 6] and less discriminatory models [29, 63].

Limitations The main limitations of our work stem from assumptions about actionability. In this
work, we have used a conservative set of assumptions that reflect indisputable constraints. In effect,
responsiveness scores under these constraints can flag individuals with fixed predictions. However,
we may not guarantee recourse as individuals may face additional constraints that we are not aware
of. In practice, we can mitigate these issues by highlighting additional features, reporting features
that exceed a minimal level of responsiveness, or eliciting constraints from decision subjects [see e.g.,
18, 12, 37]. We have also restricted our attention to settings where interventions lead to deterministic
causal effects on downstream features. In principle, our machinery can handle settings where
interventions induce probabilistic effects on downstream features [35, 14, 59]: given an individual
probabilistic graphical model, we can compute a responsiveness score reflecting the expected recourse
rate. Nevertheless, these causal assumptions are difficult to validate at an individual level and thus
require an approach to measure responsiveness in a way that is robust to misspecification.

Broader Applications Our framework for measuring feature responsiveness extends to various
contexts beyond consumer finance. More broadly, responsiveness scores can evaluate model behavior
in relation to user inputs or interactions. For instance, in content moderation, these scores can
assess a model’s robustness against strategic manipulations. In criminal justice applications, they can
determine whether a model responds inappropriately to changes in protected attributes (e.g., sex) or
appropriately to relevant factors (e.g., type of criminal offense).
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A SUPPLEMENTARY MATERIAL FOR SECTION 3

Define a partition {π1, π2, . . . , πk} of [d] such that given two parts πm, πn, there are no joint
constraints between all pairs (p, q) ∈ πm × πn of features. Another way to think about feature
partitions would be as connected components in a graph, where features are nodes and edges represent
joint constraints (i.e., ∃ edge (p, q) ⇐⇒ there are joint actionability constraints between p and q).

Let π′ be a part such that j ∈ π′.

A.1 IMPLEMENTATION DETAILS FOR REACHABLE SET ENUMERATION

Description of Find1DAction Routine The Find1DAction routine in Algorithm 2 enumerates a set
of possible actions given an intervention on a feature by repeatedly solving a mixed-integer program.
At each iteration, the routine takes as input:

• x ∈ X , a point
• v ∈ Vj(x), a valid intervention on feature j

• Aj(x), the action set for feature j (which is specified by separable and joint actionability constraints
on j)

• Aopt
j , a set of [L] actions enumerated over previous iterations.

Given these inputs, the procedure solves the following mixed-integer program in Eq. (3) to return the
nearest single-feature actions from the set a ∈ Aj(x) \ Aopt

j when they exist, or to confirm that there
are no more actions to enumerate.

min
a

∑
k∈π′

a+
k + a−

k

s.t. aj = vj intervene with v (3a)

ak = a+
k − a−

k k ∈ π′
reconstruction of ak (3b)

a+
k ≥ ak k ∈ π′

positive component of ak (3c)

a−
k ≥−ak k ∈ π′

negative component of ak (3d)

a+
k ≤ | supVk(x)|σk k ∈ π′

a
+
k > 0 =⇒ σk = 1 (3e)

a−
k ≤ | inf Vk(x)|(1− σk) k ∈ π′

a
−
k > 0 =⇒ σk = 0 (3f)

ak = ak,l + δ+k,l − δ−k,l k ∈ π′,al ∈ Aopt
j maintain distance from prior actions (3g)

εmin≤
∑
k∈π′

(δ+k,l + δ−k,l) al ∈ Aopt
j any solution is εmin away from al (3h)

δ+k,l≤M+
k,luk,l k ∈ π′, l ∈ [L] δ

+
k,l > 0 =⇒ uk,l = 1 (3i)

δ−k,l≤M−
k,l(1− uk,l) k ∈ π′, l ∈ [L] δ

−
k,l > 0 =⇒ uk,l = 0 (3j)

a ∈Aj(x) joint actionability constraints on j (3k)

a+
k , a

−
k ∈ R+ k ∈ π′

absolute value of ak (3l)

δ+k,l, δ
−
k,l ∈ R+ k ∈ π′, l ∈ [L] signed distances from ak,l (3m)

uk,l ∈ {0, 1} k ∈ π′, l ∈ [L] sign indicator of δk,l (3n)

σk ∈ {0, 1} k ∈ π′
sign indicator of ak (3o)

As mentioned in Section 3.1, Find1DAction solves the following optimization problem:

Find1DAction(x,v, Aj) := argmin
a∈Aj(x)

∥a∥1 s.t. aj = vj

Since ∥a∥1 =
∑

k∈[d] |ak|, we model the absolute value using positive and negative components
a+k , a

−
k (constraints (3b), (3l)). In similar fashion, we decompose δk,l, which is the distance from

existing solutions al ∈ Aopt
j into δ+k,l, δ

−
k,l (constraints (3g), (3m)). σk and uk,l ∈ {0, 1} are indicator

2
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variables for the sign of ak and δk,l, where 1 indicates its positive and 0 otherwise (constraint (3n),
(3o)).

The first constraint, (3a) enforces that we intervene on feature j with v. The remaining constraints
describe three key requirements for a:

1. Sufficient distance from prior solutions (constraint (3h))

2. Adherence to separable actionability constraints (constraint (3e), (3f), (3i), (3j))

3. Adherence to joint actionability constraints (constraint (3k))

Constraint (3h) ensures that given εmin > 0, ∥a − al∥1 ≥ εmin ∀al ∈ Aopt
j . We set εmin = 0.5 for

our experiments with discrete datasets.

Constraints (3e), (3f) ensure that ak is feasible under separable constraints on k ∈ π′ and that only
one of a+k or a−k is strictly positive. Similarly, constraints (3i), (3j) ensure that the distances between
a and each al are within some bound. We achieve this by setting “Big-M” parameters M+

k,l,M
−
k,l,

which represent the upper bound for δ+k,l and δ−k,l. For each feature k ∈ π′, we let

M+
k,l := | supVk(x)− ak,l|, M−

k,l := | inf Vk(x)− ak,l|
Along with the indicator variable uk,l, M+

k,l,M
−
k,l ensure that only one of δ+k,l or δ−k,l is strictly

positive and is feasible under separable actionability constraints.

Constraint (3k) ensures that a also adheres to joint actionability constraints. These constraints will
exist if and only if |π′| > 1. See [38] for examples of how we can explicitly encode joint actionability
constraints into Eq. (3).

This formulation is an adaptation of the MIP presented in [38]. Our formulation above differs in that
we solve for actions with respect to a fixed intervention v.

A.2 IMPLEMENTATION DETAILS FOR REACHABLE SET SAMPLING

Sampling a reachable set requires additional considerations.

Choosing a Sample Size The sample size N controls the precision of the estimated responsiveness
score µ̂j(x). We formalize precision using confidence intervals by treating µ̂j(x) as a binomial
distribution parameter:

Remark 2. Given a point x ∈ X , let R̂j(x) denote a sample of N points drawn uniformly from
the reachable set Rj(x). Given any model f : X → Y , we can estimate the responsiveness score
for feature j as µ̂j(x) :=

1
N

∑
x′∈R̂j(x)

1[f(x′) = ŷtarget]. Given a significance level α ∈ (0, 1), we
have that:

Pr(µj(x) ∈ [µ̃j(x)− E , µ̃j(x) + E ]) ≥ 1− α

Here: E := κ
√

1
N+κ2 µ̃j(x)(1− µ̃j(x)) and µ̃j(x) :=

1
N+κ2

(
S + κ2

2

)
is a corrected estimator to

improve coverage when µj(x) ∈ {0, 1} [10], S := |{x′ ∈ R̂j(x) | f(x′) = ŷtarget}| is the subset of
responsive points, and κ := Φ−1(1− α

2 ) is a constant based on the Normal CDF Φ(·).

The Agresti–Coull interval above is an approximate confidence interval for a binomial proportion [3],
offering an improvement over the standard normal approximation known as the Wald Interval. It is
particularly effective for small proportion values, providing more reliable coverage – the probability
that the interval contains the true parameter value [10].
Fact 3. For a fixed α, N , E is maximized when S = N

2 and attains its minimum at S = 0 and
S = N .

Proof. Let z =
S+κ2

2

N+κ2 . Then, we have:

E = κ

√
z(1− z)

(N + κ2)

3
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Since N and α are fixed (κ is defined by α), E is a function of z of the form h(z) = c
√

z(1− z)
where c ∈ R+.

Take the derivative with respect to w:

h′(z) = c · 1
2
, [z(1− z)]−

1
2 (1− 2z)

=
c(1− 2z)

2
√

z(1− z)
.

See that h′(z) = 0 when z = 1
2

Take the second derivative to check that it is concave.

h′′(z) =
c

2

[
−2[z(1− z)]−

1
2 − 1

2
(1− 2z)2[z(1− z)]−

3
2

]

= −cz(1− z) + 1
4 (1− 2z)2

[z(1− z)]
3
2

= − c

4
[z(1− z)]−

3
2

Since z > 0 and c > 0, h′′(z) < 0, hence it is concave and attains its maximum when z = 1
2 ⇐⇒

S = N
2 .

We see that h′(z) > 0 where z < 1
2 , meaning it is increasing for z ∈ (0, 1

2 ]. Hence the local minimum
is achieved at the smallest possible z – when S = 0.

Similarly, for z ∈ [ 12 , 1), h
′(z) < 0 and the local minimum is achieved at the largest possible z –

when S = N .

Note that the value of h (or E) are the same at those two points.

Using the fact above, we list two ways of setting N (given α):

1. Control the precision when S = 0 (i.e., no points in R̂j(x) are responsive) ⇐⇒ control the
width of the shortest interval

2. Control the precision when S = N
2 (i.e., half of the points in R̂j(x) are responsive) ⇐⇒ control

the width of the widest interval

Either way, we fix α and solve for N given the width of the interval E at a specified S. Below we
provide a table of the smallest N required for different E – interval widths – at common values of α
for the two methods:

E
α 0.01 0.02 0.05 0.10

0.01 461 227 86 39
0.05 267 132 50 23
0.10 188 93 35 16

Table 6: Minimum N required to ensure the shortest
confidence interval is less than 2E (Method 1)

E
α 0.01 0.02 0.05 0.10

0.01 16581 4141 657 160
0.05 9600 2398 381 93
0.10 6762 1689 268 65

Table 7: Minimum N required to ensure the widest
confidence interval is less than 2E (Method 2)

Description of the Sample1DAction Routine Let j be the feature that we are intervening on.

Case 1: |π′| = 1 (i.e., π′ = {j}, j is not jointly constrained with other features).

4
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Here, there are no downstream effects from intervening on j. We take a uniformly random intervention
from Vj(x):

a∗ ∼ Vj(x)

which abides by j’s separable actionability constraints like feature bounds and monotonicity.

Case 2: |π′| > 1 (i.e., j is jointly constrained with other features)

Similarly to Case 1, we first proceed by taking a uniformly random intervention on j:

v ∼ Vj(x)

However, there are downstream effects on the intervention. We breakdown π′ into three disjoint
subsets:

π′ = {j} ∪ π′
disc ∪ π′

cts

where π′
disc and π′

cts are the sets of discrete and and continuous features in π′ respectively.

We consider the following three sub-cases:

Case 2a: |π′
cts| = 0 – all other features in π′ are discrete.

We repeatedly solve the MIP in Find1DAction to build S(v) = {a ∈ Aj(x) | aj = vj}, the set of
all possible actions resulting from intervention v. The resulting action is a uniformly random sample
from S(v): a∗ ∼ S(v)

Case 2b: |π′
disc| = 0 – all other features in π′ are continuous.

We sample interventions for each feature in π′
disc:

z(v) =
∑

k∈π′
cts

zk

where zk ∼ Vk(x), a sample from the intervention set for feature k.

Then we check feasibility for a∗ = v + z(v) by running CheckFeasibility(a∗, Aj(x)).

We repeat until we find a feasible a∗.

Case 2c: |π′
cts|, |π′

disc| > 0 – part contains discrete and continuous features.

We run the sampling steps in Case 2a, 2b for π′
disc and π′

cts to get adisc and acts.

We then check feasibility on a∗ = adisc + acts − v (we subtract v since both adisc,acts contain v) by
running CheckFeasibility(a∗, Aj(x)).

We repeat until we find a feasible a∗.

Description of CheckFeasibility Routine We describe the implementation for the
CheckFeasibility(x,a∗, Aj) in Algorithm 1. Contrary to the MIP formulation in Appendix A.1,
given the original point x ∈ X and the sampled action a∗, we solve the MIP once.

min
a

1

s.t. aj = vj intervene with v (4a)

ak = a+
k − a−

k k ∈ π′
reconstruction of ak (4b)

a+
k ≥ ak k ∈ π′

positive component of ak (4c)

a−
k ≥−ak k ∈ π′

negative component of ak (4d)

a+
k ≤ | supVk(x)|σk k ∈ π′

a
+
k > 0 =⇒ σk = 1 (4e)

a−
k ≤ | inf Vk(x)|(1− σk) k ∈ π′

a
−
k > 0 =⇒ σk = 0 (4f)

a ∈Aj(x) joint actionability constraints on j (4g)

a+
k , a

−
k ∈ R+ k ∈ π′

absolute value of ak (4h)

5
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σk ∈ {0, 1} k ∈ π′
sign indicator of ak (4i)

The formulation is a variant of the problem in Appendix A.1, where:

• a = a∗,
• Aopt

j = ∅,
• and set the objective to mina 1

Hence CheckFeasibility(x,a∗, Aj) = 1 if a∗ is feasible under actionability constraints and 0 other-
wise.

6
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B SUPPLEMENTARY EXPERIMENT DETAILS

B.1 DETAILS FOR THE heloc DATASET

The heloc dataset was created to predict repayment on Home Equity Line of Credit HELOC
applications; these are loans that use people’s homes as collateral. The anonymized version of the
dataset was developed by FICO for use in an Explainable Machine Learning Challenge in 2018 [23].
Each instance in the dataset is an application for a home equity loan from a single applicant. There are
n = 10, 459 instances and d = 23 features. Here, the label yi = 0 if an applicant has been more than
90 days overdue on their payments in the last 2 years and yi = 1 otherwise. We thermometer encode
continuous or integer features after dropping rows and features with missing data (see Table 8). See
GitHub for dataset processing code.

Name Type LB UB Actionability Sign Joint Constraints Partition ID

NumInstallTrades≥2 {0, 1} 0 1 Yes + 20, 21, 24, 25, 28, 29, 32, 33 14
NumInstallTradesWBalance≥2 {0, 1} 0 1 Yes + 20, 21, 24, 25, 28, 29, 32, 33 14
NumInstallTrades≥3 {0, 1} 0 1 Yes + 20, 21, 24, 25, 28, 29, 32, 33 14
NumInstallTradesWBalance≥3 {0, 1} 0 1 Yes + 20, 21, 24, 25, 28, 29, 32, 33 14
NumInstallTrades≥5 {0, 1} 0 1 Yes + 20, 21, 24, 25, 28, 29, 32, 33 14
NumInstallTradesWBalance≥5 {0, 1} 0 1 Yes + 20, 21, 24, 25, 28, 29, 32, 33 14
NumInstallTrades≥7 {0, 1} 0 1 Yes + 20, 21, 24, 25, 28, 29, 32, 33 14
NumInstallTradesWBalance≥7 {0, 1} 0 1 Yes + 20, 21, 24, 25, 28, 29, 32, 33 14
NumRevolvingTrades≥2 {0, 1} 0 1 Yes + 22, 23, 26, 27, 30, 31, 34, 35 15
NumRevolvingTradesWBalance≥2 {0, 1} 0 1 Yes + 22, 23, 26, 27, 30, 31, 34, 35 15
NumRevolvingTrades≥3 {0, 1} 0 1 Yes + 22, 23, 26, 27, 30, 31, 34, 35 15
NumRevolvingTradesWBalance≥3 {0, 1} 0 1 Yes + 22, 23, 26, 27, 30, 31, 34, 35 15
NumRevolvingTrades≥5 {0, 1} 0 1 Yes + 22, 23, 26, 27, 30, 31, 34, 35 15
NumRevolvingTradesWBalance≥5 {0, 1} 0 1 Yes + 22, 23, 26, 27, 30, 31, 34, 35 15
NumRevolvingTrades≥7 {0, 1} 0 1 Yes + 22, 23, 26, 27, 30, 31, 34, 35 15
NumRevolvingTradesWBalance≥7 {0, 1} 0 1 Yes + 22, 23, 26, 27, 30, 31, 34, 35 15
YearsOfAccountHistory Z 0 50 No 5, 17, 18, 19 5
YearsSinceLastDelqTrade≤1 {0, 1} 0 1 Yes + 5, 17, 18, 19 5
YearsSinceLastDelqTrade≤3 {0, 1} 0 1 Yes + 5, 17, 18, 19 5
YearsSinceLastDelqTrade≤5 {0, 1} 0 1 Yes + 5, 17, 18, 19 5
NetFractionInstallBurden≥10 {0, 1} 0 1 Yes + 36, 37, 38 16
NetFractionInstallBurden≥20 {0, 1} 0 1 Yes + 36, 37, 38 16
NetFractionInstallBurden≥50 {0, 1} 0 1 Yes + 36, 37, 38 16
NetFractionRevolvingBurden≥10 {0, 1} 0 1 Yes + 39, 40, 41 17
NetFractionRevolvingBurden≥20 {0, 1} 0 1 Yes + 39, 40, 41 17
NetFractionRevolvingBurden≥50 {0, 1} 0 1 Yes + 39, 40, 41 17
AvgYearsInFile≥3 {0, 1} 0 1 Yes + 6, 7, 8 6
AvgYearsInFile≥5 {0, 1} 0 1 Yes + 6, 7, 8 6
AvgYearsInFile≥7 {0, 1} 0 1 Yes + 6, 7, 8 6
MostRecentTradeWithinLastYear {0, 1} 0 1 Yes 9, 10 7
MostRecentTradeWithinLast2Years {0, 1} 0 1 Yes 9, 10 7
ExternalRiskEstimate≥40 {0, 1} 0 1 No – 0
ExternalRiskEstimate≥50 {0, 1} 0 1 No – 1
ExternalRiskEstimate≥60 {0, 1} 0 1 No – 2
ExternalRiskEstimate≥70 {0, 1} 0 1 No – 3
ExternalRiskEstimate≥80 {0, 1} 0 1 No – 4
AnyDerogatoryComment {0, 1} 0 1 No – 8
AnyTrade120DaysDelq {0, 1} 0 1 No – 9
AnyTrade90DaysDelq {0, 1} 0 1 No – 10
AnyTrade60DaysDelq {0, 1} 0 1 No – 11
AnyTrade30DaysDelq {0, 1} 0 1 No – 12
NoDelqEver {0, 1} 0 1 No – 13
NumBank2NatlTradesWHighUtilizationGeq2 {0, 1} 0 1 Yes + – 18

Table 8: Separable Actionability Constraints for the processed heloc dataset. Type indicates the feature type
(Z for integer, {0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionability indicates
whether the feature is globally actionable. Sign indicates if the feature can only increase (+) or decrease (-).
Joint Constraints are a list non-separable constraint indices it is tied to (if any). Partition ID indicates which
partition the feature belongs to.

Actionability Constraints The joint actionability constraints listed in Table 8 include:

1. DirectionalLinkage: Actions on NumRevolvingTradesWBalance≥2 will induce to actions on
[’NumRevolvingTrades≥2’].Each unit change in NumRevolvingTradesWBalance≥2 leads
to:1.00-unit change in NumRevolvingTrades≥2

2. DirectionalLinkage: Actions on NumInstallTradesWBalance≥2 will induce to actions
on [’NumInstallTrades≥2’].Each unit change in NumInstallTradesWBalance≥2 leads
to:1.00-unit change in NumInstallTrades≥2

3. DirectionalLinkage: Actions on NumRevolvingTradesWBalance≥3 will induce to actions on
[’NumRevolvingTrades≥3’].Each unit change in NumRevolvingTradesWBalance≥3 leads
to:1.00-unit change in NumRevolvingTrades≥3

7
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4. DirectionalLinkage: Actions on NumInstallTradesWBalance≥3 will induce to actions
on [’NumInstallTrades≥3’].Each unit change in NumInstallTradesWBalance≥3 leads
to:1.00-unit change in NumInstallTrades≥3

5. DirectionalLinkage: Actions on NumRevolvingTradesWBalance≥5 will induce to actions on
[’NumRevolvingTrades≥5’].Each unit change in NumRevolvingTradesWBalance≥5 leads
to:1.00-unit change in NumRevolvingTrades≥5

6. DirectionalLinkage: Actions on NumInstallTradesWBalance≥5 will induce to actions
on [’NumInstallTrades≥5’].Each unit change in NumInstallTradesWBalance≥5 leads
to:1.00-unit change in NumInstallTrades≥5

7. DirectionalLinkage: Actions on NumRevolvingTradesWBalance≥7 will induce to actions on
[’NumRevolvingTrades≥7’].Each unit change in NumRevolvingTradesWBalance≥7 leads
to:1.00-unit change in NumRevolvingTrades≥7

8. DirectionalLinkage: Actions on NumInstallTradesWBalance≥7 will induce to actions
on [’NumInstallTrades≥7’].Each unit change in NumInstallTradesWBalance≥7 leads
to:1.00-unit change in NumInstallTrades≥7

9. DirectionalLinkage: Actions on YearsSinceLastDelqTrade≤1 will induce to actions on
[’YearsOfAccountHistory’].Each unit change in YearsSinceLastDelqTrade≤1 leads to:-
1.00-unit change in YearsOfAccountHistory

10. DirectionalLinkage: Actions on YearsSinceLastDelqTrade≤3 will induce to actions on
[’YearsOfAccountHistory’].Each unit change in YearsSinceLastDelqTrade≤3 leads to:-
3.00-unit change in YearsOfAccountHistory

11. DirectionalLinkage: Actions on YearsSinceLastDelqTrade≤5 will induce to actions on
[’YearsOfAccountHistory’].Each unit change in YearsSinceLastDelqTrade≤5 leads to:-
5.00-unit change in YearsOfAccountHistory

12. ReachabilityConstraint: The values of [MostRecentTradeWithinLastYear,
MostRecentTradeWithinLast2Years] must belong to one of 4 values with custom
reachability conditions.

13. ThermometerEncoding: Actions on [YearsSinceLastDelqTrade≤1,
YearsSinceLastDelqTrade≤3, YearsSinceLastDelqTrade≤5] must preserve ther-
mometer encoding of YearsSinceLastDelqTradeleq., which can only decrease.Actions can
only turn off higher-level dummies that are on, where YearsSinceLastDelqTrade≤1 is the
lowest-level dummy and YearsSinceLastDelqTrade≤5 is the highest-level-dummy.

14. ThermometerEncoding: Actions on [AvgYearsInFile≥3, AvgYearsInFile≥5,
AvgYearsInFile≥7] must preserve thermometer encoding of AvgYearsInFilegeq., which
can only increase.Actions can only turn on higher-level dummies that are off, where
AvgYearsInFile≥3 is the lowest-level dummy and AvgYearsInFile≥7 is the highest-level-
dummy.

15. ThermometerEncoding: Actions on [NetFractionRevolvingBurden≥10,
NetFractionRevolvingBurden≥20, NetFractionRevolvingBurden≥50] must preserve
thermometer encoding of NetFractionRevolvingBurdengeq., which can only decrease.Actions can
only turn off higher-level dummies that are on, where NetFractionRevolvingBurden≥10 is
the lowest-level dummy and NetFractionRevolvingBurden≥50 is the highest-level-dummy.

16. ThermometerEncoding: Actions on [NetFractionInstallBurden≥10,
NetFractionInstallBurden≥20, NetFractionInstallBurden≥50] must preserve
thermometer encoding of NetFractionInstallBurdengeq., which can only decrease.Actions can
only turn off higher-level dummies that are on, where NetFractionInstallBurden≥10 is the
lowest-level dummy and NetFractionInstallBurden≥50 is the highest-level-dummy.

17. ThermometerEncoding: Actions on [NumRevolvingTradesWBalance≥2,
NumRevolvingTradesWBalance≥3, NumRevolvingTradesWBalance≥5,
NumRevolvingTradesWBalance≥7] must preserve thermometer encoding of NumRe-
volvingTradesWBalancegeq., which can only decrease.Actions can only turn off higher-level
dummies that are on, where NumRevolvingTradesWBalance≥2 is the lowest-level dummy
and NumRevolvingTradesWBalance≥7 is the highest-level-dummy.
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18. ThermometerEncoding: Actions on [NumRevolvingTrades≥2, NumRevolvingTrades≥3,
NumRevolvingTrades≥5, NumRevolvingTrades≥7] must preserve thermometer encoding
of NumRevolvingTradesgeq., which can only decrease.Actions can only turn off higher-
level dummies that are on, where NumRevolvingTrades≥2 is the lowest-level dummy and
NumRevolvingTrades≥7 is the highest-level-dummy.

19. ThermometerEncoding: Actions on [NumInstallTradesWBalance≥2,
NumInstallTradesWBalance≥3, NumInstallTradesWBalance≥5,
NumInstallTradesWBalance≥7] must preserve thermometer encoding of NumInstall-
TradesWBalancegeq., which can only decrease.Actions can only turn off higher-level
dummies that are on, where NumInstallTradesWBalance≥2 is the lowest-level dummy and
NumInstallTradesWBalance≥7 is the highest-level-dummy.

20. ThermometerEncoding: Actions on [NumInstallTrades≥2, NumInstallTrades≥3,
NumInstallTrades≥5, NumInstallTrades≥7] must preserve thermometer encoding of Nu-
mInstallTradesgeq., which can only decrease.Actions can only turn off higher-level dummies that
are on, where NumInstallTrades≥2 is the lowest-level dummy and NumInstallTrades≥7
is the highest-level-dummy.

9
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B.2 DETAILS FOR THE german DATASET

The german dataset was created in 1994 and contains information about loan history, demographics,
occupation, payment history, and whether or not somebody is a good customer [15]. Each instance
is credit applicant. There are n = 1, 000 instances and d = 20 features. The features are all either
categorical or discrete. The label a indicates is a loan applicant is “good” (yi = 1) or “bad” (yi = 0).
There are no missing values in the dataset. We renamed some of the features to be indicative of
the values they represent. The dataset is self-contained and anonymous, and it includes features
describing gender, age, and marital status.

Name Type LB UB Actionability Sign Joint Constraints Partition ID

Age Z 19 75 No 0, 4, 12 0
YearsAtResidence Z 0 7 Yes + 0, 4, 12 0
YearsEmployed≥1 {0, 1} 0 1 Yes + 0, 4, 12 0
CheckingAcct_exists {0, 1} 0 1 Yes + 32, 33 30
CheckingAcct≥0 {0, 1} 0 1 Yes + 32, 33 30
SavingsAcct_exists {0, 1} 0 1 Yes + 34, 35 31
SavingsAcct≥100 {0, 1} 0 1 Yes + 34, 35 31
Male {0, 1} 0 1 No – 1
Single {0, 1} 0 1 No – 2
ForeignWorker {0, 1} 0 1 No – 3
LiablePersons Z 1 2 No – 4
Housing=Renter {0, 1} 0 1 No – 5
Housing=Owner {0, 1} 0 1 No – 6
Housing=Free {0, 1} 0 1 No – 7
Job=Unskilled {0, 1} 0 1 No – 8
Job=Skilled {0, 1} 0 1 No – 9
Job=Management {0, 1} 0 1 No – 10
CreditAmt≥1000K {0, 1} 0 1 No – 11
CreditAmt≥2000K {0, 1} 0 1 No – 12
CreditAmt≥5000K {0, 1} 0 1 No – 13
CreditAmt≥10000K {0, 1} 0 1 No – 14
LoanDuration≤6 {0, 1} 0 1 No – 15
LoanDuration≥12 {0, 1} 0 1 No – 16
LoanDuration≥24 {0, 1} 0 1 No – 17
LoanDuration≥36 {0, 1} 0 1 No – 18
LoanRate Z 1 4 No – 19
HasGuarantor {0, 1} 0 1 Yes + – 20
LoanRequiredForBusiness {0, 1} 0 1 No – 21
LoanRequiredForEducation {0, 1} 0 1 No – 22
LoanRequiredForCar {0, 1} 0 1 No – 23
LoanRequiredForHome {0, 1} 0 1 No – 24
NoCreditHistory {0, 1} 0 1 No – 25
HistoryOfLatePayments {0, 1} 0 1 No – 26
HistoryOfDelinquency {0, 1} 0 1 No – 27
HistoryOfBankInstallments {0, 1} 0 1 Yes + – 28
HistoryOfStoreInstallments {0, 1} 0 1 Yes + – 29

Table 9: Separable Actionability Constraints for the processed german dataset. Type indicates the feature
type (Z for integer, {0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionability
indicates whether the feature is globally actionable. Sign indicates if the feature can only increase (+) or decrease
(-). Joint Constraints are a list non-separable constraint indices it is tied to (if any). Partition ID indicates
which partition the feature belongs to.

Actionability Constraints The joint actionability constraints listed in Table 9 include:

1. DirectionalLinkage: Actions on YearsAtResidence will induce to actions on [’Age’].Each unit
change in YearsAtResidence leads to:1.00-unit change in Age

2. DirectionalLinkage: Actions on YearsEmployed≥1 will induce to actions on [’Age’].Each unit
change in YearsEmployed≥1 leads to:1.00-unit change in Age

3. ThermometerEncoding: Actions on [CheckingAcctexists, CheckingAcct≥0] must preserve
thermometer encoding of CheckingAcct., which can only increase.Actions can only turn on
higher-level dummies that are off, where CheckingAcctexists is the lowest-level dummy and
CheckingAcct≥0 is the highest-level-dummy.

4. ThermometerEncoding: Actions on [SavingsAcctexists, SavingsAcct≥100] must pre-
serve thermometer encoding of SavingsAcct., which can only increase.Actions can only turn on
higher-level dummies that are off, where SavingsAcctexists is the lowest-level dummy and
SavingsAcct≥100 is the highest-level-dummy.
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B.3 DETAILS FOR THE givemecredit DATASET

The givemecredit dataset is used to determine whether a loan should be given or denied [32]. The
label indicates whether someone was 90 days past due in the two years following data collection.
Delinquency refers to a debt with an overdue payment; this dataset is used to predict if someone will
experience financial distress in the next two years.It contains information about n = 120, 268 loan
recipients, and each instance represents a borrower. There are d = 10 features before preprocessing.
Here, the label is yi = 0 if an applicant has had a serious delinquency in two years and yi otherwise.
The data is self-contained and anonymous, and it contains features describing age, income, and the
number of dependents.

Name Type LB UB Actionability Sign Joint Constraints Partition ID

CreditLineUtilization≥10.0 {0, 1} 0 1 Yes 12, 13, 14, 15, 16 10
CreditLineUtilization≥20.0 {0, 1} 0 1 Yes 12, 13, 14, 15, 16 10
CreditLineUtilization≥50.0 {0, 1} 0 1 Yes 12, 13, 14, 15, 16 10
CreditLineUtilization≥70.0 {0, 1} 0 1 Yes 12, 13, 14, 15, 16 10
CreditLineUtilization≥100.0 {0, 1} 0 1 Yes 12, 13, 14, 15, 16 10
MonthlyIncome≥3K {0, 1} 0 1 Yes + 9, 10, 11 9
MonthlyIncome≥5K {0, 1} 0 1 Yes + 9, 10, 11 9
MonthlyIncome≥10K {0, 1} 0 1 Yes + 9, 10, 11 9
AnyRealEstateLoans {0, 1} 0 1 Yes + 17, 18 11
MultipleRealEstateLoans {0, 1} 0 1 Yes + 17, 18 11
AnyCreditLinesAndLoans {0, 1} 0 1 Yes + 19, 20 12
MultipleCreditLinesAndLoans {0, 1} 0 1 Yes + 19, 20 12
Age≤24 {0, 1} 0 1 No – 0
Age_bt_25_to_30 {0, 1} 0 1 No – 1
Age_bt_30_to_59 {0, 1} 0 1 No – 2
Age≥60 {0, 1} 0 1 No – 3
NumberOfDependents=0 {0, 1} 0 1 No – 4
NumberOfDependents=1 {0, 1} 0 1 No – 5
NumberOfDependents≥2 {0, 1} 0 1 No – 6
NumberOfDependents≥5 {0, 1} 0 1 No – 7
DebtRatio≥1 {0, 1} 0 1 Yes + – 8
HistoryOfLatePayment {0, 1} 0 1 No – 13
HistoryOfDelinquency {0, 1} 0 1 No – 14

Table 10: Separable Actionability Constraints for the processed givemecredit dataset. Type indicates
the feature type (Z for integer, {0, 1} for binary). LB, UB are the lower and upper bounds for the feature.
Actionability indicates whether the feature is globally actionable. Sign indicates if the feature can only increase
(+) or decrease (-). Joint Constraints are a list non-separable constraint indices it is tied to (if any). Partition
ID indicates which partition the feature belongs to.

Actionability Constraints The joint actionability constraints listed in Table 10 include:

1. ThermometerEncoding: Actions on [MonthlyIncome≥3K, MonthlyIncome≥5K,
MonthlyIncome≥10K] must preserve thermometer encoding of MonthlyIncomegeq.,
which can only increase.Actions can only turn on higher-level dummies that are off, where
MonthlyIncome≥3K is the lowest-level dummy and MonthlyIncome≥10K is the highest-level-
dummy.

2. ThermometerEncoding: Actions on [CreditLineUtilization≥10.0,
CreditLineUtilization≥20.0, CreditLineUtilization≥50.0,
CreditLineUtilization≥70.0, CreditLineUtilization≥100.0] must preserve
thermometer encoding of CreditLineUtilizationgeq., which can only decrease.Actions can only
turn off higher-level dummies that are on, where CreditLineUtilization≥10.0 is the
lowest-level dummy and CreditLineUtilization≥100.0 is the highest-level-dummy.

3. ThermometerEncoding: Actions on [AnyRealEstateLoans, MultipleRealEstateLoans]
must preserve thermometer encoding of continuousattribute., which can only decrease.Actions can
only turn off higher-level dummies that are on, where AnyRealEstateLoans is the lowest-level
dummy and MultipleRealEstateLoans is the highest-level-dummy.

4. ThermometerEncoding: Actions on [AnyCreditLinesAndLoans,
MultipleCreditLinesAndLoans] must preserve thermometer encoding of contin-
uousattribute., which can only decrease.Actions can only turn off higher-level dum-
mies that are on, where AnyCreditLinesAndLoans is the lowest-level dummy and
MultipleCreditLinesAndLoans is the highest-level-dummy.
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B.4 OVERVIEW OF MODEL PERFORMANCE

We include the performance of the classifiers used in Section 4.

LR XGB RF

Dataset Train Test Train Test Train Test

heloc

n = 5, 842

d = 43

FICO [23]

0.772 0.788 0.859 0.785 0.780 0.790

german

n = 1, 000

d = 36

Dua & Graff [15]

0.819 0.760 0.971 0.794 0.828 0.766

givemecredit

n = 120, 268

d = 23

Kaggle [32]

0.841 0.844 0.875 0.793 0.864 0.835

Table 11: Train and Test AUC for models across all datasets. We optimized the model’s hyperparameters
through randomized search and divided the data into training and testing sets at an 80% and 20% ratio.

C SUPPLEMENTARY EXPERIMENT RESULTS

C.1 RESPONSIVENESS OF EXPLANATIONS FOR RANDOM FORESTS

All Features Actionable Features

Dataset Metrics LIME SHAP LIME-AW SHAP-AW RESP

heloc

n = 5, 842

d = 43 features
dA = 31 mutable
FICO [23]

% Presented with Explanations
↱

% All Features Unresponsive
↱

% At Least 1 Feature Responsive
↱

% All Features Responsive
↱

# Features Highlighted

100.0%
86.5%
13.5%

0.0%
4.0

100.0%
78.2%
21.8%

0.0%
4.0

100.0%
77.1%
22.9%

0.0%
4.0

100.0%
76.7%
23.3%

0.5%
4.0

31.7%
0.0%

100.0%
100.0%

2.4

german

n = 1, 000

d = 36 features
dA = 9 mutable
Dua & Graff [15]

% Presented with Explanations
↱

% All Features Unresponsive
↱

% At Least 1 Feature Responsive
↱

% All Features Responsive
↱

# Features Highlighted

100.0%
100.0%

0.0%
0.0%

4.0

100.0%
89.1%
10.9%

0.0%
4.0

100.0%
76.6%
23.4%

0.0%
4.0

100.0%
64.6%
35.4%

0.0%
4.0

48.0%
0.0%

100.0%
100.0%

2.2

givemecredit

n = 120, 268

d = 23 features
dA = 13 mutable
Kaggle [32]

% Presented with Explanations
↱

% All Features Unresponsive
↱

% At Least 1 Feature Responsive
↱

% All Features Responsive
↱

# Features Highlighted

100.0%
56.5%
43.5%

0.0%
4.0

100.0%
26.8%
73.2%

0.5%
4.0

100.0%
28.4%
71.6%

1.4%
4.0

100.0%
21.0%
79.0%
11.4%

4.0

93.2%
0.0%

100.0%
100.0%

2.9

Table 12: Responsiveness of feature-highlighting explanations for RF for all methods and datasets. We generate
explanations that highlight up to 4 top-scoring features from a given method. We report the proportion of
individuals receiving an explanation (% Presented with Explanations) and the mean number of features in
each explanation (# Features Highlighted). We also show the proportion of instances where all features are
unresponsive (% All Features Unresponsive) highlighting positive values; at least one feature is responsive (% At
Least 1 Feature Responsive), or all features are responsive (% All Features Responsive) highlighting the best
value.

12



Published as a conference paper at ICLR 2025

C.2 FEATURE RESPONSIVENESS RANKINGS

We include a plot to show how responsive features are at different rankings by LIME, SHAP, LIME-AW,
SHAP-AW and RESP for each dataset. For every denied individual, we rank features by their absolute
feature importance score returned by these methods. We exclude features with 0 attribution from the
rankings.

The plots below show the % of times where the feature at each rank are responsive (i.e., feature has
RESP > 0). It allows us to visualize and compare how often these methods assign high attribution to
responsive features.

C.2.1 heloc
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Figure 4: Responsiveness of features for individuals who are denied credit by the LR model on the fico dataset
according to absolute feature attribution rank using the original feature attribution method, its action-aware
variant and RESP. For each method, we report the proportion of individuals with at least one responsive
intervention on a feature with the k-th largest score (k-th ranked feature). Features must have non-zero score to
be included in a “rank.”
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Dataset: fico, Model: XGB, Method: SHAP
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Figure 5: Responsiveness of features for individuals who are denied credit by the XGB model on the fico
dataset according to absolute feature attribution rank using the original feature attribution method, its action-
aware variant and RESP. For each method, we report the proportion of individuals with at least one responsive
intervention on a feature with the k-th largest score (k-th ranked feature). Features must have non-zero score to
be included in a “rank.”
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Dataset: fico, Model: RF, Method: SHAP
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Figure 6: Responsiveness of features for individuals who are denied credit by the RF model on the fico dataset
according to absolute feature attribution rank using the original feature attribution method, its action-aware
variant and RESP. For each method, we report the proportion of individuals with at least one responsive
intervention on a feature with the k-th largest score (k-th ranked feature). Features must have non-zero score to
be included in a “rank.”
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C.2.2 german
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Dataset: german, Model: LR, Method: SHAP
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Figure 7: Responsiveness of features for individuals who are denied credit by the LR model on the german
dataset according to absolute feature attribution rank using the original feature attribution method, its action-
aware variant and RESP. For each method, we report the proportion of individuals with at least one responsive
intervention on a feature with the k-th largest score (k-th ranked feature). Features must have non-zero score to
be included in a “rank.”
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Dataset: german, Model: XGB, Method: SHAP
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Dataset: german, Model: XGB, Method: LIME
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Figure 8: Responsiveness of features for individuals who are denied credit by the XGB model on the german
dataset according to absolute feature attribution rank using the original feature attribution method, its action-
aware variant and RESP. For each method, we report the proportion of individuals with at least one responsive
intervention on a feature with the k-th largest score (k-th ranked feature). Features must have non-zero score to
be included in a “rank.”
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Dataset: german, Model: RF, Method: SHAP
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Dataset: german, Model: RF, Method: LIME
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Figure 9: Responsiveness of features for individuals who are denied credit by the RF model on the german
dataset according to absolute feature attribution rank using the original feature attribution method, its action-
aware variant and RESP. For each method, we report the proportion of individuals with at least one responsive
intervention on a feature with the k-th largest score (k-th ranked feature). Features must have non-zero score to
be included in a “rank.”
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Dataset: givemecredit, Model: LR, Method: SHAP
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Dataset: givemecredit, Model: LR, Method: LIME
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Figure 10: Responsiveness of features for individuals who are denied credit by the LR model on the
givemecredit dataset according to absolute feature attribution rank using the original feature attribution
method, its action-aware variant and RESP. For each method, we report the proportion of individuals with at
least one responsive intervention on a feature with the k-th largest score (k-th ranked feature). Features must
have non-zero score to be included in a “rank.”
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Dataset: givemecredit, Model: XGB, Method: SHAP
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Dataset: givemecredit, Model: XGB, Method: LIME
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Figure 11: Responsiveness of features for individuals who are denied credit by the XGB model on the
givemecredit dataset according to absolute feature attribution rank using the original feature attribution
method, its action-aware variant and RESP. For each method, we report the proportion of individuals with at
least one responsive intervention on a feature with the k-th largest score (k-th ranked feature). Features must
have non-zero score to be included in a “rank.”
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Dataset: givemecredit, Model: RF, Method: SHAP
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Dataset: givemecredit, Model: RF, Method: LIME
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Figure 12: Responsiveness of features for individuals who are denied credit by the RF model on the
givemecredit dataset according to absolute feature attribution rank using the original feature attribution
method, its action-aware variant and RESP. For each method, we report the proportion of individuals with at
least one responsive intervention on a feature with the k-th largest score (k-th ranked feature). Features must
have non-zero score to be included in a “rank.”

D SUPPLEMENTARY CASE STUDY DETAILS

D.1 ACTIONABILITY CONSTRAINTS

The joint actionability constraints listed in Table 13 include:

17



Published as a conference paper at ICLR 2025

Name Type LB UB Actionability Sign Joint Constraints Partition ID

Age Z 21 103 No 0, 8, 10 0
HistoryOfLatePaymentInPast2Years {0, 1} 0 1 Yes + 0, 8, 10 0
HistoryOfDelinquencyInPast2Years {0, 1} 0 1 Yes + 0, 8, 10 0
NumberRealEstateLoansOrLines Z 0 100 Yes + 5, 6 5
NumberOfOpenCreditLinesAndLoans Z 0 100 Yes + 5, 6 5
NumberOfDependents Z 0 20 No – 1
DebtRatio R 0.0 61106.5 Yes – 2
MonthlyIncome Z 0 3008750 Yes – 3
CreditLineUtilization R 0.0 50708.0 Yes – 4
HistoryOfLatePayment {0, 1} 0 1 No – 6
HistoryOfDelinquency {0, 1} 0 1 No – 7

Table 13: Separable Actionability Constraints for the processed continuous givemecredit dataset. Type
indicates the feature type (Z for integer, {0, 1} for binary). LB, UB are the lower and upper bounds for the
feature. Actionability indicates whether the feature is globally actionable. Sign indicates if the feature can only
increase (+) or decrease (-). Joint Constraints are a list non-separable constraint indices it is tied to (if any).
Partition ID indicates which partition the feature belongs to.

1. DirectionalLinkage: Actions on NumberRealEstateLoansOrLines will in-
duce to actions on [’NumberOfOpenCreditLinesAndLoans’].Each unit
change in NumberRealEstateLoansOrLines leads to:1.00-unit change in
NumberOfOpenCreditLinesAndLoans

2. DirectionalLinkage: Actions on HistoryOfLatePaymentInPast2Years will induce to actions
on [’Age’].Each unit change in HistoryOfLatePaymentInPast2Years leads to:2.00-unit
change in Age

3. DirectionalLinkage: Actions on HistoryOfDelinquencyInPast2Years will induce to actions
on [’Age’].Each unit change in HistoryOfDelinquencyInPast2Years leads to:2.00-unit
change in Age

D.2 MODEL PERFORMANCE

XGB

Dataset Train Test

givemecredit

n = 120, 268

d = 11

Kaggle [32]

0.937 0.830

Table 14: Model Performance of XGB model on the givemecredit dataset for Section 5
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