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Abstract. Cuckoo filter is a data structure for approximate member-
ship queries widely used in various data science fields. However, ineffi-
cient space usage and element insertion prevent cuckoo filters from com-
pletely replacing Bloom filters. We present CPCF, a new and efficient
version of cuckoo filter, which improves space utilization and insertion
speed without any sacrifice. CPCF employs flexible chunking to opti-
mize space efficiency. It automatically adjusts chunk sizes to the number
of elements while minimizing granularity. A proactive insertion strategy
accelerates insertion with reduced moving hash conflict elements. CPCF
also astutely detects hashing failure, enhancing insertion stability. Exper-
iments show that CPCF conserves more space than the state-of-the-art
cuckoo filter variant in most cases. Additionally, CPCF augments inser-
tion throughput by 21%∼101% under maximum load compared with
other variants. The dynamic thresholds ensure accurate judgment of
hashing failures at lower values. These optimizations render CPCF a
versatile and high-performance approximate membership query filter.

Keywords: approximate membership query · cuckoo filters · space
efficiency · proactive insertion · endless loop

1 Introduction

Approximate Membership Query(AMQ) probabilistically ascertains if an ele-
ment X belongs to a set S. AMQ-filters, a specialized class of probabilistic data
structures, are designed to efficiently answer such queries. They substantially
reduce storage overhead at the cost of a few false positives, where non-members
are incorrectly deemed members. Their efficiency has led to adoption in big data
scenarios like large-scale databases [10] and distributed systems [19]. AMQ-filters
curtail network requests and I/O operations when searching for non-existent
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elements. Cuckoo filter [6], which stores element fingerprints by cuckoo hash-
ing [20], is gaining traction. Its high load factor, the ratio of stored elements
to all slots in the filter, either lessens space requirement or reduces query false
positives. Coupled with supporting element deletion and fast operation, cuckoo
filters have begun to cooperate with and gradually supersede other AMQ-filters
in SlimDB [22], Redis [14] and others [2,11]. However, cuckoo filter’s theoretical
advantages usually misalign with real-world situations of filter size and element
insertion.

Space Efficiency. Hash-based data structures require independence between
hash values and address ranges. In practice, hash ranges are much bigger than
address ranges, necessitating the modulo operation. This is computationally
expensive with large numbers. So cuckoo filters use power-of-two slot counts,
replacing modulo with fast bitwise AND. However, the footprint cannot be flexi-
bly sized in proportion to the element count n and is restricted to powers of two.
Despite the theoretical minimum of (1 + ε) n slots, where ε is a small parameter
greater than 0. The actual space usage often greatly exceeds this, causing waste.

Insertion Latency. Cuckoo hashing utilizes dual mapping positions per ele-
ment to mitigate collisions. On insertion, (i)the element tries to occupy one of
its two mapping positions. Any free position immediately completes insertion.
If both are occupied, a relocation process begins. (ii)The inserted element dis-
places and kicks out one of the elements in its intended positions. (iii)The kicked
element becomes the new element to insert, and then attempts to save to its the
other mapping that is different from the current position. If there are still place-
holders, repeat (ii) and (iii) recursively until an empty slot is found. Although
expected O (1) insertion time, this amortizes all kick-outs across the entire set
and only provides polylogarithmic [27] guarantees. Table 1 records the inserting
information of four cuckoo filter schemes. Our CPCF significantly reduces the
average kick-out per relocation and also has minimal slot checks with a lower
cache miss rate.

Table 1. Inserting information of four cuckoo filter schemes.

212 × 0.95 Elements
Inserted

Cuckoo Filter
(CoNEXT14 [6])

Better Choice
Cuckoo Filter
(ICDCS19 [28])

Vacuum Filter
(VLDB19 [29])

CPCF

Avg. Kick-out in
One Relocation

8.53 7.00 3.31 2.05

# Slot Checking 29879 50146 41614 26223

Rt. Cache Miss 18.2% 20.5% 20.3% 15.4%

Endless Loops. In sometimes relocation, an evicted element displaces another
element, starting a cycle where elements repeatedly kick out each other. Any new
insertion is prevented in this endless loop [3], leading to the filter restructure.
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Therefore, it is especially significant to judge the endless loop, as a delay in judg-
ment will slow down the overall speed of inserting elements. Prior work on space
efficiency uses manual chunking [15,29]. Combining several fine-grained chunks
can better fit the space required. But they can not perform well in all situations,
and even impact the load factor. To optimize insertion, various approaches have
been explored by load-balanced insertion [28], better kick-out [24] and moni-
toring insertion [25]. However, these need extra statistical comparison or space,
compromising the compactness motivating AMQ-filters. Endless loop detection
currently relies on a large fixed timeout threshold for kick-out [20] repetitions
in one relocation. When the number of kick-outs in a relocation reaches this
threshold, it is assumed to have entered an endless loop. However, valid relo-
cations may require a lot of kick-outs at high loads before finding a suitable
position. The fixed threshold becomes useless, incorrectly halting insertions and
impacting load factors.

In this paper, we present a brand-new Flexible chunking and Proactive
insertion Cuckoo Filter(CPCF, for short). CPCF introduces flexible automated
chunking for high space efficiency. While ensuring that the max load factors of
the entire filter and each chunk are smaller than theoretical analysis results,
CPCF minimizes the granularity of chunking. The timing of relocation about
filter occupancy is first considered to optimize insertion. Reserving a propor-
tion of empty slots at the end of the first mapping bucket makes a less kick-out
insertion. With reversely finding free slots, CPCF further accelerates relocation.
CPCF also dynamically adjusts kick-out thresholds, effectively identifying end-
less loops. And the good data locality brought by chunking enhances the speed
of lookup and delete operations. Importantly, all improvements of CPCF do not
trade off query false positives. In summary, the contributions made in this study
are tabulated as follows.

1. Introduce the flexible chunking method, which automatically adjusts the
chunk with the smallest granularity, which ensures high space efficiency.

2. Proposal of a proactive insertion based on the relationship between relocation
and filter occupancy. With reverse detecting empty slots, kick-out and slot
checking during relocation are greatly reduced.

3. Introduction of dynamic kick-out thresholds, which effectively reduces the
delay in identifying endless loops.

4. We implement CPCF1 and evaluate its performance improvement compared
with several cuckoo filter variants including the state-of-the-art.

2 Preliminary and Related Work

2.1 Standard Cuckoo Hashing and Filter

Cuckoo hashing [20] places n elements into two hash tables T0 and T1, each with
m = (1 + ε) n buckets. Every bucket can accommodate one item (i.e. bucket is

1 https://github.com/huawendi/CPCF.

https://github.com/huawendi/CPCF
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equivalent to slot). Two hash functions Hσ : S → Tσ, σ ∈ {0, 1} map elements
to indexed i0, i1 in two tables. Elements are inserted into T0 [i0] or T1 [i1] either
directly or via relocations. For query elements, return the logical OR of the
values in two mapping buckets and the lookup element [23]. Deletions negate
the bucket content after finding the elements. Two mappings ensure constant
worst-case lookup and delete by eliminating overflow collisions.

Cuckoo filter(CF) [6] stores fingerprints instead of full elements. During oper-
ating, element X itself cannot be obtained from its fingerprint fX . The partial-
key cuckoo hashing from the current position H0 (X) and fingerprint determines
the alternate mapping H1 (X):

H0 (X) = hash (X)
H1 (X) = H0 (X) ⊕ hash (fX) .

(1)

As an AMQ-filter, since the fingerprints are compression of elements, fingerprint
collisions lead to false positives in CF queries. If the fingerprint length is fp
bits, the probability of fingerprint collision arising in a slot is 1

2fp . The number
of checking slots required to locate an element conforms to the discrete uniform
distribution of U (0, dbα), where there are d mapping positions for each element,
b represents the number of slots in a bucket, and α means the load factor. So
the asymptotic false positive rate(FPR) of CF is

1 −
(

1 − 1
2fp

) 0+dbα
2

≈ dbα

2fp+1
. (2)

The traditional cuckoo hash with d = 2 and b = 1 has a very undesirable load
factor. If m ≥ (1 + ε) n the failure rate is of order 1

m when the load factor is
below 0.5, but increases to approximately 18.4% for half-full table [5].

2.2 Choices of d and b

Increasing d and/or b can directly improve load. Sufficiently large d or b just
provides expected O (1) insertion [8]. D-ary cuckoo hashing [7] use d hash func-
tions to correspond one-to-one in d hash tables each of (1 + ε) n buckets. Each
element has d > 2 mapping positions, making relocation less likely to occur and
increasing the maximum load. There has been existing work that applies d-ary
cuckoo hashing to filter(i.e. d-ary cuckoo filter [30]). It can save 1 bit for each ele-
ment, reducing the query FPR. But partial-key cuckoo hashing complicating in
d-ary cuckoo filter, the actual operational performance is reduced exponentially.

Blocked cuckoo hashing [4] uses only one hash table consisting of m = (1+ε)n
b

buckets, each of b slots. The effect is the same as d-ary, maximum load factor
increase to 1

1+ε [16]. But large b extends the lookup time to O (2b), so b should be
set as a small constant. Taking into consideration various performance trade-offs
and mainstream implementation, cuckoo filter studied in this paper is based on
the 2-choice blocked cuckoo hashing.
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2.3 Relocation and Kick-Out

Standard relocation strategies are random walk depth-first search(RWDFS) and
breadth-first search(BFS) for kicking out elements [9]. RWDFS kicks out ele-
ments by randomly selecting an element from d × b slots in all d-ary map-
ping buckets. BFS, on the other hand, goes through all the elements in the
range simultaneously to find a possible empty slot, and then kicks out elements
along the finding road when it is found. In practice, BFS performs poorly [13].
The recursive implementation stresses system stack, while non-recursive requires
extra linear space [8].

Reducing relocations and kick-outs is the most useful way to accelerate inser-
tion. MinCounter [24] uses counters to record how often each slot is displaced,
and selects the smallest to kick when relocating. SmartCuckoo [25] employs
pseudo-forest theory to monitor insertion and turns the identification of endless
loops into determining the “maximal directed subgraphs”. However, all of these
solutions take up additional space to an extent. Optimizations with added space
defeat the motivation of AMQ-filter for compacting elements. In our solution, we
do not want to compromise on any performance but aspire to make a versatile
cuckoo filter.

2.4 Vacuum Filter

Vacuum filter(VF) [29] balances data locality and load factor by multiple alter-
nate ranges(ARs). Chunking with ARs makes VF the best space efficiency
improvement solution as far as we know. For relocation, VF combines both DFS
and BFS to allow evicted elements to find an empty slot quickly. However, VF
needs to manually set ARs, and chunk granularity is twice the maximum AR.
CPCF automatically chunks according to the smallest possible granularity. And
VF still has not changed the mass of element relocations.

2.5 Better Choice Cuckoo Filter

Better choice cuckoo filter(BCF) [28] inserts elements into the bucket that holds
the fewest items among two mapping buckets, inspired by “the power of two
choices” [17]. Although it has been proven that the BCF’s strategy is better
than the classic strategy, blindly counting elements in two mappings causes too
many bucket accesses. CPCF innovatively considers the relationship between the
timing of relocation and the filter load. Elements can be evenly inserted without
bucket statistics.

2.6 Other Variants of Cuckoo Filter

The conditional cuckoo filter [26] enables cuckoo filters to handle insertion of
duplicate elements using a novel chaining technique. It allows for set member-
ship query given predicates on a pre-computed sketch. The logarithmic dynamic
cuckoo filter [31] reduces the worst insertion and lookup time by using a multi-
level tree structure. However, it only changes the linear structure of the dynamic
cuckoo filter, but does not go into the operation strategy.
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3 Design and Technology of CPCF

In most practical, 2-choice hashing gives a maximum load of 6 [18]. So examples
for designs of CPCF are arranged as b = 4, which offers good results in terms of
trading off. All notations used in this paper are summarized in Table. 2.

Table 2. Summary of Notations

Notation Description

α load factor (0 ≤ α ≤ 1)

A theoretical maximum load factor (when b = 4, A = 0.96)

a formula coefficient in the “Balls in Bins” conclusion

b number of fingerprints per bucket

B number of buckets per sub-filter of chunking result

c number of buckets per sub-filter while trying to chunk

C number of sub-filter of chunking result

d number of mapping buckets per element

f fingerprint of the element

fp fingerprint length in bits

Hi (X) calculate index mapping of the element X

i0, i1 indexes of two mapping buckets for an element

k number of hash functions

m number of buckets in the whole filter

n number of elements in the filter/sub-filter

p number of element reserved in proactive insertion strategy

u number of sub-filter while trying to chunk

L ∼ Z example elements to be manipulated

3.1 Flexible Chunking

The use of hash tables to store fingerprints of entries in conjunction with a
well-performing hash strategy gives CFs a better FPR with the same space.
However, the space wastage caused by the special overall bucket setting of integer
powers of two affects the real-world application of CFs, keeping them more in
theory. To shave waste, a mainstream and productive approach is to chunk table
and filter with some small granularities. Chunking combines small power-of-two
granularities, such as 256 [15] and 512 [1], to better fit the required buckets. But
manual chunk sizes lack flexibility and can reduce the load factors. VF proposes
multiple alternate ranges and proportionally maps elements to one of ARs. The
distance of the two mapping positions of each element must be less than its AR.
However, VF needs twice the maximum AR as the granularity size to guarantee
a high load factor. And these chunking sizes remain artificially malleable.
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In contrast, CPCF flexibly chunks to minimize granularity according to the
number of elements and the target load factor. Every chunk size is the same
power of two, which is treated as an independent sub-filter. When an operation is
undertaken, an element is initially mapped to a sub-filter. But the mappings per
chunk vary in practice. Once the load factor of a sub-filter exceeds the maximum
causing an endless loop, the entire filter will be unable to insert anymore. So we
must limit maximum mappings to be less than the number of elements at the
maximum load factor. We leverage the analysis results [21] of “Balls in Bins”
problem for maximum mappings. Compare elements to balls and sub-filters to
bins, extracting conclusions that fit the situation to give:

SubF ilterMaxLoad (n,C) =
n

C
+ a

√
2n

C
logC, (3)

Here, n elements independently and uniformly at random mapping C sub-filters.
a > 1 is stipulated in the original conclusion. But in actual chunking the filter,
a sometimes equal to 1 can also ensure the safety of sub-filters. Table 3 provides
the appropriate B and the corresponding value of a in Eq. 3 when n are less then
230. When the elements are less than 223, a = 1 suffices. And when it is less
than 215, because there are too few elements, the filter is chunked into only
one sub-filter. Algorithm 1 gives the chunking process. First, calculate the total
number of buckets required for all elements. Then, the chunk size starts at 1
and doubles until it reaches the total. For each size, we check if the maximum
partitioned elements meet setting load factor requirements. Once met, we set
the chunk data and repeat chunking within sub-filters until no more fine-grained
chunks can be split. Finally, return the number of chunks rounded up and the
chunk size that is still a small power of two. Since the attempted chunking
granularity increases exponentially, the chunking process takes polylogarithmic
time. Figure 1 delineates sub-filters and buckets per sub-filter after chunking
when n is the power of two from 219 to 226 with the 96% max load factor.
Sub-filters increase preferentially with n, only expanding when the granularity
is insufficient. This maximizes space efficiency with the finest possible chunks.

Table 3. The appropriate a and
B under different n.

n B a

< 215 / 1.0

215 ∼ 223 4096 1.0

223 ∼ 230 8192 1.5 Fig. 1. Number of sub-filters and
buckets in each sub-filter after
chunking

With flexible chunking, the total buckets are no longer one large but multiple
small powers of two. So the bitwise AND cannot map elements to sub-filters.



290 W. Hua et al.

Algorithm 1: Flexible chunking
Input: total number of elements n, target load factor α
Output: the number of sub-filters C and buckets B in each sub-filter

1 B ← n
b·α , C ← 1;

2 do
3 for c ← 1; c ≤ B; c ← c � 1 do
4 u ← B

c
;

5 if SubF ilterMaxLoad (n, u) ≤ A · u · b then
6 n ← n

u
, C ← C · u, B ← c; /* Save data of chunking */

7 break;

8 end

9 end

10 while u ≥ 2;
11 C ← �C�, B ← the smallest power of two greater than or equal to B;
12 return C and B;

However, fast random mapping is still possible using bitwise SHIFT(�) [12].
If integer x is randomly in

[
0, 2l

)
, then (x × s) � l maps x to [0, s) randomly.

When getting H0 from Eq. 1 through hashing the int return value on a 64-bit
machine, we can directly map an element to a bucket in the sub-filter using
(H0 × B × C) � 32. Since there are power-of-two buckets in a sub-filter, we
could still depend on bitwise AND to realize the partial-key cuckoo hashing.

3.2 Proactive Insertion

Standard CF’s insertion is a greedy process of finding an empty slot and using the
RWDFS to relocate elements. More often than not, this procedure is inefficient
and unstable: the cause is rooted deep in the following three factors.

1. Greedy method quickly fills buckets in the early stage. Late-stage relocations
have very limited options, with most buckets full.

2. During the relocation, RWDFS usually misses empty slots that are close at
hand, accessing more memory to check buckets.

3. Classic insertion cannot quickly determine if elements can be inserted or
encounter endless loops, waiting on the large threshold to decide.

BCF inserts each element by preferring emptier buckets of two mappings.
Elements tend to be evenly inserted into the filter. Figure 2 compares standard,
better choice, and proactive insertion on the same elements in alphabetical order.
After inserting elements L to Y , CF leaves two empty slots in bucket [1]. BCF
distributes emptiness across between bucket [0] and bucket [2]. For final element
Z, CF triggers a relocation while BCF inserts Z into bucket [0] directly. Nev-
ertheless, evenly inserting each element is redundant: an excessive number of
comparisons incur hefty bucket-access costs. For example of N , counting both
bucket [1] and bucket [2] is unnecessary since L is the only element in bucket [1].
No matter which bucket is inserted, it will have little impact on the final reloca-
tion. But for element V , the idea adopted by BCF when selecting bucket [1] for
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insertion is very pivotal. Inserting into bucket [3] will fill cram the bucket. If an
element is kicked out to bucket [3], it will have to continue relocation.

Fig. 2. Comparision in standard, better choice and proactive insertion strategy.

We observe that the vast majority of relocations occur when bucket occu-
pancy is greater than 60%. So the proactive insertion is proposed in CPCF.
Proactive insertion provides even insertion like BCF and faster subsequent relo-
cation by reserving later slots. The whole process does not require needless per-
element bucket statistics. The details of proactive insertion are in Algorithm 2.
On insertion, the first b − p slots in the primary mapping bucket are checked for
availability with p slot(s) reserved. Otherwise, the alternate bucket is checked
fully by no more reserving. Figure 2c shows the proactive insertion. When b = 4
and p = 1, each element checks the first 3 slots and serves the last slot in its first
mapping bucket. Elements L ∼ U are the same as classic insertion. V cannot
be inserted in bucket [3] that already accommodates three elements, and takes
the penultimate slot in bucket [1] just like BCF. Element W stores in the second
mapping bucket [1]. Finally, proactive insertion avoids relocation of Z with only
19 bucket accesses, while BCF does 30.

For it failed to nail down an appropriate slot, CPCF also improves relocation
itself. VF alternates RWDFS and BFS. When relocating, VF uses one step BFS
to check if the other mapping bucket can be per element in two full buckets
can be inserted. If such an element exists, this element will be immediately
evicted. And relocation is to end after the kick-out. Only when all the other
mapping buckets have no empty slot, one of the elements is kicked by RWDFS.
CPCF enhances this by searching empty slots back-to-front in buckets. Because
proactive insertions concentrate empty slots at the front of buckets. Reverse
checking finds empty slots faster with fewer checks and fingerprint decodings.
Also given as an example in Fig. 2c. If two mapping buckets of element Z become
bucket [2] and bucket [1] in sequence, a relocation is required. The other mapping
buckets of all elements in bucket [1] will be checked from back to front to search
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for an empty slot. The other mapping of L and N are both bucket [2] that is
already full. When checking the other mapping bucket [3] of V from back to front,
it can find the empty slot reserved when inserting V . Therefore, V is directly
kicked out to the 4th slot of bucket [3], and Z is saved in the original slot of V .

Algorithm 2: Proactive insertion
Input: element’s first mapping bucket index i0 and fingerprint f
Output: whether the insertion is successful

1 if first b − p slot(s) of bucket [i0] have an empty slot then
2 write f into the empty slot;
3 return successful insertion;

4 end
5 calculate the other candidate bucket index i1;
6 if all slots of bucket [i1] have an empty slot then
7 write f into the empty slot;
8 return successful insertion;

9 end
10 return failure insertion;

3.3 Dynamic Kick-Out Threshold

As more and more elements are inserted, positional relationships among ele-
ments increasingly complex. There is already a potential endless loop as shown
in Fig. 2a. When inserting element Z into bucket [2] and bucket [0], both buckets
are full. In such cases, element Q is selected to make space for Z. Q, in turn,
selects element U in bucket [3], triggering a chain of displacements. U further kick
out element R and R kick out Z that is already in bucket [2]. This sequence lead
to Z further kicks U from bucket [0] back to bucket [3]. continuing to execute, the
state will return to that when Z was not inserted. It goes on endlessly and never
be able to find an empty slot for the kick-out element. Presently, fixed thresholds
halt relocations after sufficient kick-outs to identify endless loops. In the practi-
cal implementation of CF, the threshold is set to a fixed value of 500. When an
endless loop occurs, the excessively large threshold will seriously slow down the
insertion throughput and become invalid as elements increase. CPCF dynamizes
kick-out thresholds according to the number of elements. We derive dynamic
thresholds by analyzing BFS relocation, where checked buckets grow exponen-
tially with kicks. Let T denote the maximum kicks before declaring a failure
insertion. Then

∑T
i=0 bi = 1+ b+ b2 + · · ·+ bT ≥ B, so T ≥ logb (B · b − B + 1).

Since BFS we wield is one step, the threshold is configured to μ·T where μ varies
with the number of elements. To amortize the randomness, we let μ = d ·b · logC.
Therefore, the dynamic kick-out thresholds are

MaxKick = 	d · b · logC · logb (B · b − B + 1)
 . (4)

As with fixed thresholds, MaxKick limits the number of kick-outs in one reloca-
tion nesting a for -loop. It maintains effectiveness even with more elements and
higher loads.
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4 Experimental Evaluation

We implement the proposed CPCF with p = 1 in C++ and evaluate it against:

– Cuckoo Filter(CF): We test the traditional cuckoo filter as the baseline solu-
tion2.

– Better Choice Cuckoo Filter(BCF): We evaluate Feiyue’s implementation of
the BCF scheme3, which adopts the function already in CF to count the
elements of each bucket.

– Vacuum Filter(VF): We select VF - an extended and fast version of CF4 in
the experiments. For the ARs in VF, we choose the default settings(32, 64
and more) of the implementation.

All experiments are run on Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz with
24MB L3 cache and 128GB RAM. The Linux kernel version is 5.4.0-155-generic.
Compilation uses GUN G++ 9.4.0 with -O3 -march=native. We consistently
set the parameters to d = 2, b = 4 and fp = 12 bits. Each operating element
employs CityHash5 to generate a 64-bit hash value. The high 32 bits are divided
for the element’s first mapping index, whereas the low 32 bits for calculating
fingerprint. Every point in the resulting figure is an average of 10 runs.

4.1 Space Efficiency

Figure 3 reveals the total buckets when n = 219 ∼ 220, in powers of two. VF and
CPCF can greatly slash wasted space versus CF. However, the coexistence of
ARs in VF cannot achieve exactly 95% load factor. Doubling the max range also
produces larger chunk sizes than CPCF. With minimum granularity, CPCF gets
closest to the ideal 95% load factor curve in most cases. In the few remaining
cases, it is also the same as the state-of-the-art VF.

4.2 Throughput with Filter Occupancy

In this group of experiments, we test the throughput varies with filter occupancy.
All filters are created by 227 × 0.95 elements. The space usage is 192MB which
is much larger than L3 cache.

Insert. Figure 4a presents the experimental results of the insert operation. With
low occupancy, there are very few elements requiring relocation. The filters only
need to check one or two mapping buckets for each element. VF has to calculate
the AR of each element, so its throughput is slightly inferior to CF. BCF performs
poorly due to redundant count comparisons. As the occupancy increases, there

2 https://github.com/efficient/cuckoofilter.
3 https://github.com/CGCL-codes/BCF.
4 https://github.com/wuwuz/Vacuum-Filter.
5 https://github.com/google/cityhash.

https://github.com/efficient/cuckoofilter
https://github.com/CGCL-codes/BCF
https://github.com/wuwuz/Vacuum-Filter
https://github.com/google/cityhash
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Fig. 3. Total buckets required
at different numbers of ele-
ments.

Fig. 4. Insertion and delete throughput at dif-
ferent occupancy.

are an increasing number of relocation cases. The best data locality of ARs and
the optimized relocation make the performance of VF surpass that of CF. Too
many kick-outs sharply drop the throughput of CF. BCF reflects the effect of
better choice when occupancy exceeds 85%. Proactive insertion evenly inserts
elements into the filter without excessive calculations and bucket statistics in the
early stage. In the later relocation, free slots can be quickly found for the kicked
elements. So CPCF to maintain the leading throughput across all occupancy.

Lookup. Figure 5 shows the lookup throughput of the evaluated filters under all
positive, all negative and mixed (50% positive and 50% negative) elements. The
throughput is greatly enhanced by the Intel Xeon micro-architecture whose mul-
tiple memory-accessing units coalesce two accesses in parallel. To avert unneces-
sary mapping index calculation, VF actively separates two memory accesses. So
VF’s throughput during positive and mixed lookups will sharply drop with the
growth in occupancy. And negative search is inferior to all comparison filters.
Except for VF, table occupancy has little effect on the performance of lookup
operations. The throughput of CPCF is larger than those of the other filters in all
situations of 4.5 MOPS or more due to the good data locality in the fine-grained
sub-filter.

Fig. 5. Lookup throughput at different occupancy with three situations.
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4.3 Other Scales for Throughput

Number of Elements. The optimization effect of each solution is best reflected
under the max load factor. The load factor is set at a fixed 95% and gauges the
throughput of insertion and deletion under a diverse number of elements. The
number of items is 0.95 times the power of two from 220 to 227. The experimental
results are plotted in Fig. 6. The increase in the number of elements only reduces
the throughput proportionally. The advantage of CPCF is more obvious, in which
the inserting throughput of CPCF is 101%, 65%, and 21% higher than those of
CF, BCF and VF, respectively. Note that the default AR setting of VF may
affect the load factor. We need to run it a few more times to get 10 experimental
data. For the deletion, the designs of these filters are identical. So there is little
difference among the throughput of both occupancy and element count as shown
in Fig. 4b and Fig. 6b.

Fig. 6. Insertion and delete throughput at dif-
ferent numbers of elements.

Fig. 7. Lookup throughput at
different proportions of exist-
ing items.

Lookup for Different Proportions of Existing and Non-existing Ele-
ments. Figure 7 also measures lookup throughput by percent of positive ele-
ments when the number of elements is 227 × 0.95. CPCF can still sustain 4.5
MOPS higher in all cases. And the FPR of CPCF overlaps with that of CF as
Eq. 2. Suppose h elements with the same fingerprint as the lookup element in
different buckets. The probability of finding these h elements by chance in CF
is dh

m . For CPCF, the operations of any element are in a sub-filter. We define
the random variable X to indicate that the number of fingerprint conflicts in
the sub-filter where the lookup is located. Each fingerprint is independent of any
other, so X follows the binomial distribution of B

(
h, 1

C

)
. Hence, we have

P (X = i) =
(

h
i

)(
1
C

)i (
1 − 1

C

)h−i

, i ∈ [0, h] . (5)

Similarly, we define F to signify whether a false positive occurs: F = 1 means
a false positive shows up. Thus, P (F = 1|X = i) = d·i

B . Given E (X ) = h
C , we
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derive the probability of a false positive taking place as P (F = 1) = d·i
B · h

C . We
investigate at least one fingerprint collision and let i = 1. Under the same space
size, the relationship between CF and CPCF is m = B × C. The probability of
finding a colliding element if CPCF is identical to the probability in CF.

4.4 Dynamic Thresholds

Figure 8 plots max kick-outs for 100 successful relocations across element counts.
Until n ≤ 227 × 0.95, dynamic thresholds in CPCF are lower than CF’s fixed
500, while still achieving 98%+ accuracy. Only when the elements are 218 and
219 × 0.95, the two abnormal points are incorrectly determined to be endless
loops. As the number of elements increases, the threshold will eventually exceed
500, but it still be available in use. But CF will then incorrectly detect an endless
loop even though one does not exist, severely affecting the load factor.

Fig. 8. Comparison of maximum kick-out in one relocation and dynamic thresholds in
CPCF.

5 Conclusion

We introduce CPCF, an efficient cuckoo filter using flexible automated chunking,
proactive insertion and dynamic kick-out thresholds. Space efficiency, element
insertion speed and endless loop judgment have been optimized correspond-
ingly. Experiments show CPCF saves more space versus state-of-the-art in most
cases. Insertion throughput improves 21%∼101% under maximum load factor.
Dynamic thresholds effectively identify endless loops with fewer kick-outs. All
optimizations without sacrificing any other performance make CPCF a versatile
approximate membership query filter.
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