Under review as a conference paper at ICLR 2023

BENCHMARKING AND IMPROVING ROBUSTNESS OF 3D
POINT CLOUD RECOGNITION AGAINST COMMON COR-
RUPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks on 3D point cloud data have been widely used in the real
world, especially in safety-critical applications. However, their robustness against
corruptions is less studied. In this paper, we present ModelNet40-C, a compre-
hensive benchmark on 3D point cloud corruption robustness, consisting of 15
common and realistic corruptions. Our evaluation shows a significant gap between
the performances on ModelNet40 and ModelNet40-C for state-of-the-art models.
We identify a number of critical insights for future studies on corruption robustness
in point cloud recognition. For instance, we unveil that Transformer-based archi-
tectures with proper training recipes achieve the strongest robustness. To bridge
this gap, we further propose RobustNet and PointCutMixup that embrace the
merits of existing architectural designs to further improve the corruption robustness
in the 3D point cloud domain, after evaluating a wide range of augmentation and
test-time adaptation strategies. Our codebase and dataset are open-sourced.

1 INTRODUCTION

Point clouds are one of the most acknowledged data format in 3D computer vision tasks, as they are
inherently flexible representations and can be retrieved from a variety of sensors and computer-aided
design (CAD) models. Because of these strengths, point clouds have been increasingly used in
real-world applications, particularly in safety-critical areas like self-driving cars [71]], robotics [40],
medical imaging [[62]], and virtual and augmented reality (VR/AR) [34]. Processing of point clouds is
thus crucial under these circumstances. For instance, autonomous vehicles rely on correct recognition
of LiDAR point clouds to perceive the surroundings. Similar to 2D image classification, recent efforts
demonstrate that deep learning models has dominated the point cloud recognition task.

As opposed to stellar progress on model architectures in 2D computer vision, deep 3D point cloud
recognition is emerging where various architectures and operations are being proposed. PointNet [41]]
innovates to achieve end-to-end learning on point clouds. A few studies optimize the convolutional
operation to be preferable for 3D point cloud learning [63} [32]]. Various grouping operations are
designed to learn local features |68 163]]. Transformer [59]] blocks are also applied as backbones in
point cloud recognition architectures [18}[74]. The most extensively utilized benchmark for comparing
methods for point cloud recognition is ModelNet40 [66]. Although the accuracy on ModelNet40
over the past several years has been steadily improved, it merely shows a single perspective of
model performance on the clean data and gets saturated. Given the importance of 3D point cloud
in safety-critical applications, a comprehensive robustness benchmark for point cloud recognition
models is necessary.

In the literature, the vast majority of research on robustness in 3D point cloud recognition has
concentrated on the critical difficulties of robustness against adversarial examples. Adversarial
training has been adapted to defend against various threats to point cloud learning [54,|53]]. However,
we find that the inevitable sensor inaccuracy and physical constraints will result in a number of
common corruptions on point cloud data. For example, occlusion is a typical corruption for LIDAR
and other scanning devices, rendering partially visible point clouds. Digital noises are also ubiquitous
in 3D medical imaging. Such corruptions pose a even bigger threat in most real-world application
scenarios. Therefore, it is imperative to study the corruption robustness of 3D point cloud recognition.

Summary of Our Contributions:
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Figure 1: Despite the impressive results on clean inputs (i.e., ModelNet40), state-of-the-art point cloud
recognition models cannot deliver good performance on corrupted inputs (i.e., ModelNet40-C). The error rate is
3x larger on ModelNet40-C than ModelNet40. Standard deviation from 3 runs are always less than 0.3%.

In this paper, we create a systematic corruption robustness benchmark, ModelNet40-C, for 3D point
cloud recognition and present an in-depth analysis. To construct the dataset, we meticulously design
and formulate 75 corruptions (15 types with 5 severity levels) that cover the majority of real-world
point cloud distortion cases. We further provide a taxonomy of these corruptions into three categories
(i.e, density, noise and transformation) and discuss their application scenarios. We anticipate that
ModelNet40-C will serve as a first step towards 3D point cloud corruption-resistant models.

We conduct extensive evaluation on our ModelNet40-C. Specifically, we compare 9 representative
models including PointNet [41], PointNet++ [42]], DGCNN [63]], RSCNN [32]], PCT (18], Simple-
View [17], GDANEet [69], CurveNet [68]], and PointMLP [33]]. We find that all models are extremely
vulnerable to our created corruptions. As shown in Fig. [T] there are 3x error rate gaps between model
performances on ModelNet40 and ModelNet40-C. Especially, the current state-of-the-art (SOTA),
PointMLP, delivers the worst performance on our benchmark with an error rate of 31.9% (Fig. |I[),
which is a 4x gap compared to its clean performance. This concerning result further demonstrate the
urge for new benchmarks in the 3D point cloud community.

To mitigate such gaps, we propose a simple but effective strategy by combing PointCutMix-R and
TENT, after evaluating a wide range of data augmentation and test-time adaptation methods. Our
method on average achieves the lowest error rate of 15.2%. Specifically, we try augmentation
(or regularization) strategies including PointCutMix-R/K [73], PointMixup [8]], RSMix [26], and
adversarial training [33]] based strategies. Additionally, we employ test-time adaptation methods
(i.e., BN and TENT [60]) to show their potential in improving corruption robustness. We
examine every feasible combinations of architectures and methodologies, a total of 5,700 different
configurations of experiments (76 strategies X 75 corruptions).

We summarize four conclusive insights below and eleven detailed findings in §[3}

e Insight 1. Occlusion corruptions, rotation transformation, and background noises pose significant
challenges for most point cloud recognition models (§[5.1).

* Insight 2. Different architectures and operations are vulnerable to different corruption types, which
can be attributed to their design principles. (§[5.2).

* Insight 3. Different data augmentation strategies are especially advantageous for certain types of
corruptions, which also correlate well with their design choices (§[5.3).

e Insight 4. Test-time adaptations (BN and TENT) are beneficial for enhancing the corruption
robustness, particularly for hard corruptions like occlusions and rotations (§ [5.4).

Based on our benchmarking insights, we further propose RobustNet and PointCutMixup, embracing
the merits of existing designs to improve the corruption robustness of point cloud recognition.
RobustNet with PointCutMixup set the new SOTA robustness with an error rate of 14.9%. We hope
our comprehensive benchmark and in-depth analysis will shed light and facilitate future research on
the corruption robustness of point cloud recognition.

2 RELATED WORK

Corruption Robustness of 2D Images. Deep neural networks are known to be vulnerable to
adversarial examples and common corruptions [4]. 20]] developed corruption robustness bench-
marking datasets CIFAR-10/100-C, ImageNet-C, and ImageNet-R to facilitate robustness evaluations
of CIFAR and ImageNet classification models. [36] extended this benchmark to object detection
models. further proposed ImageNet-C dataset that is comprised of a set of corruptions that are
perceptually dissimilar to ImageNet-C. Recently, [55] proposed a comprehensive benchmarking suite
CIFAR-10/100-F that contains corruptions from different regions in the spectral domain. [22] [10} 5]
proposed augmentation methods to improve the corruption robustness in 2D vision tasks.
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Figure 2: Visualizations of ModelNet40-C. Our ModelNet40-C dataset consists of 15 corruption types that
represent different out-of-distribution shifts in real-world applications of point clouds. Similar to ImageNet-
C [21], each corruption type has five severity levels. We carefully examine the generated point clouds and ensure
they preserve their original semantics. More visualization samples are shown in Appendix@

3D Point Cloud Deep Learning. Deep learning models are increasingly being proposed to process
point cloud data. Early works attempted to use 3D voxel grids for perception, which have cubic
complexity [35, |61]. PointNet [41] pioneered to leverage shared multi-layer perceptrons and a
global pooling operation to achieve permutation-invariance and thus enable end-to-end training.
[42] further proposed PointNet++ to hierarchically stack PointNet for multi-scale local feature
encoding. PointCNN and RSCNN refactor the traditional pyramid CNN to improve the local
feature learning for point cloud recognition [28,32]. The graph data structure is also heavily used
in point cloud learning [25, 49]. For example, DGCNN built a dynamic graph of point cloud
data for representation learning [63]]. PointConv and KPConv improve the convolution operation
for point cloud learning [65} 57]. Recent work demonstrated that ResNet [19] on multi-view 2D
projections of point clouds could also achieve high accuracy [17]]. PointTransformer and PCT advance
Transformer [59] blocks into point cloud learning and achieve good performance [[74}18]]. Various
local clustering operations [[68 69, 33] also show enhancements on the clean performance.

Robustness Enhancements for 3D Point Cloud. Several recent efforts tackle improving the robust-
ness of 3D point cloud learning [52]. [67] and [29] first demonstrated that point cloud recognition is
vulnerable to adversarial attacks. [[76] and [13] proposed to leverage input randomization techniques
to mitigate such vulnerabilities. [54]] conducted adaptive attacks on existing defenses and analyzed the
application of adversarial training on point cloud recognition. [75]] discovered that adversarial rotation
greatly degrades the perception performance. [53] further showed that pre-training on self-supervised
tasks enhances the adversarial robustness of point cloud recognition. Recent studies presented a
framework that uses the Shapley value [44] to assess the quality of representations learned by dif-
ferent point cloud recognition models [47,48]. Recent efforts also proposed certified adversarial
defenses([30]. Besides, [56] proposed several simple corruption types (e.g., random sampling) to
benchmark the robustness of point cloud recognition models. However, their formulations cannot
represent realistic distortions in the physical world and they do not provide in-depth analysis of these
corruptions among the representative recognition models. In this work, we aim to present a more
systematic benchmark of the realistic corruptions and rigorously analyze the corruption robustness of
representative point cloud recognition models.

3 COMMON CORRUPTIONS OF 3D PoINT CLOUD

In this section, we introduce the design principles of our 3D corruption benchmark. As mentioned
in §[I] 3D point clouds are being utilized in various safety- and security-critical real-world appli-
cations [[16} [1} [72 9]. Extensive studies have been carried out to improve both architectures and
training strategies for point cloud recognition on in-distribution data [41, 163} 8, [26]]. However, there
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has not been any systematic study on the model robustness against common corruption. To bridge
this gap, we design 15 common corruptions for benchmarking corruption robustness of point cloud
recognition models. It is worth noting that such designs are non-trivial since the manipulation space
of 3D point clouds is completely different from 2D images where the corruptions come from the
RGB modification [21]]. In particular, we have three principles to design our benchmarks: i) Since
we directly manipulate the position of points, we need to take extra care to preserve the original
semantics of point clouds (Fig.[2). ii) we should ensure the constructed corruptions are realistic in
various applications. iii) We should take diversity as an important factor to emulate a wide range of
natural corruptions for 3D point clouds.

Our 15 corruption types can be naturally grouped into three categories (i.e., density, noise, and
transformation) , and we will introduce them in the following subsections.

3.1 DENSITY CORRUPTION PATTERNS

3D point cloud can be collected from various sensors like VR scanning devices and LiDAR for
autonomous driving. Therefore, the testing point clouds may have different density patterns from
the training samples. For example, VR scanning (in indoor scenes) and LiDAR sensors may suffer
from occlusion, so that only a portion of the point cloud is visible [16, [11]. Besides, the direct
reflection of lasers on metal materials will cause local missing points in LiDAR point clouds [31]].
The local density of 3D scanned point clouds rely on how frequently the device passes that area [38]].
We hence formulate five corruption types to cover the density corruption patterns: {Occlusion,
LiDAR, Local_Density_Inc,Local_Density_Dec, Cutout}. Specifically, Occlusion
and LiDAR both simulate occlusion patterns using ray tracing on the original meshes [78]], and
LiDAR additionally incorporates the vertically line-styled pattern of LiDAR point clouds [31].
Local_Density_Inc and Local_Density_Dec will randomly select several local clusters
of points using k-nearest neighbors (kKNN) to increase and decrease their density, respectively.
Similarly, Cutout discards several randomly chosen local clusters of points using kNN [[12]].

3.2 NOISE CORRUPTION PATTERNS

Noise evidently exists in all real-world point cloud applications. For example, the inevitable digital
noise of scanning sensors (e.g., 3D medical imaging) [64] and the random reflections and inaccuracy of
LiDAR lasers [16] will contribute to a substantial variation of points. Compression and decompression
will potentially result in noisy point clouds as well [6]. Besides, real-time rendering in VR games
is another source of noise [3]]. Although noise is a common corruption pattern for both 2D and 3D
data, the manipulation space is larger for point clouds since their numbers of points are adjustable.
We thus formulate five noise perturbations: {Uniform, Gaussian, Impulse, Upsampling,
Background}. As their names indicate, Uniform and Gaussian apply different distributional
noise to each point in a point cloud. Impulse applies deterministic perturbations to a subset of
points. Upsampling assigns new perturbation points around the existing points. Background
randomly adds new points in the bounding box space of the pristine point cloud.

3.3 TRANSFORMATION CORRUPTIONS PATTERNS

We use both linear and non-linear 3D transformations to formulate the corruptions. For the linear
ones, we leverage 3D Rotation and Shear as our corruption types and exclude translation and
scale transformations since they can be easily restored by normalization (i.e., the inverse transfor-
mation matrix). Rotation of point clouds is common in the real world and the robustness against
adversarial rotations has been investigated by a few studies [[75, 147]]. We here do not use aggressive
rotations that might affect human perception as well, but instead enable a milder rotation (< 15°)
along xyz axes. We consider Shear on the xy plane to represent the motion distortion in 3D point
clouds [[70]. We utilize free-form deformation (FFD) [46] and radial basis function (RBF)-based
deformation [[15]] for non-linear transformations. Such deformations are also common in VR/AR
games and point clouds from generative models (GAN) [27, [77]. Specifically, we use multi quadratic
(p(z) = V& + r2) and inverse multi quadratic splines (¢(x) = (22 4+ 2)~2) as the representative
RBFs to cover a wide range of deformation types. As a result, we in total formulate {Rotation,
Shear, FFD, RBF, Inv_RBF} as our transformation-based corruptions.
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4 MODELNET40-C DATASET AND ROBUSTNESS BENCHMARK

ModelNet40 is the most popular dataset for benchmarking point cloud recognition performance,
containing 12,308 point clouds from 40 classes [66]. Point clouds from ModelNet40 are extracted
from CAD models, rendering a perfectly clean dataset. [58] recently proposed ScanObjectNN
consisting of point clouds scanned from real-world objects to show the performance gap between
models trained on synthetic and real-world data. However, quantifying how models trained on
the clean dataset perform under common corruptions encountered during the test time remains
challenging. To this end, we use the ModelNet40 as our base dataset to construct ModelNet40-C. It is
worth noting that our devised corruptions are general to be applied to other dataset, like ShapeNet [7]].

Setup. We create ModelNet40-C with five severity levels for each corruption type, the same as
ImageNet-C. Fig. 2] illustrates samples from ModelNet40-C with severity level four, and they clearly
still preserve the semantics of the “airplane” class. Since it is hard to qualify and quantify the
corruption severity for LiDAR and Occlusion, we instead leverage five different view angles to
create their corrupted point clouds. The detailed construction of ModelNet40-C is introduced in
Appendix [A] These designed corruptions are applied to the validation set of ModelNet40, resulting in
ModelNet40-C a 75x larger dataset to test the corruption robustness of pre-existing models. Note
that ModelNet40-C should be only used in the test time rather than in the training phase.

Metrics. We use the error rate (ER) and class-wise mean error rate (mER) as the main metrics for
ModelNet40-C benchmarking. We denote ER/, as the error rate for a classifier f on the clean

clean
dataset (i.e., ModelNet40) and ERQC as the error rate for f on corruption ¢ with severity s. Similarly,

ER/ = 13°° | ER/ and ER{, = & °.° ER/. The goal of ModeINet40-C is to evaluate the

5 S cor 2 . . .
general robustness of point cloud learning models in various real-world scenarios.

5 EXPERIMENTS

In this section, we elaborate our compre- Table 1: Error Rates of Different Models with Training Strate-
hensive evaluation and rigorous analysis  gies on the ModelNet40 (ERcjean). Bold and underline denote
in detail. We benchmark corruption ro- the best and runner-up results throughout this paper, respectively.
bustness of point cloud recognition from

. . Model (%) | || Standard | PointCutMix-R PointCutMix-K PointMixup RSMix AT
the perspectives of corruption types and  Pommer 93 94 3.0 39 98 1138
model architectures. Moreover, we ex-  PointNet++ 7.0 7.1 6.7 7.1 6.6 -
. . DGCNN 74 74 6.8 78 71 81
amine the effectiveness of data augmen-  grscnn 77 76 71 72 76 -
tations and test-time adaptation methods ~ PCT 7.1 72 6.9 74 69 89
.. . . SimpleView 6.1 7.9 7.4 72 7.9 -
as mltlgatlon solutions. CurveNet 6.6 6.7 6.3 6.8 6.1
) GDANet 75 75 6.9 76 72
Setup. We leverage 9 representative  PointMLP 63 6.2 6.0 6.5 6.1

model architectures: PointNet [41],

PointNet++ [41], DGCNN [63], RSCNN [32], PCT [18]], SimpleView [17]], GDANet [69], Cur-
veNet [68], and PointMLP [33]. These 9 models stand for distinct architecture designs, and have
achieved good accuracy on the clean dataset. They are also well-recognized by the 3D vision com-
munity, and have been extensively applied to complex tasks like semantic segmentation [38] and
object detection [51,50]]. As suggested by [[17], we adopt the same training strategy for all models.
We utilize smoothed cross-entropy [63] as the loss function as it has been demonstrated to improve
the recognition performance. We take 1024 points as input size in the training phase and use the
Adam optimizer [24] with the ReduceLROnP lateau scheduler implemented in PyTorch [39]. We
train 300 epochs and pick the best performant model for our further evaluation and follow [63] to use
random translation and scaling as our default data augmentation. All training and testing experiments
are done on a GeForce RTX 2080 GPU. We report the class-wise mean ER in Appendix [C]

Besides, we try data augmentation and test-time adaption strategies and evaluate their effectiveness
against our created corruptions. In particular, we leverage PointCutMix-R, PointCutMix-K [73],
PointMixup [8]], RSMix [26], and PGD-based adversarial training [53]] as additional data augmentation
strategies. We adopt the original hyper-parameter settings from their official implementations in our
study. Detailed introduction can be found in Appendix [C} We only enable adversarial training (AT)
for PointNet, DGCNN, and PCT because others do not fit the AT framework, following [53]].

Clean Performance. Table|l|shows the ERe,, of different model architectures with the adopted
training strategies. All models achieve 90+% accuracy with standard training. As [17] indicate,
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Table 2: Error Rates of Different Models on ModelNet40-C with Standard Training.

Density Corruptions Noise Corruptions Transformation Corruptions
Model (%) | ERcor | Occlusion LiDAR Density Inc. Density Dec. Cutout| Uniform Gaussian Impulse Upsampling Background | Rotation Shear FFD RBF Inv. RBF
PointNet 283 523 549 10.5 11.6 12.0 124 14.4 29.1 14.0 93.6 368 254 213 18.6 178
PointNet++ 23.6 54.7 66.5 16.0 10.0 10.7 20.4 16.4 35.1 17.2 18.6 27.6 134 152 164 154
DGCNN 259 59.2 81.0 14.1 17.3 15.4 14.6 16.6 249 19.1 53.1 19.1 121 13.1 145 140
RSCNN 26.2 51.8 68.4 16.8 13.2 13.8 24.6 18.3 46.2 20.1 18.3 292 17.0 18.1 192 18.6
PCT 25.5 56.6 76.7 11.8 14.3 14.5 12.1 13.9 39.1 17.4 579 181 115 124 13.0 126
SimpleView 27.2 55.5 822 13.7 172 20.1 14.5 14.2 24.6 17.7 46.8 307 185 17.0 179 172
CurveNet 227 | 551 66.0 10.5 153 139 | 11.7 132 23.7 11.8 61.0 158 9.8 10.7 114 10.6
GDANet 25.6 60.5 72.1 11.0 14.5 13.8 16.5 19.1 289 18.8 526 174 115 12.0 13.1 127
PointMLP 31.9 64.3 95.2 12.1 14.6 14.4 25.7 359 49.3 425 56.9 19.7 1.5 11.1 128 119
PointMLP-Elite 334 | 648 93.3 14.0 18.2 187 | 21.7 31.3 46.8 36.2 81.1 199 132 129 144 138
RobustNet (Ours) || 22.2 | 51.8 55.4 9.7 10.5 11.1 | 104 11.1 29.3 10.3 70.5 16.8 11.8 11.5 124 11.5

auxiliary factors will obscure the effect of architectures, and the performance gaps among different
models are not significant on the ModelNet40 validation set. Data augmentation strategies like
PointMixup claim to enhance the general model performance [73.|8]]. However, with these factors
controlled, we also do not find tangible improvements over these augmentation recipes. Besides,
adversarially trained models are expected to perform slightly worse on the clean dataset compared to
others [53]]. It also initiates that model performances on ModelNet40 tend to saturate. Thus, it is a
necessary to evaluate the model effectiveness from other perspectives (e.g., robustness).

5.1 COMPARISON AMONG CORRUPTION TYPES

Validity. We first benchmark robustness of 9 standard trained models to verify the validity of our
ModelNet40-C. The detailed results are presented in Fig. [§|and [0]in Appendix [C] We find that the
ER; . gradually increases as the severity level increasing for each corruption, which justifies our
hyper-parameter setting. As shown in Fig. [I] there is a 3x performance degradation between the
overall ER.,; and ER_je,, for all benchmarked models. Table E] presents the detailed ER.. of the 10
models (including a variant of PointMLP) evaluated on ModelNet40-C with standard training. As
mentioned before, there is a significant increase in ER. on each corruption compared to ERjean. The
gap ranges from 17.6% to 89.7% among different corruptions. From the perspective of the corruption,
we obtain several interesting observations.

e Insight 1.1. Occlusion and LiDAR pose a major threat for 3D point cloud recognition.

From Table ERocclusion and ERpjpar reach 57.5% and 75.6% on average, respectively. Occlusion
happens in most real-world application of 3D point clouds. Moreover, we find the models have poor
performance regardless of the occlusion directions, suggesting a general vulnerability.

e Insight 1.2. Rotation is still challenging for 3D point cloud recognition even with small angles.

Rotation is a well-known threat for point cloud recognition by several recent studies [75,/47]. Existing
studies allow a rotation angle (e.g., > 45°). However, such rotated point clouds confuse human
perception without RGB information. In our study, we find that a small rotation (< 15°) still causes a
high ER on point cloud recognition models ranging from 15.8% to 36.8%.

e Insight 1.3. Tmpulse and Background are surprisingly troublesome to point cloud recognition.

We find ERppuse (34.8%) and ERpackground (54.0%) are abnormally high for most architectures.
Although they are even less perceptible than Gaussian and uniform noise since only a small portion
of points are affected. However, the magnitudes of Impulse and Background noises are high,
suggesting that a small portion of outliers will greatly affect point cloud recognition performance.

5.2 COMPARISON AMONG MODEL ARCHITECTURES

As presented in Table [2| there is no overarching model that dominates ModelNet40-C, unlike
robustness benchmarking in 2D vision [21]. Point cloud recognition models have various designs
and no consensus has been reached as deep learning in the 3D space is a relatively nascent field. The
model performances on ModelNet40-C are found to be in good alignment with their design attributes.
It is worth noting that we train all models with 3 random seeds and the standard deviation of the test
results are always less than 0.3%.

e Insight 2.1. PointNet achieves strong performance on density corruptions, but fails on others.

PointNet does not encode local feature, and several publications have studies it from the perspectives
of adversarial robustness [53] and representation quality [47]. Such a design has been regarded as
a main drawback of PointNet. However, we find it robust against the variations in density. Table[2]
presents that PointNet achieves an ER of 28.3% on density corruptions, and overall outperforms the
runner-up by 11.7%. Such results can be attributed to the locality of density corruptions. Compared
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Table 3: Error Rates of Different Models on ModelNet40-C with Different Data Augmentation Strategies.

Standard PointCutMix-R PointCutMix-K PointMixup RSMix AT

Model (%) | ER¢o |ER¢ [Density Noise Trans.|ERc, |Density Noise Trans.|ERc, |Density Noise Trans.|ER,, | Density Noise Trans. | ERc, |Density Noise Trans.
PointNet 283 |21.8| 305 180 169 213 | 268 218 154|254 | 283 289 19.0 |225| 248 273 155|259 288 284 205
PointNet++ 236 |19.1| 281 122 17.0 [202| 263 169 173|193 | 30.8 143 129 |233| 270 193 237 - - - -
DGCNN 259 |17.3| 289 114 115|173 ] 29.1 119 109 | 204 | 32.1 168 123 [18.1| 288 130 12.6 [20.7| 368 138 115
RSCNN 262 |179| 250 130 158 |21.6| 283 190 17.6 |19.8| 297 155 141 |21.2| 268 174 193 - - - -
PCT 255 |163| 27.1 105 11.2 [16.5| 258 126 11.1|19.5| 303 167 115 [17.3| 250 120 15.0 |184| 293 147 111
SimpleView 272 | 19.7| 312 113 165 206 | 29.1 156 17.0 |21.5| 327 17.1 14.8 | 204 | 284 146 183 - - -
CurveNet 227 (169 264 11.0 134 |179| 243 154 139|199 | 312 167 116 |199| 268 164 165

GDANet 256 |17.5| 287 104 135 |186| 284 144 130|195 305 154 125 [19.7| 289 140 16.1

PointMLP 319 |192] 306 143 127 (209| 29.1 200 13.7 200 | 31.3 186 103 |222| 30.1 20.1 163

RobustNet(Ours)|| 222 |[153| 253 9.1 114 160 | 253 118 109 |19.0 305 14.0 126 (173 | 251 119 150

Average 259 | 18.1| 282 121 140 [19.1| 268 159 144|205 ‘ 308 175 132 |205| 272 166 17.0

to other models that embeds complex local features, PointNet is less sensitive to local changes of
the input point cloud. On the other hand, PointNet indeed fails on other corruptions, rendering itself
the worst performant model on average. Our analysis complements the existing understanding of
PointNet, we believe the usage of PointNet should be determined by the application scenarios.

« Insight 2.2. Ball query-based clustering operation is robust against Background noise.

As mentioned in §[5.1] Background is a challenging corruption to point cloud recognition. However,
we find that PointNet++ and RSCNN are specially robust against it, which have outperform other
models by 70.7%. We discover that the ball query of neighboring points is the key to such robustness.
Compared to kNN that has deterministic £ points to cluster, ball query fixes the radius to reject
faraway points in the bounding box space. This design helps models tackle the root cause of the
Background corruption.

e Insight 2.3. Curve-based clustering operations are robust against transformation corruptions.

Transformer [S9] has recently reformed the 2D vision [14]. PCT leverages multiple Transformer
blocks as its backbone, which leverage self-attention modules to embed robust global features.
PCT reaches the ER of 13.5% on transformation corruptions. In comparison to density and noise
corruptions, transformation corruptions are mild and have a minor effect on the local smoothness.
Transformer has been demonstrated to have large capacity and a global receptive field, and we believe
this design contribute to its resilience to global corruption of point clouds. Curve-based clustering is
also effective in reducing the ER for transformation corruptions, as it better learns the geometry of a
point cloud rather than blindly grouping nearby points as a cluster. CurveNet thus achieves the best
performance with an ER=11.7%.

Besides above, we find that SimpleView cannot achieve better robustness under common corruptions
than other architectures, despite it high performance on clean data (Table [, suggesting point cloud-
specific designs are indeed desired. The worst performance of PointMLP (ICLR’22) further alerts the
community that it is critical to evaluate model quality from multiple perspectives.

5.3 DATA AUGMENTATION STRATEGIES

As mentioned earlier, we use five additional data augmentation strategies to train 9 models. In
this section, we examine how these training recipes combined with different models perform on
ModelNet40-C, and Table [3] presents the overall results. Due to the space limit, we group the
evaluation results per corruption patterns and the detailed results are shown in Fig. [§]and [ in
Appendix [C] Several interesting insights can be concluded from our experiments.

e Insight 3.1 Data augmentation strategies generally improve the corruption robustness.

As Table [3|indicates, all the augmentation recipes enhance the overall corruption robustness from
19.6% to 28.4%. Data augmentation methods enrich the training set the resulting model more general.
Combined with results in Table[I] our paper suggests different conclusions from the original claims:
mixing-based augmentations have little gain on clean performance but help generalize to common
corruptions.

e Insight 3.2. No single data augmentation can rule them all. Different augmentation methods have
expertise on distinct corruption patterns.

As Table 3| presents, PointCutMix-R performs the best on noise corruptions (ER = 12.4%), Point-
Mixup specializes the transformation corruptions (ER = 13.2%), and RSMix is especially robust
against density corruptions (ER = 27.4%). Such results also relate to the design of augmentation
strategies. In details, given two point cloud samples x,,x; from class a and b, PointCutMix-
R simply merges () two randomly selected (®) subsets together based on hyper-parameter A
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(Tgug = AO T B (1 —X) ©xp). The two subsets will overlap in the resulting point cloud @4.,4. Each
point cloud subset can be regarded as a special noise by the other. Thus, it naturally includes noise
corruptions with mixing into data augmentations. PointMixup leverages interpolation-based mixing
that the transition between two point clouds (€qug = Az + (1 — A\){(q4, ), Where ((xq, Tp)
finds the shortest path for every pair in , and x;). The augmented point cloud is thus locally
smooth, which aligns with the transformation corruptions. In contrast, RSMix acts similarly with
PointCutMix-K but guarantee a rigid mixing of two partial point clouds. There will be no overlaps
and each point cloud subset is clustered and isolated in the 3D space. Such patterns correspond to
density corruptions in point cloud data.

e Insight 3.3. AT does not show superiority on corruption robustness for 3D point cloud recognition.

Adversarial training improves robustness on noise corruptions since we rely on point shifting attacks
in the inner maximization stage. [47]] suggest that adversarial rotation training improves the robustness
against random rotations. We here motivate future research to present general methods that improve
both adversarial and corruption robustness for point cloud learning.

Moreover, we find PCT outperforms CurveNet
mm Severity-l  mmm Severity-3  mmm severty-5 | with sophisticated augmentation-based train-

Severity-2 s Severity-4

ing recipes. Such results align with recent
studies in corruption robustness of 2D vision
tasks as well [2], suggesting the superiority of
Transformer-based design in 3D point cloud learn-
ing. Surprisingly, the simplest augmentation,
Standard  PointCutMix-R PointCutMix-K PointMixup RSMix PointCutMix_R, achieves the best overall robust-
ness (ERcormp=18.4%). As Fig. |§| shows, it is
especially helpful on corruptions with high sever-
ity levels. We hope our analysis will facilitate
future research on designing effective and robust
training strategies.

Average Error Rate (%)

Figure 3: Average Error Rates over 9 Models and
13 Corruptions (except for Occlusion and LiDAR).
We exclude Occlusion and LiDAR since they do
not have different severity levels.

5.4 TEST-TIME ADAPTATION METHODS

Besides the introduced training-time strategies, Table 4: Error Rates of Different Models on

we evaluate test-time. adaptation methods on .our ModelNet40-C with Test-time Adaptation Methods.
ModelNet40-C. Specifically, we for the first time

adapt the BN [45] and TENT [60] to point cloud BN TENT
Lo el Model (%) J. ER. . [Density Noise Trans.|ER [Density Noise Trans.
recognition. BN upqates the statistics of Batch- F— e e e
Norm [23] layers (i.e., 4 and ¢.) based on the  PoinNet+ 169 | 242 127 138|167 | 241 123 136
. . . . DGCNN 21.1 | 314 195 125|209 30.7 194 125
incoming batch of testing point clouds. TENT  ggenn 200| 264 167 17.0 | 194] 260 159 164
updates both the statistics and weight parameters ~ PCT 1951279 182 124 180 269 154 117
i .. SimpleView 198 29.8 138 158 [ 169 | 28.1 99 128
(i.e., v and (.) of BatchNorm layers to minimize  curveNet 182] 259 183 104 |174| 258 168 95
GDANet 18.8 | 28.8 157 11.7 [179] 282 141 115
the cross-entropy qf the output layer. Table E| PontMLP 22| 99 195 101|207| 35 176 1.0
presents the evaluation results. RobustNet(Ours)| | 168 | 242 125 137 |165| 241 120 135
Average 1971 279 174 140 [ 192] 279 164 13.6

e Insight 4.1. Test-time adaptations overall per-
form worse than data augmentation strategies in improving robustness.

BN and TENT consistently help enhance the corruption robustness for point cloud recognition.
However, we find they overall are not as effective as data augmentation strategies. Such observations
are different from 2D vision tasks, and we attribute the reason to the nature of corruptions in
3D space. Corruption robustness benchmarks for 2D images are created by changing the RGB
values. Corruptions in the 3D space directly modify both the numbers and positions of points. The
distributional shift is thus large between corrupted and clean point clouds.

e Insight 4.2. Test-time adaptation is surprisingly useful for tough corruptions.

We find that TENT on average helps achieve the strongest robustness on Occlusion (ER=47.6%),
LiDAR (ER=54.1%), and Rot at ion (ER=19.8%) corruptions, outperforming the best augmentation
method by 6.7%, 1.9%, and 7.9% respectively. Especially, we find test-time adaptation methods
achieve the best ERyqtation,5 = 35.6%, which is a 27.1 % improvement over the best augmentation
strategy. Augmentation strategies cannot handle these difficult corruptions, but test-time adaptation
methods deliver a more consistent improvement.
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We have so far Table 5: Error Rates of Models on ModelNet40-C with PointCutMix-R and TENT.
demonstrated that Corruption (%) | ||PointNet PointNet++ DGCNN RSCNN PCT SimpleView CurveNet GDANet PointMLP RobustNet

: e Density 748 218 247 227 228 235 27 242 292 221
PointCutMix-R . Noise 157 95 92 107 90 97 89 9.4 10.0 8.7
and TENT obtain  Trans. 15.2 12.1 104 129 101 133 93 103 9.5 10.2

ERcor 18.5 14.5 14.8 154 139 15.5 13.9 14.6 16.3 13.7

the best among the
training- and test-time methods, in terms of the overall ER.,,. We here evaluate the performance of
the combination of PointCutMix-R and TENT as they do not conflict with each other. As presented
in Table[5] we find that the combined solution further improves the corruption robustness by 14.7%.
To our best knowledge, there is no test-time adaptation designs specific for point cloud learning, and
we hope our study will shed light on future research on corruption robustness in this area.

6 ROBUSTNET AND POINTCUTMIXUP

In this section, we introduce RobutNet architecture and PointCutMixup augmentation strategy based
on insights from our benchmarking results.

RobustNet. We combine the robust designs inside PointNet++, CurveNet, and PCT modules to form
our RobustNet architecture. Specifically, we first use one multi-scale grouping (MSG) block from
PointNet++ as the first module in RobustNet. MSG is an essential design in PointNet++ to make
it robust to noise corruptions § [5.2] due to the multi-scale ball queries. We then apply CurveNet
module, CIC, to further aggregate local features in curves, which has demonstrated transformation.
Four transformer blocks are finally attached in the end to improve the generality of the RobustNet
backbone. Detailed hyper-parameters can be found in Appendix [B]

Tables[2and 3| present the results of RobustNet with standard training and different augmentations. We
find that RobustNet achieves significantly better robustness with standard training, which outperforms
the prior SOTA by 2.3%. Encouragingly, RobustNet with PointCutMix-R further improves the lowest
error rate to 15.3%, which is 6.5% relative enhancement compared to the previous best result.

PointCutMixup. Table 6: Error Rates of Models on ModelNet40-C with PointCutMix-R and TENT.
We find that

. . . ERcor (%) | PointNet PointNet++ DGCNN RSCNN PCT SimpleView CurveNet GDANet PointMLP RobustNet
P01ntCutM1X-R IS FoncCaMixR || 218 19.1 173 179 163 197 16.9 175 192 153
especially useful  PointCutMixup|| 20.9 185 169 175 160  20.0 16.7 17.2 18.9 149

for noise corrup-

tions, and PointMixup for transformation related corruptions. Our PointCutMixup involves three
randomly selected point clouds: x,, xp, and .. We first interpolate the first two point clouds
ZTaugt = Mg + (1 — A){(xq,zp) using PointMixup, and then mix the the third point cloud
with the first augmented one: X4y = 7 © Xgugr P (1 — 1) © x.. The corresponding label is
Yaug = NAYa + 1(1 — N)yp + (1 — n)y.. Table 6| presents that RobustNet with PointCutMixup
achieves the new SOTA ER to 14.9%.

7 DISCUSSION AND CONCLUSION

Through our systematic benchmarking and analysis, we found that the performance discrepancies
of different point cloud recognition models across different corruptions are much larger than 2D
architectures. This suggests future studies on a universal architecture design for 3D point cloud to be
a worthwhile direction. In the future, we plan to extend our current benchmark to complex tasks like
point cloud segmentation and object detection to facilitate research on robustness in the 3D domain.
We notice a concurrent work [43]] that also presents robustness dataset for point clouds. [43] has
7 corruption types without considering physical constraints, while our ModelNet40-C consists of
15 corruption types with physically realistic corruptions like Occlusion and LiDAR. We believe
these two datasets will complement each other to benefit the community.

To conclude, we have presented ModelNet40-C, a comprehensive benchmark for corruption robust-
ness of point cloud recognition models. We have unveiled the massive performance degradation on
our ModelNet40-C for 9 representative models. We also provided critical insights on how different
architecture and data augmentation designs affect model robustness on different corruptions. Our
study on test-time adaptation in point cloud recognition shows its potential as a robustness strategy.
Last but not least, we propose RobustNet and PointCutMixup that further enhance corruption robust-
ness. We hope that our ModelNet40-C benchmark will benefit future research in developing robust
3D point cloud models.
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ETHICS STATEMENT

Adversarial robustness has been extensively studies in the literature for both 2D and 3D model
architectures. However, corruption robustness was rarely explored in the 3D space. Our new dataset
and benchmark are thus beneficial for the 3D point cloud community to assess the corruption
robustness of new models or training methods (e.g., data augmentation strategies). The evaluation of
existing models on corruption robustness is useful as well since we have uncovered that most SOTA
models are extremely vulnerable to small corruptions (e.g., PointMLP). We follow the licenses of
usage for all the public models and datasets in our study.

REPRODUCIBILITY STATEMENT

To ensure the reproducibilityof our results, we have provided every datail of our dataset generation
and training process in the Appendix. We also fixed the random seed in our evaluation for easier
reproduction. Our codebase is attached in the supplementary materials and we also provide anoymous
link for downloading our ModelNet40-C dataset.
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A  MODELNET40-C

We elaborate the creation of ModelNet40-C in this section. The detailed implementation can be found
in our codebase. We fixed the random seed (i.e., 666) in our implementation to create ModelNet40-
C. We also tested two other random seeds (i.e., 777 and 888), and found little variance in the
benchmarking results.

Occlusion and LiDAR share similar general corruption features. We leverage five viewing angles
to construct these two corruptions on ModelNet40. Specifically, we utilize ray tracing algorithms
on the original meshed from ModelNet40 to generate the point cloud. Let the facing direction of
the object as 0° pivoting the z axis, we use 0°, 72°, 144°, 216°, and 288° as our viewing angles,
the viewing angles between the xy plane are randomly sampled from is 30° — 60°. For LiDAR, we
additionally render the generated point cloud into the vertically multi-line style to simulate the pattern
of the LiDAR sensor.

For Local_Density_Inc and Local_Density_Dec, we first sample a number of anchor
points based the severity level. We further find the kNN of the anchor points and up-sample or
down-sample them to increase and decrease their local density, respectively. Similarly, Cutout
discards the full kNN (k£ = 50) subsets of the anchor points to simulate the sensor limitations of
LiDAR and other scanning devices.

Gaussianand Uniformnoises are sampled from Gaussian and uniform distributions with different
o and € based on the severity level. For the Background noise, we randomly sample different
numbers of points in the edge-length-2 cube that bounds the point cloud based on the severity level.
For Impulse noise, we first sample different numbers of points based on the severity level and
assign the maximum magnitude of perturbation ¢, = 0.05 to them. For the Upsampling noise,
we first choose different numbers of points based on the severity level and generate new points around
the selected anchors, bounded by /., = 0.05.

For Rotation and Shear, we have introduced their construction in § ] As mentioned, we allow
relatively small transformations since we find larger ones will affect the human perception of the
object class as well.

For deformation-based corruptions FFD, RBF, and Inv_RBF, we assign 5 control points along each
xyz axis, resulting in 125 control points in total. We choose the deformation distance based on
the severity level and randomly assign their directions in the 3D space. The deformations then are
formulated based on the interpolation functions that we choose in § [3]

We visualize two additional groups of sample point clouds from ModelNet40-C in Fig. 4] Fig.[5
and[@l

Comparison with RobustPointSet [56]. We would like to emphasize significant differences between
ModelNet40-C and RobustPointSet. First, the corruptions are more realistic in ModelNet40-C. For
example, Occlusion in RobustPointSet does not consider physical law (e.g., self-occlusion), while
ModelNet40-C addressed it. Second, ModelNet40-C is a more diverse and fine-grained dataset
containing 15 corruption types with 5 severity levels. Third, ModelNet40-C has provided a taxonomy
of common corruptions, which will be beneficial for the community to understand the vulnerabilities
of evaluated models and methods. Moreover, we have delivered more comprehensive and insightful
benchmarking results.

B ROBUSTNET AND POINTCUTMIXUP

We detail the hyper-parameters of RobustNet and PointCutMixup in this section. For RobustNet, the
first MSG block has three scales of ball clustering with number of anchor points = 512 and radii =
[0.1, 0.2, 0.4]. RobustNet further stacks the features from multiple scales to form a [512,320] shaped
feature tensor. RobustNet next uses two CIC modules from CurveNet to learn a feature map with a
size of [256,256]. Four Transformer blocks are lastly attached to RobustNet. Other implementation
parameters can be found in our codebase. For PointCutMixup, we use A = 0.5 and n = 0.5.

15



Under review as a conference paper at ICLR 2023

Occlusion Local_Density_Dec

Uniform Gaussian Impulse

Rotation Shear FFD Inv_RBF

Figure 4: Visualization of Samples from ModelNet40-C - “Toliet” Class.

-
Rotation Shear

Figure 5: Visualization of Samples from ModelNet40-C - “Desk” Class.
C EXPERIMENTS

C.1 DATA AUGMENTATION SETUPS
We introduce the detailed setting of our experiments and analysis in this section. For all mixing-based
data augmentation strategies, we have a hyper-parameter A to determine the weight of two samples to

mix, as well as the weight of the virtual label vector:

yaug:)"ya“‘(l_)‘)'yb (1)
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Figure 6: Visualization of Samples from ModelNet40-C - “Chair” Class.

where y, and y; are the label vectors for point cloud x, and x;. We set A = 0.5, which has shown to
achieve good results reported in [[73} 8], 26]. For adversarial training, we use the point shifting attack
in the adversarial inner maximization:

T =T, s(x® + o -sign(Ves L(x%,1; f))); x =2 + U(—¢,¢€) )
where ¢ = 0.05, @ = 0.01 and we use seven steps PGD, as suggested by [33].

C.2 EVALUATION RESULTS

We utilized the same random seed (i.e., 1) to run all the experiments and obtain the results. We agree
with the reviewer that multiple tests are necessary to assess the performance. Thus, we use two other
random seeds (i.e., 2 and 3) to re-train all the adopted architectures and evaluate their robustness.
As shown in Table[7] the standard deviations are small among all models and align well with our
findings. Due to time and resource constraints, we did not re-test the augmentation methods. However,
we believe the results should remain consistent since the performance gaps between augmentation
strategies are already clear.

Table 7: Error Rates of Different Models on ModelNet40-C.

ER (%) || PointNet |PointNet++| DGCNN RSCNN PCT SimpleView| GDANet | CurveNet | PointMLP
Clean 94+0.1|70£02|73£0.1[7.74+0.2[7.14+0.1| 60+0.3 |7.5+£0.2[6.6+0.1[6.2£0.2
Density | 28.2+0.2 [31.7 4+ 0.3|37.4 + 0.3|32.8 + 0.4|34.8 + 0.3|37.7 £ 0.3(34.4 £+ 0.4|32.2 4+ 0.2|40.1 + 0.3
Noise 32.7 £ 0.3 21.4 £0.2 (25.7 £ 0.2]|25.5 + 0.2{28.1 £ 0.2|23.6 £+ 0.2]|27.2 + 0.2|24.3 £ 0.3[42.1 £ 0.4
Trans. 20.2 +0.2|17.5 £ 0.1|14.6 £ 0.1{20.4 £ 0.2] 13.5 0.1 {20.3 + 0.2|13.3 £ 0.2| 11.74+0.1 |{13.4 £ 0.2

We illustrate the confusion matrices of six representative models with standard training in Fig. [7]to
show the validity of ModelNet40-C, where each cell (¢, j) represents the proportion of groundtruth
label j with prediction as label i. The values in the diagonal are still high, further validating the
semantic maintenance of ModelNet40-C. We present our detailed evaluation results containing 5,700
data points. Fig. 8] and [9] shows the model comparison on all data augmentation strategies. The
class-wise mean error rates (mER) are shown in Figure|10|and The detailed results of test-time
adaptation methods (ER and mER) are shown in Fig. |ﬂ% and[T3]
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Figure 7: Confusion Matrices for Six Representative Models on ModelNet40-C with Standard
Training.
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Figure 9: Error Rates of Different Models with Different Data Augmentation Strategies on
ModelNet40-C (Cont’d).
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Figure 10: Class-wise Mean Error Rates of Different Models with Different Data Augmentation
Strategies on ModelNet40-C.
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Figure 11: Class-wise Mean Error Rates of Different Models with Different Data Augmentation
Strategies on ModelNet40-C (Cont’d).
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Figure 12: Error Rates of Different Models with Different Test-time Adaptation Methods on
ModelNet40-C.
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Figure 13: Error Rates of Different Models with Different Test-time
ModelNet40-C (Cont’d).
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Figure 14: Class-wise Mean Error Rates of Different Models with Different Test-time Adaptation
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Figure 15: Class-wise Mean Error Rates of Different Models with Different Test-time Adaptation

Standard testing and Upsampling corruption

BN testing and Upsampling corruption

“TENT testing and Upsampling corruption

8- rointhet &~ Pointiet 275 -8~ Fointiet
~@~ PointNet++ 3 ~@~ PointNet++ ~@- PointNet++
-~ DGCNN 250 ~@- DGCNN
-8~ RSCNN 25 25 8- RsCNN
- pcT pcr
- SimpleView 200 ~@- simpleView
- Curetiet 2 s o= curv
8- GDANet 150 8- GDANet
&~ PointhLp @ PointhLP

il 15 125 ==

——
oo Lo—— -
1 2 3 4 H 1 2 H 4 1 2 H 4 H
Standard testing and Background corruption BN testing and Background corruption TENT testing and Background corruption

——9 -8 ronne: O—— O o« oo —o—°

@~ FoiniNets + 50 &~ rointiet & Fainter

@ DGCNN @ PointNet++ 0 @ PointNet++

@~ RSCNN 8- DGCN

o= pcT 0 60 8- RsChN
;‘f Simpleview o

-8~ Cunvtet 8- simpleview
— o w0]® * -

&~ PoinLp -o-comet g @
.__.—-—0—/"/. B » S g
1 2 3 a 5 1 2 3 4 s 1 2 3 a s

Standard testing and Rotation corruption BN testing and Rotation corruption TENT testing and Rotation corruption
o~ rointtiet o Fointet 70 { o= rointhet
8- PointNet-++ 60 @~ Pointhet++ oo pe.muuu
&~ DGCNN -o- D
-~ RSCNN 50 50 -0 kscNN
-o- rcr o -8~ pcT
-6~ Simpleview 4018 simpevew
- Cureiet -»-c
30
o comner 2 201 7o Gomner
-0~ PointLp 20 20 | 78 pointp
10 10
1 2 H 4 H 1 2 3 4 H 1 2 3 4 H
Standard testing and Shear corruption BN testing and Shear corruption TENT testing and Shear corruption
50
- Pointiet 10| @ Pointner 8- pointet
&~ Pointhet++ 8- PointNet+ + 8- PointNets+
~@- DGCNN 35 { ~@~ DGCNN 40 | ~@~ DGCNN
o~ RsCNN &~ RsChN &~ RSCNN
-9~ PCl - 301 -@- pcr 30 &P
' 25| -8 Simpleview 8- Simpleview
urveet g & Cunetet 8- Curvtet
- 20 { -8 GpANet 20 | 8- GoANet
& pointLP o~ pointhLp
15 s 2
10 10
1 2 3 a H 1 2 H a H 1 2 3 4 H
Standard testing and FFD corruption BN testing and FFD corruption TENT testing and FFD cormuption
&~ rointhet 35 { @ pointet 40 { <@~ rointnet
-0 PointNet++ & Pointet++ &~ PointNets+
~@- DGCNN 30 35 1 -8~ pGeNn
-8~ RSCNN 30 { @ Rsenn
ey 2 -8~ pcT
- Simpleview 251~ Simpleview
- 20 =@~ CurveNet.
— 20 | ~@~ GDANet
6= pointe
b 1592
10 10—
1 2 3 4 s 1 2 3 4 s
TENT testing and RBF coruption
3 &~ pointet
30 -.- PnlntN:z¢+
2 4. nscNN
25
20 o trmeiven
15
10
1 2 H 4 H 1 2 3 4 H 1 2 H 4 H
Standard testing and Inv_REF corruption BN testing and Inv_REF corruption TENT testing and Inv_RBF corruption
8- Pointet 30 1 <@~ pontiet 8- Poinet
=@~ PointNet++ =@~ PointNet++ 0 -.- Vummeuo
-~ pocnn 25| 8- DG
o~ RsCN &~ RsChN 25 ‘- ascNN
-o- rcT pcT
- Simpleview 201 -9~ Simpleview 2 o S
&~ Curveliet & cunenet 8- Curvetet
8- GpaNet 8- GoANet 8- GpaNet
~@- PointMLP 151 “@- pointLP 15 | <@~ PointMLP.
10 10

2 3 a 5

Methods on ModelNet40-C (Cont’d).

26

5




	Introduction
	Related Work
	Common Corruptions of 3D Point Cloud
	Density Corruption Patterns
	Noise Corruption Patterns
	Transformation Corruptions Patterns

	ModelNet40-C Dataset and Robustness Benchmark
	Experiments
	Comparison Among Corruption Types
	Comparison Among Model Architectures
	Data Augmentation Strategies
	Test-Time Adaptation Methods

	RobustNet and PointCutMixup
	Discussion and Conclusion
	ModelNet40-C
	RobustNet and PointCutMixup
	Experiments
	Data Augmentation Setups
	Evaluation Results


