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ABSTRACT

We present evidence that language models can learn to represent the semantics
latent in text despite being trained only to perform next token prediction. Specif-
ically, we train a Transformer model on a synthetic corpus of programs written
in a domain-specific language for navigating 2D grid world environments. Each
program in the corpus is preceded by a (partial) specification in the form of (textual)
input-output examples, and hence the semantics of the programming language enter
as a latent causal variable in the data generation process. We then probe the trained
model’s hidden states as it generates a program given a specification. Despite
providing no inductive bias toward learning the semantics of the programming
language, we find that a linear probe is able to extract abstractions of the program
states from the model states, which suggests the model acquires an emergent ability
to interpret programs in the formal sense. Moreover, there is a strong, statistically
significant correlation between the accuracy of the probe and the model’s ability to
generate a program that correctly implements the specification. To evaluate whether
the semantics are represented in the model states rather than learned by the probe,
we propose a causal framework for analyzing the effects of probing, and perform
interventional experiments that allow us to precisely attribute the accuracy of the
probe to the semantics latent in the model’s training data (rather than, e.g., the
signal used to supervise the probe). In summary, this paper does not propose any
new techniques for training language models, but develops an empirical framework
for and provides insights into the acquisition and representation of semantics in
language models.

1 INTRODUCTION

Despite the rapidly improving performance of large, pretrained language models (LMs) in a range of
downstream tasks, a major open question is whether such LMs capture any semantically meaningful
information about the text that they consume and generate (Mitchell & Krakauer, 2023). Empir-
ically, some recent research has found that LMs are insensitive to the semantics of the presented
prompts (Webson & Pavlick, 2022; Min et al., 2022; Kavumba et al., 2022), though it has also been
observed that these phenomena can diminish with scale (Wei et al., 2023).

It is an open question whether there exists a fundamental barrier which prevents LMs from developing
an understanding of language grounded in the semantics of the underlying domain. A common theme
is the disconnect between form (i.e., text) and semantics, which is presumed to lie beneath the surface
of form and is therefore inaccessible to an LM trained purely on text (Bender & Koller, 2020). For
instance, Browning & LeCun (2022) claim that an LM trained only on text is doomed to “shallow” as
opposed to “deep” understanding, while Chomsky et al. (2023) argue that as LMs are trained only
to model correlations between surface tokens, they cannot grasp the causal mechanisms expressed
in the text. Indeed, a recent meta-survey reveals a sharp divide within the NLP community, with
51% of respondents agreeing to the statement, “Some generative model trained only on text, given
enough data and computational resources, could understand natural language in some non-trivial
sense” (Michael et al., 2022).
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We present an empirical framework for studying the extent to which semantics can emerge in LMs
trained solely to perform next token prediction on text. Specifically, our goal is to experimentally
evaluate (a formal version of) the following main hypothesis (MH):

Main Hypothesis (informal). Semantics cannot be learned from form, i.e., an LM trained only to
perform next token prediction on text cannot acquire semantics of the underlying domain.

Central to our experimental setting is the idea of a latent causal semantics—semantics which are
not directly observed in the training data, but nonetheless affect the distribution of tokens. Indeed, it
follows immediately from our definitions that any latent semantics which is not causal in our model
cannot be learned from text.

To evaluate whether latent causal semantics can be learned from text, we apply language modeling to
the task of program synthesis, or synthesizing a program given a (partial) specification in the form
of input-output examples. Our primary motivation in adopting this setting is that the semantics of
programming languages are well understood and yield rigorous ways of defining the semantics (and
correctness) of a program. The training data consists of a corpus of programs and their corresponding
specifications, where the formal semantics of the programming language constrains the corpus to
programs which correctly implement the input-output examples (and hence constitute a latent causal
variable in the data generation process).

To evaluate whether the LM has learned semantics, we train a series of small probing classifiers to
predict a representation of the program semantics from the LM’s hidden states. We find the probe’s
ability to extract semantics is random at initialization, then undergoes a phase transition during
training, with the phase transition strongly correlated with the LM’s ability to generate a correct
program in response to previously unseen input-output examples. We also present results from a
novel interventional experiment. These results indicate that the semantics are represented in the
model states (rather than learned by the probe).

Our contributions are as follows:

1. We present a formal model of semantics acquisition in language modeling. We use this
model to derive an empirically testable version of MH.

2. We present experimental results that support the emergence of semantically meaningful
representations in LMs trained to perform next token prediction (Section 3). In particular,
we use the trained LM to generate programs given input-output examples, then train probes
to extract information about the program state from the model state. We find that the internal
representations contain encodings of (1) an abstract semantics—specifically, an abstract
interpretation—that track the specified inputs through the execution of the program, and (2)
predictions of future program states corresponding to program tokens that have yet to be
generated. During training, these linear representations of semantics develop in lockstep
with the LM’s ability to generate correct programs across training steps.

3. We design and evaluate a novel interventional technique that enables us to separate the
contributions of the LM and probe when extracting semantics from representations (Sec-
tion 4). Specifically, this technique makes it possible to determine whether (1) the LM
representations contain purely (syntactic) transcripts while the probe learns to interpret the
transcript to infer meaning, or conversely (2) the LM representations contain semantic state,
with the probe simply extracting the meaning from the semantic state. The results indicate
that the LM representations are, in fact, aligned with the original semantics (rather than just
encoding some lexical and syntactic content), which—together with the results in Section 3—
rejects a strong version of MH.

More broadly, we present a framework for conducting empirical research on LMs based on the
semantics of programming languages. Working with programs allows us to define, measure, and
experiment with concepts from the precise formal semantics of the underlying programming language,
ideally yielding novel insights that contribute toward a principled understanding of the capabilities of
current LMs. Going forward, we believe methods similar to those developed in the present work can
offer a complementary formal perspective on how key concepts related to language and cognition can
be mapped to the setting of LMs and, more generally, machine intelligence.
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(a) An SCM describing a data generation pro-
cess with a latent causal semantics.

(b) The SCM specialized to our experimental setting, where the
textual data consist of programs and input-output examples, and
the semantics are given by traces of the program execution.

Figure 1: An illustration of latent causal semantics. In Figure 1a, Dtrain and Dtest are distributions
over textual data (strings). The parameters of the language model θLM are trained on a corpus of
data sampled from Dtrain. At test time, an input prompt datatest is sampled from Dtest, and the
trained LM produces stateLM . S is a map which assigns semantics to data; the green dotted line
indicates the key causal link between the semantics and the training data, i.e., the text in the training
corpus is presumed to be meaningful. Note that the causal link is represented as a cycle here only for
brevity; it is removed in the full SCM in the Appendix. The SCM implies that, because the semantics
S is shared across both the training and test data, then stateLM may no longer be independent of
semanticstest, even if datatest is known; in other words, the output of the LM can capture semantics
beyond what is expressed directly in the text of the input. Figure 1b show how to map this SCM to
our experimental domain of programs and their formal semantics.

2 BACKGROUND AND SETTING

We begin by introducing the notion of a latent causal semantics. Figure 1 expresses the key concepts
as a structural causal model (SCM), which describes a data generation process using a directed acyclic
graph (Pearl et al., 2000): the nodes represent random variables and the edges indicate the direction
of causality. Note that the collection of variables representing semantics (i.e., both the semantic
map S and the collection {semanticsn}Nn=1) in Figure 1a constitute latent causal variables in the data
generation process: they are latent because only the training data {datan}Nn=1 is observed (and hence
the learned parameters θLM are independent of the semantics given the training data), 1 and casual
due to the presence of the green causal link influencing the distribution of text in the training data; we
refer to the caption for more detail.

The causal link plays a critical role in the SCM as severing it renders stateLM formally independent of
semanticstest given datatest, i.e., we have no hope of extracting any information about the semantics of
the input from the output of the LM beyond what is already observed in the surface forms. Moreover,
the presence of this causal link also yields empirically testable implications which correspond to a
formal statement of MH. Specifically, propose to study the following two hypotheses:

Main Hypotheses (formal). Let θLM in Figure 1a be trained using next token prediction. Then

stateLM ⊥ semanticstest | datatest, (SH)

regardless of whether a causal link is present, and furthermore,

stateLM ⊥ semanticstest | datatest, {datan}Nn=1. (WH)
1In fact, all semantics are formally latent by construction in our SCM (cf. Bender & Koller (2020), who use

this as a basis for their argument that meaning cannot be learned from form, but do not discuss the possibility of
a causal link). For instance, consider training on a dictionary consisting of “The definition of X is Y ”, where S
maps X to Y . In this case, the semantics are functionally observable. Although this would appear to render
both SH and WH vacuous, Berglund et al. (2023) surprisingly find that an LM fine-tuned on a corpus of “X is
Y ” can fail to generalize to the (marginally) more complex semantics “Y is X” (which can be interpreted as
evidence in favor of SH)!
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The strong hypothesis (SH) is a claim about a fundamental limitation of LMs trained using next
token prediction, i.e., even though the SCM does not imply that stateLM ⊥ semanticstest | inputtest,
the learning process precludes the LM from accessing the latent semantics at test time. The weak
hypothesis (WH) hedges this claim by further conditioning on the observed training corpus, the
implication being that the LM cannot access the semantics of its inputs beyond what is observed
in the surface forms of the input and its training data. As this conditional independence is directly
implied by the SCM, rejecting this hypothesis would actually refute the SCM itself. Although our
experiments will be mostly tailored toward evaluating SH, we discuss some possible implications of
our experiments for WH in Section 5, and leave a separate empirical evaluation to future work.

Finally, we remark that Figure 1a models the semantics as an abstract map from data (documents, or
input strings) to a space of arbitrary semantics; these could physical states in a system, mathematical
objects as in denotational semantics, or the mental states of speakers. This approach is consistent
established theories commonly found in both linguistics (Montague et al., 1970; Montague, 1973)
and programming languages (Winskel, 1993). Practically speaking, formulating SH and WH in
terms of the general relationship between semantics and form also gives us the freedom to select a
domain amenable to rigorous experimentation. The remainder of this section introduces our chosen
instantiation of the SCM in Figure 1b: programs (Dtrain, Dtest) and their formal semantics (S),
a domain with precedence in prior theoretical work exploring the relationship between form and
semantics in LMs (Bender & Koller, 2020; Merrill et al., 2021).

2.1 PROGRAM TRACING AS MEANING

A foundational topic in the theory of programming languages, formal semantics (Winskel, 1993)
is the study of how to formally assign meaning to strings in the language. In this work, our model
of semantics consists of tracing a program’s execution: given a set of inputs (i.e, assignments to
variables), the trace is the sequence of intermediate values generated as the program executes on the
inputs. More generally, Cousot (2002) proved that the ability to trace a program can be used to define
a denotational semantics, where each program expression is mapped to a denotation—a mathematical
object (such as a number or a function)—that precisely describes its meaning. As the meaning of a
program can be formally defined by the collection of all its traces, being able to trace the program on
a subset of inputs reflects some understanding of the program’s meaning in a precise sense.

Beyond this formal perspective, tracing is attractive as a model of program meaning for several
reasons. In novice programmers, the ability to accurate trace a piece a code has been directly linked to
the ability to explain the code (Lopez et al., 2008; Lister et al., 2009), and computer science education
has emphasized tracing as a method of developing program understanding (Hertz & Jump, 2013) and
localizing reasoning errors (Sorva, 2013). Expert programmers also rely on tracing, both as a mental
process (Letovsky, 1987) and as implemented in the vast array of trace-based debuggers.

Abstract interpretation Given a program semantics, abstract interpretation (Cousot & Cousot,
1977) is one way to coarsen the semantics while preserving its compositional structure. For instance,
given the multiplication operator × over the integers Z, we could define an abstract interpretation
α by mapping each integer to its sign α : Z 7→ {−, 0,+}, with the corresponding abstract operator
×α defined in the natural way. This abstraction is precise because, for any two integers x, y ∈ Z, we
have that α(x× y) = α(x)×α α(y) (i.e., α is a homomorphism). We leverage abstract interpretation
to precisely isolate a subset of the trace semantics.

2.2 LANGUAGE MODELING TASK AND TRAINING

Karel Karel is an educational programming language (Pattis, 1994) developed at Stanford in the
1970s, which is still in use in their introductory programming course today (Piech & Roberts, January
2019; CS106A, 2023). The domain features a robot (named Karel) navigating a grid world with
obstacles while leaving and picking up markers. Since being introduced by Devlin et al. (2017), Karel
has been adopted by the program synthesis community as a standard benchmark (Bunel et al., 2018;
Shin et al., 2018; Sun et al., 2018; Chen et al., 2019; 2021b), in which input-output examples are
provided, and the task is to produce a program which maps the inputs to the outputs.

Figure 2 gives an overview of our domain. Each 8x8 grid world contains 4 types of tokens: the
robot controlled by the program, which is represented by an arrow indicating the direction the robot
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Figure 2: An overview of the Karel domain. We construct training examples by sampling a random
reference program, then sampling 5 random inputs and executing the program to obtain the corre-
sponding 5 outputs. The LM is trained to perform next token prediction on a corpus of examples
consisting of the concatenation of interleaved inputs and outputs, and finally the program. At test
time, we provide only the input-output prefix to the LM, and use greedy decoding to generate a
program. The figure depicts an actual reference program and completion from the final trained LM.

currently faces (∧, <, ∨, >); markers (a space can accumulate up to 10 markers); obstacles (#); or an
empty space. We focus on the subset of the language consisting of straight line programs composed
from the following 5 operations: move advances the robot by one space in the facing direction if
there is not an obstacle ahead (otherwise, the robot does not move); turnRight and turnLeft
turn the robot right and left, respectively; putMarker and pickMarker increment and decrement
the number of markers on the space occupied by the robot (with no effect if there are 10 and 0
markers), respectively. Note that the robot obscures the number of markers on the space it currently
occupies, and the obscured markers have no effect on the correctness of a program.

Karel synthetic dataset construction Our training set consists of 500,000 randomly sampled
Karel programs of lengths between 6 and 10, inclusive. For each program, we randomly sample
5 grid worlds to serve as input, then evaluate the output of the program on each input. We create
textual representations for Karel grid worlds by scanning the grid in row order, with one token per
grid space. Each training sample consists of the concatenation of the input-output examples (the
specification), followed by the reference program. Note that (1) the training set consists only of
programs which are correct with respect to their specification and (2) the intermediate states of the
trace are not observed in the training data (hence the traces constitute latent causal semantics). We
also generate a test set of 5000 specifications in the same manner, except that the lengths of the
sampled reference programs range between 1 and 10. At test time, we consider any program that
satisfies the input-output examples to be correct (not just the reference program).

Training an LM to synthesize programs We train an off-the-shelf2 Transformer (Vaswani et al.,
2017) to perform next token prediction on our dataset. To measure synthesis accuracy, we use the LM
to generate text starting from a specification using greedy decoding. The completion is correct if it is
a well-formed program that maps each input in the specification to its corresponding output. We refer
to this as the generative accuracy of the LM. The LM achieves a maximum generative accuracy of
92.4% on the test set at step 76000 (out of 80000 total steps, measured every 2000 steps).

2Specifically, we train a 350M parameter variant of the CodeGen architecture (Nijkamp et al., 2023) in the
HuggingFace Transformers library (Wolf et al., 2020) from initialization.
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(a) Measuring semantic content with a linear probe. (b) Measuring semantic content with a 1-layer probe.

Figure 4: Comparing the semantic content measured by different probes with the generative accuracy
of the LM across training.

3 EMERGENCE OF SEMANTICS

We investigate the hypothesis that representations of semantics emerge in the LM state as a byproduct
of training the LM to perform next token prediction. Given that the LM achieves a generative accuracy
of 92.4%, rejecting this hypothesis would be consistent with MH, namely, that the LM has learned to
“only” leverage correlations in form of the specifications to consistently generate correct programs.

To test this hypothesis, we conduct a series of probing experiments to extract the direction of the
robot from the LM state as 5 separate 4-way classification tasks. The idea is to prompt the LM to
generate a program given some inputs, and check whether the LM states contain a representation of
the intermediate program states as it generates the program.

... ...

...

Figure 3: Trace dataset construction: 5 inputs and a
program are sampled independently, and a program
of length k yields k LM states and 5 execution
traces consisting of k program states each.

Every 2000 steps during training, we use the
LM to process strings consisting of inputtest :=
(input0, input0, . . . , input4, input4, program),
where the inputs and programs are sampled
independently; we obscure the outputs in the
specification so as to not “leak” information
about the semantics in the prompt, and we
duplicate the inputs in the prompt to better
match the distribution of tokens seen during
training. We then take a snapshot of (1) the final
layer hidden states of the LM as it processes
each token of the reference program, and (2) the
corresponding program states after evaluating
the partial program on each of the 5 specified
inputs. Figure 3 illustrates this process.

We repeat this process for each of the training
and test sets, producing two trace datasets con-
sisting of aligned pairs of LM and program states. We then fit a linear classifier and a 1-layer MLP to
predict the direction of the robot given the LM state as input, and evaluate the accuracy of the probes
on the test split of the trace dataset. As the facing direction yields a precise abstraction of the full
trace semantics, the ability to trace the direction of the robot formally reflects an ability to access an
aspect of the program’s semantics in a precise sense. In the main text, we refer to the accuracy of
a probe to extract the direction from the LM states as the semantic content of the LM; additional
results for additional semantic features of the program state, such as how far the robot has moved
from the initial position and whether the robot is facing an obstacle are contained in the appendix
(due to the conclusions being identical).

Emergence of semantics is correlated with generative accuracy Figure 4 plots our main results.
Our first observation is that the semantic content starts around 33% for both probes (which is close
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(a) The probe training process. (b) The proposed interventional experiment.

Figure 5: SCMs describing how supervising the probe has a confounding effect on the observed
semantic content (left) and an intervention on the semantics used to supervise the probe (right).

to the baseline performance of random guessing at 25%), and increases over the course of training.
This result suggest that the LM states do in fact contain encodings of the semantics, and crucially this
semantics emerges within an LM trained purely to perform next token prediction on text. Linearly
regressing generative accuracy against semantic content yields a surprisingly strong, statistically
significant linear correlation across training steps (R2 = 0.756 and 0.861 for the linear and 1-layer
MLP probes, respectively, and p < 0.001), i.e., the variability in the LM’s ability to synthesize
correct programs is almost completely explained by the semantic content of the LM’s state. This
suggests that, within the scope of our experimental setup, learning to model the distribution of correct
programs is directly related to learning the semantics of programs.

4 ATTRIBUTING SEMANTIC CONTENT TO MODEL STATES (NOT THE PROBE)

In this section, we address a central challenge of drawing conclusions from probing classifiers,
namely, that a high semantic content could be due to either meaning being represented in the model
states or the probe learning the task itself (Hewitt & Liang, 2019; Belinkov, 2022). In our case,
because the probe is explicit supervised on the semantics S, this introduces the two paths in Figure 5a
from S to the probe which could influence the measured semantic content. For instance, the model
states may simply encode the inputs and a list of tokens in the program generated thus far, while the
probe reads off then interprets the tokens one-by-one. This problem renders even the question of how
to formally interpret the result of a probing experiment an open question (Pimentel et al., 2020).

Instead, we propose a novel intervention study that can be used to establish a baseline for empirically
validating SH. Specifically, we conduct the causal intervention described in Figure 5b to isolate
the contribution of the probe: we define an alternative semantics S′ by replacing the semantics
of individual operations in the language with a different operator. Then, we retrace the program
according to the alternative semantics and train a new probe to decode the original model states to
the alternative semantic states.

Formally, to reject SH we need to show that

P (semanticstest|datatest, stateLM ) > P (semanticstest|datatest), (1)

since this would violate the independence of the LM state on the semantics given the text. However,
our construction of datatest consists only programs and inputs sampled independently of the semantics
S. Thus, this requirement reduces to showing that

P (semanticstest|stateLM ) > P (semanticstest) (2)

However, as the left-hand side is intractable to measure in general, we instead estimate

P (semanticstest|probe(stateLM )) > ? (3)

using the learned probe, where rejecting SH on the basis of this estimate now requires the counterfac-
tual claim that if the LM state had been independent of the semantics (given the data), then the probe
would have extracted even less information.
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(a) Measuring adjusted semantic content with a linear
probe.

(b) Measuring adjusted semantic content with a 1-
layer probe.

Figure 6: Comparing the semantic content adjusted by an alternative semantics baseline.

Under a key assumption that there are no additional confounders between the choice of S and S′ and
the probe, this counterfactual can be converted into an empirical question of whether one can find an
S′ which reduces the semantic content below what was observed under S. As such, the experiment
relies crucially on identifying an alternative semantics which is as different as possible from the
original semantics, without posing any additional challenges for the probe. In our setting, we claim
that this assumption is satisfied by preserving the set of operators (as opposed to inventing completely
new operations, e.g., move two spaces in one step). Concretely, we define the alternative semantics
S′ as follows:

original pickMarker putMarker turnRight turnLeft move

alternative turnRight turnLeft move turnRight turnLeft

For instance, the turnRight operation in the original semantics would have the robot turn 90
degrees clockwise, but in the alternative semantics the robot instead advances by a step (i.e., according
to the original definition of the move operation).

Figure 6 displays the results of this experiment, where we supervised probes to predict the direction
of the robot according to the alternative semantics S′, then plot the adjusted semantic content:

SemanticContent(θLM (S), θprobe(S))− SemanticContent(θLM (S), θprobe(S
′))

(the notation θ(S) refers to the parameters fit on the semantics S). We observe that adjusted semantic
content is significantly positive, which suggests that a significant portion of the observed semantic
content can be attributed to the LM states. Furthermore, the adjusted semantic content increases
over the course of training, and regressing against the generative accuracy yields higher R2 than
the unadjusted semantic contents (R2 = 0.821 and 0.883 for the linear and 1-layer MLP probes,
respectively, and p < 0.001), which we attributed to smoothing out noise in the early stages of
training. We thus conclude that the LM does, in fact, acquire semantics over the course of training,
despite being trained only via next token prediction on text.

5 DISCUSSION AND RELATED WORK

Meaningful representations in LMs Li et al. (2023) train a Transformer on transcripts of Othello,
then probe the model activations (not the hidden states) to extract the board state. Li et al. (2021)
fine-tune several pretrained LMs on text that describes evolving situations, then probe the model
states to test propositions about entities in the situation. Abdou et al. (2021) find that pretrained LMs’
representations of color terms are geometrically aligned with CIELAB space.

This work makes several novel contributions within this body of literature. To the best of our
knowledge, we are the first to develop a formal model of meaning acquisition in language models
via causal latent semantics. On the empirical front, we are also first to explore how semantics in
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LMs emerges over time (instead of a single snapshot at the end of training), and find a strong, linear
relationship between the emergence of semantics and correctness.

Analyzing the behavior of LMs Researchers have investigated the ability of LMs to successfully
complete a range of semantically meaningful tasks (Austin et al., 2021; Toshniwal et al., 2022; Patel
& Pavlick, 2022; Liu et al., 2023). Unlike our research, which probes the internal state of the LM to
determine the presence or absence of semantically meaningful state, this line of research works only
with the externally observable behavior of the LM.

Probing Probing (Shi et al., 2016; Belinkov & Glass, 2019) is widely used as a technique to
investigate the inner workings of LMs. A key challenge is controlling for what is learned by the
probe rather than latent in the LM (Belinkov, 2022). Hewitt & Liang (2019) develop control tasks
for word-level properties in the context of probing for parts of speech in LM representations. They
compare against the performance of a probe that maps from the model states to a dataset with a
random part of speech assigned to each word. In our case, the control task approach would assign a
random label to each program state; however, this would destroy the compositional structure of the
program, and therefore be insufficient as a stand-in for the requisite counterfactual inference. Instead,
we establish a baseline by intervening on the semantics of program constructs, and generate a new
label for each program state by evaluating the program according to the alternative semantics, while
controlling for the complexity of the alternative semantics. Our technique better is thus suited than
control tasks when probing for semantic rather than syntactic information (Pimentel et al., 2020).

Program synthesis with LMs There is a growing body of work on training large-scale, Transformer-
based LMs for program synthesis (Chen et al., 2021a; Li et al., 2022; Nijkamp et al., 2023; Fried et al.,
2023; Austin et al., 2021), as well as program synthesis as a benchmark for LMs (Hendrycks et al.,
2021; Liang et al., 2022), but none of this previous research investigates the internal representations
of LMs for evidence of semantic state. We note that these papers have also observed that the BLEU
score with respect to a reference solution is not a good predictor of the LM’s competency, which
complements our results regarding the LM’s perplexity on the training corpus.

Grounding programs from text Prior work has argued specifically that LMs cannot ground
programs given only textual hints of semantics (Merrill et al., 2021). Bender & Koller (2020) concede
that semantics could be learned from programs paired with unit tests, but assert this requires a “learner
which has been equipped by its human developer with the ability to identify and interpret unit tests,”
implying that an LM would require an additional supervised signal to associate unit tests with the
semantics of programs. In contrast, our results indicate that an LM learns the semantics of programs
from textual instances of input-output behavior using only next token prediction.

SH and WH The discussion so far has focused on rejecting SH. Indeed, attributing the semantic
content of the probe to the state of the LM constitutes strong evidence in favor of refuting SH
(Section 4). However, addressing WH is far more difficult, as it requires conditioning on the entire
training corpus. The main argument in favor of rejecting WH is that, because the LM is trained only
on programs of length 6 or greater, the training data cannot reveal any information about how the
traces are assigned to, e.g., the 2nd program state. Accepting this argument however requires rejecting
the SCM in Figure 1a. We hypothesize that WH can be resolved by the presence of an unobserved
confounder: as LMs have evolved to efficiently process human language, the architecture of the LLM
(auto-regression, parameter sharing, attention) may be biased toward the space of “natural” semantic
structures (compositional, causal, acyclic). We leave the exploration of this hypothesis to future work.

6 CONCLUSION

The question of whether semantics can be learned from text has garnered considerable interest in
recent years. This paper presents empirical support for the position that semantics is learnable from
form. More broadly, the formal approach to semantics presented here offers a principled foundation
for studying semantics in models of language—a question of both practical and philosophical
importance.
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A EXPERIMENTAL DETAILS

A.1 KAREL GRAMMAR SPECIFICATION

We use the same grammar as Devlin et al. (2017), except with loops and conditionals removed.

Prog p := def run():s

Stmt s := s1; s2 | a
Action a := move() | turnRight() | turnLeft() | pickMarker() | putMarker()

A.2 FACING DIRECTION ABSTRACTION

The facing direction abstraction maps a program state to the facing direction of the robot within that
program state. It follows that the abstraction function α is simply a projection operator that forgets
all information about the program state except for the facing direction of the robot. The abstract
semantics are given by:

full semantics pickMarker putMarker turnRight turnLeft move

abstract semantics id id turnRight turnLeft id

where id is the identity operator that does not affect the facing direction. Clearly, α is a homomor-
phism, and so the abstraction is exact.

We identify an important property of this choice of α, which is relevant to the experimental design.
First, note that α, being a projection, is linear. Second, recall that the abstraction is exact when the
abstract semantics are a subset of the full semantics, in a precise sense. Combining these two facts
yields that any conclusions we draw satisfy soundness with respect to the full semantics, i.e., we are
not looking for anything “extra”: if there exists a linear representation of the full semantics, then
there exists a linear representation of the abstract semantics; additionally, if the semantic content
with respect to the abstract semantics is high, this constitutes evidence that the model has indeed
acquired an aspect of the original full semantics. Note that if the abstract semantics were not a subset
of the full semantics, then the semantic content may be high due to measuring something which
conceptually “falls outside of” (or is unrelated to) the full semantics—in this case, high semantic
content with respect to the abstract semantics may not constitute evidence that the model has acquired
an aspect the full semantics. Hence, using a precise abstraction (as we do) is one way to ensure a
positive result is still sufficient grounds for rejecting MH.

A.3 TRAINING AND LANGUAGE MODEL DETAILS

We used the non-pretrained 350M parameter variant of the CodeGen architecture (Nijkamp et al.,
2023) from the HuggingFace Transformers library (Wolf et al., 2020), implemented in PyTorch
(Paszke et al., 2019). We used the AdamW optimizer (Loshchilov & Hutter, 2019) (but no weight
decay), a learning rate of 5e-5, a block size of 2048, and a batch size of 16. All program and grid
world tokens are represented by special tokens, and the embeddings are trained from scratch. We
trained for 80000 steps. Using a single NVIDIA A100 GPU with 80GB of VRAM, training the LM
takes around 8 days.

The probe consists of a layer normalization followed by a single linear layer. Note that the hidden
states of the CodeGen architecture are passed through a layer normalization as the final layer, so
we just re-normalize after average pooling the hidden states. The training set is formed from the
first 100000 aligned traces in the training trace dataset. We train for a total of 100 epochs using the
AdamW optimizer with a weight decay of 1e-4, a learning rate of 0.01 that decays by .1 at 75 and
90 epochs, and a batch size of 256. Using a single NVIDIA A100 GPU, training each probe takes
around 30 seconds.
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Length Accuracy

1 99.8%
2 99.1%
3 99.2%
4 98.5%
5 97.3%
6 96.4%
7 94.8%
8 92.9%
8 89.5%
8 86.3%

Table 1: The generative accuracy of the final trained LM on the test set, separated by the length of the
reference program used to generate the specification.

(a) Measuring semantic content with a linear probe. (b) Measuring semantic content with a 1-layer probe.

Figure 7: Semantic content of probing for the position of the robot as an offset of the robot from its
starting position.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RESULTS BY PROGRAM LENGTH

This section presents results which demonstrate that the LM learns to synthesize correct programs for
specifications generated by reference programs of up to length 10, including for lengths shorter than
what it has seen in its training data.

Table 1 displays the results of this analysis. We see that the LM is able to accurate generate programs
that satisfy the specifications across all lengths, with only a moderate drop in accuracy as the reference
program length approaches the maximum length of 10.

B.2 ADDITIONAL TASKS

We additional probe the LM states for two additional features of the semantics: the position of the
robot (Figures 7 and 8) and whether the space in front of the robot is clear when a move() instruction
is issued (Figures 9 and 10). Note that the second property tests whether the LM can acquire the
semantics of a conditional.

C FURTHER DISCUSSIONS OF RELATED WORK

Austin et al. (2021) evaluate a 137 billion parameter LM trained on a mixture of natural language and
programs to synthesize Python programs given a natural language description and three input-output
assertions. They find that sampling 80 programs from the LM yields at least one accurate program on
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(a) Measuring adjusted semantic content with a linear
probe.

(b) Measuring adjusted semantic content with a 1-
layer probe.

Figure 8: Adjusted semantic content of probing for the position of the robot as an offset of the robot
from its starting position.

(a) Measuring semantic content with a linear probe. (b) Measuring semantic content with a 1-layer probe.

Figure 9: Semantic content of probing for whether the space in front of the robot is clear, when a
move() operation is generated.

(a) Measuring adjusted semantic content with a linear
probe.

(b) Measuring adjusted semantic content with a 1-
layer probe.

Figure 10: Adjusted semantic content of probing for whether the space in front of the robot is clear,
when a move() operation is generated.
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around 60% of the tasks, but the LM is only able to generate the output of the program 29% of the
time when using greedy decoding. They conclude that LMs do not learn any substantial amount of
semantics, despite being able to synthesize correct programs.

We offer three possible explanations: (1) the prompts provided to the LM often contain natural
language descriptions of the algorithm, and hence their evaluation is closer to translation than pure
synthesis; (2) continuing to train the LM beyond 60% accuracy would yield an LM that is better at
predicting the output of the program; and (3) we use greedy decoding for both synthesis, whereas
top-k or sampling-based metrics may overestimate the proficiency of the LM at synthesis.
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