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Abstract
Scaling laws are powerful tools to predict the
performance of large language models. How-
ever, current scaling laws fall short of accounting
for inference costs. In this work, we first show
that model architecture affects inference latency,
where models of the same size can have up to
3.5× difference in latency. To tackle this chal-
lenge, we modify the Chinchilla scaling laws to
co-optimize the model parameter count, the num-
ber of training tokens, and the model architecture.
Due to the reason that models of similar training
loss exhibit gaps in downstream evaluation, we
also propose a novel method to train inference-
efficient models based on the revised scaling laws.
We perform extensive empirical studies to fit and
evaluate our inference-aware scaling laws. We
vary model parameters from 80M to 1B, training
tokens from 1.6B to 30B, and model shapes, train-
ing 63 models. Guided by our inference-efficient
scaling law and model selection method, we re-
lease the Morph-1B model, which improves infer-
ence latency by 1.8× while maintaining accuracy
on downstream tasks compared to open-source
models, pushing the Pareto frontier of accuracy-
latency tradeoff. Notably, our experiments reveal
that wider and shallower models can yield effi-
ciency gains while preserving accuracy.

1. Introduction
Scaling laws have shown immense value in guiding the
development of large language models (LLMs) by establish-
ing predictable relationships between model size, training
compute, and performance metrics, such as loss and down-
stream tasks performance (Kaplan et al., 2020; Hoffmann
et al., 2022; Muennighoff et al., 2023; Gadre et al., 2024).
They reliably reduce the cost of training LLMs and improve
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Figure 1. We train Morph-1B and its variant models on 30B to-
kens. The results indicate that Morph-1B maintains high accuracy
on downstream tasks and achieves faster inference than open-
source models and their variants. OPT-IML-1.3B achieves slightly
higher performance on downstream tasks than Morph-1B since it is
trained on 180B tokens (Iyer et al., 2022) and is instruction-tuned.
We obtain the accuracy by evaluating models on 11 downstream
tasks used by Open-LM (Gururangan et al., 2023). The inference
latency is collected by using the Hugging Face generate func-
tion on a single NVIDIA Ampere 40GB A100 GPU with batch
size 1, input length 128, and output length 256.

model design efficiency by accurately estimating an LLM’s
performance via the results of smaller language models,
which can be developed using far less cost and fewer com-
puting resources.

However, as the field progresses, it is increasingly evident
that focusing solely on training does not adequately ad-
dress the practical realities of deploying these models at
scale (Touvron et al., 2023a). A key limitation of existing
scaling laws is their disregard for inference costs, which
dominate the long-term expenses of utilizing large models
in real-world applications (Sardana et al., 2023). In other
words, while compute-optimal models minimize training
loss per unit of compute, they may result in models that are
more expensive to serve, especially in latency-sensitive ap-
plications such as chatbots. The growing adoption of LLMs
in reasoning systems also highlights the need for scaling
frameworks that explicitly account for inference costs (Snell
et al., 2024; Brown et al., 2024; Luo et al., 2024; Qi et al.,
2024; Guan et al., 2025).
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While a recent study (Sardana et al., 2023) has introduced
scaling laws that consider the total number of FLOPS for
training and inference, their constraint requires estimating
the number of tokens inferred during the model’s lifespan.
As inference is performed repeatedly throughout a model’s
lifecycle, their scaling law (Sardana et al., 2023) is not
practical for real-world applications.

In addition, current scaling laws focus on balancing model
size (number of parameters) and the number of training to-
kens within a fixed compute budget1 (Hoffmann et al., 2022;
Muennighoff et al., 2023; Sardana et al., 2023; Gadre et al.,
2024). Among these, the Chinchilla scaling law (Hoffmann
et al., 2022) is the most renowned, demonstrating that the
optimal training solution is D = 20N for a fixed FLOPs
budget, where N is the number of parameters and D is the
number of tokens for training. However, in practice, we see
that FLOPs are not a primary constraint. Models are trained
for durations much larger than Chinchilla optimal (e.g., 1T
tokens for Llama-7B and 8T tokens for Gemma-2-9B (Tou-
vron et al., 2023a; Team et al., 2024b)). Additionally, practi-
tioners choose the model size (number of parameters) based
on the memory capabilities of the deployment device (Hu
et al., 2024; Yao et al., 2024). Thus, we need scaling laws
that can explicitly consider data size, device memory, and
inference latency.

In this work, we aim to address the following question:

Given dataset and parameter constraints, can we
train an inference-efficient and accurate model
for downstream tasks?

We first show that the number of parameters is not the ex-
clusive factor affecting inference efficiency. As illustrated
in Figure 2, the model architecture also plays a critical role.
Following this observation, we introduce inference-efficient
scaling laws, building upon the Chinchilla scaling law and
incorporating model architecture considerations. Addition-
ally, due to the disparity between model loss and accuracy
in downstream tasks, we develop a novel method (Figure 6)
that utilizes inference-efficient scaling laws to rank various
model architectural choices. Our findings suggest that the
relative ranking of loss predictions from scaling laws is
more significant than their absolute values (§2).

To fit the inference-efficient scaling laws, we train more
than 60 models ranging from 80 million to 339 million
parameters for up to 13 billion tokens and record the loss
of models. We also train several models with more than
1 billion parameters and 20 billion tokens to evaluate the
predictive power of the fitted inference-efficient scaling

1The compute cost is approximated as FLOPs(N,D) ≈ 6ND,
where N is the number of parameters and D is the number of
training tokens.
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Figure 2. Open-Source LLM’s Inference Latency: An overview
of inference latency in open-source LLMs. The evaluated models
include LLaMA (Touvron et al., 2023b), Qwen (Yang et al., 2024),
Gemma (Team et al., 2024a;b), and MiniCPM (Hu et al., 2024). All
evaluations were performed using the Hugging Face generate
function on a single NVIDIA Ampere 40GB A100 GPU with batch
size 1, input length 128, and output length 256.

laws. We observe that overtraining plays a critical role in
obtaining an accurate scaling law and that our inference-
efficient scaling law is more accurate and robust than the
Chinchilla scaling law. Using only 6 data points and 85
A100 GPU hours for curve fitting, our inference-efficient
scaling law can still accurately predict the loss of scaled-up
models (§3, §4).

Lastly, we train the Morph-1B2 model using the best model
configuration predicted by our inference-efficient scaling
law and ranking algorithm. Figure 1 summarizes our main
results. Compared to other open source models of sim-
ilar size, Morph-1B improves the inference latency by
1.8× while maintaining accuracy over downstream tasks.
These findings underscore the effectiveness of our inference-
efficient scaling law. By designing a general scaling law
that focuses on inference latency, our work can also capture
the accuracy-efficiency trade-off for recent and future archi-
tectural optimizations, such as GQA (Touvron et al., 2023b;
Dubey et al., 2024) and MLA (Liu et al., 2024a).

2. Scaling Laws
In this section, we first present the formulation of existing
language model scaling laws in §2.1. Next, we introduce
a scaling law for inference efficiency that takes into ac-
count the number of parameters, training tokens, and model
shape in §2.2. Finally, we present a novel method to select

2The training code is available at https://github.
com/Waterpine/open-lm-morph. The Morph-1B model
checkpoint is available at https://huggingface.co/
NaiveUser/morph-1b.
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Figure 3. Model Shape on End-to-End Inference Latency: (Left) We illustrate the correlation between inference latency and the number
of layers, with constant hidden size. Due to the sequential nature of LLM execution, latency increases linearly with the number of layers.
(Center) We plot the relationship between inference latency and hidden size with the number of layers fixed. We see that model width
does not affect latency for smaller models but only for larger models. (Right) We show the relationship between inference latency and
aspect ratio, with the number of model parameters fixed. We see a downward trend in inference latency as we make the model wider and
shallower. All evaluations were performed using the Hugging Face generate function on a single NVIDIA Ampere 40GB A100 GPU with
batch size 1, input length 128, and output length 256.

inference-efficient language models for training using our
scaling laws in §2.3.

2.1. Preliminaries

Scaling laws predict a model’s loss based on the allocated
compute resource C. Following OpenAI (Kaplan et al.,
2020) and Chinchilla (Hoffmann et al., 2022), the compute
resource C is a function dependent on the model size N and
the number of training tokens D. The goal is to minimize
model loss within the constraints of the available compute
resources:

argmin
N,D

L(N,D) s.t. FLOPs(N,D) = C (1)

Using the formulation above, several scaling laws have been
established (Kaplan et al., 2020; Hoffmann et al., 2022;
Muennighoff et al., 2023; Sardana et al., 2023) to accurately
model the performance of large language models from train-
ing a series of much smaller ones. The Chinchilla loss
function L(N,D)3 is widely adopted to predict a model’s
training loss:

L(N,D) = E +AN−α +BD−β (2)

where N is the number of parameters, D is the number of
tokens used for training and A,B,E, α, β are parameters
to be learned. Through training multiple models and curve
fitting, Chinchilla (Hoffmann et al., 2022) identify D ≈
20N as the compute-optimal solution for large language
model pretraining.

3Like Chinchilla (Hoffmann et al., 2022), we use smoothed
training loss to estimate test loss.

2.2. Inference-Efficient Scaling Laws

Despite its popularity, the Chinchilla scaling law fails to
resolve the following challenges:

• The FLOPs constraint outlined in Eq. (1) does not re-
flect how model training decisions are made in practice.
First, both the model size and the training corpus are
determined in advance to accommodate for resource
constraints when deploying these models (Touvron
et al., 2023a). Therefore, for each model and train-
ing corpus pair, training FLOPs is essentially a fixed
constant (assuming training epochs are also predeter-
mined). Furthermore, while the Chinchilla scaling law
suggests training a 10B parameter model with 200B
tokens, overtraining frequently occurs in practice. For
example, the LLaMA-3-8B model uses 15 trillion to-
kens for training (Touvron et al., 2023a), while the
Gemma-2-9B model utilizes 8 trillion tokens (Team
et al., 2024b). These numbers are 44-93x larger than
the Chinchilla optimal recommendation.

• Existing scaling laws focus only on how the number
of parameters affects inference latency. However, as
depicted in Figure 2, smaller models can sometimes
exhibit higher inference latencies than larger models.
For instance, MiniCPM-1B (Hu et al., 2024) has a
higher latency compared to Qwen2.5-14B (Yang et al.,
2024).

In view of this, we propose rewriting Eq. (1) as below to
meet practical requirements:

argmin
N,D

L(N,D) s.t. N ≤ NC , D ≤ DC , Tinf ≤ TC (3)
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Figure 4. Model Shape on Throughput: We examine the relationship between inference throughput and model architecture by fixing
the total parameter count and varying the hidden size and number of layers. Across different batch sizes, wider and shallower models
consistently yield better inference throughput for large language models. Each tuple in the legend represents a model configuration: the
first number is the hidden size dmodel, and the second is the number of layers nlayers. All evaluations were performed using the Hugging
Face generate function on a single NVIDIA Ampere 40GB A100 GPU with input length 128, and output length 256.
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Figure 5. Inference-Efficient Scaling Laws: In this plot, each data point represents a training run with the given configuration. The
dashed lines represent predictions based on the inference-efficient scaling laws outlined in Eq. (4). (Left) The number of training tokens is
20N ; (Center) The number of training tokens is 40N ; (Right) The number of tokens used for training is 160N , where N denotes the
number of parameters. Our scaling law accurately captures the training loss across different training durations.

where NC represents the constraint on model size and DC

denotes the constraint on the number of training tokens. To
account for the inference latency budget, we introduce a
new term TC to our scaling law formulation to represent the
inference latency constraint.

Motivated by Figure 2, we closely examine the effect of the
aspect ratio (dmodel/nlayers) on inference latency and through-
put by altering the hidden size dmodel and the number of
layers nlayers as shown in Figure 3 and Figure 4. Reasonable
aspect ratios are chosen based on open-weight models listed
in Appendix G.

Figure 3(a) shows that inference latency increases linearly
with the number of layers when the hidden size remains
constant. This occurs as the inference computation must
be performed sequentially, one layer at a time (Yan et al.,
2024). However, the matrix computations within a single
layer can be performed in parallel. Furthermore, Figure 3(c)
indicates that for the same number of parameters, we can

achieve different latency targets by changing the ratio of
the number of hidden parameters in one layer (dmodel) vs.
the number of layers (nlayers). Moreover, in Figure 4, We
study the relationship between model shape and inference
throughput under a fixed parameter budget. We observe
that, under a fixed parameter budget, wider and shallower
models consistently achieve higher inference throughput.
Due to space constraints, results on the relationship between
aspect ratio and time to first token (TTFT) are provided in
Appendix C.

Prior work (Kaplan et al., 2020) has shown the impact of
the aspect ratio (dmodel/nlayers) on the performance of the
model. However, it does not define the connection between
model size, number of training tokens, and model shape. To
establish this relationship, we trained several small models
N ∈ {80, 116, 164, 237, 313}M by varying the aspect ratio
and setting D ∈ {20, 40, 160}N . Due to resource limita-
tions, we only train a subset of the models at D = 160N .
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Figure 6. An Overview of Methodology: (A) The model training team first selects several candidate models with various model sizes
and configurations; (B) Measure the inference latency using open-source inference systems and predict model loss with fitted scaling
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Figure 7. Accuracy vs. Loss: (Left) We illustrate the correlation between accuracy and model loss on PIQA (Bisk et al., 2020). (Center)
We present the connection between accuracy and model loss on BoolQ (Clark et al., 2019). (Right) We show the connection between
accuracy and model loss on HellaSwag (Zellers et al., 2019). These three patterns shown in the plots demonstrate the difficulty in robustly
predicting individual downstream task accuracies from scaling laws.

We plot the loss values against the aspect ratio in Figure 5.
From the figure, we can see that the most suitable model
shape adjustment is the inclusion of the term (1 + εRγ) to
the Chinchilla scaling law (Hoffmann et al., 2022). There-
fore, we derive the following inference-efficient scaling law
formulation:

L(N,D,R) = (E +AN−α +BD−β) · (1 + εRγ) (4)

where N is the number of parameters, D is the number of
training tokens, and R = dmodel/nlayers is the aspect ratio.
Moreover, A,B,E, α, β, γ, ε are learned parameters. In
Figure 5, we plot the predicted values from the scaling law
against the observed values from training. More details of
the experimental setup and fitting procedure can be found
in §3.

2.3. Methodology

Scaling laws were first developed to predict the loss of
language models. However, LLMs are evaluated on the per-
formance of downstream tasks. A recent study (Gadre et al.,
2024) attempts to establish scaling laws that link evaluation

loss to errors in downstream tasks. Inherently, predicting
the error in downstream tasks becomes challenging when
model losses are similar, due to noise and inaccuracies in
scaling laws. We observe this in Figure 7. To tackle this
challenge, we develop a new method for training inference-
efficient models, as shown in Figure 6. Our key idea is
that inference latency measurement has negligible overhead,
and scaling laws can help us estimate the loss of scaled-up
models. Thus, we propose identifying top-k candidate mod-
els using inference latency and loss data, where the user
can choose k. After training, we evaluate these models on
downstream tasks and release the best-performing model to
the public, taking into account both inference latency and
performance on downstream tasks. Our method (Figure 6)
can also be applied to different architectural optimizations,
such as MLA (Liu et al., 2024a), to quantify the accuracy-
efficiency tradeoff.
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3. Experiments
We next discuss the experiment setup we use for model
training and evaluation (§3.1). Following that, in §3.2, we
demonstrate how to fit scaling laws using our experimental
results.

3.1. Experimental Setup

Training Setup. For all experiments, we train transformer-
based decoder-only language models (Vaswani, 2017). Fol-
lowing (Gururangan et al., 2023; Gadre et al., 2024), the
model’s architecture is similar to GPT-2 (Radford et al.,
2019) and LLaMA (Touvron et al., 2023a), with GPT-
NeoX (Black et al., 2022) employed as the tokenizer. We
train models with a maximum of 1.5 billion parameters for
up to 30 billion tokens, following the compute-optimal setup
in (Hoffmann et al., 2022). The models are trained on uni-
formly sampled subsets of DCLM-Baseline (Li et al., 2024)
with one epoch, ensuring no repetition in data (other than
possible data repetition in the dataset itself). More details
are included in Appendix A.

Evaluation Setup. We use HuggingFace (Wolf, 2019)
to measure the inference efficiency of models over a sin-
gle NVIDIA Ampere 40GB A100 GPU. By default, we
set the number of input and output tokens to be 128 and
256, respectively, aligning with the distribution outlined in
ShareGPT (Kwon et al., 2023).

We use LLM-foundry (llm, 2024) along with a zero-shot
evaluation approach to evaluate model performance on
downstream tasks. We evaluate the downstream task ac-
curacy of models derived from the methodology outlined in
§2.3 using the following datasets: ARC-Easy (Clark et al.,
2018), ARC-Challenge (Clark et al., 2018), BoolQ (Clark
et al., 2019), COPA (Roemmele et al., 2011), Hel-
laSwag (Zellers et al., 2019), LAMBADA (Paperno et al.,
2016), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi
et al., 2021), MMLU (Hendrycks et al., 2020), Jeop-
ardy (Jeo, 2022), and Winograd (Levesque et al., 2012).

Furthermore, to compare the predicted loss against the ac-
tual loss, we measure relative prediction error: |ψ − ψ̂|/ψ,
mean squared error (MSE): 1

n

∑n
i=1(ψi − ψ̂i)

2, and R2 =

1−
∑n

i=1(ψi − ψ̂i)
2/

∑n
i=1(ψi − ψ̄)2, where ψ represents

the actual loss, ψ̂ the predicted loss from scaling laws, and
ψ̄ = 1

n

∑n
i=1 ψi. We also apply Spearman’s rank correla-

tion coefficient (Spearman, 1961) to evaluate how well the
predicted rankings correspond to the actual rankings.

3.2. Fitting Scaling Laws

Following (Gadre et al., 2024), we use the Levenberg-
Marquardt algorithm to fit Eq. (4). The Leven-
berg–Marquardt algorithm solves least-squares curve fit-

ting problems, where the goal is to find the parameter
vector β of a model f(x, β) that minimizes the sum of
squared deviations. Formally, the problem can be expressed
as argminβ

∑m
i=1 [yi − f(xi, β)]

2, where (xi, yi) are data
pairs. Following observations from Chinchilla scaling
law (Hoffmann et al., 2022) and another recent work (Gadre
et al., 2024), we set α, β, and γ equal to simplify the fitting
procedure. To fit and evaluate the scaling law, we train 63
models using a range of model sizes, shapes, and amounts
of training tokens. The size of our model ranges from 80M
to 339M and the number of tokens used for training ranges
from 1.6B to 12.8B. Detailed model configurations can be
found in Table 4 in Appendix A.

4. Results
In this section, we first study the predictive power of our
inference-efficient scaling laws in §4.1. Then, in §4.2, we
release an inference-efficient model that maintains accuracy
on downstream tasks compared with open-sourced models
by using the methodology outlined in Figure 6. We also
show that our method significantly outperforms Chinchilla
in predicting the best model configurations. Finally, we
perform ablation studies on obtaining robust scaling laws
and show that our inference-efficient scaling law is more
robust than Chinchilla in various scenarios in §4.3.

Table 1. Data Used to Fit Scaling Laws: In this table, we show
the number of parameters and tokens used in model training to
fit the scaling laws in Figure 8-10. ✓ indicates we use all model
variants with the given size and ✗ means we do not use any model
variants with the given size. ❖ indicates that we randomly sample
one model variant from the candidate set. The details of model
variants are included in Appendix A.

N D Figure 8 Figure 9 Figure 10

80M 1.6B ✓ ✓ ❖
116M 2.3B ✓ ✓ ❖
164M 3.2B ✓ ✓ ❖
237M 4.7B ✓ ✓ ❖
313M 6.2B ✓ ✓ ❖
80M 12.8B ✓ ✗ ❖

4.1. Prediction acccuracy

As shown in §3.2, we obtain the actual losses of various
models by training multiple small models with different
model configurations to establish the scaling law. We set
N ∈ {80, 116, 164, 237, 313}M and D = 20N to train
small models and collect the data to fit the learnable param-
eters in Eq. (2) and Eq. (4). Furthermore, to enhance the
generality of the scaling law, we train 80M models with
D = 160N tokens, thereby collecting data from an over-

6
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Figure 8. Comparison: (Left) We illustrate the predicted versus actual loss using Eq. (2). (Center) We display the comparison of predicted
to actual loss based on Eq. (4). Dots represent data points used for curve-fitting, while cross marks represent test data points. (Right)
We demonstrate that our inference-efficient scaling law yields a significantly higher Spearman correlation, resulting in more precise
predictions of the optimal model configuration.

training setting.

Then, we train larger models on more tokens to evaluate
the predictive power of our inference-efficient scaling law.
We present the results in Figure 8. Figure 8 demonstrates
that our scaling law achieves higher accuracy than the Chin-
chilla scaling law, as shown by a smaller MSE and a larger
R2 (Wright, 1921) value. We reduce MSE from 0.0033 to
0.0006 while improving R2 from 0.9895 to 0.9982. In addi-
tion, the relative prediction error for the inference-efficient
scaling law is less than 1.2%, whereas for the Chinchilla
scaling laws, it ranges from 2.7% to 4.1%. This demon-
strates that the inference-efficient scaling law predicts more
accurately than the Chinchilla scaling law.

Furthermore, as illustrated in Figure 6, prioritizing the rank-
ing of predicted loss is more critical than its absolute value
when employing the training methodology described in §2.3
for inference-efficient models. We calculate Spearman’s
rank correlation coefficient (Spearman, 1961) for both the
Chinchilla scaling law and the inference-efficient scaling
law when predicting the loss of 1B models. The results are
shown in Figure 8(c). The results indicate that our inference-
efficient law is more effective in ranking different model
configurations. For example, the inference-efficient scaling
law shows a Spearman correlation of 1.00 for the 1B model
loss prediction, in contrast to Chinchilla’s -0.40. In Ap-
pendix A, we include more details on model configurations.

4.2. Inference-Efficient Models

Guided by the accurate inference-efficient scaling law, we
employ the predict, rank, and select method outlined in Fig-
ure 6 to train inference-efficient models. First, we generate
a range of variants from the Open-LM-1B model (Guru-
rangan et al., 2023) by adjusting the aspect ratio. Then,
we measure the inference latency of model variants on a
single A100 GPU. Next, we select 3 models based on the

Table 2. Inference-Efficient Models: In this table, we compare
the results of Morph-1B variants against other open pretrained mod-
els of similar size. The evaluation of large language models such as
Open-LM-1B (Gururangan et al., 2023), OPT-1.3B (Zhang et al.,
2022), Pythia-1.3B (Biderman et al., 2023), Neox-1.3B (Black
et al., 2022) and OPT-IML-1.3B (Iyer et al., 2022) is summarized
from (Gururangan et al., 2023).

Models dmodel nlayers Avg. Latency (s)

Open-LM-1B 2048 24 0.49 3.61
OPT-1.3B 2048 24 0.50 2.55
Pythia-1.3B 2048 22 0.49 3.28
Neox-1.3B 2048 24 0.49 3.99
OPT-IML-1.3B 2048 24 0.54 2.54

Morph-1B-v1 2048 24 0.52 3.61
Morph-1B-v2 2560 16 0.52 2.57
Morph-1B 3072 12 0.52 1.96

measured inference latency and predicted loss, and train
candidate models with the same training dataset. Finally,
we evaluate the trained models over 20 downstream tasks
and we outline the results in Figure 1 and Table 2.

As a baseline, the architecture of Morph-1B-v1 is identi-
cal to that of Open-LM-1B. The superior performance of
Morph-1B-v1 over Open-LM-1B can be attributed to the
higher quality DCLM-Baseline dataset (dcl, 2024). Addi-
tionally, OPT-IML-1.3B outperforms Morph-1B-v1 since
it undergoes pre-training on 6x more unique tokens (180B
vs 30B) followed by a fine-tuning stage (Iyer et al., 2022).
Next, we train Morph-1B and Morph-1B-v2 which are de-
rived from Morph-1B-v1 by modifying the aspect ratio. We
use the same 30B tokens to train Morph-1B, Morph-1B-v1,
and Morph-1B-v2. As illustrated in Table 2, the inference
latency for Morph-1B-v1 is 1.8× lower compared to Morph-
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Figure 9. Excluding Over-training Data: We avoid using over-training data to fit the scaling laws. (Left) The figure is plotted by using
Eq. (2). (Center) the center figure is created with Eq. (4). (Right) We plot the Spearman correlation of our scaling law versus the Chinchilla
scaling law. The results indicate that additional training data can enhance the precision of scaling laws.
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Figure 10. Random Choice of Model Shape: We randomly select the model shape to fit the scaling laws. (Left) The figure is plotted by
using Eq. (2). (Center) The center figure is created with Eq. (4). (Right) We plot the Spearman correlation of our scaling law versus the
Chinchilla scaling law. The results show that inference-efficient scaling laws are more robust than Chinchilla scaling laws.

1B, without any loss in accuracy.

4.3. Insights from Scaling Laws Fitting

Scaling laws provide a cheap and accurate way to predict
language model performance at larger scales. However, a
drawback of building scaling laws is the requirement to train
models at various scales. In this section, we study how to
make scaling laws robust and data-efficient.

Exclude Over-training Data. In this ablation study, we fit
the scaling law based entirely on the Chinchilla-optimal
setup, using only data points where training tokens are
set to be Chinchilla-optimal. We vary the model size
N ∈ {80, 116, 164, 237, 313}M and set the number of train-
ing tokens D = 20N , excluding data from N = 80M and
D = 160N . Table 1 shows the configurations we run on
and the results are shown in Figure 9. Compared to Figure 8,
we observe that the inference-efficient scaling law is more
robust than the Chinchilla scaling law. We achieve a much
lower MSE of 0.1165 compared to Chinchilla’s 0.9825 and
an R2 score of 0.6293 compared to Chinchilla’s -2.1259.

However, we note that both scaling laws’ performance de-
teriorates when applied to predicting losses in over-trained
models. Therefore, data from over-training is essential to fit
our inference-aware scaling law.

Select Model Shape Randomly. In this ablation study, we
explore the robustness of our scaling laws via fitting mod-
els with random model architecture configurations. In this
setting, the model architecture configuration for each size
is chosen randomly. We randomly select a configuration
from our model configuration pools (The complete list of
candidate configurations can be found in Table 4 in Ap-
pendix). Figure 10 shows the experiment results. Compared
to Chinchilla scaling laws, our inference-efficient scaling
laws exhibit greater robustness with much smaller MSE
(0.0008 vs 0.0198) and higher R2 value (0.9973 vs 0.9369).
We then use these two laws to predict the loss of 1B mod-
els. The results show that the relative prediction error for
the inference-efficient scaling law is less than 0.72%, sig-
nificantly lower than the Chinchilla scaling law’s relative
prediction error, which ranges from 11.8% to 13.4%. Fi-
nally, by using only six data points to fit the two scaling
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laws, we significantly reduce the training costs associated
with developing these laws. The GPU hours for fitting have
been reduced from 450 to 85 A100 GPU hours.

5. Related Work
Large Language Models. Transformer (Vaswani, 2017)
has been successfully applied to a variety of tasks: text
classification (Wang, 2018; Sarlin et al., 2020), genera-
tion (Zellers et al., 2019; Sakaguchi et al., 2021), reason-
ing (Srivastava et al., 2022), and mathematics (Cobbe et al.,
2021; Hendrycks et al., 2021), showcasing their broad ap-
plicability and effectiveness. The development of the GPT
models (Brown et al., 2020) demonstrates that increasing
the scale of language models significantly enhances their
performance across various downstream tasks. The success
of the GPT models has inspired the subsequent develop-
ment of many large language models, including but not
limited to LLaMA (Touvron et al., 2023a;b), Gemma (Team
et al., 2024a;b), Qwen (Bai et al., 2023; Yang et al., 2024),
and DeepSeek (Liu et al., 2024a;b; Guo et al., 2025), each
designed to push the boundaries of language modeling.

Scaling Laws. Scaling laws are powerful predictors for how
large language models behave as parameters increase (Ka-
plan et al., 2020). Plenty of subsequent works have con-
tributed to the development of scaling laws (Hoffmann et al.,
2022; Muennighoff et al., 2023; Sardana et al., 2023; Tao
et al., 2024; Kumar et al., 2024; Gadre et al., 2024; Ruan
et al., 2024; Abnar et al., 2025; Krajewski et al., 2024). In
particular, Chinchilla scaling law (Hoffmann et al., 2022) op-
timizes a fixed computing budget allocation by balancing the
number of model parameters against the number of training
tokens to minimize the training loss. Data-Constrained scal-
ing law (Muennighoff et al., 2023) extends the Chinchilla
scaling laws by considering repeated data. The scaling laws
presented in (Gadre et al., 2024) not only predict training
loss under over-training scenarios but also connect training
loss to downstream error. Beyond Chinchilla-Optimal (Sar-
dana et al., 2023) attempted to account for inference cost
in their scaling law. However, unlike training tokens, the
number of inference tokens cannot be measured in advance.

Inference Serving Systems. Inference cost has drawn sig-
nificant attention in recent years. Many inference systems
and algorithms have been developed to speed up model
serving (Olston et al., 2017; Gujarati et al., 2020; Gug-
ger et al., 2022; Yu et al., 2022; Leviathan et al., 2023;
Kwon et al., 2023; Zheng et al., 2023; Agarwal et al.,
2024a;b; Ye et al., 2025; MLC team, 2023-2025). Specifi-
cally, Orca (Yu et al., 2022) utilizes continuous batching to
achieve higher inference throughput. vLLM (Kwon et al.,
2023) improves the throughput of popular LLMs by using
PagedAttention to manage the KV cache memory. Further-
more, SGLang (Zheng et al., 2023) improves the inference

throughput and latency by using RadixAttention. A recent
study introduces FlashInfer (Ye et al., 2025), which employs
block-sparse and composable formats to tackle KV cache
storage heterogeneity.

Compute-Efficient Model Design. Previous research has
explored the trade-offs of various model configurations in
Vision Transformers (ViTs) (Alabdulmohsin et al., 2023).
Additionally, (Tay et al., 2021) demonstrates that training
deep and narrow models can be particularly beneficial when
computational resources are limited. More recently, several
efficient attention mechanisms (Xiao et al., 2023; Gao et al.,
2024; Jiang et al., 2024; Xiao et al., 2024; Yuan et al., 2025)
have been introduced to enhance inference efficiency by
modifying the attention block.

6. Limitations and Future Work
Although there has been notable progress by our team, sev-
eral unresolved challenges open up promising prospects
for further study. First, due to resource limitations, we are
unable to scale our training to include 7B models. Sec-
ond, recently developed inference systems (Ye et al., 2025)
can enhance inference efficiency and create new trade-
offs between inference efficiency and model performance.
Furthermore, Attention modules like Multi-Query Atten-
tion (MQA) (Shazeer, 2019), Grouped-Query Attention
(GQA) (Ainslie et al., 2023) and Multi-Head Latent At-
tention (MLA) (Liu et al., 2024a) might also influence loss
and inference latency. Our work provides a flexible way to
quantify and predict how these architectural optimizations
affect the accuracy-efficient tradeoffs. We hope this work
opens up a new line of research that takes inference effi-
ciency as an essential factor in designing language models.

7. Conclusion
In this work, we perform an extensive empirical study to
develop scaling laws that guide us in designing inference-
efficient model architecture. We first demonstrate that
model architecture impacts inference efficiency and that
existing scaling laws do not account for inference costs. To
jointly optimize inference cost and model loss, we propose
inference-efficient scaling laws. We conduct count num-
ber, each point is a number experiments to fit and evaluate
the inference-efficient scaling laws. To tackle the dispar-
ity between model loss and downstream task performance,
we have developed a novel methodology to train and rank
inference-efficient models using our scaling law. Finally, we
design and train Morph-1B model by leveraging inference-
efficient scaling law, which enhances inference efficiency
while maintaining accuracy in downstream tasks, compared
to similar-sized open-sourced models.
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M., Krutul, M., Antoniak, S., Ciebiera, K., Król, K.,
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Table 3. Hyperparameters: We show the hyperparameters used for training in this paper. In addition, the batch size is the global batch
size and the default sequence length is 2048.

Model Size Warmup Learning rate Weight decay z-loss Batch size

<400M 2000 3e-3 0.033 1e-4 512
1B 5000 3e-3 0.033 1e-4 256

Table 4. Model Architectures: We list the architectural configurations of all models trained in this paper. dmodel is the hidden size, fsize is
the intermediate size, nlayers is the number of layers, and nheads is the number of attention heads.

Model Size Variant dmodel fsize nlayers nheads

80M v1 512 1536 8 8
80M v2 576 1536 5 8
80M v3 640 1792 3 8
80M v4 448 1280 13 8
80M v5 384 1024 22 8
86M v1 576 1536 7 8
86M v2 640 1792 4 8

116M v1 640 1792 10 10
116M v2 720 2048 6 10
116M v3 800 2304 4 10
116M v4 880 2560 3 10
116M v5 560 1536 15 10
116M v6 480 1280 24 10
126M v1 720 2048 8 10
126M v2 800 2304 5 10
164M v1 768 2048 12 12
164M v2 864 2304 8 12
164M v3 960 2560 6 12
164M v4 1056 2816 4 12
164M v5 1152 3072 3 12
178M v1 864 2304 10 12
178M v2 960 2560 7 12
237M v1 896 2560 14 14
237M v2 1008 2816 10 14
237M v3 1120 3072 8 14
237M v4 1232 3328 6 14
313M v1 1024 2816 16 16
313M v2 1152 3072 12 16
313M v3 1280 3584 9 16
313M v4 1408 3840 7 16
339M v1 1152 3072 14 16

Morph-1B v1 2048 5632 24 16
Morph-1B v2 2560 6912 16 16
Morph-1B / 3072 8192 12 16

A. Hyperparameters and Model Architectures
We follow the hyperparameters mentioned in (Li et al., 2024; Gadre et al., 2024) with the specific details presented in Table 3.
A cooldown rate of 3e-5 is used in all experiments. All models are trained in bfloat16 precision using the AdamW optimizer.
The number of parameters is computed using sum(p.numel() for p in model.parameters()). To examine
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how model architecture influences loss metrics and inference performance, we vary the model configuraitons. Architectural
details are provided in Table 4.

B. Results over A30 GPUs
In this section, we first evaluate the inference efficiency of open-source large language models (LLMs), aiming to develop a
robust scaling law across different hardware. From Figure 11, we observe similarly that both the number of parameters and
the model architecture are crucial to the inference efficiency of the model. In addition, Figure 12 also demonstrates that
inference latency increases linearly with the number of layers, and we can reduce inference latency by adjusting model
configurations, which aligns with the observations made using the A100 GPU. Furthermore, we also evaluate the inference
latency of models using various numbers of input and output tokens. Figure 13 demonstrates that the aforementioned
conclusion remains valid when the number of input tokens is set to 1024 and the number of output tokens to 128.
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Figure 11. Open-Source LLM’s Inference Latency: An overview of inference latency in open-source LLMs. The evaluated models
include LLaMA (Touvron et al., 2023a), Qwen (Yang et al., 2024), Gemma (Team et al., 2024a;b), and MiniCPM (Hu et al., 2024). All
evaluations were performed using the Hugging Face generate function on a single NVIDIA A30 Tensor Core GPU. In default, the
number of input tokens is 128, and the number of output tokens is 256.
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Figure 12. Model Shape on Inference Latency over A30 GPU: (Left) We illustrate the correlation between inference latency and the
number of layers, with the constant hidden size. (Center) We indicate the relationship between inference latency and hidden size with the
number of layers fixed. (Right) We show the relationship between inference latency and aspect ratio, with the number of parameters fixed.
All results are obtained using the Hugging Face generate function, with input and output token counts set at 128 and 256, respectively.
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Figure 13. Model Shape on Inference Latency over A30 GPU with different number of input and output tokens: (Left) We illustrate
the correlation between inference latency and the number of layers, with the constant hidden size. (Center) We indicate the relationship
between inference latency and hidden size with the number of layers fixed. (Right) We show the relationship between inference latency
and aspect ratio, with the number of parameters fixed. All results are obtained using the Hugging Face generate function, with input
and output token counts set at 1024 and 128, respectively.

C. More Results over A100 GPUs
In this section, we evaluate the relationship between model architecture and Time To First Token (TTFT) over a single
NVIDIA Ampere 40GB A100 GPU by fixing the total parameter count and varying the hidden size and number of layers.
From Figure 14, we observe that wider and shallower models consistently achieve lower TTFT.
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Figure 14. Model Shape on Time To First Token (TTFT): We examine the relationship between TTFT and model architecture by fixing
the total parameter count and varying the hidden size and number of layers. Across different batch sizes, wider and shallower models
consistently achieve lower TTFT. Each tuple in the legend represents a model configuration: the first number is the hidden size dmodel, and
the second is the number of layers nlayers. All evaluations were performed using the Hugging Face generate function on a single NVIDIA
Ampere 40GB A100 GPU with input length 128, and output length 1.
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D. Results over vLLM
In this section, we first evaluate the inference efficiency of open-source large language models over vLLM using NVIDIA
Tesla A100 Ampere 40 GB GPU. From Figure 15, we find that the efficiency of model inference is influenced not only by the
number of parameters but also by the model’s architecture. Additionally, Figure 16 shows that inference latency increases
linearly with the number of layers using vLLM framework (Kwon et al., 2023). Modifying the model configurations
effectively reduces inference latency, consistent with findings from the Hugging Face system (Wolf, 2019).
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Figure 15. Open-Source LLM’s Inference Latency over vLLM (Kwon et al., 2023) using A100 GPU: An overview of inference
latency in open-source LLMs. The evaluated models include LLaMA (Touvron et al., 2023a), Qwen (Yang et al., 2024), Gemma (Team
et al., 2024a;b), and MiniCPM (Hu et al., 2024). All evaluations were performed using the Hugging Face generate function on a single
NVIDIA A100 Tensor Core GPU. In default, the number of input tokens is 128, and the number of output tokens is 256.
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Figure 16. Model Shape on Inference Latency over vLLM (Kwon et al., 2023) using A100 GPU: (Left) We illustrate the correlation
between inference latency and the number of layers, with the constant hidden size. (Center) We indicate the relationship between inference
latency and hidden size with the number of layers fixed. (Right) We show the relationship between inference latency and aspect ratio, with
the number of parameters fixed. All results are obtained using the Hugging Face generate function, with input and output token counts
set at 128 and 256, respectively.
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E. More Scaling Laws Fits
In Section 4.3, we explore how the random selection of model shapes affects Chinchilla scaling laws and inference-efficient
scaling laws. We repeat the experiments three times and we show the remaining results in Figure 17 and Figure 18. We
have similar observation from Figure 17 and Figure 18 that inference-efficient scaling laws are more robust than Chinchilla
scaling laws.
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Figure 17. Random Choice of Model Shape - Trial 2: We randomly select the model shape to fit the scaling laws. (Left) The figure
is plotted by using Eq. (2). (Center) The center figure is created with Eq. (4). (Right) We plot the Spearman correlation of our scaling
law versus the Chinchilla scaling law. The models randomly selected from the fitting are 80M-v3-20N, 116M-v4-20N, 164M-v5-20N,
237M-v2-20N, 313M-v3-20N, and 80M-v4-160N.
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Figure 18. Random Choice of Model Shape - Trial 3: We randomly select the model shape to fit the scaling laws. (Left) The figure
is plotted by using Eq. (2). (Center) The center figure is created with Eq. (4). (Right) We plot the Spearman correlation of our scaling
law versus the Chinchilla scaling law. The models randomly selected from the fitting are 80M-v1-20N, 116M-v3-20N, 164M-v5-20N,
237M-v4-20N, 313M-v4-20N, and 80M-v4-160N.
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F. Evaluation Dataset Details
We include the details of the evaluation datasets in Table 5 and we use LLM-foundry (llm, 2024) to do all evaluations in this
work.

Table 5. Dataset Details: We use LLM-foundry (llm, 2024) to do all evaluations.

Dataset Category Evaluation Type

ARC-Challenge (Clark et al., 2018) world knowledge multiple choice
ARC-Easy (Clark et al., 2018) world knowledge multiple choice

BoolQ (Clark et al., 2019) reading comprehension multiple choice
COPA (Roemmele et al., 2011) commonsense reasoning multiple choice
HellaSwag (Zellers et al., 2019) language understanding multiple choice

Jeopardy (Jeo, 2022) world knowledge language modeling
LAMBADA (Paperno et al., 2016) language understanding language modeling
MMLU (Hendrycks et al., 2020) world knowledge multiple choice

PIQA (Bisk et al., 2020) commonsense reasoning multiple choice
Winograd (Levesque et al., 2012) language understanding schema

WinoGrande (Sakaguchi et al., 2021) language understanding schema

G. Open-Source Model Configurations
In this section, Table 6 presents model configurations from Hugging Face, highlighting the vast space of architectural design
choices.

Table 6. Model Configurations: We present the configurations of models available on Hugging Face.

Model dmodel nlayers dmodel / nlayers

Llama-3.2-1B (Dubey et al., 2024) 2048 16 128
Llama-3.2-3B (Dubey et al., 2024) 3072 28 109.7
Qwen2.5-0.5B (Yang et al., 2024) 896 24 37.3
Qwen2.5-1.5B (Yang et al., 2024) 1536 28 54.9
Qwen2.5-3B (Yang et al., 2024) 2048 36 56.9
Qwen2.5-7B (Yang et al., 2024) 3584 28 128

Qwen2.5-14B (Yang et al., 2024) 5120 48 106.7
gemma-2b (Team et al., 2024a) 2048 18 113.8
gemma-7b (Team et al., 2024a) 3072 28 109.7

gemma-2-2b (Team et al., 2024b) 2304 26 88.6
gemma-2-9b (Team et al., 2024b) 3584 42 85.3
gemma-2-27b (Team et al., 2024b) 4608 46 100.2

microsoft-phi-2 (Phi, 2023) 2560 32 80
microsoft-phi-4 (Abdin et al., 2024) 5120 40 128
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H. Parameter Fits

Table 7. Parameter Fits: Coefficients for the scaling laws presented in Figure 8.

Law A B E α ϵ

Chinchilla 7720.62 68572.73 2.13 0.49 /
Inference-Efficient 54754.14 778340.38 2.45 0.61 0.0011

Table 8. Parameter Fits: Coefficients for the scaling laws presented in Figure 9.

Law A B E α ϵ

Chinchilla -25287.67 248461.43 2.14 0.51 /
Inference-Efficient -16247.15 958437.97 2.41 0.60 0.0011

Table 9. Parameter Fits: Coefficients for the scaling laws presented in Figure 10.

Law A B E α ϵ

Chinchilla 793.45 4090.85 1.09 0.35 /
Inference-Efficient 32515.16 408925.99 2.34 0.58 0.0016
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