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Abstract

Fairness and action smoothness are two crucial considerations in many online
optimization problems, but they have yet to be addressed simultaneously. In this
paper, we study a new and challenging setting of fairness-regularized smoothed
online convex optimization with switching costs. First, to highlight the fundamen-
tal challenges introduced by the long-term fairness regularizer evaluated based
on the entire sequence of actions, we prove that even without switching costs,
no online algorithms can possibly achieve a sublinear regret or finite competitive
ratio compared to the offline optimal algorithm as the problem episode length T
increases. Then, we propose FairOBD (Fairness-regularized Online Balanced De-
scent), which reconciles the tension between minimizing the hitting cost, switching
cost, and fairness cost. Concretely, FairOBD decomposes the long-term fairness
cost into a sequence of online costs by introducing an auxiliary variable and then
leverages the auxiliary variable to regularize the online actions for fair outcomes.
Based on a new approach to account for switching costs, we prove that FairOBD
offers a worst-case asymptotic competitive ratio against a novel benchmark—the
optimal offline algorithm with parameterized constraints— by considering T → ∞.
Finally, we run trace-driven experiments of dynamic computing resource provision-
ing for socially responsible AI inference to empirically evaluate FairOBD, showing
that FairOBD can effectively reduce the total fairness-regularized cost and better
promote fair outcomes compared to existing baseline solutions.

1 Introduction

Smoothed decision-making is critical to reducing abrupt and even potentially dangerous large action
changes in many online optimization problems, e.g., energy production scheduling in power grids,
object tracking, motion planning, and server capacity provisioning in data centers, among others
[47, 55, 2]. Mathematically, action smoothness can be effectively achieved by including into the
optimization objective a switching cost that penalizes temporal changes in actions. The added
switching cost essentially equips the online optimization objective with a (finite) memory of the
previous actions and also creates substantial algorithmic challenges. As such, it has received a huge
amount of attention in the last decade, with a quickly growing list of algorithms developed under
various settings (see [50, 3, 32, 45, 30, 55, 47, 13, 34, 11] and the references therein).
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Additionally, (long-term) fairness is a crucial consideration that must be carefully addressed in a
variety of online optimization problems, especially those that can profoundly impact individuals’
well-being and social welfare. For example, sequential allocation of social goods to different
individuals/groups must be fair without discrimination [6, 49], the surging environmental costs
of geographically distributed AI data centers must be fairly distributed across different regions as
mirrored in recent repeated calls by various organizations and government agencies [22, 10, 28,
23], and AI model performance and resource provisioning must promote social fairness without
adversely impacting certain disadvantaged individuals/groups [43]. If not designed with fairness
in mind, online algorithms can further perpetuate or even exacerbate societal biases, which can
disproportionately affect certain groups/individuals and amplify the already widening socioeconomic
disparities. Therefore, fairness in online optimization is not just a matter of ethical concern but also a
necessity for ensuring broader social responsibility.

The incorporation of a long-term fairness regularizer into the objective function can effectively
achieve fairness in online optimization by mitigating implicit or explicit biases that could otherwise
be reinforced [6, 40, 39, 28]. Despite its effectiveness in promoting fairness, the added fairness
regularizer presents significant challenges for online optimization[6, 40]. This arises from the lack of
complete future information, which is required to evaluate the fairness regularizer. Intuitively, online
decision-makers prioritize immediate cost reduction, reacting to sequentially revealed information,
potentially neglecting the long-term consequences of the decision sequence.

Recent research has started to explore fairness in various online problems, such as online resource
allocation, using primal-dual techniques [39, 6, 35]. However, a major limitation of current fair online
algorithms lies in their reliance on the assumption that per-round objective functions are independent
of historical actions. This assumption plays a pivotal role in both algorithm design and theoretical
analysis (e.g., [6, 7]). For instance, in a simple resource allocation scenario, while the maximum
allowable action at time t and its corresponding reward may depend on past allocation decisions
through the remaining budget, the revenue or reward function at time t is assumed to depend only on
the current allocation decision and remain independent of these historical decisions. However, these
methods fall short in addressing online problems where the per-round objective function is directly
impacted by historical actions, such as those involving switching costs, as detailed in Section 2.

Contributions. In this paper, we study fairness-regularized smoothed online optimization with
switching costs, a new and challenging setting that has not been considered in the literature to our
knowledge. More specifically, we incorporate a fairness regularizer that captures the long-term
impacts of online actions, and aim to minimize the sum of a per-round hitting cost, switching cost,
and a long-term fairness cost. To simultaneously address the tension between minimizing the hitting
cost, switching cost, and fairness cost, we propose FairOBD (Fairness-regularized Online Balanced
Descent).

Optimizing the long-term cost with a sequentially revealed context sequence is widely recognized
as a challenging problem (e.g., [39, 6, 7, 12, 38, 26]). A common strategy to address this challenge
involves decomposing the long-term fairness cost into a sequence of online costs by introducing an
auxiliary variable (e.g. [8, 41, 35], which effectively converts the fairness cost into an equivalent long-
term constraint. However, the key limitation of existing methods is the requirement of independence
between per-round objective functions, which is violated by the switching cost. Specifically, given the
updated Lagrangian multiplier, the per-round online objective depends on the previous irrevocable
action due to the switching cost. This dependency is not permitted in prior fairness-regularized online
problems [6, 39]. As a result, due to the differing action sequences, both FairOBD and the benchmark
algorithm (R, δ)-OPT (Definition 4.3) have distinct objective functions at each round, complicating a
direct comparison of their costs.

In this work, we rigorously analyze the inherent hardness of incorporating long-term fairness regular-
ization into online optimization. We establish fundamental lower bounds in the dynamic benchmark
under two standard performance metrics: regret and competitive ratio. Unlike the static benchmark,
where the offline optimal action is constrained to a single fixed action, the dynamic benchmark allows
the offline optimal action sequence to adapt over time with full knowledge of the context. While a
finite competitive ratio is attainable in online optimization with switching costs, whether a similar
finite competitive ratio can be achieved in presence of long-term fairness regularization remains an
open question. Intuitively, this is because long-term regularizer depend on the entire trajectory and
can only be evaluated at the end of an episode, whereas switching costs can be assessed step by step.
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Although prior work has made conjectures about the impossibility of achieving finite performance in
similar settings [6], our results provide the first rigorous proof. Our results show that in the adversarial
setting, all online algorithms inevitably incur a constant regret gap (leading to linear total regret) and
an unbounded competitive ratio that grows at least linearly with the horizon length. This demonstrates
that the unconstrained dynamic benchmark is unsuitable for analyzing such problems. Motivated by
real-world applications and guided by insights from our proofs, we propose the (R, δ)-benchmark, in
which the deviation between piece-wise and episode-wise function averages is bounded.

By developing a novel proof technique that explicitly accounts for the dependency of online objectives
on previous actions, we show that FairOBD offers a worst-case asymptotic competitive ratio against a
(R, δ)-constrained optimal offline algorithm (Theorem 5.2 in Section 5.2), where R and δ specify the
total allowed variations of the optimal actions. Importantly, our analysis quantifies the impact of the
long-term fairness regularizer on the convergence speed of FairOBD’s total cost, which asymptotically
matches the best-known results for two existing settings – smoothed online optimization without
fairness and fairness-regularized online optimization without switching costs—as special cases. This
demonstrates the power and generality of FairOBD.

Finally, to empirically evaluate the performance of FairOBD, we conduct trace-driven experiments
for AI workload shifting with a focus on geographically balanced distribution of public health risks.
Our results demonstrate that FairOBD can effectively reduce the total fairness-regularized cost,
highlighting the empirical advantages of FairOBD compared to existing baseline solutions.

In summary, our impossibility results and the proposed (R, δ) benchmark lay a solid foundation for
studying online optimization with long-term fairness. We further advance the literature on smoothed
online optimization by introducing a novel fairness regularizer that promotes equitable outcomes.
Most importantly, we overcome the key technical challenges of entangling switching costs as a
type of action memory into the mirror descent update process, which is not allowed by the prior
fairness-regularized online algorithms [6, 39] or smoothed online algorithms [18].

Together,

2 Related Works

Smoothed online optimization. Smoothed online optimization is a challenging problem for which a
growing list of algorithms have been designed to offer the worst-case performance guarantees in both
adversarial and stochastic settings [13, 47, 20, 55, 11]. Recently, it has also been extended in various
directions, including decentralized networked systems [33], hitting cost feedback delays [42], bandit
cost feedback [2, 50, 14], switching cost constraints [46, 51], future cost predictions [31, 30], and
machine learning advice augmentation [13, 3, 44, 27], among others.

By considering a dynamic (constrained) offline optimal algorithm as the benchmark, our work focuses
on the worst-case competitive ratio and considers the classic smoothed online convex optimization
setting [18], but adds a long-term horizon fairness regularizer. This addition presents significant
challenges to our algorithm design and is the key novelty that separates our work from the rich
literature on smoothed online optimization. Another study [25] considers smoothed online conversion
with a simple metric switching cost and a long-term constraint

∑T
t xt = 1 where xt ∈ R+ is the

scalar action at time t (irrelevant to fairness). Besides different hitting and switching costs, our
work is substantially separated from [25] as we consider a general and challenging fairness cost that
regularizes the long-term fairness of online actions and necessitates our new algorithm FairOBD.

Online optimization with fairness and long-term constraints. Our work is broadly relevant to
online optimization with fairness and long-term constraints [49, 36, 40]. One key idea is to properly
choose the Lagrangian multipliers that correspond to long-term constraints or fairness. For example,
some earlier works [15, 17] study online allocation problems by estimating a fixed Lagrangian
multiplier using offline data, while other works design online algorithms by updating (or learning to
predict) the Lagrangian multiplier in an online manner [16, 1, 56, 4, 54]. More recently, reinforcement
learning has been applied to solve online problems with long-term constraints [24], but it may not
provide any worst-case performance guarantees in adversarial settings.

Importantly, some recent studies [53, 5, 7, 6] investigate online allocation problems in which the agent
first fully observes the reward or cost function before selecting an action. In contrast, other recent
work considers settings where certain components of the reward function are not revealed in advance
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[38, 12], providing only bandit feedback or requiring additional cost for revelation. Such limitations
preclude direct optimization of the reward via gradient-based methods. Despite these differences,
both types of settings can be addressed using dual mirror descent (DMD) or its variants, which update
the Lagrangian multipliers based on the available context and the observed action sequence. DMD
can recover a family of classic online algorithms, including projected gradient descent [56, 40] and
multiplicative weight [4]. Similar algorithms are proposed for online stochastic optimization with
distribution information in [21]. While fairness can be converted into long-term constraints with the
introduction of an auxiliary variable, it also substantially alters the algorithm designs and is known to
be difficult to address, as exemplified in the context of online budget allocation [6]. More crucially,
given the updated dual variable at each round, the objective function in these studies is independent
of the previous actions, but our objective function naturally has a memory due to switching costs and
hence requires a novel design of FairOBD.

3 Problem Formulation

Consider a smoothed online optimization problem spanning an episode of T time rounds denoted
by [T ] = {1, · · · , T}. At each time t ∈ [T ], the agent observes a (potentially adversarially chosen)
cost function ft(·) : RN → R+ and a matrix At ∈ A ⊂ RM×N

+ , and chooses an irrevocable action
xt ∈ X ⊂ RN without knowing the future information. The agent incurs two costs at time t: a
hitting cost ft(xt) and a switching cost d(xt, xt−1), which captures how well the current cost ft(·)
and penalizes temporal changes in actions, respectively. For notational convenience, we define
Z = {Ax|A ∈ A, x ∈ X}. At each round t, the matrix At maps the agent’s action xt into an
M -dimension cost vector, with each dimension corresponding to an entity for which fairness needs
to be taken into account. Thus, to regularize the online actions xt for fairness, we define a long-term
horizon fairness cost g(·) : RM → R+ in terms of 1

T

∑T
t=1 Atxt.

The overall cost is denoted by cost(x1:T ) and written as

cost(x1:T ) =
1

T

( T∑
t=1

ft(xt) +

T∑
t=1

d(xt, xt−1)
)
+ g
( 1

T

T∑
t=1

Atxt

)
(1)

3.1 Assumptions

We make the following standard assumptions as in the prior literature [18, 40, 47, 55].

Assumption 3.1. For each time t ∈ [T ], the hitting cost ft(xt), switching cost d(xt, xt−1) and
long-term fairness cost g( 1

T

∑T
t=1 Atxt) satisfy the following properties:

• The hitting cost ft(xt) is continuous and non-negative within the action set X .
• The switching cost d(xt, xt−1) is the scaled squared L2-norm, i.e., d(xt, xt−1) =

β1

2 ∥xt −xt−1∥2,
where x0 is the initial action before the start of the episode.
• The diameter of the vector set Z = {Ax|A ∈ A, x ∈ X} is bounded by Z, i.e.,
supxt,x′

t∈X ,At,A′
t∈A ∥Atxt −A′

tx
′
t∥ ≤ Z, where ∥ · ∥ is the l2-norm unless otherwise noted.

• The fairness cost g(y) is convex and L-Lipschitz, i.e., g(y)−g(y′) ≤ L · ∥y−y′∥ for any y, y′ ∈ Z .

These assumptions, e.g., non-negativity, are needed for theoretical analysis and widely considered
in the literature [18, 39]. Additionally, it is common to consider a convex L-Lipschitz fairness
cost. For example, a well-known fairness cost that prioritizes the minimization of higher costs for
disadvantaged entities is the lp norm, i.e., g(y) = ∥y∥p for p ≥ 1, as considered in a variety of
applications including fair federated learning [29], budget allocation [6], server scheduling [9], and
geographical load balancing [28], among many others. As a special case when p → ∞, the l∞-norm
fairness cost addresses the classic minimax fairness.

In numerous online problems, including energy scheduling in power grids, object tracking in robotic-
human interactions, server capacity provisioning in data centers, and more in [47, 55, 13], both
long-term cost and smoothness are crucial considerations. To better motivate the consideration and
make our model more concrete, we provide several application examples in Appendix A.
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4 The Hardness of Long-term Fairness Regularizer

Compared with switching cost which can be calculated with the action in the subsequent step, the
long-term regularizer can be only evaluated at the end of the episode of T , with the complete action
and context sequence. Thus, even intuitively, handling the long-term regularizer is considerably more
challenging than managing switching costs. In this subsection, we will provide rigorous analysis on
the impact of this inherent difficulty on two commonly considered performance metrics: regret and
competitive ratio.

Our theoretical results establish fundamental lower bounds on the performance gap between online
and offline algorithms in the presence of such long-term dependencies, highlighting the hardness of
the long-term fairness regularizer for online optimization even (in the absence of the switching cost).

Theorem 4.1. Assume that there is no switching cost (i.e., β1 = 0). Let x∗
1:T denote the optimal

offline action sequence. For any online algorithm that produces an online sequence of x†
1:T , the worst-

case regret, defined as max(f1:T ,A1:T )

[
cost(x†

1:T ) − cost(x∗
1:T )

]
, is lower-bounded by a positive

constant, i.e. Ω(1).

The proof idea of Theorem 4.1 is to construct adversarial future context sequence based on the
historical actions of the online algorithm, which can be found in Appendix C.1. Notably, as the
hitting and long-term costs are already averaged by the length of episode T , the constant performance
gap in Theorem 4.1 can be translated to a linear regret when evaluating the total cost. Furthermore,
with the switching cost eliminated (β = 0), this linear regret is solely attributed to the long-term cost.
The lower bound on the cost gap depends on the size of the action and context spaces, specifically
quantified by the maximum norms of the action and context matrices (their diameters). Our proof
establishes this lower bound by constructing an adversarial context sequence and identifying an
offline optimal solution, both within a unit l2 ball. If the diameters of these spaces further increase, the
lower bound on the regret would also increase accordingly through a simple scaling of the adversarial
sequence. Thus, if this diameter grows with the episode length T , the cost gap will similarly increase
with T , potentially leading to superlinear regret in terms of the total cost.

To conclude, the findings in Theorem 4.1 highlight the fundamental limitation imposed by the lack of
future context information, preventing any online algorithm from asymptotically matching the offline
optimal cost.

Theorem 4.2. Assume that there is no switching cost (i.e., β1 = 0). Let x∗
1:T denote the optimal offline

action sequence. For any online algorithm that produces an online sequence of x†
1:T , the competitive

ratio, defined as C† = max(f1:T ,A1:T )
cost(x†

1:T )

cost(x∗
1:T ) , is lower-bounded by Ω(T ), i.e., C† ≳ Ω(T ).

In addition to regret, the competitive ratio is a widely used metric for evaluating online algorithms,
particularly against a dynamic benchmark. Unlike a static benchmark, the dynamic setting allows
the offline optimal action to vary over time, potentially achieving significantly lower costs. In such
dynamic scenarios, achieving sublinear regret may be impossible, making the competitive ratio a more
suitable performance measure. A finite competitive ratio guarantees that an online algorithm’s cost is
bounded by a constant multiple of the offline optimal cost. For problems with only switching and
hitting costs, [19] achieved the state-of-the-art finite competitive ratio. Given that our problem setting
also employs a similar dynamic benchmark, competitive ratio appears to be an appropriate evaluation
metric. However, the inclusion of a long-term regularizer fundamentally alters this landscape.

The inherent difficulty introduced by such regularization is a long-standing research question. For
example, [6] considers a related online optimization problem focused on maximizing total reward
under constraints on both the context sequence and the offline optimal benchmark. They conjecture
that no online algorithm could achieve vanishing regret or a finite competitive ratio. Based on our
Theorem 4.2 and 4.1, we rigorously confirm that in this setting, neither a finite competitive ratio nor
vanishing regret is attainable, even in the absence of switching costs. These theorems highlight the
fundamental challenge introduced by the long-term regularizer. To enable meaningful performance
comparisons despite this challenge, we slightly constrain the offline optimal benchmark and establish
an asymptotic competitive ratio under this modified benchmark.
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Definition 4.3 ((R, δ)-optimal algorithm). An action sequence x∗
1:T is (R, δ)-optimal if it satisfies:

x∗
1:T = argmin

x1:T

cost(x1:T ), s.t.,

K∑
k=1

∥∥∥∥ kR∑
t=(k−1)R+1

Atx
∗
t −

R

T

T∑
t=1

Atx
∗
t

∥∥∥∥ ≤ δ, (2)

where R represents the frame size and K is a positive integer denoting the number of frames in
an episode such that R · K = T , and δ ≥ 0 measures the allowable total deviation between the
frame-wise

∑kR
t=(k−1)R+1 Atx

∗
t and episode-wise average R

T

∑T
t=1 Atx

∗
t scaled by R.

The constrained benchmark, denoted (R, δ)-OPT, imposes a restriction on the offline optimal solution
or the adversarial context sequence. Specifically, the parameter δ limits the total deviation between
the frame-wise average fairness vector, Atx

∗
t , and its episode-wise counterpart, scaled by the frame

length R. The stringency of this (R, δ) constraint is inversely related to the values of R and δ;
increasing either parameter makes the constraint less restrictive, and vice versa. This benchmark
effectively limits the power of the offline optimum by assuming its total variance is sublinear with
respect to the episode length T . If the total variance of the offline optimal action sequence were
permitted to grow linearly with T , the environment can continuously shift the average of the optimal
long-term cost. In other words, the offline optimal long-term cost is able to maintain a constant
distance from the online algorithm’s cost, thus explaining the constant cost gap observed in Theorem
4.1. Therefore, we assume δ in the offline optimal benchmark is always sublinear with respect to the
episode length T . Moreover, similar constrained offline optimal benchmarks have also been widely
considered in the literature, such as the switching-constrained OPT in smoothed online optimization
[18] and frame-wise OPT with limited future information [40, 39]. Notably, in many practical
applications such as data center scheduling, this is a very natural assumption, where the context At

exhibits some periodicity as evidenced by the diurnal workloads. In this case even the actions chosen
by the unconstrained offline algorithm can exhibit a periodic pattern, thus resulting in a sufficiently
small δ for a certain large R.

In the following, we interchangeably refer to (R, δ)-OPT as OPT whenever applicable without
ambiguity. Next, we define the asymptotic competitive ratio [7] by considering T → ∞ as follows.

Definition 4.4 (Asymptotic competitive ratio). Given an offline (R, δ)-optimal algorithm OPT, an
algorithm ALG is asymptotically C-competitive against OPT if for any problem instance γ =

{ft, At|t = 1, · · · , T}, it satisfies supγ limT→∞

[
cost(ALG)− C · cost(OPT )

]
≤ 0.

5 FairOBD: Fairness-Regularized Online Balanced Descent

We propose a novel online algorithm FairOBD for fairness-regularized smoothed online optimization
defined in Eqn. (1). Compared to the existing smoothed online optimization literature without
fairness consideration [47, 18, 42, 27], the crux of FairOBD is to decompose the horizon fairness
cost g

(
1
T

∑T
t=1 Atxt

)
into online costs by introducing a new regularizer and an auxiliary variable

that carefully balances the hitting cost, switching cost, and fairness cost.

5.1 Algorithm Design

Even in the absence of the fairness cost, the problem of smoothed online optimization is already
challenging due to the potential conflicts between minimizing the current hitting cost ft(xt) and
staying closer to the previous action to reduce the switching cost d(xt, xt−1). The fairness cost
g
(
1
T

∑T
t=1 Atxt

)
is defined in terms of the long-term average of 1

T

∑T
t=1 Atxt and hence cannot be

determined until the end of time T , further creating substantial challenges. FairOBD addresses these
challenges by introducing an auxiliary variable and decomposing g

(
1
T

∑T
t=1 Atxt

)
into an online

version, and by balancing the hitting cost, switching cost, and fairness cost.

5.1.1 Decomposing the fairness cost

To address the challenges stemming from the horizon fairness cost g
(
1
T

∑T
t=1 Atxt

)
, we introduce an

auxiliary variable zt ∈ Z = {z = Ax|A ∈ A, x ∈ X}. In the long run, we aim to choose the actions
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Algorithm 1 FairOBD: Fairness-regularized Online Balanced Descent
1: Input: Initial κ1, reference function h(·), and learning rate η
2: for t = 1 to T do
3: Receive ft(·) and At

4: Obtain the action xt and auxiliary variable zt by solving the following:

min
xt∈Xt,zt∈Z

(
ft(xt) + λ1d(xt, xt−1) +

λ2

2
∥xt − vt∥2 + κt ·Atxt + g(zt)− κtzt

)
, (5)

where vt = argminx∈X ft(x).
5: Obtain a stochastic subgradient of κt: dt = zt −At · xt

6: Update the dual variable by mirror descent: κt+1 = argminκ∈RM ⟨dt, κ⟩+ 1
ηVh(κ, κt), where

Vh(x, y) = h(x)− h(y)−∇h(y)⊤(x− y) is the Bregman divergence.
7: end for

that approximately satisfy the condition
∑T

t=1 Atxt =
∑T

t=1 zt. This ensures that the horizon-wise
average of the auxiliary variable can serve as an effective estimator for the horizon fairness cost.
Alternatively, we can view zt as a dynamic “budget” that is allocated to the agent to guide its online
actions. Thus, we reformulate the problem (1) as follows:

min
x1:T ,z1:T

1

T

(
T∑

t=1

ft(xt) +

T∑
t=1

d(xt, xt−1)

)
+

1

T

T∑
t=1

g
(
zt
)
, s.t.

T∑
t=1

Atxt =

T∑
t=1

zt, (3)

whose optimal actions are denoted by (x̂1:T , ẑ1:T ). Importantly, the offline optimal cost of (3) is the
same as that of the original problem in (1). This point can be seen by considering ẑ1 = · · · = ẑT =
1
T

∑T
t=1 Atx̂t and x̂1:T = x∗

1:T where x∗
1:T is the offline optimal solution to (1).

While the reformulated problem (3) decomposes the horizon fairness cost g
(
1
T

∑T
t=1 Atxt

)
by the

introduction of z1:T and has the same optimal cost as (1), it presents a new challenge due to the
long-term constraint

∑T
t=1 Atxt =

∑T
t=1 zt where zt itself is also an online action. To address

this challenge, we note that unlike a real budget constraint that cannot be violated at any round [7],
the long-term constraint in (3) only needs to be approximately satisfied. Therefore, we relax the
constraint and instead minimize the Lagrangian form of (3) as follows:

min
x1:T ,z1:T

1

T

(
T∑

t=1

ft(xt) +

T∑
t=1

d(xt, xt−1)

)
+

1

T

T∑
t=1

g (zt) + κt

(
T∑

t=1

Atxt −
T∑

t=1

zt

)
(4)

where κt ∈ RM is the estimated Lagrangian multiplier at round t ∈ [T ].

Had all the future information {f1:T (·), A1:T } been provided in advance, we could easily determine
the optimal κ1 = · · · = κT = κ∗. But, for online optimization, we need to update zt based on the
currently available information without knowing the future. Moreover, interestingly, given κt at
round t, xt and zt can be independently solved in (4). Thus, we propose to employ mirror descent to
update κt online, based on which we subsequently optimize xt and zt at each round t ∈ [T ].

While [7, 6, 40] use mirror descent to update the Lagrangian multiplier for online allocation of a
fixed given budget, our work has a crucial difference: given κt at each round t, our objective includes
memory in the form of a switching cost d(xt, xt−1), whereas the objective in [7, 6, 40] only depends
on the current action xt. This difference voids the key steps in the proof techniques of [7, 6, 40] and
requires additional care to the switching cost.

5.1.2 Balancing the hitting cost, switching cost, and fairness cost

To further reconcile conflicts between minimizing the current hitting cost ft(xt) and staying closer
to the previous action to reduce the switching cost d(xt, xt−1), we propose FairOBD that uses the
term κtAtxt as a fairness regularizer while optimizing xt online. The fairness regularization effect of
κtAtxt comes from the fact that it is intended to meet the long-term constraint

∑T
t=1 Atxt =

∑T
t=1 zt

for fairness, while “balanced” is due to two new hyperparameters λ1 ∈ (0, 1] and λ2 ∈ [0,∞) to
balance the hitting cost ft(xt) and switching cost d(xt, xt−1). The hyperparameters λ1 ∈ (0, 1]
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and λ2 ∈ [0,∞) can be optimally set to optimize the asymptotic competitive ratio in Theorem 5.2.
Furthermore, given κt, the auxiliary variable zt can be easily optimized by solving g(zt)− κtzt.

Before completing the design of FairOBD, we introduce a reference function h(·) : RM → R to
define the Bregman divergence in our update of κt using mirror descent. Specifically, we choose
h(·) : RM → R that is l-strongly convex and β2-smooth [48]. For example, Line 7 of Algorithm 1
follows the classic additive update rule κt+1 = [κt − ηdt]

+ where η > 0 is the learning rate when
h(κ) = ∥κ∥2

2 , whereas it becomes the multiplicative update when h(κ) = κT log(κ) [7]. The specific
choice h(·) does not affect our performance analysis in Theorem 5.1 and 5.2.

Next, we formally describe FairOBD in Algorithm 1. In Line 4, we optimize xt to balance the hitting
cost, switching cost, and fairness cost. In Line 5, we optimize zt as a fairness budget for guiding the
optimization of xt in the future. In Lines 6 and 7, we update κt+1 using mirror descent.

5.2 Performance Analysis

We present the analysis of FairOBD in terms of the asymptotic competitive ratio as follows.

Theorem 5.1. Suppose that x∗
1:T is the action produced by the (R, δ)-optimal algorithm OPT.

Assume that there is no switching cost (i.e., β1 = 0). By setting the learning rate as η = O( 1√
T
)

and parameters λ1 = λ2 = 0, and initializing κ1 = O( 1
T ) (or κ1 = 0 if h(κ) = ∥κ∥2

2 ), the cost of
FairOBD is upper bounded by

cost(x1:T ) ≤cost(x∗
1:T ) +

[
η

2l
Z2R+ Z∥κ1∥+ β2L

√
1

T
(
Z2

l2
+ 2

LZ

ηl
+

2

η2l
Z∥κ1∥)

]
+

Lδ

T

=cost(x∗
1:T ) +O(

1√
T
) +

Lδ

T
,

(6)
where the parameters m, Z and L are specified in Assumption 3.1, and l and β2 are the strong
convexity and smoothness parameters of the reference function h(·), respectively.

In Theorem 5.1, FairOBD achieves an asymptotic competitive ratio of 1 when the total deviation δ
is sublinear in T . The total deviation δ quantifies the fundamental difficulty of the online problem
itself, independent of the algorithm design. As discussed regarding the hardness of the long-term
regularizer, if δ grows linearly with T , no online algorithm can attain sublinear regret. Therefore,
Theorem 5.1 demonstrates that FairOBD achieves vanishing regret as the episode length approaches
infinity, even in worst-case scenarios. This vanishing regret highlights the effectiveness of FairOBD
in addressing the long-term regularizer, which is achieved by decomposing the long-term cost with a
set of auxiliary variables. Furthermore, the dual variable within FairOBD dynamically adapts through
continuous online updates, which drives the cost of FairOBD to eventually converge to the offline
optimal benchmark.

Theorem 5.2. Suppose that x∗
1:T is the action produced by the (R, δ)-optimal algorithm OPT and

that the hyperparameters λ1 ∈ (0, 1] and λ2 ∈ [0,∞). Assume further the hitting cost ft(·) is
m-strongly convex for any t = 1, · · · , T . By initializing κ1 = O( 1

T ) (or κ1 = 0 if h(κ) = ∥κ∥2

2 ) and
setting the learning rate η = O( 1√

T
), the cost of FairOBD is upper bounded by

cost(x1:T ) ≤C · cost(x∗
1:T ) +

1

λ1

[ η
2l
Z2R+ Z∥κ1∥+ β2L

√
1

T
(
Z2

l2
+ 2

LZ

ηl
+

2

η2l
Z∥κ1∥) +

Lδ

T

]
=C · cost(x∗

1:T ) +O(
1√
T
) +

Lδ

λ1T
,

(7)
where C = max{m+λ2

mλ1
, 1 + λ1β1

m+λ2
}. The parameters m, Z and L are specified in Assumption 3.1,

and l and β2 are the strong convexity and smoothness parameters of the reference function h(·),
respectively. In addition, by considering δ = O(

√
T ) (or in general sublinear forms in T ) and
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optimally setting λ1 ∈ (0, 1] and λ2 ∈ [0,∞) such that m+λ2 = λ1m
2

(
1 +

√
1 + 4β1

m

)
, FairOBD

achieves an asymptotic competitive ratio of 1
2

(
1 +

√
1 + 4β1

m

)
against (R, δ)-OPT when T → ∞.

As demonstrated in Equation (7), by properly setting the learning rate and initial Lagrange multiplier,
FairOBD’s cost asymptotically converges to within a constant factor of the (R, δ)-constrained offline
optimal cost. This convergence guarantees the stability of both the auxiliary variable and multiplier,
ensuring robust performance irrespective of the context sequence. In our algorithm, the dual update
is conducted using mirror descent, which generalizes the standard gradient descent as a special case
when the reference function is chosen as h(x) = 1

2∥x∥
2. Consequently, Theorem 5.2 and Theorem 5.1

also cover the performance analysis of dual updates with gradient descent by setting l = β2 = 1. In
addition, a comparison of these two theorems reveals that the constant C in Theorem 5.2 arises solely
from the inclusion of the switching cost. Furthermore, by optimally setting (λ1, λ2) to minimize

C in Equation (7), FairOBD asymptotically achieves the competitive ratio of 1
2

(
1 +

√
1 + 4β1

m

)
.

This ratio matches the best-known competitive ratio lower bound [18] for the problem without a
fairness cost. This observation highlights the superior performance of FairOBD and confirms that C
is inevitable due to the switching cost.

Unlike standard online smoothed optimization [19], the long-term fairness cost impacts the total
cost of FairOBD in two-fold, primarily due to the L-Lipschitz property of the long-term fairness
constraint. Generally speaking, larger L implies faster change speed of fairness function, which
introduces additional uncertainties when optimizing the auxiliary variables in g(zt). This imprecise
estimation slows down the convergence speed of the dual variable, as reflected in the second last term
in Eqn (7). Moreover, since δ represents the discrepancy between the frame-wise and episode-wise
averages of Atxt in the offline optimal benchmark, a larger L amplifies this difference in FairOBD’s
final fairness cost, as demonstrated by the last term in Equation (7). Thus, the overall performance
of FairOBD is significantly influenced by the Lipschitz constant L, which bounds the first-order
smoothness of the fairness cost.

The additive gap observed in Theorem 5.1 and Theorem 5.2 is directly influenced by the inherent
difficulty associated with the long-term cost. This difficulty is captured by R and δ: as R and/or δ
increase, the potential for adversarial context sequences in the long-term cost becomes greater, which
is a fundamental challenge for any online algorithm. Thus, R and δ quantify the maximum level of
adversarialness in the context sequence. However, many real-world applications are less adversarial,
exhibiting predictable periodic patterns (such as the diurnal cycles in AI workload distributions).
These patterns significantly reduce δ, the long-term deviations. Consequently, for a reasonably large
yet finite R, the total deviation between the online performance and the unconstrained offline optimal
benchmark can remain constant or grow sublinearly with T .

In addition to the rigorous insights provided by Theorem 5.2, our proof technique also represents a
novel technical contribution. Unlike existing proof techniques that typically rely on the assumption
of independence between per-round objective functions , our approach does not require such an
assumption. Removing the assumption of temporal independence is crucial in our fairness-regularized
smoothed online optimization problem, as the switching cost functions inherently violate this assump-
tion by incorporating historical actions. Consequently, comparing the costs of per-round objective
functions between FairOBD and the offline optimal benchmark becomes highly challenging, as their
cost functions are no longer identical under these conditions. To address this limitation, Lemma D.3
and D.4 establish a theoretical foundation for such a comparison by introducing an intermediate
benchmark with per-round objective functions aligned with those of FairOBD. This intermediate
benchmark effectively bridges the gap between the two policies, each associated with distinct sets of
cost functions, enabling a meaningful and rigorous comparison. Though the current result relies
on the properties of squared l2-norm in switching cost, it is promising to relax this assumption to
accommodate more general strongly convex and smooth functions. Specifically, in Lemma D.3
and Lemma D.4, the results can be directly extended under strong convexity, since the squared
l2-norm is a special case where convexity and smoothness coincide. Furthermore, when converting
the intermediate benchmark to the offline optimal benchmark, the gap between the two can also be
bounded by the strong convexity of the switching cost. It is interesting future work to study this
more general setting. More broadly, the proof techniques in our approach represent a substantial
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development in addressing states influenced by past actions, extending beyond the limitations of
existing approaches that are restricted to handling memoryless functions.

6 Empirical Results

Our empirical study investigates the problem of fair resource provisioning for AI inference services
in geographically separated data centers, where decisions incur instantaneous hitting costs (energy
consumption and workload-imbalance penalties), switching costs (reconfiguration overhead), and
a long-term fairness cost quantifying regional public-health impacts from electricity generation
pollution. FairOBD decomposes and dynamically optimizes all three cost components via auxiliary
variables and mirror-descent updates to improve cost efficiency, action smoothness, and long-term
fairness simultaneously. In our simulation, we use the one-week trace of normalized LLM inference
requests from [37], and route demand across seven selected data centers (Arizona, Iowa, Illinois,
Texas, Virginia, Washington, Wyoming) with publicly available electricity prices, PUE values, and
health-damage rates from WattTime [52]. We compare FairOBD against five benchmarks: the offline
optimal (OPT), offline fairness-only (FairOPT), hitting-cost minimizer (HITMIN), Regularized Online
Balanced Descent (ROBD), and Dual Mirror Descent (DMD).

We also test FairOBD with different learning rates and different weights for the fairness cost to test its
robustness under different settings, with more details in Appendix B. Our numerical results (Table 2
in Appendix B) demonstrate that FairOBD achieves the lowest total cost among online methods,
with the minimal cost gap to the offline optimal. Moreover, FairOBD attains the smallest fairness
cost among online baselines, while maintaining low switching overhead. These results confirm that
explicit incorporation and dynamic optimization of long-term fairness in FairOBD yields superior
performance across all cost dimensions.

7 Conclusion

We study a novel and challenging problem of fairness-regularized smoothed online convex optimiza-
tion. Our main contribution is the proposal of FairOBD to reconcile the tension between minimizing
the hitting cost, switching cost, and fairness cost. Importantly, FairOBD offers a guaranteed worst-
case asymptotic competitive ratio against (R, δ)-OPT for finite R and sublinearly growing δ by
considering the problem episode length T → ∞. Moreover, our analysis can recover the best-known
results for two existing settings (i.e., smoothed online optimization without fairness and fairness-
regularized online optimization without switching costs) as special cases. Finally, we run trace-driven
experiments of dynamic computing resource provisioning for socially responsible AI inference to
demonstrate the empirical advantages of FairOBD over existing baseline solutions.

8 Limitation and Impact Statements

While simultaneously addressing fairness and action smoothness in online optimization, FairOBD is
designed based on a set of assumptions, including non-negative hitting costs and squared l2-norm
switching costs. Therefore, it is interesting future work to overcome these limitations by, e.g.,
relaxing the strong convexity assumption, considering more general forms of switching costs, and/or
incorporating potentially untrusted predictions of future information to further reduce the overall cost.
Although our work can potentially increase awareness of fairness in online optimization, we do not
foresee negative societal impacts or the need for safeguards due to the theoretical nature of our work.
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Appendix

A Real-world Applications with Long-term Costs

In this section, we present several real-world application that emphasizes long-term fairness along
with the switching cost. We provide concrete modeling for these applications and demonstrate how
these two applications align closely with our problem formulation.

A.1 Geographical Load Balancing with Balanced Public Health Costs

The exponentially growing demand for AI has been driving the recent surge of data centers around
the globe, which are notoriously energy-consuming and thus have huge environmental impacts in
terms of the local air pollution and carbon emissions (e.g. for fossil-fuel based power plants). The
escalating air pollution resulting from AI computing significantly contributes to various health issues,
including lung cancer, heart disease, and cardiovascular problems. Thus, the rise in ambient air
pollution leads to substantial public health costs, encompassing lost workdays, increased medication
usage, and increased hospitalization rates. More critically, the public health costs of data centers
are becoming increasingly unevenly distributed across different regions, disproportionately affecting
marginalized communities. To mitigate the uneven distribution of public health impacts from AI
computation, an effective approach is to leverage fairness-aware geographical load balancing to
fairly distribute the environmental costs across different data center locations [28], and, consequently,
public health risks across diverse data center locations.

Specifically, let xt ∈ RN
+ be the number of active servers or computing capacity to process incoming

workloads in N different data centers at time t. With a provisioning capacity of xt, there is an
operational cost that includes the energy cost and a penalty term for workload imbalance, which can
be modeled as the hitting cost ft(xt) [32]. When adjusting computing capacities, a switching cost
d(xt, xt−1) arises due to server reallocation, workload migration, or wear-and-tear. Additionally, a
health cost Atxt is incurred across N locations due to air pollution from electricity generation [59],
influenced by the local grid’s real-time fossil fuel intensity. Further modeling details can be found in
Appendix B.1.

A.2 Socially-fair AI Resource Provisioning

Large AI models often have multiple sizes, each with a distinct performance and resource usage
tradeoff. For example, the GPT-3 model family has eight different sizes, ranging from the smallest
one with 125 million parameters to the largest one with 175 billion parameters [58]. As a result, the
amount of computing resources can directly affect the model selection and inference quality during
inference, and needs to be carefully determined based on the number of user requests from different
regions. As we become increasingly reliant on AI for acquiring knowledge, insufficient resource
provisioning can lead to subpar AI model performance and could disproportionately jeopardize the
prospects of users/individuals from certain disadvantaged regions. Thus, the computing resource
provisioning for users from different regions must be fair in the long run. In addition, there is
a switching cost when adjusting the computing resource capacity (e.g., by activating otherwise
hibernating servers).

We consider a discrete-time model for the AI server provisioning problem, where yt ∈ RM represents
the user demand from M different regions at time t and xt ∈ [xmin, xmax] denotes the amount of
provisioned AI servers to meet the demand. The hitting cost f(xt, yt) encompasses both the electricity
expenses of the AI servers and a penalty term for any dropped workload demand. The switching
cost d(xt, xt−1) models the cost incurred by hardware and software reconfiguration, particularly
when server provisioning undergoes frequent or substantial changes. At each time slot, we assume
the provisioned AI servers are shared by each region in proportion to their user workload demand.
To promote fair distribution of AI resources among the M regions within the horizon, we account
for each region’s dynamic resource share, which varies based on its fluctuating workload demands.
Specifically, we employ a min-max fairness function over the total amount of allocated AI resources
for the M regions.
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B Experiment

In this section, we run experiments of fair computing resource provisioning for AI inference services.
Our results demonstrate that FairOBD can effectively reduce the total fairness-regularized cost,
highlighting the empirical advantages of FairOBD compared to existing baseline solutions.

B.1 Simulation Setup

We investigate the challenge of fair resource provisioning for AI data centers that deliver inference
services to dynamically routed AI workloads. At each time step, we dynamically route incoming
user demand across geographically dispersed AI data centers and provision server/GPU resources
accordingly. This provisioning process incurs a hitting cost (e.g., energy cost, carbon emissions,
and penalties for imbalanced workload distribution), as well as a switching cost representing the
reconfiguration overhead associated with changes in provisioning decisions. Furthermore, electricity
consumption contributes to public health risks within the local community due to air pollution
generated during electricity production. We incorporate a long-term fairness cost that quantifies the
degree of public health impacts on the most affected region across all AI data centers.

B.1.1 Model

We consider a discrete-time model where each round (or time slot) is one hour. As each round
has the same duration, we interchangeably use power and energy wherever applicable without
ambiguity. To fulfill the demand for AI inference service at time t, denoted as wt, we need to
determine AI server/GPU provisioning action xt. The resource provisioning decision is defined as
xt = [x1,t, · · · , xN,t], where xi,t denotes the provisioned server/GPU capacity for data center i ∈
[N ], subject to constraint xi,t ≤ Mi where Mi is its maximum capacity. Additionally, to guarantee
the optimal quality of experience for users, we consider all the AI workloads are instantaneously
served without further delays, where

∑N
i=1 xi,t = wt. The provisioning decision incurs a hitting

cost (e.g., energy cost and penalty for imbalanced workload distribution), and a switching cost due
to changing the provisioning decisions. Furthermore, electricity consumption contributes to public
health risks within the local community due to air pollution generated during electricity production.
We incorporate a long-term fairness cost that quantifies the degree of public health impacts on the
most affected region across all AI data centers. We model these three costs as follows.

The hitting cost encompasses the cost of energy consumption and penalties for imbalanced workload
scheduling. Specifically, we model server power consumption as a linear function of provisioned
computing resources, q ·xt. And the non-IT power consumption (e.g., cooling systems) is modeled by
multiplying the power usage efficiency (PUE) γi over the power consumption at data center i ∈ [N ].
Thus, the total electricity expenses of AI computing can be expressed as

∑N
i=1 p

e
i,t · γi · q · xi,t,

where pei,t denotes the time-varying electricity price at location i. Additionally, given the fluctuating
AI workload, it’s highly imperative to achieve a balanced workload distribution, both spatially and
temporally. Within time slot t, as the entire AI workload must be fulfilled collaboratively by N
data centers, imbalanced workload distribution can overload several data centers and result in low
utilization rate for some data centers. The low utilization may leads to wasted reserved capacity and
potentially increased idle power consumption. Additionally, from the perspective of whole horizon
T , a smaller temporal variation in the provisioned server capacities is also preferred, considering the
same amount of total workload. To this end, we incorporate a regularizer u1∥xi,t∥2 into the hitting
cost of data center i. When it’s summed over the entire planning horizon T , this term represents the
squared L2-norm of the provisioned server capacity vector, [xi,1, · · · , xi,T ].

To sum up, the hitting cost at time t is defined as

ft(xt) =

N∑
i=1

pei,t · γi · q · xi,t + u1

N∑
i=1

∥xi,t∥2 (8)

Besides, the switching cost d(xt, xt−1) =
u2

2 ∥xt − xt−1∥2 penalizes the frequent or large changes
between consecutive actions. Here, u2 is a hyperparameter that reflects the overhead associated with
hardware reconfiguration and communication arising from dynamically routed workloads.

Scaling laws are observed in large AI services [60], such as large language models, demonstrating an
exponential increase in computational requirements to achieve continuous performance improvements.
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Location Average Health
Price ($/MWh)

Average Electricity
Price ($/MWh) PUE (γi)

Arizona 17.29 77.7 1.18
Iowa 62.81 62.6 1.16

Illinois 49.93 82.6 1.35
Texas 48.19 63.0 1.28

Virginia 52.68 87.0 1.14
Washington 17.55 62.0 1.15
Wyoming 34.79 76.1 1.11

Table 1: Information for selected data centers

This rapid escalation in computation translates to substantial energy consumption. Due to the air
pollution generated during electricity production, the increased electricity consumption associated
with these models contributes to public health risks within local communities. Following the
methodology in [52], we denote the health damage rate as At = [A1,t, · · · , AN,t], which reflects
the associated air pollution and consequent health risks resulting from the electricity consumption.
By strategically aligning AI computation with time periods and locations that are abundant with
cleaner energy sources (e.g., solar, wind), the health damage rate can be significantly minimized. At
the same time, ensuring fair distribution of public health risks is crucial when dynamically routing
AI workloads. We incorporate a long-term fairness cost that quantifies the degree of public health
impacts on the most affected region across all AI data centers, formulated as below

g
(
x1:T

)
= u3

∥∥∥∥ qT
T∑

t=1

At · x⊤
t

∥∥∥∥
p

(9)

where the Lp-norm can recover the widely-considered min-max fairness function as p approaches
infinity. By regularizing the overall public health risk in the long-term, we can not only promote
social fairness and mitigate widening socioeconomic gaps, while maintaining sufficient flexibility for
dynamic AI workload routing.

By summing up the hitting, switching and long-term fairness cost, the objective function is defined as
below

argmin
x1:T

1

T

T∑
t=1

ft(xt) +
1

T

T∑
t=1

d(xt, xt−1) + g
(
x1:T

)
s.t.

N∑
i=1

xi,t = wt, ∀t ∈ [1, T ]

xi,t ≤ Mi, ∀i ∈ [1, N ], ∀t ∈ [1, T ]

(10)

B.1.2 Datasets and parameter settings

We employ a publicly available inference trace dataset for LLM services on Azure [37]. We normalize
a sample of coding-related inference requests processed by multiple LLM services within Azure.
These traces are collected between May 10th and May 16th, 2024. The dataset provides user demand
patterns across different times of the week.

Specifically, we aggregate the number of requests received hourly to simulate the total computational
workload across different times of the day.

To meet this workload, we assumed that the total computing demand could be distributed across seven
selected data centers located in Arizona, Iowa, Illinois, Texas, Virginia, Washington, and Wyoming
(N = 7). The data center information is obtained from [61]. We use the average state industrial
electricity price [63], denoted as pei,t, to calculate the electricity cost for each data center. For γi, we
use the values reported by [62] to conduct our experiment.

For health impact analysis, air pollutant emissions resulting from electricity consumption contribute
to various adverse effects, such as increased hospitalizations, higher medication usage, more frequent
emergency room visits, and additional lost school days. These impacts can be quantified in economic
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Metrics OPT FairOPT HITMIN ROBD DMD FairOBD
η = 10−2 η = 10−3 η = 10−4

Hitting Cost 171.30 177.20 159.75 163.63 169.46 170.06 167.80 167.47
Switching Cost 23.27 351.48 43.75 23.16 93.53 25.65 27.52 28.17
Fairness Cost 36.36 33.33 140.12 111.85 54.16 41.36 51.05 52.68
Total Cost 230.93 562.00 343.62 298.64 317.15 237.07 246.36 248.31

Table 2: The average costs of different algorithms in the default setting (i.e. u1 = 10, u2 = 1000 and
u3 = 3.5). Minimum costs for the online algorithms are highlighted in bold.
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Figure 1: Cost distributions of different algorithms in the default setting (i.e. u1 = 10, u2 = 1000
and u3 = 3.5)

terms using epidemiological and economic research on the associated health outcomes, collectively
referred to as health costs. WattTime [52] divides the United States into distinct regions and provides
real-time health prices ($/MWh), representing the health cost ($) per unit of energy consumption
(MWh) across different regions and time periods. To determine the region in which each data center
is located, we utilize the information from [61]. We use the health damage rate to estimate the
health cost of energy consumption for each data center. Specifically, we set At = [γi · phi,t]Ni=1,
where phi,t represents the hourly average of WattTime’s health price. Our online algorithm’s ability to
dynamically update its dual variable and learn from the online context sequence eliminates the need
for prior training on a separate dataset. Therefore, we only build a testing dataset for all baseline
algorithms. This testing dataset consists of 97 three-day (72-hour) context sequences, created by
applying a sliding window across a one-week (168-hour) context sequence.

To provide readers with a high-level overview of the data centers’ operational characteristics, Table
1 summarizes several key metrics including the average electricity price and average health price
observed from May 10th to May 16th, 2024, as well as the Power Usage Effectiveness (PUE) and
geographic location for each facility.

In the default setting, we set q = 1 to map the provisioned computing resource to energy consumption.
The weights are u1 = 10 for the regularizer in hitting cost, u2 = 1000 for switching cost and u3 = 3.5
for the long-term fairness cost. We choose the identical maximum capacity for each data center
with Mi = 1 and normalize maximum workload traces according to the maximum capacity. We use
p = ∞ for the lp norm. These values are chosen to ensure that the hitting cost, switching cost, and
fairness cost have comparable magnitudes. We set the initial dual variable κ1 = [3]Ni=1, λ1 = 1, λ2 =
30 for DMD and FairOBD.

The hyperparameters λ1 and λ2 for ROBD are optimally selected based on Theorem 4 in [18]. For
DMD, we use the same set of hyperparameter as FairOBD, such as the default learning rate η = 10−3,
except that DMD ignores the switching cost. Regardless of the algorithm. The total costs of all the
baseline algorithms are calculated with Eqn (10).

Our experiments are conducted on a MacBook Air with an M3 chip and 16 GB of memory. The
average execution time per online algorithm over 72 time slots is approximately 1 second.

B.1.3 Baseline Algorithms

We consider the following baseline algorithms for comparison.

• Optimal Fairness Offline (FairOPT): the offline optimal policy solely minimizing long-
term fairness cost.
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Metrics OPT FairOPT HITMIN ROBD DMD FairOBD
η = 10−2 η = 10−3 η = 10−4

Hitting Cost 168.88 177.20 159.75 163.63 169.46 169.39 167.80 167.47
Switching Cost 22.92 351.49 43.75 23.16 93.53 25.67 27.52 28.17
Fairness Cost 20.33 16.67 70.06 55.93 27.08 21.35 25.52 26.34
Total Cost 212.13 545.35 273.56 242.71 290.07 216.41 220.84 221.97

Table 3: Cost comparison of different algorithms with the fairness weight u3 = 1.75.

Metrics OPT FairOPT HITMIN ROBD DMD FairOBD
η = 10−2 η = 10−3 η = 10−4

Hitting Cost 171.81 177.20 159.75 163.63 169.46 170.52 167.80 167.47
Switching Cost 23.97 351.49 43.75 23.16 93.53 25.70 27.52 28.17
Fairness Cost 70.82 66.66 280.24 223.70 108.32 82.40 102.10 105.35
Total Cost 266.60 595.35 483.75 410.49 371.31 278.62 297.41 300.99

Table 4: Cost comparison of different algorithms with the fairness weight u3 = 7.

• Hitting Cost Minimizer (HITMIN): the online algorithm chasing the minimizer of the hitting
cost.

• Regularized Online Balanced Descent (ROBD): the state-of-the-art online algorithm without
accounting the long-term fairness cost.

• Dual Mirror Descent (DMD): the online algorithm solely optimizing long-term fairness.
• Optimal Offline (OPT): the strongest optimal offline benchmark, corresponding to (T, 0)-

OPT in our analysis. No online algorithms can possibly outperform OPT.

Among these algorithms, ROBD achieves the lowest competitive ratio for smoothed online convex
optimization [18], which is an adapted version of Eqn (1) by removing the fairness cost. Besides,
DMD is proposed for online allocation problems without switching costs [6], [57], [39], which updates
the dual variable κt based on mirror descent techniques. We adapt DMD with a reference function
h(κ) = ∥κ∥2

2 in our experiment.

B.2 Results

We summarize the average costs of the online algorithms and their offline optimal benchmark under
the default setting in Table 2. The proposed algorithm, FairOBD, maintains robust performance across
different learning rates η and consistently outperforms other online baseline algorithms (HITMIN,
ROBD, and DMD) in terms of total cost. Moreover, FairOBD attains the minimum fairness cost among
all online baselines, demonstrating its effectiveness in minimizing the long-term fairness cost.

To illustrate the minimal achievable long-term fairness cost, we incorporate FairOPT as the offline
fairness-optimal baseline, considering access to the complete context sequence. Due to the inherent
trade-off between operational cost and fairness cost, the locations with the lowest health impact do
not necessarily align with those offering lower electricity prices. Furthermore, exclusively targeting
such locations would exacerbate fluctuations in server provisioning across different regions. These
two factors explain why FairOPT achieves the lowest fairness cost, despite its hitting and switching
costs being among the highest observed, as shown in Figure 1. Conversely, HITMIN operates in the
opposite direction, focusing exclusively on minimizing hitting cost while significantly increasing the
other two costs. To address this challenge, DMD resolves the tension between long-term fairness cost
and instantaneous operational cost by decomposing the long-term costs and optimizing them using
mirror descent techniques. This approach enables an effective balance between these two competing
metrics.

Without explicitly accounting for smoothness during the load balancing process, the aforementioned
three methods minimize fairness and/or hitting costs by aggressively targeting locations with the
lowest operational costs. These approach inevitably incur a significantly higher switching cost. For
instance, the average switching cost of FairOPT is still around 15 times that of the offline optimal
benchmark. In extreme cases, this ratio could be even higher, indicating considerable fluctuations
in server provisioning—an undesirable strategy for data centers. It highlights the critical need to
explicitly incorporate switching costs into the optimization framework. ROBD strategically balances
between the minimizer of the hitting cost and the previous action, achieving the lowest switching
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cost while maintaining a reasonably low hitting cost. However, due to the non-separable nature of
the long-term cost, ROBD fails to minimize the fairness cost as a result of its algorithm design. By
decomposing the long-term cost using auxiliary variables and dynamically optimizing these variables
with mirror descent techniques, FairOBD achieves the best trade-off between hitting, switching,
and fairness costs. This approach results in the lowest fairness and total costs among all the online
algorithms.

To compare the impact of fairness cost, we present additional results by considering u3 = 1.75 and
u3 = 7 on the performance of FairOBD, summarized in Tables 3 and 4, respectively. Similar as in
Table 2, we see that under three different learning rates η, FairOBD is very close to OPT in terms of
the total cost regardless of the hyperparameters, which demonstrates the superior performance of
FairOBD. The other baselines (i.e., FairOPT, HITMIN, ROBD, and DMD) all have substantially higher
total costs. The other online baseline algorithms (ROBD and HITMIN), which do not explicitly account
for long-term fairness cost, consistently exhibit poor fairness performance across different values of
the fairness cost parameter u3. In contrast, FairOBD consistently maintains a relatively low fairness
cost while simultaneously minimizing hitting cost and ensuring action smoothness. These results
demonstrate that incorporating long-term fairness cost into our algorithm design is not only effective
but also robust.

In summary, FairOBD effectively balances action smoothness while maintaining a low hitting cost
and outperforms all other online baselines in fairness cost. These results validate the superiority of
FairOBD ’s explicit incorporation of long-term fairness in fostering socially responsible decision-
making.

C Proof of the Lower Bounds

C.1 Proof of Theorem 4.1

Proof. In this proof, we consider hitting, switching and long-term cost as following,

cost(x1:T ) =
1

T

T∑
t=1

m0

2
∥xt − ct∥2 + ∥ 1

T

T∑
t=1

Atxt∥p, (11)

where the horizon length T is known in advance. For the hitting cost, we choose the constant value
m0 satisfying m0 > 1. For an online policy, the context ct and At are revealed sequentially, and the
future context can be chosen adversarially based on the actions from the online optimal policy. The
offline policy has the complete information about the context.

Now we construct two selections for the online context sequence

Option 1:


c∗1:T = [1, 1, . . . , 1︸ ︷︷ ︸

T/2

, 0, 0, . . . , 0︸ ︷︷ ︸
T/2

]

A∗
1:T = [1, 1, . . . , 1︸ ︷︷ ︸

T/2

, 0, 0, . . . , 0︸ ︷︷ ︸
T/2

]
(12)

Option 2:


c⋄1:T = [1, 1, . . . , 1︸ ︷︷ ︸

T

]

A⋄
1:T = [1, 1, . . . , 1︸ ︷︷ ︸

T/2

,−1,−1, . . . ,−1︸ ︷︷ ︸
T/2

]
(13)

Let x†
1:T denote the action sequence generated by the online algorithm. For the first half of the

horizon, t ∈ [1, T/2], the two context sequences (c∗1:T , A
∗
1:T ) and (c⋄1:T , A

⋄
1:T ) are identical. The

decision of which context sequence to choose is made at time T/2 + 1. Before revealing the context
at this time, we examine the historical actions x†

1:T/2 of the expert policy.

For the online algorithm, we define the sum of action sequence as
T/2∑
t=1

x†
t =

T

2
(S† + ϵ(T )), (14)
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where S† is a constant value and ϵ(T ) is a vanishing term satisfying limT→∞ ϵ(T ) = 0. We consider
two cases about S†.

Case 1: |S†| < 2m0−1
2m0

.

In this case, we choose the second context trace (c⋄1:T , A
⋄
1:T ). And the offline optimal action sequence

can be obtained as

x∗
1:T = c⋄1:T . (15)

And the total cost is calculated as

cost(x∗
1:T ) = 0 +

∣∣ T∑
t=1

A⋄
t c

⋄
t

∣∣ = 0 (16)

In this case, for any action sequence x†
T/2+1:T chosen by the online algorithm, the cost of the expert

algorithm is lower bounded by

cost(x†
1:T ) =

1

T

T∑
t=1

m0

2
∥x†

t − ct∥2 + ∥ 1
T

T∑
t=1

Atxt∥p

≥ 1

T

T/2∑
t=1

m0

2
∥x†

t − 1∥2

≥ m0

2T

T

2

∥∥∥∥∑T/2
t=1 x

†
t − T/2

T/2

∥∥∥∥2
=

m0

4

(
S† − 1 + ϵ(T )

)2
(17)

where the first inequality is due to the non-negativity of the hitting and long-term costs, the second
inequality is based on RMS–AM inequality. Given ϵ(T ) is a vanishing term, the regret is lower
bounded by

cost(x†
1:T )− cost(x∗

1:T ) ≳
m0

4
∥S† − 1∥2 >

m0

4
(

1

2m0
)2 =

1

16m0
(18)

Case 2: |S†| ≥ 2m0−1
2m0

.

In this case, we choose the first context trace (c∗1:T , A
∗
1:T ). And one feasible action sequence is

defined as

x1:T =
m0 − 1

m0
c∗1:T (19)

We don’t need to prove the optimality of this feasible action sequence, as any the offline optimal cost
must be upper bounded by the cost of this feasible action sequence, which is

cost(x∗
1:T ) ≤

1

T

T∑
t=1

m0

2
∥xt − ct∥2 + ∥ 1

T

T∑
t=1

Atxt∥p

=
1

T

m0

2

T

2

1

m2
0

+
1

T

T

2

m0 − 1

m0

=
1

4m0
+

m0 − 1

2m0
=

2m0 − 1

4m0

(20)
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For the online algorithm, we have

cost(x†
1:T ) =

1

T

T/2∑
t=1

m0

2
∥x†

t − ct∥2 + ∥ 1
T

T/2∑
t=1

Atxt∥p

≥ 1

T

T/2∑
t=1

m0

2
∥x†

t − 1∥2 + 1

2
∥S† + ϵ(T )∥p

≥ m0

2T

T

2

∥∥∥∥∑T/2
t=1 x

†
t − T/2

T/2

∥∥∥∥2 + 1

2
∥S† + ϵ(T )∥p

=
m0

4
∥S† − 1 + ϵ(T )∥2 + 1

2
∥S† + ϵ(T )∥p

≳
m0

4
(S† − 1)2 +

1

2
∥S†∥

(21)

Then the regret of the online algorithm is lower bounded by

cost(x†
1:T )− cost(x∗

1:T ) ≳
m0

4
(S† − 1)2 +

1

2
∥S†∥ − 2m0 − 1

4m0
(22)

Based on our condition on S†, if S† ≤ − 2m0−1
2m0

, it’s obvious that

m0

4
(S† − 1)2 +

1

2
∥S†∥ − 2m0 − 1

4m0
≥ m0

4
(1 +

2m0 − 1

2m0
)2. (23)

On the other hand, if S† > 0, the minimizer of m0

2 (S† − 1)2 + 1
2∥S

†∥ − 2m0−1
4m0

is achieved at the
critical point S† = 1− 1

2m0
. Therefore, S† = 1− 1

2m0
is the minimizer for the bound as the bound

monotonically increases as S > 0. So the lower bound in this case can be expressed as

cost(x†
1:T )− cost(x∗

1:T ) ≳
m0

4
(

1

2m0
)2 +

1

2
∥1− 1

2m0
∥ − 2m0 − 1

4m0
=

1

16m0
(24)

Given m0 > 3
2 , the lower bounded for cost gap is obtained by combining the bounds for these two

conditions for S†, which is

cost(x†
1:T )− cost(x∗

1:T ) ≳
1

16m0
. (25)

To sum up, compared with the offline optimal action, the regret of any online algorithm is lower
bounded by Ω(1).

C.2 Proof of Theorem 4.2

Proof. In this proof, we construct the hitting, switching and long-term cost as following,

cost(x1:T ) =
1

T

T∑
t=1

m0

2
∥xt − ct∥2 + ∥ 1

T

T∑
t=1

Atxt∥p, (26)

where the horizon length T is known in advance and m0 > 1. For an online policy, the context ct and
At are revealed sequentially, and the future context can be chosen adversarially based on the actions
from the online policy. The offline policy has the complete information about the context. Our goal
is to derive a lower bound for the competitive ratio between online and offline policies under this
information asymmetry.

We construct two selections for the online context sequence

Option 1:


c∗1:T = [a, a, . . . , a︸ ︷︷ ︸

T/2

, 0, 0, . . . , 0︸ ︷︷ ︸
T/2

]

A∗
1:T = [1, 1, . . . , 1︸ ︷︷ ︸

T/2

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
T/2−1

]
(27)
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Option 2:


c⋄1:T = [a, a, . . . , a︸ ︷︷ ︸

T

]

A⋄
1:T = [1, 1, . . . , 1︸ ︷︷ ︸

T/2

,−1,−1, . . . ,−1︸ ︷︷ ︸
T/2

]
(28)

Let x†
1:T denote the action sequence generated by the online algorithm. For the first half of the

horizon, t ∈ [1, T/2], the two context sequences (c∗1:T , A
∗
1:T ) and (c⋄1:T , A

⋄
1:T ) are identical. The

decision of which context sequence to choose is made at time T/2 + 1. Before revealing the context
at this time, we examine the historical actions x†

1:T/2 of the online policy.

If there exists a time t ∈ [1, T/2] such that x†
t ̸= a, we select (c⋄1:T , A

⋄
1:T ) as the context sequence.

In this scenario, the offline optimal action is consistently a, resulting in a zero total cost. However,
the expert’s cost will be non-zero, leading to an infinite competitive ratio.

Conversely, if the online action sequence is x†
1:T/2 = [a, a, · · · , a], we will choose (c∗1:T , A

∗
1:T ) as

the context sequence. The best an online algorithm can do is to only optimize the action in x†
T/2+1

and set all subsequent actions as zero. We define the objective for action at x†
T/2+1 as

ϕ1(x) =
m0

2
(x)2 +

∥∥T
2
a+ x

∥∥ (29)

In our current setting, x is a scalar and the gradient of g1(x) is defined as

g′1(x) =


m0x+ 1 x > −T a

2

m0x− 1 x < −T a
2

undefined x = −1

(30)

In our following proof, we will choose the constant a ≥ 2
m0 T (e.g. a = 2

m0 T ). To preserve generality,
we will work with a symbolically. Given that m0 > 0 and T > 2, for all x < −T a

2 , we can derive the
upper bound of the gradient as follows, g′1(x) = m0x− 1 < −m0

T a
2 − 1 < −1. This implies that

g1(x) is monotonically decreasing as x approaches −T a
2 from the left. Since ϕ1(x) is continuous,

the minimizer cannot be located in the region x < −T a
2 .

On the other hand, as x approaches −T a
2 from the right (x > −T a

2 ), the gradient g′1(x) = m0x+ 1

approaches −m0
T a
2 +1 ≤ −1+ 1 ≤ 0. Given ϕ1(x) is continuous, this suggests that the minimizer

of ϕ1(x) must lie in the region x ≥ −T a
2 . To find the critical point in this region, we set g′1(x) = 0

for x > −1, which is m0x+ 1 = 0. Solving for x, we obtain the potential minimizer:

x†,∗
T/2+1 = − 1

m0
(31)

And the minimum value of g1(x) becomes

g1(x
†,∗
T/2+1) =

1

T

[
m0

2
(x)2 +

∥∥T
2
a+ x

∥∥]
=

1

T

[
1

2m0
+

T

2
a− 1

m0

]
=

1

2
a− 1

2m0 T
,

(32)

where the second equality is due to our choice of a ≥ 2
m0 T . The total cost of any online algorithm

in this case is lower bounded by

cost(x†
1:T ) ≥

1

2
a− 1

2m0 T
. (33)
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Next, we aim to derive the upper bound for the offline policy with complete context sequence. As we
only focus on the scale of the competitive ratio’s lower bound, it’s not necessary to explicitly solve
the true offline optimal trace, which could be very messy. Instead, we choose the following action
sequence to serve as a feasible action sequence x′

1:T , which is

x′
t =


0 t ∈ [1, T

2 ]

−a t = T
2 + 1

0 t ∈ [T2 + 1, T ]

(34)

Then the total cost of the true offline optimal cost is bounded by

cost(x∗
1:T ) ≤ cost(x′

1:T ) =
1

T

[
m0

2
(
T

2
+ 1)a2 + a

]
(35)

Here we choose a = 2
m0 T . The lower bound for the cost of any online algorithm and the upper

bound for the offline optimal cost is given by

cost(x†
1:T ) ≥

1

2
a− 1

2m0 T
=

1

2m0 T

cost(x∗
1:T ) ≤

1

T

[
m0

2
(
T

2
+ 1) a2 + a

]
=

3

m0 T 2
+

2

m0 T 3
.

(36)

The competitive ratio is lower bounded by

CR =
cost(x†

1:T )

cost(x∗
1:T )

≥
1

2m0

3
m0 T + 2

m0 T 2

=
T

6 + 4
T

≳
T

6
(37)

In other words, the competitive ratio of any online algorithm is lower bounded by Ω(T ).

D Proof of Asymptotic Competitive Ratio for FairOBD

For the ease of presentation, we define the drift of Bregman divergence for the dual variable κ at time
t as

∆(t) = Vh(κ1, κt+1)− Vh(κ1, κt) (38)

To facilitate the proof of the asymptotic competitive ratio for FairOBD in different settings, we first
present several technical lemmas.
Lemma D.1. Suppose κt+1 is the solution to the following equation

κt+1 = arg min
κ∈RN

⟨dt, κ⟩+
1

η
Vh(κ, κt) (39)

Then for any κ′ ∈ RN , we have

⟨κt+1, dt⟩+
1

η
Vh(κt+1, κt) ≤ ⟨κ′, dt⟩+

1

η
Vh(κ

′, κt)−
1

η
Vh(κ

′, κt+1) (40)

Proof. For simplicity, we define

e(κ) = ⟨dt, κ⟩+
1

η
Vh(κ, κt) (41)

The gradient of e(κ) with respect to κ is defined as

∇κe(κ) = dt +
1

η

(
∇h(κ)−∇h(κt)

)
(42)

Since κt+1 is the minimizer of e(κ), then for any κ′ ∈ RN we must have

⟨κ′ − κt+1, dt +
1

η

(
∇h(κt+1)−∇h(κt)

)
⟩ ≥ 0 (43)
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We prove this by contradiction. Suppose there exist κ′, such that ⟨κ′ − κt+1,∇κe(κ)⟩ < 0, then we
construct a function y(ξ) = e(κt+1 + ξ(κ′ − κt+1)), where ξ ∈ [0, 1]. The gradient of y(ξ) is

∇ξy(ξ) =

〈
κ′ − κt+1, dt −

1

η

(
∇h(κt)−∇h

(
κt+1 + ξ(κ′ − κt+1)

))〉
(44)

Then ∇ξy(0) = ⟨κ′−κt+1, dt+
1
η

(
∇h(κt+1)−∇h(κt)

)
⟩ < 0. Therefore ξ = 0 is not the minimizer

of y(ξ) or in other words, κt+1 is not the minimizer of e(κ), which is contradictory to our assumption.
So the inequality in Eqn (43) must hold for any κ′ ∈ RN . By organizing the inequality, we have

⟨κt+1, dt⟩ ≤⟨κ′, dt⟩+
1

η
⟨κ′,∇h(κt+1)−∇h(κt)⟩ −

1

η
⟨κt+1,∇h(κt+1)−∇h(κt)⟩

=⟨κ′, dt⟩+
1

η
⟨κ′ − κt+1,∇h(κt+1)−∇h(κt)⟩

(45)

According to the definition of Bregman Divergence, we have
⟨κ′ − κt+1,∇h(κt+1)−∇h(κt)⟩

=⟨κ′ − κt+1,∇h(κt+1)⟩ − ⟨κ′ − κt+1,∇h(κt)⟩
=⟨κ′ − κt+1,∇h(κt+1)⟩ − ⟨κ′ − κt,∇h(κt)⟩+ ⟨κt+1 − κt,∇h(κt)⟩
=− h(κ′) + h(κt+1) + ⟨κ′ − κt+1,∇h(κt+1)⟩ − h(κt) + h(κ′)− ⟨κ′ − κt,∇h(κt)⟩
− h(κt+1) + h(κt) + ⟨κt+1 − κt,∇h(κt)⟩

=− Vh(κ
′, κt+1) + Vh(κ

′, κt)− Vh(κt+1, κt)

(46)

Then we finish the proof.

Lemma D.2. If the reference function h(·) is l-strongly convex and κ1 is the initial dual variable,
then the dual variable κt is bounded by

Vh(κ1, κT+1) ≤ T (η2
Z2

2l
+ ηLZ)− κ⊤

1 · (
T∑

t=1

Atxt − zt) (47)

where the constant Z = supzt,xt,At
∥zt −Atxt∥.

Proof. According to the Line 7 of Algorithm 1 and Lemma D.1, for any κ′ ∈ RN
+ we have

⟨κt+1, dt⟩+
1

η
Vh(κt+1, κt) ≤ ⟨κ′, dt⟩+

1

η
Vh(κ

′, κt)−
1

η
Vh(κ

′, κt+1) (48)

By setting κ′ = κ1 and add ⟨κt, dt⟩ to both sides of Eqn (48), we have

⟨κt − κ1, dt⟩ ≤
(
⟨κt − κt+1, dt⟩ −

1

η
Vh(κt+1, κt)

)
+

1

η
Vh(κ1, κt)−

1

η
Vh(κ1, κt+1)

(49)

Since the reference function h(a) is l-strongly convex. then

h(a) ≥ h(b) + (a− b)∇h(b) +
l

2
∥a− b∥2 (50)

In other words
Vh(κt+1, κt) ≥

l

2
∥κt+1 − κt∥2 (51)

Therefore, we have
1

η
Vh(κt+1, κt)− ⟨κt − κt+1, dt⟩

=⟨κt+1 − κt, dt⟩+
1

η
Vh(κt+1, κt)

≥− ∥κt+1 − κt∥∥dt∥+
l

2η
∥κt+1 − κt∥2

≥− l

2η
∥κt+1 − κt∥2 −

η

2l
∥dt∥2 +

l

2η
∥κt+1 − κt∥2

=− η

2l
∥dt∥2 ≥ − η

2l
Z2

(52)
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The first inequality holds by the definition of inner product and the l-strongly convexity assumption
of reference function h(·), the second inequality is derived with the AM-GM inequality, and the last
inequality is obtained with the assumption ∥dt∥ ≤ Z. According to the definition of ∆(t), Eqn (49)
becomes

⟨κt, zt −Atxt⟩+
∆(t)

η
≤ η

2l
Z2 + ⟨κ1, zt −Atxt⟩ (53)

According to Line 4 and Line 5 of algorithm 1, then for any x′
t ∈ Xt and z′t ∈ Z , we have

ft(xt) + λ1d(xt, xt−1) +
λ2

2
∥xt − vt∥2 + g(zt) + κ⊤

t · (Atxt − zt)

≤ft(x
′
t) + λ1d(x

′
t, xt−1) +

λ2

2
∥x′

t − vt∥2 + g(z′t) + κ⊤
t · (Atx

′
t − z′t)

(54)

By adding
(

∆(t)
η − κ⊤

t · (Atxt − zt)

)
to both sides of the inequality, we have

∆(t)

η
+ ft(xt) + λ1d(xt, xt−1) +

λ2

2
∥xt − vt∥2 + g(zt)

≤
(
∆(t)

η
− κ⊤

t · (Atxt − zt)

)
+ ft(x

′
t) + λ1d(x

′
t, xt−1) +

λ2

2
∥x′

t − vt∥2 + g(z′t) + κ⊤
t · (Atx

′
t − z′t)

≤
( η

2l
Z2 − κ⊤

1 · (Atxt − zt)
)
+ ft(x

′
t) + λ1d(x

′
t, xt−1) +

λ2

2
∥x′

t − vt∥2 + g(z′t) + κ⊤
t · (Atx

′
t − z′t)

(55)
Now we choose x′

t = xt and z′t = Atx
′
t, then we have

∆(t)

η
≤
( η

2l
Z2 − κ⊤

1 · (Atxt − zt)
)
+ g(z′t)− g(zt) ≤

η

2l
Z2 + LZ − κ⊤

1 · (Atxt − zt) (56)

By summing up the difference over the episode T , we have

Vh(κ1, κT+1)− Vh(κ1, κ1) ≤ ηT (
η

2l
Z2 + LZ)− ηκ⊤

1 · (
T∑

t=1

Atxt − zt) (57)

D.1 Proof of Theorem 5.1

In the problem setting without switching cost, we define the optimization objective as

G(x1:T ) =
1

T

T∑
t=1

[
ft(xt)

]
+ g(

1

T

T∑
t=1

Atxt). (58)

Proof. Since xt, zt is the optimal solution for Eqn (5), so we have the following equation for any
x′
t ∈ X , z′t ∈ Z:

ft(xt) + κt ·Atxt ≤ ft(x
′
t) + κt ·Atx

′
t (59)

g(zt)− κtzt ≤ g(z′t)− κtz
′
t (60)

By combining the inequalities in Eqn (53), (59) and (60), we have

∆(t)

η
+ ft(xt) + g(zt) ≤

η

2l
Z2 + ft(x

′
t) + g(z′t) + κ⊤

t · (Atx
′
t − z′t)− κ⊤

1 · (Atxt − zt) (61)

For the last term of Eqn (61), since κt+1 is the minimizer of e(κ), then for any κ′ ∈ RN we must
have

⟨κ′ − κt+1, dt +
1

η

(
∇h(κt+1)−∇h(κt)

)
⟩ ≥ 0 (62)

This condition is satisfied only if the gradient is zero, which is

dt +
1

η

(
∇h(κt+1)−∇h(κt)

)
= 0. (63)
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Since the reference function is l-strongly convex, we can bound the dual update by the gradient
distance in the following way

∥κt+1 − κt∥ ≤ η

l
∥
(
∇h(κt+1)−∇h(κt)

)
∥ ≤ η∥dt∥

l
. (64)

Thus, we can have the following inequality for the last term of Eqn (61) by summing it up over the
frame R, which is

⟨κt+k − κt, At+kx
′
t+k − z′t+k⟩ ≤

∥∥∥t+k−1∑
j=t

(
κj+1 − κj

)∥∥∥ · ∥∥At+kx
′
t+k − z′t+k

∥∥
≤η

l
·
(t+k−1∑

j=t

∥∥Ajxj − zj
∥∥) · Z ≤ (k − 1) · ηZ

2

l
.

(65)

Then within the frame of size R, we have[
kR+R∑

t=kR+1

κt · (Atx
′
t − z′t)

]
≤ κkR+1

[
kR+R∑

t=kR+1

(Atx
′
t − z′t)

]
+

R(R− 1)

2l
ηZ2. (66)

Then by substituting Eqn (66) to Eqn (61) and summing up over the whole episode T , we have:

T∑
t=1

∆(t)

η
+

T∑
t=1

[
ft(xt) + g(zt)

]
=

Vh(κ1, κT+1)

η
+

T∑
t=1

[
ft(xt) + g(zt)

]

≤
T∑

t=1

[
ft(x

′
t) + g(z′t)

]
+

η

2l
Z2TR− κ⊤

1 ·

[
T∑

t=1

Atxt − zt

]
+

 K∑
k=1

κ(k−1)R+1

kR∑
t=(k−1)R+1

(Atx
′
t − z′t)


(67)

Now suppose x∗
1:T is the (R, δ)-optimal action sequence, then within the k-th frame we manually

construct z∗t as

z∗t =
1

R

kR+R∑
i=kR+1

Aix
∗
i , ∀t ∈ [kR+ 1, kR+R], 1 ≤ k ≤ K (68)

Based on the L-Lipschitz assumption on function g(·), we have:

T∑
t=1

g(z∗t ) =

K∑
k=1

R · g( 1
R

kR∑
t=(k−1)R+1

Atx
∗
t )

≤R

K∑
k=1

g(
1

T

T∑
t=1

Atx
∗
t ) + L

K∑
k=1

∥ 1

R

kR∑
t=(k−1)R+1

Atx
∗
t −

1

T

T∑
t=1

Atx
∗
t ∥

≤
K∑

k=1

[
R · g( 1

T

T∑
t=1

Atx
∗
t )
]
+ Lδ

=Tg(
1

T

T∑
t=1

Atx
∗
t ) + Lδ

(69)

Substituting it back to Eqn (67), we have

T∑
t=1

[
ft(xt) + g(zt)

]
≤

T∑
t=1

[
ft(x

∗
t )

]
+ T · g( 1

T

T∑
t=1

Atx
∗
t ) +

η

2l
Z2TR

+ Lδ − Vh(κ1, κT+1)

η
− κ⊤

1 ·

[
T∑

t=1

Atxt − zt

] (70)
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where the Bregman divergence Vh(κ1, κT+1) is non-negative since the reference function is convex,
which can be eliminated later. The last step is to upper bound g( 1

T

∑T
t=1 Atxt) with 1

T

∑T
t=1 g(zt),

which is

T · g( 1
T

T∑
t=1

Atxt)−
T∑

t=1

g(zt)

≤TL∥ 1
T

T∑
t=1

Atxt −
1

T

T∑
t=1

zt∥+ T

[
g(

1

T

T∑
t=1

zt)−
1

T

T∑
t=1

g(zt)

]

≤L∥
T∑

t=1

Atxt −
T∑

t=1

zt∥

(71)

Since κt+1 is the minimizer of e(κ), we have

dt +
1

η

(
∇h(κt+1)−∇h(κt)

)
= 0. (72)

In other words ∥∥∥ T∑
t=1

(−dt)
∥∥∥ =

∥∥∥ T∑
t=1

(
Atxt − zt

)∥∥∥ =
∥∇h(κT+1)−∇h(κ1)∥

η
(73)

Since the reference function h(·) is l-strongly convex and β2-smooth, we have

∥∇h(κT+1)−∇h(κ1)∥
η

≤ β2∥κT+1 − κ1∥
η

≤ β2

η

√
2

l
Vh(κ1, κT+1) (74)

By substituting the inequality to Eqn (71), we have

T · g( 1
T

T∑
t=1

Atxt)−
T∑

t=1

g(zt) ≤
β2L

η

√
2

l
Vh(κ1, κT+1) (75)

By substituting Lemma D.2 into the inequality, we have

T · g( 1
T

T∑
t=1

Atxt)−
T∑

t=1

g(zt) ≤ β2L

√√√√T (
Z2

l2
+

1

η

2LZ

l
)− 2

η2l
κ⊤
1 · (

T∑
t=1

Atxt − zt) (76)

According to our assumption, we have
∣∣∣κ⊤

1 · (
∑T

t=1 Atxt − zt)
∣∣∣ ≤ TZ · ∥κ1∥. By substituting the

above inequality into Eqn (70), we have

T∑
t=1

[
ft(xt)

]
+ T · g( 1

T

T∑
t=1

Atxt) ≤
T∑

t=1

[
ft(x

∗
t )

]
+ T · g( 1

T

T∑
t=1

Atx
∗
t ) +

η

2l
Z2TR

+ TZ∥κ1∥+ Lδ + β2L

√
T
(Z2

l2
+

1

η

2LZ

l
+

2

η2l
Z∥κ1∥

)
(77)

By dividing both sides by T , we finish the proof.

D.2 Proof of Theorem 5.2

For the ease of presentation, we define the optimization objective G(x1:T , x̃0:T−1) as

G(x1:T , x̃0:T−1) =
1

T

T∑
t=1

[
ft(xt) + λ1d(xt, x̃t−1) +

λ2

2
∥xt − vt∥2

]
+ g(

1

T

T∑
t=1

Atxt) (78)

To facilitate the proof of the asymptotic competitive ratio for FairOBD when the hitting cost is
m-strongly convex, we first present several technical lemmas.
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Lemma D.3. Suppose the switching cost is defined as as d(xt, xt−1) =
β1

2 ∥xt − xt−1∥2 and the
action sequence {(xt, zt)|∀t ∈ [1, T ]} is the solution using Algorithm 1, then for any x(t)′ ∈ X ,
z(t)′ ∈ Z , we have

T∑
t=1

∆(t)

η
+

T∑
t=1

[
ft(xt) + λ1d(xt, xt−1) + g(zt)

]
+

T∑
t=1

λ2

2
∥xt − vt∥2

≤
T∑

t=1

[
ft(x

′
t) + λ1d(x

′
t, xt−1) +

λ2

2
∥x′

t − vt∥2 + g(z′t)

]
+

 K∑
k=1

κ(k−1)R+1

kR∑
t=(k−1)R+1

(Atx
′
t − z′t)


− m+ λ1β1 + λ2

2

T∑
t=1

∥x′
t − xt∥2 +

η

2l
Z2TR− κ⊤

1 ·

[
T∑

t=1

Atxt − zt

]
(79)

Proof. Since the function ft(x) is m-strongly convex and switching cost d(x, xt−1)is also β1-strongly
convex with respect to x by definition, then we have

ft(xt) + λ1d(xt, xt−1) +
λ2

2
∥xt − vt∥2 + κt ·Atxt +

m+ λ1β1 + λ2

2
∥x′

t − xt∥2

≤ft(x
′
t) + λ1d(x

′
t, xt−1) +

λ2

2
∥x′

t − vt∥2 + κt ·Atx
′
t

(80)

where xt is the optimal solution for Eqn (5). Then similarly, for zt, we have
g(zt)− κtzt ≤ g(z′t)− κtz

′
t (81)

By combining the inequalities in Eqn (53), (80) and (81), we have
∆(t)

η
+ ft(xt) + λ1d(xt, xt−1) +

λ2

2
∥xt − vt∥2 + g(zt) +

m+ λ1β1 + λ2

2
∥x′

t − xt∥2

≤ η

2l
Z2 + ft(x

′
t) + λ1d(x

′
t, xt−1) +

λ2

2
∥x′

t − vt∥2 + g(z′t) + κ⊤
t · (Atx

′
t − z′t)− κ⊤

1 · (Atxt − zt)

(82)
For the last term of Eqn (82), since κt+1 is the minimizer of e(κ), then for any κ′ ∈ RN we must
have

⟨κ′ − κt+1, dt +
1

η

(
∇h(κt+1)−∇h(κt)

)
⟩ ≥ 0 (83)

This condition is satisfied only if the gradient is zero, which is

dt +
1

η

(
∇h(κt+1)−∇h(κt)

)
= 0. (84)

Since the reference function is l-strongly convex, we can bound the dual update by the gradient
distance in the following way

∥κt+1 − κt∥ ≤ η

l
∥
(
∇h(κt+1)−∇h(κt)

)
∥ ≤ η∥dt∥

l
. (85)

Thus, we can have the following inequality for the last term of Eqn (82) by summing it up over the
frame R, which is

⟨κt+k − κt, At+kx
′
t+k − z′t+k⟩ ≤

∥∥∥t+k−1∑
j=t

(
κj+1 − κj

)∥∥∥ · ∥∥At+kx
′
t+k − z′t+k

∥∥
≤η

l
·
(t+k−1∑

j=t

∥∥Ajxj − zj
∥∥) · Z ≤ (k − 1) · ηZ

2

l
.

(86)

Then within the frame of size R, we have[
kR+R∑

t=kR+1

κt · (Atx
′
t − z′t)

]
≤ κkR+1

[
kR+R∑

t=kR+1

(Atx
′
t − z′t)

]
+

R(R− 1)

2l
ηZ2. (87)

Then we finish the proof by substituting Eqn (87) to Eqn (82) and summing up over the whole episode
T .
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Lemma D.4. Given any context sequence γ = {(ft(·), At)|∀t ∈ [1, T ]}, x1:T and x∗
1:T are the

action sequence of FairOBD and the (R, δ)-optimal benchmark, respectively. Suppose the switching
cost d(xt, xt−1) =

β1

2 ∥xt − xt−1∥2, then the optimization objective of FairOBD is bounded by

G(x1:T , x0:T−1) ≤G(x∗
1:T , x0:T−1)−

m+ λ1β1 + λ2

2

1

T

T∑
t=1

∥x∗
t − xt∥2

+
η

2l
Z2R+ Z∥κ1∥+

Lδ

T
+ β2L

√
1

T
(
Z2

l2
+ 2

LZ

ηl
+

2

η2l
Z∥κ1∥)

(88)

Proof. With Lemma D.2 and Lemma D.3, we are ready to prove the Lemma D.4. Now suppose x∗
1:T

is the (R, δ)-optimal action sequence, then within the k-th frame we manually construct z∗t as

z∗t =
1

R

kR+R∑
i=kR+1

Aix
∗
i , ∀t ∈ [kR+ 1, kR+R], 1 ≤ k ≤ K (89)

Then according to Lemma D.3, we have

Vh(κ1, κT+1)

η
+

T∑
t=1

[
ft(xt) + λ1d(xt, xt−1) + g(zt)

]
+

T∑
t=1

λ2

2
∥xt − vt∥2

≤
T∑

t=1

[
ft(x

∗
t ) + λ1d(x

∗
t , xt−1) +

λ2

2
∥x∗

t − vt∥2 + g(z∗t )

]

− m+ λ1β1 + λ2

2

T∑
t=1

∥x∗
t − xt∥2 +

η

2l
Z2TR− κ⊤

1 ·

[
T∑

t=1

Atxt − zt

] (90)

Besides, based on the L-Lipschitz assumption on function g(·), we have

T∑
t=1

g(z∗t ) =

K∑
k=1

R · g( 1
R

kR∑
t=(k−1)R+1

Atx
∗
t )

≤R

K∑
k=1

g(
1

T

T∑
t=1

Atx
∗
t ) + L

K∑
k=1

∥ 1

R

kR∑
t=(k−1)R+1

Atx
∗
t −

1

T

T∑
t=1

Atx
∗
t ∥

≤
K∑

k=1

[
R · g( 1

T

T∑
t=1

Atx
∗
t )
]
+ Lδ

=Tg(
1

T

T∑
t=1

Atx
∗
t ) + Lδ

(91)

Substituting it back to Eqn (90), we have

T∑
t=1

[
ft(xt) + λ1d(xt, xt−1) +

λ2

2
∥xt − vt∥2 + g(zt)

]

≤
T∑

t=1

[
ft(x

∗
t ) + λ1d(x

∗
t , xt−1) +

λ2

2
∥x∗

t − vt∥2
]
+ T · g( 1

T

T∑
t=1

Atx
∗
t )

− m+ λ1β1 + λ2

2

T∑
t=1

∥x∗
t − xt∥2 +

η

2l
Z2TR+ Lδ − Vh(κ1, κT+1)

η
− κ⊤

1 ·

[
T∑

t=1

Atxt − zt

]
(92)

where the Bregman divergence Vh(κ1, κT+1) is non-negative since the reference function is convex,
which can be eliminated later. The last step is to upper bound g( 1

T

∑T
t=1 Atxt) with 1

T

∑T
t=1 g(zt),
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which is

T · g( 1
T

T∑
t=1

Atxt)−
T∑

t=1

g(zt)

≤TL∥ 1
T

T∑
t=1

Atxt −
1

T

T∑
t=1

zt∥+ T

[
g(

1

T

T∑
t=1

zt)−
1

T

T∑
t=1

g(zt)

]

≤L∥
T∑

t=1

Atxt −
T∑

t=1

zt∥

(93)

Since κt+1 is the minimizer of e(κ), we have

dt +
1

η

(
∇h(κt+1)−∇h(κt)

)
= 0. (94)

In other words ∥∥∥ T∑
t=1

(−dt)
∥∥∥ =

∥∥∥ T∑
t=1

(
Atxt − zt

)∥∥∥ =
∥∇h(κT+1)−∇h(κ1)∥

η
(95)

Since the reference function h(·) is l-strongly convex and β2-smooth, we have

∥∇h(κT+1)−∇h(κ1)∥
η

≤ β2∥κT+1 − κ1∥
η

≤ β2

η

√
2

l
Vh(κ1, κT+1) (96)

By substituting the inequality to Eqn (93), we have

T · g( 1
T

T∑
t=1

Atxt)−
T∑

t=1

g(zt) ≤
β2L

η

√
2

l
Vh(κ1, κT+1) (97)

By substituting Lemma D.2 into the inequality, we have

T · g( 1
T

T∑
t=1

Atxt)−
T∑

t=1

g(zt) ≤ β2L

√√√√T (
Z2

l2
+

1

η

2LZ

l
)− 2

η2l
κ⊤
1 · (

T∑
t=1

Atxt − zt) (98)

According to our assumption, we have
∣∣∣κ⊤

1 · (
∑T

t=1 Atxt − zt)
∣∣∣ ≤ TZ · ∥κ1∥. By substituting the

above inequality into Eqn (92), we have

T∑
t=1

[
ft(xt) + λ1d(xt, xt−1) +

λ2

2
∥xt − vt∥2

]
+ T · g( 1

T

T∑
t=1

Atxt)

≤
T∑

t=1

[
ft(x

∗
t ) + λ1d(x

∗
t , xt−1) +

λ2

2
∥x∗

t − vt∥2
]
+ T · g( 1

T

T∑
t=1

Atx
∗
t ) +

η

2l
Z2TR

+ TZ∥κ1∥+ Lδ − m+ λ1β1 + λ2

2

T∑
t=1

∥x∗
t − xt∥2 + β2L

√
T
(Z2

l2
+

1

η

2LZ

l
+

2

η2l
Z∥κ1∥

)
(99)

By dividing both sides by T , we finish the proof.

Now we are ready to prove Theorem 5.2 as the following.

Proof. According to Lemma D.4, the switching cost in right hand side in Eqn (88) is evaluated on the
actual action sequence, while the ultimate goal is to bound it with the switching cost of offline optimal
action sequence. In other words, the final step is to convert G(x∗

1:T , x0:T−1) to G(x∗
1:T , x

∗
0:T−1).

More specifically,
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λ1d(xt, xt−1) =
λ1β1

2

T∑
t=1

∥x∗
t − xt−1∥2

≤λ1β1

2

T∑
t=1

(
∥x∗

t − x∗
t−1∥+ ∥x∗

t−1 − xt−1∥
)2

≤λ1β1

2
(
m+ λ2 + λ1β1

m+ λ2
)

T∑
t=1

∥x∗
t − x∗

t−1∥2 +
m+ λ1β1 + λ2

2

T∑
t=1

∥x∗
t−1 − xt−1∥2

≤λ1β1

2
(
m+ λ2 + λ1β1

m+ λ2
)

T∑
t=1

∥x∗
t − x∗

t−1∥2 +
m+ λ1β1 + λ2

2

T∑
t=1

∥x∗
t − xt∥2

(100)

Substitute Eqn (100) into Eqn (88), we have

1

T

T∑
t=1

[
ft(xt) + λ1d(xt, xt−1) +

λ2

2
∥xt − vt∥2

]
+ g(

1

T

T∑
t=1

Atxt)

≤ 1

T

T∑
t=1

[
ft(x

∗
t ) + λ1(

m+ λ2 + λ1β1

m+ λ2
)d(x∗

t , x
∗
t−1) +

λ2

2
∥x∗

t − vt∥2
]
+ g(

1

T

T∑
t=1

Atx
∗
t ) + 0 +∆

≤ 1

T

T∑
t=1

[
(1 +

λ2

m
)ft(x

∗
t ) + λ1(

m+ λ2 + λ1β1

m+ λ2
)d(x∗

t , x
∗
t−1)

]
+ g(

1

T

T∑
t=1

Atx
∗
t ) + ∆

(101)
where ∆ = η

2lZ
2R + β2L

√
1
T (

Z2

l2 + 2LZ
ηl + 2

η2lZ∥κ1∥) + Z∥κ1∥+ Lδ
T . Then the overall cost of

FairOBD is bounded by

1

T

T∑
t=1

[
ft(xt) + d(xt, xt−1)

]
+ g(

1

T

T∑
t=1

Atxt)

≤ 1

Tλ1

T∑
t=1

[
ft(xt) + λ1d(xt, xt−1)

]
+

1

λ1
g(

1

T

T∑
t=1

Atxt) +
1

λ1
∆

≤ 1

T

T∑
t=1

[
(
m+ λ2

mλ1
)ft(x

∗
t ) + (

m+ λ2 + λ1β1

m+ λ2
)d(x∗

t , x
∗
t−1)

]
+

1

λ1
g(

1

T

T∑
t=1

Atx
∗
t ) +

1

λ1
∆

≤C

[
1

T

T∑
t=1

[
ft(x

∗
t ) + d(x∗

t , x
∗
t−1)

]
+ g(

1

T

T∑
t=1

Atx
∗
t )

]
+

1

λ1
∆

(102)

where C = max{m+λ2

mλ1
, m+λ2+λ1β1

m+λ2
} is the competitive ratio.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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the paper has limitations, but those are not discussed in the paper.
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Justification: All the assumptions are clearly listed in the main paper. A complete and
correct proof is attached in the appendix and ready for review.
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referenced.
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by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results of the paper. Due to the page limit, the detailed information can be found in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In our empirical study, all information is based on publicly available data. We
will make the data and code public upon acceptance of the paper.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As we don’t need to train We provide all the information about the test details
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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societal impacts of the work performed?
Answer: [Yes]
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societal impacts or the need for safeguards. Our discussion mainly focuses on the positive
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• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Due to the theoretical nature of this work, it doesn’t have such risks for data or
model misuse.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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safety filters.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
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assets.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Due to the theoretical nature of this work, the paper does not release new
assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Due to the theoretical nature of this work, the paper does not involve crowd-
sourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: Due to the theoretical nature of this work, the paper does not involve crowd-
sourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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