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ABSTRACT

We study the problem of estimating survival causal effects, where the aim is to
characterize the impact of an intervention on survival times, i.e., how long it takes
for an event to occur. Applications include determining if a drug reduces the time
to ICU discharge or if an advertising campaign increases customer dwell time.
Historically, the most popular estimates have been based on parametric or semi-
parametric (e.g. proportional hazards) models; however, these methods suffer
from problematic levels of bias. Recently debiased machine learning approaches
are becoming increasingly popular, especially in applications to large datasets.
However, despite their appealing theoretical properties, these estimators tend to be
unstable because the debiasing step involves the use of the inverses of small esti-
mated probabilities—small errors in the estimated probabilities can result in huge
changes in their inverses and therefore the resulting estimator. This problem is
exacerbated in survival settings where probabilities are a product of treatment as-
signment and censoring probabilities. We propose a covariate balancing approach
to estimating these inverses directly, sidestepping this problem. The result is an
estimator that is stable in practice and enjoys many of the same theoretical prop-
erties. In particular, under overlap and asymptotic equicontinuity conditions, our
estimator is asymptotically normal with negligible bias and optimal variance. Our
experiments on synthetic and semi-synthetic data demonstrate that our method has
competitive bias and smaller variance than debiased machine learning approaches.

1 INTRODUCTION

The estimation of the impact of interventions on survival times is a key objective in numerous stud-
ies. This analytical approach is important in various domains, including drug efficacy’s evaluation
at ICU stay duration and assessment of advertising campaigns’ effects on customer dwell time.

The predominant approach for assessing the impact of interventions on survival times is to employ
the Cox proportional hazards model (CoxPH) (Cox, 1972; Andersen & Gill, 1982). This model
estimates conditional hazard ratios, which serve as a measure of survival causal effects. However,
the causal interpretation of conditional hazard ratios within the CoxPH model can be complex (Mar-
tinussen, 2022; Vansteelandt et al., 2022). Hence, there has been a growing interest in directly esti-
mating counterfactual survival curves and consequently deriving survival causal effects from these
estimates (Westling et al., 2023) such as the average survival effect, the residual average survival
effect, and the survival quantile effect (Mansourvar et al., 2016; Mao et al., 2018). A counterfactual
survival curve represents the probability of an event occurring at a specific point in time, if contrary
to fact, the entire population had undergone a specific intervention, given that the event of interest
has not yet occurred.

Traditional approaches for estimating counterfactual curves in survival analysis have relied on con-
ditional parametric or semiparametric regression models (Kleinbaum & Klein, 2012; Cox, 1972), or
weighted methods based on inverse probability of censoring and treatment weighting (IPW) (Robins
& Rotnitzky, 1992). However, both approaches can suffer from model misspecification i.e. the
model does not contain the truth. Weighted methods are also susceptible to extreme inversions
(Kang et al., 2007; Kallus & Santacatterina, 2022; Kallus, 2021). In recent years, debiased ma-
chine learning approaches have gained popularity due to their appealing double robustness property
which deals with model misspecification in addition to being semiparametric efficient (Kennedy,
2022). Specifically, double robustness implies that even if only certain models that need to be es-
timated are correctly specified, these approaches remain consistent, ie., asymptotycally unbiased.
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Semiparametric efficiency refers to the ability of an estimator or estimation method to achieve the
smallest possible asymptotic variance among a class of semiparametric estimators. Despite their
desirable theoretical properties, debiased machine learning methods still face challenges associated
with extreme inversions because they are necessarily characterized by inverse probability weights
(Chernozhukov et al., 2022a).

Covariate balancing methods have been proposed as a solution to the issue of extreme weights en-
countered in other approaches (Ben-Michael et al., 2021). Instead of directly incorporating inverse
probabilities, these methods employ a weight-learning process that yields more stable estimates
while preserving crucial properties like semiparametric efficiency. However, the application of these
methods to estimate survival causal effects has been significantly limited (Xue et al., 2023; Wong
& Chan, 2017; Abraich et al., 2022; Johansson et al., 2022; Santacatterina, 2023; Kallus & San-
tacatterina, 2021; Yiu & Su, 2022), with none of them providing results on asymptotic normality.
Asymptotic normality is crucial for statistical inference, hypothesis testing, and the construction of
confidence intervals, highlighting a current gap in the literature.

We contribute to the literature of survival causal effects estimation by presenting a novel approach
based on covariate balancing techniques. Our proposed method offers stability in practical applica-
tions, and when certain conditions such as overlap and asymptotic equicontinuity are met, it demon-
strates asymptotic normality with minimal bias and optimal variance, ie., statistically efficiency. We
substantiate these claims both theoretically and through experiments conducted on synthetic data.
Proofs, additional experiments and some technical details are deferred to the supplemental material.

2 SETTING

In this section, we review the notations and main quantities in standard discrete survival analysis
(Section 2.1). We refer interested readers to e.g. Chapter 16 of Crowder (2012) for further details.
We then introduce counterfactual survival analysis including the causal parameter of interest and
identification assumptions using the Neyman-Rubin potential outcome framework (Neyman, 1923;
Rubin, 1974) (Section 2.2). Finally, some useful notations are introduced in Section 2.3.

2.1 DISCRETE SURVIVAL ANALYSIS

Data structure. We define an observable survival data unit as the set of random variables
(X,E, T̃ ) where X ∈ X ⊆ Rd is the covariate recorded prior to the beginning of the study. To
define E and T̃ , let T ∈ T ∪ {∞} be the time-to-event and C ∈ T the time-to-censoring (censor
time), where T = ∞ means that the event has not happened during the study time window T . In a
clinical study, T can be the patient’s time from their entry to the study until their death - the event of
interest. The events may not happen during the study’s time or the patients drop out before the end
of the study, therefore a censoring time C is introduced. Define T̃ = min{T,C} the right-censored
time and E = 1(T ≤ C) the event indicator. If E = 1, the event is observed and occurs at time
T̃ = T , otherwise, the event has not happened or is censored at time T̃ = C. We assume discrete
T = [tmax] = {0, 1, .., tmax}, tmax ∈ Z+ and P (T = 0) = 0, so that zero times are ruled out.
Denote |T | the total number of time points and |t| = |{u ∈ T : u ≤ t}| the number of time points
less than or equal to t. tmax may be chosen by the user, or as a result of administrative censoring
P (C ≤ tmax) = 1.

The marginal and sub-survival functions. We seek to recover the distributions of latent time T
from the observable T̃ and E. Define the marginal-hazard, the marginal-survival function of T and
the marginal-censoring function of C as follows:

ht(x) = P (T = t|X = x, T ≥ t); St(x) = P (T > t|X = x); Gt(x) = P (C > t|X = x).
(1)

These definitions imply a one-to-one relationship between h and S: letting t− = max(0, t− 1),

ht(x) =
P (T = t|X = x)

P (T ≥ t|X = x)
=
P (T = t|X = x)

St−(x)
; St(x) = St−(x)(1−ht(x)) =

∏
u≤t

(1−hu(x)).

(2)
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For observable data, define the sub-hazard and sub-survival function as:

λt(x) = P (T̃ = t, E = 1|X = x, T̃ ≥ t); Ht(x) = P (T̃ > t|X = x). (3)

When T and C are conditionally independent given X , the following lemma relates the sub-
distributions and the marginal-distributions:

Proposition 2.1. If T ⊥ C|X then: ht(x) = λt(x), therefore:

St(x) =
∏
u≤t

(1− hu(x)) =
∏
u≤t

(1− λu(x)). (4)

Additionally, the sub-survival function decomposes into a product of the marginal-survival functions
of the event and censoring: Ht(x) = St(x)Gt(x).

We provide a proof in Appendix B. This equivalence enables the estimation of all identities defined
up to now from observable data. From here on, we will use term hazard to refer to the sub-hazard.

2.2 COUNTERFACTUAL SURVIVAL ANALYSIS

Data structure. We define the ideal data unit in counterfactual survival analysis as
(X,E,A, T (0), T (1), C(0), C(1)), where A ∈ {0, 1} is a binary random variable indicating e.g.
whether or not a patient receives the treatment, T (a) is the event time of interest under A = a
and similarly for C(a). With the introduction of A, we define T = AT (1) + (1 − A)T (0) and
C = AC(1) + (1 − A)C(0), therefore the observable time T̃ and event indicator E are defined as
before. The observable data unit is now O = (X,E,A, T̃ ). In this context, we will talk about the
treatment-specific hazard and survival function, λt(a, x) and St(a, x), characterized as in Section
2.1 in terms of the conditional distribution given treatmentA = a. With Lemma 2.1, we then define,

λt(x, a) = P (E = 1, T̃ = t|X = x,A = a, T̃ ≥ t); St(x, a) =
∏
u≤t

(1− λu(x, a)) (5)

Survival causal parameter of interest: the counterfactual survival function. We will focus
mainly on the counterfactual survival function at time t ∈ T and treatment a ∈ {0, 1}: ψa,t =
P (T (a) > t). Other commonly encountered parameters can be built from it such as the average
survival effect at time t: (ψ1,t − ψ0,t) and the treatment-specific mean survival time

∑
t≤tmax

ψa,t

as well as its average effect counterpart. Where convenient, we will write ψ in place of ψa,t, letting
the treatment and time of interest be inferred from context.

Identification To identify the counterfactual survival function using the observable data, similar
to Hubbard et al. (2000); Bai et al. (2013; 2017); Westling et al. (2023); Dı́az (2019); Cai & van der
Laan (2020), we require the following testable and untestable assumptions:

• (A1) T (a), C(a) ⊥ A|X for each a ∈ {0, 1}.

• (A2) T (a) ⊥ C(a)|A = a,X for each a ∈ {0, 1}.

• (A3) P (A = a|X) = 0 > 0 almost surely.

• (A4) P (C(a) ≥ τ |X) > 0 positivity (censoring),

Proposition 2.2. When Assumptions (A1)-(A4) hold, ψa,t can be computed by observable quanti-
ties

ψa,t = E [St(X, a)] = E

∏
u≤t

(1− λu(X, a))

 . (6)

The proof, along with a discussion of the assumptions, appears in Appendix B.
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2.3 NOTATION FOR OUR PROPOSED APPROACH

In the next section, it will be useful to think of the hazard at time u, λu(a, x), as λ̄u(x, a, 1) where

λ̄u(x, a, g) = P (E = 1, T̃ = u|X = x,A = a, 1(T̃ ≥ u) = gu)

= E[Y u | X = x,A = a, 1(T̃ ≥ u) = gu] for Y u = 1(E = 1, T̃ = u).
(7)

Furthermore, we’ll think of the functions λ̄1 . . . λ̄T as the components of a vector-valued function
λ̄ with [λ̄(x, a, t)]u = λ̄u(x, a, 1(t ≥ u)) Note that this vector-valued function has the property
that its uth component depends on t only through the indicator 1(t ≥ u); we will call the space of
vector-valued functions with this property the ’hazard-like functions’ Λ. And we will think of our
estimand ψa,t, as identified in Proposition 2.2, as a functional ψ on this space Λ evaluated at λ̄:

ψa,t = ψ(λ̄) where ψ(l̄) = E

∏
u≤t

(
1− l̄u(X, a, 1)

) . (8)

We’ve written things in these terms to emphasize the analogy between our estimation problem and
the problem of estimating a functional of a conditional expectation function considered in Hirshberg
& Wager (2021) and Chernozhukov et al. (2022b). What we are estimating is a functional of a
vector-valued function λ̄ ∈ Λ that is, in each component, the conditional expectation function of
an observed outcome Y u given observed conditioning variable {X,A, 1(T̃ ≥ u)}. We will work
with an inner product on this space Λ defined in terms of a random variable X,A, T̃ with the same
distribution as (X1, A1, T̃1) . . . (Xn, An, T̃n).1 Letting Gu = 1(T̃ ≥ u) here and below,

〈
f, g
〉
= E

∑
u≤t

fu(X,A,G
u)gu(X,A,G

u)

 for f, g ∈ Λ. (9)

While we cannot evaluate the functional ψ or the inner product
〈
·, ·
〉

exactly because we do not
know the distribution of (X,A, T̃ ), natural sample-average approximations are available.

ψn(l̄) =
1

n

n∑
i=1

∏
u≤t

(
1− l̄u(Xi, a, 1)

) ;
〈
f, g
〉
n
=

1

n

n∑
i=1

∑
u≤t

fu(X,A,G
u)gu(X,A,G

u)


(10)

3 APPROACH

3.1 A FIRST-ORDER APPROXIMATION AND THE DERIVATIVE’S RIESZ REPRESENTER

Given an estimate λ̂ of the hazard λ̄, which we can get e.g. by using a machine-learning method of
our choice to regress Y u on X,A,Gu at each timestep u, the ‘plug-in estimate’ ψn(λ̂) is a natural
estimate of ψ(λ̄). But we can improve on this using a first-order correction. Consider the first-order
Taylor expansion of ψ around λ̂. In terms of its derivative dψ(λ̂)(h) at λ̂ in the direction h,

ψ(λ̂+ h) ≈ ψ(λ̂) + dψ(λ̂)(h) for h ∈ Λ. (11)

Taking h = λ̄ − λ̂, the difference between our actual hazard and our estimate, we get a first-order
approximation to our estimand ψ(λ̄). Our main concern will therefore be the estimation of this
derivative term dψ(λ̂)(λ− λ̂) where, as established in Lemma C.2 in the appendix,

dψ(λ̂)(h) = E

∑
u≤t

r̂u(X, a)hu(X, a, 1)

 for r̂u(X, a) = −Ŝt(X, a)
Ŝu−(X, a)

Ŝu(X, a)
(12)

1Note that this is an average over X,A, T̃ only. If f̂ and ĝ are random variables,
〈
f̂ , ĝ

〉
t

will be the random
variable E[

∑
u≤t f̂u(X,A,Gu)ĝu(X,A,Gu) | f̂ , ĝ]. We will do this conditioning implicitly throughout.
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While λ̂ and r̂ are known quantities, derived from our hazard estimate λ̂, we will need to
substitute something for the actual hazard λ̄. For this purpose, Yu is a natural proxy, as its
conditional mean is the hazard λ̄u(X,A,G) at the observed levels of the conditioning variables
X,A,G; our challenge is make this speak to its value λ̄u(X, a, 1) at often-unobserved levels of
those variables. To this end, we observe that the Riesz representation theorem guarantees that, for
the space Λ, there exists a unique element γ that acts (via an inner product) on the function h like
the functional derivative does, i.e., one satisfying

dψ(λ̂)(h) =
〈
γ, h

〉
=
∑
u≤t

E [γu(X,A,G)h(X,A,G)] for all h ∈ Λ (13)

and, in particular, taking h = λ̄− λ̂,

dψ(λ̂)(λ− λ̂) =
〈
γ, λ− λ̂

〉
=
∑
u≤t

E
[
γu(X,A,G)

{
λ̄(X,A,G)− λ̂(X,A,G)

}]
. (14)

We call γ the Riesz representer of dψ(λ̂). Substituting Yu for λ̄ gives us an equivalent expression
for our derivative term. By the law of iterated expectations,

dψ(λ̂)(λ− λ̂) =
∑
u≤t

E
[
γu(X,A,Gu)

{
E[Yu|X,A,Gu]− λ̂u(X,A,Gu)

}]
=
∑
u≤t

E
[
γu(X,A,Gu)

{
Yu − λ̂u(X,A,G)

}] (15)

So, supposing that we have an estimator γ̂ for our Riesz representer, we obtain the following esti-
mator for ψ(λ̄) by replacing expectations with sample averages as in Equation (10).

ψ̂ = ψ̂n(λ̂) +
1

n

n∑
i=1

∑
u≤t

γ̂u(Xi, Ai, Gi)
{
Y u
i − λ̂u(Xi, Ai, Gi)

}
(16)

3.2 ESTIMATING THE RIESZ REPRESENTER γ

γ can be characterized in terms of inverse probability weights. The explicit solution to the set of
equations defining the Riesz representer (Equation 13) is

γ(X,A,G) =
r̂u(X, a)1(A = a,Gu = 1)

E [1(A = a,Gu = 1)|X]
= r̂u(X, a)1(A = a,Gu = 1)ωu(X, a)

where ωu(x, a) =
1

Hu−(x, a)π(x, a)
and π(x, a) = P (A = a | X = x).

(17)

One approach is to estimate the functions π(x, a) and Hu−(x, a) appearing in Equation (17) and
assemble them into an estimate γ̂ = r̂u(X,a)1(A=a,Gu=1)

Ĥu−(X,a)π̂(X,a)
= r̂u(X, a)1(A = a,Gu = 1)ω̂u(X, a)

of the Riesz representer γ. Taking this approach yields ‘one-step’ estimator discussed in Section 4
below. However, this solution suffers from instability, common in all inverse weight-based estima-
tors. When the ground truth functions Hu−(X, a) and π(X, a) are very small at some observations,
naturally their estimators tends to be very small, hence, slight errors in estimating them can result in
large errors in the estimation of their inverses (i.e. 1/(x− ϵ)− 1/x ≈ ϵ/x2). Thus, lack of overlap
in the data means that such estimators will be unstable, with very large sample sizes needed to get
estimates of π and H accurate enough to tolerate inversion. Moreover, even when when overlap in
the data is not poor, moderate-sized errors in the estimation of π and H that occur at smaller sample
sizes results in similar issues. It is common practice to clip these weights to a reasonable range
before using them, but ad-hoc clipping often results in problematic levels of bias. In short, we lack
practical and theoretically sound methods to make this inversion step work reliably.

Our approach, which avoids this problematic inversion, focuses not on the analytic form of the Riesz
representer but on what it does, i.e., on the equivalence of the inner product ⟨γ, h⟩ to the derivative
evaluation dψ(λ̂)(h). As we lack the ability to analytically evaluate the expectations involved in
both, we will use the sample average approximations of these quantities: ⟨γ, h⟩n (defined above)
and dψn(λ̂)(h) =

1
n

∑n
i=1

∑
u≤t r̂u(Xi, a)hu(Xi, a, 1). Inspired by the explicit characterization in
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Equation (17), taking γ̂ to have a functional form γ̂(Xi, Ai, Gi) = r̂u(Xi, a)1(Ai = a,Giu = 1)ω̂iu

(for weights ω̂iu) , we ask that, for a set of functions h,

1

n

n∑
i=1

∑
u≤t

r̂u(Xi, a)1(Ai = a,Giu = 1)ω̂iuhu(Xi, Ai, Giu) ≈
1

n

n∑
i=1

∑
u≤t

r̂u(Xi, a)hu(Xi, a, 1).

(18)
In the simpler setting considered in Hirshberg & Wager (2021), this approximation has meaning
beyond that, suggested by its relationship to the population analog Equation (13). The quality of the
in-sample approximation described by Equation (18) for the specific function ĥ = λ̄ − λ̂ is, along
with the accuracy of the estimator λ̂ and therefore of the linear approximation in Equation (12),
one of two essential determinants of the estimator’s bias. See Appendix C.2, where we include an
informative decomposition of our estimator’s error and further discussion.

In light of that, we generalize the approach of Hirshberg & Wager (2021) for estimating γ by en-
suring that Equation (18) holds for a set M of hazard-like functions h, which we deem as a model
for function ĥ = λ − λ̂. In particular, we ask for weights that are (i) not too large, to control our
estimator’s variance, and (ii) ensure the approximation in Equation (18) is accurate uniformly over
model M. This modeling task is somewhat simplified by the observation that we only need a model
for ĥ(Xi, a, 1), as the presence of the indicator 1(Ai = a,Giu = 1) on the right side of Equation
(18) justifies the substitution of hu(Xi, a, 1) for hu(Xi, Ai, Gi). Thus, choosing a norm ∥·∥ and
taking the set of vector-valued functions [h1(x) . . . hn(x)] with

∑
u ∥hu∥

2 ≤ 1 as our model for
[ĥ1(X, a, 1) . . . ĥn(X, a, 1)], we choose weights by solving the following optimization problem

ω̂ = argmin
ω∈Rn|T |

I(ω)2 + σ2

nt

n∑
i=1

∑
u≤t

r̂u(Xi, a)
21(Ai = a,Gui = 1)ω2

iu

 where

I(ω) = max∑
u≤t∥hu∥2≤1

1

n

n∑
i=1

∑
u≤t

{
r̂u(Xi, a)hu(Xi)− r̂u(Xi, a)1(Ai = a,Giu = 1)ωiuhu(Xi)

}
.

(19)
What remains is to choose this norm with the intention ∥ĥu∥ is small for all u. If our model is correct
in the sense that

∑
u∥ĥu∥2 ≤ B2, then B times the maximal approximation error I(ω̂) bounds the

approximation error in Equation (18).

As usual, there is a natural trade-off in choosing this model—if we take it to be too small, ∥ĥu∥
will be large or even infinite; on the other hand if we take it to be too large, we will be unable
to find weights for which the approximation Equation (18) is highly accurate for all functions in
the model. Choosing a norm with a unit ball that is a Donsker class, e.g. a Reproducing Kernel
Hilbert Space (RKHS) norm like the one we use in our experiments, is a reasonable trade-off that
is common in the literature on minimax and augmented minimax estimation of treatment effects
(e.g., Hirshberg et al., 2019; Kallus, 2016). When we do this, our estimator will be asymptotically
efficient, i.e. asymptotically normal with negligible bias and optimal variance, if the hazard functions
f(x) = λ̄u(x, a, 1) are in this class and we estimate them via empirical risk minimization with
appropriate regularization. We discuss the computational aspects of this problem in Appendix A.2.

3.3 ASYMPTOTIC EFFICIENCY

In this section, we will discuss the asymptotic behavior of our estimator, giving sufficient conditions
for it to be asymptotically efficient. Throughout, we will assume λ̂ is cross-fit, i.e., fit on an auxilliary
sample independent of and distributed like our sample.

Our first condition is that it converges faster than fourth-root rate. This ensures the error of our first-
order approximation Equation (11), quadratic in the error h = λ̄− λ̂, is asymptotically negligible.

Assumption 3.1.
∥∥∥λ̂u(·, a)− λu(·, a)

∥∥∥
L2(P )

= op(n
−1/4) for all u ≤ t.

Our second condition is that its error is bounded in the norm ∥·∥ used to define our model. This
ensures that the bound on I(ω̂) achieved via the optimization in Equation (19) implies a comparable
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bound on the error of the derivative approximation ⟨γ̂, h⟩n ≈ dψ(λ̂)(h) in Equation (18) for the
relevant perturbation h = λ̄− λ̂.

Assumption 3.2.
∥∥∥λ̂u(·, a)− λu(·, a)

∥∥∥ = Op(1) for all u ≤ t.

If our model is correctly specified in the sense that ∥λu∥ <∞ for ∀u, a sensibly tuned ∥·∥-penalized
estimator of λu will have these two properties (see, e.g., Hirshberg & Wager, 2021, Remark 2).

Our third condition is that we have a sufficient degree of overlap.

Assumption 3.3. E[1/P (A = a, T̃ ≥ u | X)] <∞

This is a substantially weakened version of the often-assumed ‘strong overlap’ condition that P (A =

a, T̃ ≥ u | X) is bounded away from zero, allowing this probability to approach zero for some X
as long as it is ‘typically’ elsewhere.

Our final condition is, for the most part, a constraint on the complexity of our model.
Assumption 3.4. The unit ball B = {h : ∥h∥ ≤ 1} is Donsker and uniformly bounded in the sense
that maxh:∥h∥≤1 ∥h∥∞ <∞. Furthermore,

{
h(·)

P (A=a,T̃≥u|X=·)
: ∥h∥ ≤ 1

}
is Donsker for all u.

The ‘furthermore’ clause here is implied by the first clause if strong overlap holds, as multiplication
by the inverse probability weight 1/P (A = a, T̃ ≥ u | X = ·) will not problematically increase the
complexity of the set of functions h ∈ B if those weights are bounded.

We are now ready to state our main theoretical result, which involves the efficient influence function
ϕa,t for estimating ψa,t,

ϕa,t(O) = St(X, a)− ψa,t(λ) + r(X, a)1(A = a,Gu = 1)ωu(Xi, a)(Yu − λu(X, a))

for r(X, a) = −St(X, a)
Su−(X, a)

Su(X, a)

(20)

Theorem 3.5. Suppose λ̂ is a hazard estimator fit on an auxiliary sample and Assumptions 3.1-3.4
are satisfied. Then the estimator ψ̂ described in Equation (16), using the Riesz Representer estimate
γ̂ obtained by solving Equation (19) for any fixed σ > 0, is asymptotically linear with influence
function ϕ. That is, it has the asymptotic approximation ψ̂ − ψ = 1

n

∑n
i=1 ϕ(Oi) + op(n

−1/2).

It follows, via the central limit theorem, that under these conditions
√
n(ψ̂ − ψ) is asymptotically

normal with mean zero and variance V = E
[
ϕ(λ)(O)2

]
. This justifies a standard approach to

inference based on this asymptotic approximation, i.e., based on the t-statistic
√
n(ψ̂ − ψ)/V̂ 1/2

being approximately standard normal if V̂ is a consistent estimator of this variance V .

As usual for estimators involving cross-fitting, working with multiple folds and averaging will yield
an estimator with the same characterization without an auxiliary sample (e.g., Chernozhukov et al.,
2018). The resulting estimator is asymptotically linear on the whole sample and, having the efficient
influence function ϕ, is asymptotically efficient.2

4 RELATED WORK

Outcome regression and inverse probability weighting estimators. Based on Proposition 2.2,
the outcome regression approach (Makuch, 1982) estimates ψa,t is by directly estimating the condi-
tional event survival St(a,X) given the treatment and covariates. Parametric and semi-parametric
models such as the Cox proportional hazard (CoxPH) model (Cox, 1972; Andersen & Gill, 1982)
in addition to deep learning techniques (Zhu et al., 2016; Katzman et al., 2018; Faraggi & Simon,
1995; Wang et al., 2021; Ching et al., 2018; Sun et al., 2020; Zhong et al., 2022; Nagpal et al., 2021;

2There are many equivalent formal descriptions of what asymptotic efficiency means (e.g.,in Van der Vaart,
2000, Chapter 25). In essence, it implies that no estimator can be reliably perform better in asymptotic terms,
either in terms of criteria for point estimation like mean squared error or in terms of inferential behavior like
the power of tests against local alternatives.
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Meixide et al., 2022; Lv et al., 2022; Tibshirani, 1997; Biganzoli et al., 1998; Liestbl et al., 1994;
Zhao & Feng, 2020; 2019; Hu et al., 2021; Luck et al., 2017; Yousefi et al., 2017; Lv et al., 2022)
have been proposed to estimate St(a,X). A popular alternative to outcome regression is the inverse
probability of censoring and treatment weighting estimator (IPW) (Robins & Rotnitzky, 1992) de-
fined as 1 − 1

n

∑n
i=1

1(Ai=a)
π̂(Xi,a)

1(Ei=1)

ĜTi
(Xi,a)

1(T̃i ≤ t). In the past, model misspecification is a problem

for both approaches. Modern machine learning methods can readily alleviate this, but they are data
hungry, which motivates the use of semi-parametric efficient estimators (Chernozhukov et al., 2017).

Semi-parametric efficient estimators. The recent wake of big data and machine learning attracts
renewed attention for the field of semi-parametric efficient estimation, with numerous notable con-
tributions focusing on causal inference, such as Dı́az (2020); Chernozhukov et al. (2017; 2022a);
Robins & Rotnitzky (1992); Tsiatis (2006). One starts from the efficient influence function (EIF),
which determines the fastest rate of any regular estimators (Van der Vaart, 2000), and construct
efficient estimators e.g. the one-step estimator (Kennedy, 2022). Similar EIFs to 20 but with dif-
ferent parameterization are found in e.g. Dı́az (2019); Cai & van der Laan (2020); Hubbard et al.
(2000); Bai et al. (2013; 2017); Westling et al. (2023). All semi-parametric efficient estimators are
the same asymptotically (Van der Vaart, 2000), whose asymptotic variances are determined by the
EIF, similar to Theorem 3.5; this key property shows that our estimator is asymptotically as good as
other semi-parametric efficient ones. It does not, however, characterize an estimator’s finite-sample
behavior.

Covariate balancing. Numerous covariate balancing methods have been developed for estimating
the effect of binary/continuous treatments on continuous outcomes including (Kallus & Santacatte-
rina, 2021; 2022; Kallus, 2021; Hirshberg et al., 2019; Hirshberg & Wager, 2021; Zhao & Percival,
2017; Zhao et al., 2019; Wong & Chan, 2017; Visconti & Zubizarreta, 2018; Zubizarreta et al., 2014;
Li et al., 2018; King et al., 2017; Josey et al., 2020; Yiu & Su, 2018; Hainmueller, 2012; Imai &
Ratkovic, 2014; Zubizarreta, 2015, among others). There is however limited body of research on
covariate balance in the context of survival data (Xue et al., 2023; Abraich et al., 2022; Leete et al.,
2019; Santacatterina, 2023; Yiu & Su, 2022; Kallus & Santacatterina, 2021). Perhaps the most sim-
ilar to our work and motivation is Xue et al. (2023), which is a covariate-balancing extension of
Xie & Liu (2005). Unfortunately, they assume independent censoring (T and C are independent
unconditionally of X) and their estimator is inefficient. None of the mentioned covariate-balancing
methods in survival context provide results on asymptotic normality like ours, which allows for
statistical inference, hypothesis testing, and the construction of confidence intervals.

5 EXPERIMENTS

We now describe the experimental evidence concerning our estimator. As noted by, e.g., Curth et al.
(2021), ground truth is almost never available in causal inference, so synthetic or semi-synthetic data
(i.e. synthesized data based on real data) is the standard. We focus on the experiments that provide
the most insight into the behavior of our estimator and its competitors; additional experiments and
metrics along with implementation details are included in Appendix A.

5.1 BASELINES, METRICS AND DATASETS

We compare our balancing estimator (Balance) with the outcome regression estimator (OR) and the
doubly-robust estimator (DR). We include 2 implementation of DR, one with clipping the weight’s
denominator to be at least 10−3 and one without.

We report the average survival effect at time t: ∆t = ψ1,t − ψ0,t. Our key error metrics are
(1) the relative root-mean-squared-error (Relative RMSE), defined as the RSME of an estimator
divided by the RMSE of the OR estimator, which we take to be the baseline, and (2) the Bias
over Standard Error ratio (Bias/StdE). Let {∆̂t

q}
Q
q=1 be our estimates overQ simulations and ∆t the

ground truth, The RSME, Bias, and Standard Error are defined as
√

1
Q

∑
q(∆̂

t
q −∆t)2, 1

Q

∑
q(∆̂

t
q−

∆t),
√

1
Q

∑
q(∆̂

t
q − 1

Q

∑
q ∆̂

t
q)

2, respectively.
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We use the two datasets from Curth et al. (2021) with slight modifications; note that they are con-
cerned with the heterogeneous treatment effect and thus incomparable in our context. For the first
dataset Synthetic, we modified the assignment distribution to a ∼ Bern(Sigmoid(ξ ×

∑
p xp))

where x is a sample of a 10-dimensional multivariate normal, so that ξ controls the lack of overlap
from propensity (the higher ξ the less overlap as Sigmoid saturates quicker). The default value of ξ
is 0.3. We refer readers to the authors’ exposition of the different biases arising from censoring and
assignment in this dataset. The second dataset Twins is a semi-synthetic dataset based on the Twins
dataset (Louizos et al., 2017). For both, we set tmax = 30. We use 200 and 500 observations for
Synthetic and Twins, respectively, for each Q = 100 simulations of each experiment. We provide
the full data generating process in A.1, A.3.

5.2 DISCUSSION OF RESULTS

Poor overlap can effect estimators in 2 ways (1) make naive outcome regression estimators biased
and (2) lead to extreme numerical inverses in inverse-weight-based estimators. We illustrate this with
2 experiments for censoring bias/poor overlap in time and treatment bias/poor overlap in propensity.

Metrics over time. From Figure 1, in both datasets, Balance is both accurate and inferentially
useful i.e. we can construct meaningful confidence interval, without suffering from the poor overlap
at higher times. Balance has comparable RMSE to OR, where DR and DR-clip are much worse;
in Twins, DR clearly runs into large numerical inverses, and DR-clip, despite its improvements, is
still far from Balance. Yet, Bias/StdE plots show that OR has serious bias issue that is exacerbated
by censoring bias at higher times. This bias is extremely problematic for inference: an Bias/StdE
of 1.4 at time t = 15 in Synthetic means that a nominal 95% confidence interval contains the
truth only 74.5% of the time. In contrast, this number is always above 92% for DR and Twins
(Bias/StdE ≤ 0.5). Of course, as seen from Relative RMSE plots, DR and DR-clip have very high
standard error that push their RMSE up and thus highly inaccurate.

Figure 1: The effect of lack of overlap in propensity on Bias/StdE and Relative RSME.

Metrics over varying propensity. In Figure 2, we re-run Synthetic for ξ ∈
{0.1, 0.2, 0.3, 0.4, 0.5} and report the metrics at t = 15 to see how poor overlap from ex-
treme propensities influence our estimators. We observe similar behavior of estimators as seen in
the first experiment. As overlap decreases, we see that both OR’s Bias/StdE and DR’s Relative
RMSE increase. DR-clip was omitted in Synthetic plots as the estimates here are much less
extreme and not truncated. Despite that, because of small sample sizes, we still see the same
large errors in DR. In contrast, Balance is very stable across degrees of overlap, again proving its
capability to fix DR’s accuracy problem while being less biased than OR, which was also shown in
our semi-parametric efficiency theory.

Figure 2: The effect of lack of overlap in time on Bias/StdE and Relative RSME.
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A DESCRIPTION OF IMPLEMENTATION, DATASETS AND ADDITIONAL
RESULTS

A.1 IMPLEMENTATION

Throughout, we use the RBF kernel with length scale 10. For all methods considered, we need
to train a hazard estimator for time-to-event (the survival function can then be constructed from
the hazard). We use the discrete logistic-hazard model (Kvamme & Borgan, 2019) with the mean
negative log-likelihood loss parameterized by the hazard function as:

L({O}ni=1;λ) = − 1

n

n∑
i=1

∑
u≤Ti

(Yu log λu(Xi, Ai) + (1− Yu) log(1− λu(Xi, Ai)))

where Yu = 1(Ei = 1, Ti = u). This loss breaks down into |T | × 2 independent binary cross-
entropy losses for each u ∈ T and a ∈ {0, 1}:

Lu({O}ni=1;λ) =
∑
u∈T

∑
a∈{0,1}

Lu({O}ni=1;λu(·, a)) where

Lu({O}ni=1;λu(·, a)) = − 1

n

n∑
i=1

1(u ≤ Ti) (Yu log λu(Xi, Ai) + (1− Yu) log(1− λu(Xi, Ai)))

Therefore, we can fit |T | × 2 independent hazard models using kernel logistic regression.

Covariate-balancing The hazard estimate must be fit on a separate split of the data, therefore we
divide the data into 2 folds. For each fold, we fit the hazard estimator on the other fold, then estimate
the Riesz representer using the just obtained hazard estimate on the canonical fold. The result is one
causal parameter estimate of the canonical fold, by solving the optimization problem 19. This gives
us the time-to-event hazard and the riesz estimates which we use to estimate the causal parameter
of this canonical fold, using Equation (16). Lastly, we obtain the final estimate by averaging the
estimates across 2 folds.

Double robust estimation We need to train a hazard estimator for time-to-censoring, which can
be done similarly to the time-to-event case (but with events flipped), and a propensity estimator, for
which we use a simple linear logistic regression (correctly specified in both datasets). We use cross-
fitting (Chernozhukov et al., 2018), where we randomly divide the dataset into K folds (we used
K=5 in our experiments). For each fold, we fit the time-to-event/censoring hazard and propensity
estimators on the remaining folds and obtain their estimates on the canonical fold. Using the time-
to-censoring and the propensity estimates we obtain the riesz estimate using Equation (17). Lastly
we obtain the causal parameter estimate using Equation (16).

A.2 THE WEIGHT OPTIMIZATION PROBLEM

We start by observing that we do not need to solve the optimization Equation (19) all at once. It
decomposes into t separate optimizations over timestep-specific weights ω·u specific to a single
timestep.
Lemma A.1. If the weights ω̂ solve Equation (19), the timestep-u-specific subset ω̂·u satisfy the
following one.

ω̂u = argmin
ωu∈Rn

{
Iu(ωu)

2 +
σ2

n

n∑
i=1

r̂u(Xi, a)
21(Ai = a,Giu = 1)ω2

iu

}
where

Iu(ωu) = max
∥hu∥≤1

1

n

n∑
i=1

{
r̂u(Xi, a)hu(Xi)− 1(Ai = a,Giu = 1)r̂u(Xi, a)ωiuhu(Xi)

} (21)

In the case that ∥·∥ is the norm of an RKHS, we can use the representer theorem to further simplify
this optimization. The representer theorem implies that it is sufficient to maximize over hu that can
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be written as
∑n

j=1 αjk(·, Xj) where k is our space’s kernel. Making this substitution, we get the
following characterization in terms of the n× n kernel matrix K satisfying Kij = k(Xi, Xj).

Iu(ωu) = max
αTKα≤1

{
αTK(r̂u ⊙ (1− Iu ⊙ ωu))

}
where r̂u, Iu, ωu are vectors in Rn and r̂iu = r̂u(Xi, a), Iiu = 1(Ai = a,Giu = 1), and ⊙ is the
element-wise product. The maximum is achieved at α = r̂u(1−Iu⊙ωu)/∥K1/2r̂u⊙(1−Iu⊙ωu)∥
and Iu(ωu) is:

Iu(ωu) = ∥K1/2r̂u ⊙ (1− Iu ⊙ ωu)∥
Replacing into the outer minimization problem:

ω̂u = argmin
ωu∈Rn

{
(r̂u ⊙ (1− Iu ⊙ ωu))

TKr̂u ⊙ (1− Iu ⊙ ωu) +
σ2

n

n∑
i=1

1(Ai = a,Giu = 1)r̂2iuω
2
iu

}

= argmin
ωu∈Rn

{
(r̂u ⊙ Iu ⊙ ωu)

T (K +
σ2

n
In)(r̂u ⊙ Iu ⊙ ωu)− 2r̂TuK(r̂u ⊙ Iu ⊙ ωu)

}
This quadratic-programming problem can be solved efficiently by most convex solvers, in particular
we chose cvxpy. Now we show why we can decompose the original problem this way.

Proof of theorem A.1. Let Lu(ωu, hu) be defined as follows.

Lu(ωu, hu) =
1

n

n∑
i=1

{
r̂iuhu(Xi)− 1(Ai = a,Giu = 1)r̂iuωiuhu(Xi)

}
In terms of this function,

I(ω)
def
= max∑

u∥hu∥2≤1

∑
u

Lu(ωu, hu)

= max
β∈Rt∑
u β2

u≤1

∑
u

max
∥hu∥≤βu

Lu(ωu, hu)

= max∑
u β2

u≤1

∑
u

max
∥hu∥≤1

Lu(ωu, βuhu)

= max∑
u β2

u≤1

∑
u

βu max
∥hu∥≤1

Lu(ωu, hu)

= max∑
u β2

u≤1

∑
u

βuIu(ωu)

=

√∑
u

I2u(ωu).

The last equality is due to Cauchy-Schwarz inequality, with equality achievable by setting βu pro-
portional to Iu(ωu). If we substitute this expression into our original optimization Equation (19),
we get:

ω̂ = argmin
ω∈Rn|T |

∑
u≤t

Iu(ωu)
2 +

σ2

nt

n∑
i=1

∑
u≤t

r̂iu1(Ai = a,Gui = 1)ω2
iu


= argmin

ω∈Rn|T |

∑
u≤t

(
Iu(ωu)

2 +
σ2

n

n∑
i=1

r̂iu1(Ai = a,Gui = 1)ω2
iu

)
=
∑
u≤t

argmin
ω∈Rn|T |

(
Iu(ωu)

2 +
σ2

n

n∑
i=1

r̂iu1(Ai = a,Gui = 1)ω2
iu

)
as each term in the sum over u is a function of an individual ωu, we can therefore solve a separate
minimization sub-problem for each u:

ω̂u = argmin
ωu∈Rn

{
Iu(ωu)

2 + σ2
n∑

i=1

1(Ai = a,Giu = 1)r̂2iuω
2
iu

}
proving our claim.
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A.3 DATASETS

We use both datasets from Curth et al. (2021) with modifications to the assignment distribution and
censoring distribution to exacerbate the overlap problem.

Synthetic Data.

X ∼ N (0, 0.8× I10 + 0.2× J10)

A ∼ Bern

(
0.2× σ

(∑
p

xp

))

ht(a, x) =

{
0.1σ(−5x21 − a× (1(x3 ≥ 0) + 0.5)) for t ≤ 10

0.1σ(10x2 − a× (1(x3 ≥ 0) + 0.5)) for t > 10

hC,t(a, x) =

{
(0.01× σ(10x24) for t < 30

1 for t ≥ 30

where σ is a sigmoid function, I10 is an identity matrix of size 10, J10 is a 10×10 matrix of all ones,
and

∑
p xp is the sum of all covariates of x. All time after t = 30 is censored so we set tmax = 30.

Semi-synthetic Data. We preprocess the Twins dataset similar to Curth et al. (2021); Yoon et al.
(2018). The time-to-event outcome is the time-to-mortality of each twin. Each observation x has
30 covariates and we do not encode the categorical features. We are interested in the survival in the
first 30 days, therefore tmax = 30. We also create artificial treatment and censoring:

A ∼ Bern(σ(w⊤
1 x+ e)) where w1 ∼ Uniform(−0.1, 0.1)30×1 and e ∼ N (0, 12)

C ∼ Exp(10× σ(w⊤
2 x)) where w2 ∼ N (0, 12)

treatment A decides which twin outcome is observed. Here C being continuous does not affect the
discrete event time. We standardize covariate x for training and only after creating the datasets.

A.4 ADDITIONAL RESULT FOR SYNTHETIC DATA.

We add 5 more metrics: MAE, MSE, Bias, Standard Error and Coverage for both datasets in figure
3 and 4. Overall, we see that Balance is competitive in all metrics. More specifically, it consistently
has the lowest bias, its MAE and MSE are competitive to OR while not suffering from poor overlap
at higher times in Synthetic. It also has consistently high coverage similar to DR, but does not suffer
from high standard errors and therefore low accuracy. Both DR and OR suffer from poor overlap,
but DR is the most susceptible, which shows that all the benefit of semi-parametric efficiency is lost
to extreme inversions.

Figure 3: Additional metrics across time for Synthetic

In our experiment on varying degree of overlap in Synthetic, instead of a fixed time t = 15,
we use 2 more metrics that summarize all time points: the Root Mean Squared Bias (RISB)

and Root Mean Squared Error (RISE) (Xue et al., 2023), defined as
√

1
T

∑
u(∆̂

t −∆t)2 and√
1
Q

∑
q

1
T

∑
u(∆̂

t
q −∆t)2 respectively. Once again, we see that Balance is best among all meth-

ods across all degree of overlap (see figure 5).
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Figure 4: Additional metrics across time for Twins

Figure 5: Effect of varying overlap on RISB/RISE

B IDENTIFICATION AND PROOF OF SUPPORTING LEMMAS

Proof of Lemma 2.1.

λt(x) = P (T̃ = t, E = 1|X = x)/P (T̃ ≥ t|X = x)

= P (T = t, C ≥ t|X = x)/P (T̃ ≥ t|X = x)

= P (T = t|X = x)P (C ≥ t|X = x)/P (T̃ ≥ t|X = x)

=
P (T = t|X = x)

P (T ≥ t|X = x)

P (T ≥ t|X = x)P (C ≥ t|X = x)

P (T̃ ≥ t|X = x)

= ht(x)

and Ht(x) = P (T̃ ≥ t|X = x) = P (T ≥ t, C ≥ t|X = x) = P (T ≥ t|X = x)P (C ≥ t|X =
x) = St(x)Gt(x)

Identification To identify the counterfactual survival function using the observable data, similar
to Hubbard et al. (2000); Bai et al. (2013; 2017); Westling et al. (2023); Dı́az (2019); Cai & van der
Laan (2020), we require the following testable and untestable assumptions:

1. (A1) T (a), C(a) ⊥ A|X for each a ∈ {0, 1} ().

2. (A2) T (a) ⊥ C(a)|A = a,X for each a ∈ {0, 1}.

3. (A3) P (A = a|X) = 0 > 0 almost surely.

4. (A4) P (C(a) ≥ τ |X) > 0 positivity (censoring),

in addition to consistency (A5) and non-interference (A6) Imbens & Rubin (2015). (A1), also re-
ferred to as no unmeasured confounders, selection on observables, exogeneity, and conditional in-
dependence, asserts that the potential outcomes/potential censoring times, and treatment assignment
are independent given confounders. This assumption implies that all relevant information regarding
treatment assignment and follow-up censoring times is captured in the available data. (A2) states that
the potential follow-up and censoring times are independent given the treatment and confounders.
(A3) and (A4) assert that the probability of receiving or not receiving treatment, as well as the prob-
ability of censoring, given confounders, is greater than zero. Finally, (A6) and (A7) state that the
observed treatment corresponds to the actual treatment received, ensuring consistency between the
observed and true treatment assignments.
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Proof of Proposition 2.2.

P (T (a) > t) = E[P (T (a) > t)|X]

= E[P (T > t|X,A = a)]

= E[St(X, a)]

= E

∏
u≤t

(1− ht(X, a))


= E

∏
u≤t

(1− λt(X, a))



where we used iterated expectation in the first equation, (A1) in the second equation, (A2) in the
forth equation, and Lemma 2.1 in the last equation.
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C PROOF OF THEOREM 3.5

We first recall and introduce additional notations for this section. Denote Z = (X,A,G) the condi-
tioning structure of the hazard function λ. As r and S are functions of λ, we use r̂ and Ŝ as functions
of λ̂ to denote the estimator counterparts. We drop the superscripts a, t of ψa,t since they are not
relevant in the proof. We use ψ = ψ(λ) for the parameter of interest E[St(X, a)], ψn(λ) for the
sample analog

∑n
i=1 St(X, a). As S and λ are one-to-one, ψ(λ̂) would be E[Ŝt(X, a)]. We use ψ̂

to denote our estimator, i.e.,

ψ̂ = ψn(λ̂) +
1

n

n∑
i=1

∑
u≤t

γ̂iu(1(Ei = 1, T̃ = u)− λ̂u(Zi)) (22)

Let’s start by recalling what we are proving.

ψ̂ − ψ =
1

n

n∑
i=1

ϕλ(Oi) + op(n
−1/2) where (23)

ϕ(λ)(O) = (St(X, a)− ψ)

+
∑
u≤t

ru(X, a)1(A = a,Gu = 1)ωu(X, a)
(

1(E = 1, T̃ = u)− λu(X, a)
)
,

ωu(X, a) =
1

Hu−(X, a)π(X, a)
,

ru(X, a) = −St(X, a)
Su−(X, a)

Su(X, a)
.

To do this, we will work with this error decomposition.

ψ̂ − ψ(λ) = ψn(λ̂) +
1

n

n∑
i=1

∑
u≤t

γ̂iu{Yiu − λ̂u(Zi)} − ψ(λ)

=
{
ψn(λ̂)− ψ(λ̂)

}
+

1

n

n∑
i=1

∑
u≤t

γ̂iu(Yiu − λ̂u(Zi))− dψ(λ̂)(λ− λ̂)

+
{
ψ(λ̂) + dψ(λ̂)(λ− λ̂)− ψ(λ)

}
.

(24)

We prove Equation (23) in three steps. Throughout, we will work conditionally on the auxilliary
sample used to estimate λ̂, so we can act as if it is a deterministic function. This will imply that our
claim holds where op refers to probability conditional on the auxilliary sample and therefore also
that it holds where op refers to unconditional probability.

Step 1. The third term in this decomposition, the error of our linearization of ψ around λ̂, is
op(n

−1/2). Lemma C.2 below shows that this is implied by our assumption that λ̂ converges λ at
faster-than-fourth-root rate.

Step 2. Lemma C.4 below concludes that the second term in our decomposition has the following
asymptotic approximation.

1

n

n∑
i=1

∑
u≤t

r̂u(X, a)1(Ai = a,Gu = 1)ωu(X, a){1(Ei = 1, T̃i = u)− λu(Zi)}+ op(n
−1/2)
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Step 3. The sum of the first term in our decomposition and the non-negligible part of the second is

= ψn(λ̂)− ψ(λ̂) +
1

n

n∑
i=1

∑
u≤t

r̂(Xi, a)1(Ai = a,Giu = 1)ωu(Xi, a){1(Ei = 1, T̃i = u)− λu(Zi)}

def
=

1

n

n∑
i=1

ϕ̂(Oi)

(25)
To complete our proof of the claim Equation (23), we show

1

n

n∑
i=1

{
ϕ̂(Oi)− ϕ(Oi)

}
= op(n

1/2).

Because this is an average of independent and identically distributed terms with mean zero, its mean
square is 1/n times the variance of an individual term; thus, all we have to do is show that the
variance of (ϕ̂ − ϕ)(Oi) goes to zero. In Lemma C.5 below, we show that this is a consequence of
the convergence of λ̂→ λ.

We conclude by stating and proving our lemmas.
Lemma C.1. For all t ∈ T ,

Ŝt(X, a)− St(X, a) =
∑
u≤t

Ŝt(X, a)
Su−(X, a)

Ŝu−(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)
.

Furthermore, ∥∥∥St(X, a)− Ŝt(X, a)
∥∥∥
L2(P )

≤ |T |max
u≤t

∥∥∥λu(X, a)− λ̂u(X, a)
∥∥∥
L2(P )

Lemma C.2. Let λ̂ and λ be two hazards and Ŝ and S the associated survival functions. Then the
functional ψ(h) evaluated at h = λ has the following expansion:

ψ(λ) =ψ(λ̂) + E

−∑
u≤t

Ŝt(X, a)
Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)
+ E

−∑
u≤t

Ŝt(X, a)

Ŝu(X, a)

(
Su−(X, a)− Ŝu−(X, a)

)(
λu(X, a)− λ̂u(X, a)

) (26)

Furthermore, under Assumption 3.1 and Lemma C.1, the second term is op(n−1/2), therefore:

ψ(λ̂) = ψ(λ) + E

∑
u≤t

Ŝt(X, a)
Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)+ op(n
−1/2)

Remark C.3. Since the second term in the expansion of ψ(λ), shown in Equation (26), is linear in
(λ− λ̂) and the third is higher order, this lemma shows that the second term is indeed the derivative
dψ(λ̂)(λ− λ̂) that appears in Equation (11).
Lemma C.4. Suppose the assumptions of Theorem 3.5 are satisfied.

1

n

n∑
i=1

∑
u≤t

γ̂iu{1(Ei = 1, T̃i = u)− λ̂u(Zi)} − dψ(λ̄− λ̂)(λ)

=
1

n

n∑
i=1

∑
u≤t

r̂u(X, a)1(Ai = a,Gu = 1)ωu(X, a){1(Ei = 1, T̃i = u)− λu(Zi)}+ op(n
−1/2).

This remains true if Assumption 3.1’s op(n−1/4) rate assumption is weakened to an op(1) rate.
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Lemma C.5. Suppose our overlap assumption, Assumption 3.3, is satisfied. Then the influence
function ϕ is mean-square continuous as a function of λ, i.e.,

ϕ(λ)(Oi) = {St(Xi, a)− E [St(X, a)]}

+
∑
u≤t

ru(Xi, a)1(Ai = a,Giu = 1)ωu(Xi, a)
(

1(T̃i = u,Ei = 1)− λu(Xi, a)
)

satisfies E{ϕ(λ̂) − ϕ(λ)}2 → 0 if λ̂ and λ are two hazards, with corresponding survival curves Ŝ
and S and ratios r̂ and r, that converge in the sense that

∥∥∥λ̂− λ
∥∥∥
L2(P )

→ 0.

C.1 LEMMA PROOFS

Proof of Lemma C.1. For all t ∈ T

Ŝt(X, a)− St(X, a) = Ŝt(X, a)

(
1− St(X, a)

Ŝt(X, a)

)

= Ŝt(X, a)
∑
u≤t

(
Su−(X, a)

Ŝu−(X, a)
− Su(X, a)

Ŝu(X, a)

)

= Ŝt(X, a)
∑
u≤t

Su−(X, a)

Ŝu−(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
Ŝu(X, a)

Ŝu−(X, a)
− Su(X, a)

Su−(X, a)

)

= Ŝt(X, a)
∑
u≤t

Su−(X, a)

Ŝu−(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
(1− λ̂u(X, a))− (1− λu(X, a))

)
=
∑
u≤t

Ŝt(X, a)
Su−(X, a)

Ŝu−(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)
(27)

therefore

∥∥∥St(X, a)− Ŝt(X, a)
∥∥∥
L2(P )

=

∥∥∥∥∥∥
∑
u≤t

Ŝt(X, a)
Su−(X, a)

Ŝu−(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)∥∥∥∥∥∥
L2(P )

≤ |T |max
u≤t

∥∥∥∥∥Ŝt(X, a)
Su−(X, a)

Ŝu−(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)∥∥∥∥∥
L2(P )

≤ |T |max
u≤t

∥∥∥∥∥Ŝt(X, a)
Su−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)∥∥∥∥∥
L2(P )

≤ |T |max
u≤t

∥∥∥λu(X, a)− λ̂u(X, a)
∥∥∥
L2(P )

since 0 ≤ Ŝt(X,a)Su−(X,a)

Ŝu(X,a)
≤ Ŝt(X,a)

Ŝu(X,a)
≤ 1.
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Proof of Lemma C.2. We expand each term of the decomposition in Lemma C.1 around the approx-
imation Su−(X, a)/Ŝu−(X, a) ≈ 1,

Ŝt(X, a)
Su−(X, a)

Ŝu−(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)
= Ŝt(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)
+ Ŝt(X, a)

(
Su−(X, a)

Ŝu−(X, a)
− 1

)
Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)
= Ŝt(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)
+
Ŝt(X, a)

Ŝu(X, a)

(
Su−(X, a)− Ŝu−(X, a)

)(
λu(X, a)− λ̂u(X, a)

)
therefore

ψ(λ̂)− ψ(λ) = E
[
Ŝt(X, a)− St(X, a)

]
= E

∑
u≤t

Ŝt(X, a)
Su−(X, a)

Ŝu−(X, a)

Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

) (By Lemma C.1)

= E

∑
u≤t

Ŝt(X, a)
Ŝu−(X, a)

Ŝu(X, a)

(
λu(X, a)− λ̂u(X, a)

)
+ E

∑
u≤t

Ŝt(X, a)

Ŝu(X, a)

(
Su−(X, a)− Ŝu−(X, a)

)(
λu(X, a)− λ̂u(X, a)

)
(28)

We now argue that the second term is o(n−1/2):∣∣∣∣∣∣E
∑
u≤t

Ŝt(X, a)

Ŝu(X, a)

(
Su−(X, a)− Ŝu−(X, a)

)(
λu(X, a)− λ̂u(X, a)

)∣∣∣∣∣∣
≤

∥∥∥∥∥∥
∑
u≤t

Ŝt(X, a)

Ŝu(X, a)

(
Su−(X, a)− Ŝu−(X, a)

)(
λu(X, a)− λ̂u(X, a)

)∥∥∥∥∥∥
L2(P )

≤ |T |max
u≤t

∥∥∥(Su−(X, a)− Ŝu−(X, a)
)(

λu(X, a)− λ̂u(X, a)
)∥∥∥

L2(P )

≤ |T |max
u≤t

∥∥∥Su−(X, a)− Ŝu−(X, a)
∥∥∥
L2(P )

∥∥∥λu(X, a)− λ̂u(X, a)
∥∥∥
L2(P )

We then use the bound for S in Lemma C.1 to get:∣∣∣∣∣∣E
∑
u≤t

Ŝt(X, a)

Ŝu(X, a)

(
Su−(X, a)− Ŝu−(X, a)

)(
λu(X, a)− λ̂u(X, a)

)∣∣∣∣∣∣
≤ |T |2 max

u≤t

∥∥∥λu(X, a)− λ̂u(X, a)
∥∥∥2
L2(P )

= op(n
−1/2) (By Assumption 3.1)

22



Under review as a conference paper at ICLR 2024

Proof of Lemma C.4. We will establish this result timestep-by-timestep. That is, we will show that
for all u,

1

n

n∑
i=1

γ̂iu{Yiu − λ̂u(Xi, Ai, Gi)} − E[r̂u(X, a)(λ̄− λ̂)(X, a, 1)]

=
1

n

n∑
i=1

γu(Xi, Ai, Gi){Yiu − λ̄(Xi, Ai, Gi)}+ op(n
−1/2).

(29)

It’s sufficient to show that this holds for a version in which the expectation is replaced by a sample
average, as the variance of the difference is o(1/n). This follows from the consistency of λ̂ and the
boundedness of r̂u(·, a).3

Var

[
1

n

n∑
i=1

r̂u(Xi, a)(λ̄u − λ̂u)(Xi, a, 1)− Eru(Xi, a)(λ̄− λ̂)(Xi, a, 1)

]

≤
E
[
r̂u(Xi, a)

2(λ̄u − λ̂u)(Xi, a, 1)
2
]

n

≤
∥ru(·, a)∥∞

∥∥∥λ̄u(·, a, 1)− λ̂u(·, a, 1)
∥∥∥
L2(P )

n
.

To do this, we will start with the result of Lemma A.1, which characterizes the weights γ̂u· as the
solution to an optimization problem equivalent to the following one.

γ̂u = argmin
γu∈Rn

{
Iu(ωu)

2 +
σ2

n

n∑
i=1

γ2u

}
where

Iu(ω) = max
∥f(·,a,g)∥≤1

∀a,g

1

n

n∑
i=1

h(Xi, Ai, Giu, f)− γiuf(Xi, Ai, Giu)

for h(X,A,G, f) = r̂(X, a)f(X, a, 1)

(30)

This differs from the characterization from Lemma A.1 in two ways. First, we do not restrict the
parametric form of the weights to be γiu = 1(Ai = a,Giu = 1)Giur̂(Xi, a)ωi. Second, we write
the class of functions we’re maximizing over as functions of (X,A,G) instead of functions of X
alone. However, as argued in Hirshberg et al. (2019, Proposition 7), the solution must satisfy γ̂iu = 0
unlessAi = a andGiu = 1, as to do otherwise would increase the objective function. Thus, we may
impose this restriction on γiu and therefore reduce our maximization to one over f(X, a, 1) without
changing the solution γ̂u. Reparameterizing in terms of ωiu = γiu/r̂(X, a) yields the equivalent
problem described in Lemma A.1. The benefit of the formulation we use here is that it’s recognizable
as an instance of the problem used to estimate weights in Hirshberg & Wager (2021).

Under our assumptions, Hirshberg & Wager (2021, Theorem 1) establishes this claim, i.e. the
sample-average-replacing-expectation version of Equation (29). Almost. It does so for a fixed func-
tion r̂u; because ours varies with sample size we would need a triangular-array version. However,
such a version follows from the proof used to derive Hirshberg & Wager (2021, Theorem 1) from
a finite sample result (Hirshberg & Wager, 2021, Theorem 2). In particular, the finite sample re-
sult shows that the approximation we’ve claimed holds with error that’s bounded in terms of cer-
tain Rademacher complexity fixed points, and the proof of Hirshberg & Wager (2021, Theorem 1)
shows that the Donsker conditions assumed there ensure that these bounds are op(n−1/2). Following
the same argument, the Donsker conditions we’ve assumed here, in conjunction with the uniform-
in-n boundedness of r̂u(·, a) and the contraction principle for Rademacher complexity, imply the
same.

3We can treat λ̂− λ̄ as deterministic here, avoiding empirical process arguments, because λ̂ is cross-fit.
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Proof of Lemma C.5.

ϕ(λ̂)(Oi)− ϕ(λ)(Oi)

=
(
Ŝt(Xi, a)− E

[
Ŝt(X, a)

])
+
∑
u≤t

r̂u(Xi, a)1(Ai = a,Giu = 1)ωu(Xi, a)
(

1(T̃i = u,Ei = 1)− λu(Xi, a)
)

− (St(Xi, a)− E [St(X, a)])

−
∑
u≤t

ru(Xi, a)1(Ai = a,Giu = 1)ωu(Xi, a)
(

1(T̃i = u,Ei = 1)− λu(Xi, a)
)

= (Ŝt(Xi, a)− St(Xi, a))−
(
E
[
Ŝt(X, a)

]
− E [St(X, a)]

)
+
∑
u≤t

(r̂u(Xi, a)− ru(Xi, a))1(Ai = a,Giu = 1)ωu(Xi, a)
(

1(T̃i = u,Ei = 1)− λu(Xi, a)
)

For simplicity, we drop the (Xi, a) when writing functions Ŝ, S, r̂u, ru, λ̂u, and λu.

We first consider the term Ŝt − St. From Lemma C.1, we can write

Ŝt − St =
∑
u≤t

Ŝt
Su−

Ŝu−

Ŝu−

Ŝu

(
λu − λ̂u

)
=
∑
u≤t

Ŝt
Su−

Ŝu

(
λu − λ̂u

)

It is obvious that 0 ≤ ŜtSu−

Ŝu
≤ Ŝt

Ŝu
≤ 1. Applying Holder’s inequality and the given condition∥∥∥λ̂− λ

∥∥∥
L2(P )

→ 0, we can imply that Ŝ → S.

Since r̂u and ru are continuous functions of Ŝ and S, respectively, and Ŝ → S as shown above,
r̂u → ru. Then for the last term of the ϕ(λ̂)(Oi) − ϕ(λ)(Oi), we can continue applying Holder’s
inequality and further conclude that E{ϕ(λ̂)− ϕ(λ)}2 → 0.

C.2 A SKETCH OF THEOREM 3.5

Our proof of Theorem 3.5 uses results from Hirshberg & Wager (2021) to do some heavy lifting.
For the sake of self-containedness, we will sketch the main ideas of the argument we’d use to prove
it from scratch. We use a more detailed decomposition of the error ψ̂ − ψ(λ) as follows:

ψ̂ − ψ(λ) = ψn(λ̂) +
1

n

n∑
i=1

∑
u≤t

γ̂iu{Yiu − λ̂u(Zi)} − ψ(λ)

=
{
ψn(λ̂)− ψ(λ̂)

}
+

1

n

n∑
i=1

∑
u≤t

γ̂iu(Yiu − λ(Zi))

+
1

n

n∑
i=1

∑
u≤t

γ̂iu(λiu − λ̂u(Zi))−
1

n

n∑
i=1

∑
u≤t

r̂u(Xi, a)(λ(Zi)− λ̂(Zi))

+
1

n

n∑
i=1

∑
u≤t

r̂u(Xi, a)(λ(Zi)− λ̂(Zi))− dψ(λ̂)(λ− λ̂)

+
{
ψ(λ̂) + dψ(λ̂)(λ− λ̂)− ψ(λ)

}
.

(31)

We sketch the analysis of each of the 4 terms above:

1. The first term converges to the influence function of the estimator because λ̂ and γ̂ are
convergent. That the latter converges to the population Riesz representer is a consequence
of the analysis of the imbalance in the 2nd term below.
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2. The 2nd term is the imbalance term motivated by the approximation 18, and our opti-
mization problem 19 directly controls it. This is exactly where we borrow the covariate-
balancing analysis of Hirshberg & Wager (2021) to our problem, noting that they have
similar structure.

3. The 3rd term is the difference of the sample-average derivative and its expectation, can be
shown to be o(n−1/2) because each term of the mean (

∑
u≤t r̂u(Xi, a)(λ(Zi)− λ̂(Zi))−

dψ(λ̂)(λ− λ̂)) has mean 0 and variance o(1) as consequence of the convergence of λ̂.

4. The 4th term is the 2nd-order remainder as before and is o(n−1/2).

Overall, we see again that ψ̂ − ψ(λ) =
∑n

i=1 ϕ(Oi) + o(n1/2).
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