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ABSTRACT

Does learning of task-relevant representations stop when behavior stops changing?
Motivated by recent work in machine learning and the intuitive observation that
human experts continue to learn after mastery, we hypothesize that task-specific
representation learning in cortex can continue, even when behavior saturates. In
a novel reanalysis of recently published neural data, we find evidence for such
learning in posterior piriform cortex of mice following continued training on a
task, long after behavior saturates at near-ceiling performance (“overtraining”).
We demonstrate that class representations in cortex continue to separate during
overtraining, so that examples that were incorrectly classified at the beginning of
overtraining can abruptly be correctly classified later on, despite no changes in
behavior during that time. We hypothesize this hidden learning takes the form
of approximate margin maximization; we validate this and other predictions in
the neural data, as well as build and interpret a simple synthetic model that re-
capitulates these phenomena. We conclude by demonstrating how this model of
late-time feature learning implies an explanation for the empirical puzzle of over-
training reversal in animal learning, where task-specific representations are more
robust to particular task changes because the learned features can be reused.

1 INTRODUCTION

Understanding how representations evolve during task learning is a fundamental question in both
neuroscience and machine learning. While the dynamics of learning are standard objects of study in
both fields, the representational dynamics at play long after ceiling performance is reached on the
training task are much less commonly studied.

In deep learning, this has changed with the discovery of the grokking phenomenon (Power et al.,
2022), whereby neural networks first fit their training data to high accuracy, then many epochs of
training later (“overtraining”), abruptly generalize. As a phenomenon that epitomizes how neural
networks can behave in sharp and unexpected ways, it has been under intense study (Nanda et al.,
2023; Liu et al., 2022b; Varma et al., 2023). Emerging theories posit that generalization occurs due
to delayed feature learning taking place when the network has already achieved ceiling accuracy on
the training task (Kumar et al., 2023; Lyu et al., 2023).

In psychology, there exists a long line of work on learning tasks at all levels of expertise, includ-
ing after task mastery (Ericsson et al., 1993; Newell & Rosenbloom, 1981; Fitts & Posner, 1967;
Mackintosh, 1969; Richman et al., 1972; Mead, 1973). Many of these works attempt to address the
intuitive observation that human experts in a variety of domains continue to learn on tasks at which
they have achieved near-ceiling performance. There has also been much work on using deep learn-
ing to model perceptual learning tasks, to study the degree to which biological and artificial neural
networks exhibit similar behavior on this class of tasks (Wenliang & Seitz, 2018; Bakhtiari, 2019;
Yashar & Denison, 2017).

The nature of representational changes at play during overtraining on learned tasks have been tack-
led at a fine grained (theorems proven about certain classes of deep networks) and coarse grained
(qualitative explanations in psychology) levels. Such an understanding, however, is broadly missing
at an intermediate level: that of experimental neuroscience. This is because there are several diffi-
culties in naively testing the hypothesis that representations continue to evolve during overtraining
in cortex. First, for many animals, recording neurons is invasive and risks damaging the animals, so
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recordings are typically only taken at the end of training to study the end-time learned representation
(Yuste, 2015; Kim et al., 2016). Second, experiments in systems neuroscience do not typically de-
sign stimuli as “training” and “test” in the way datasets are constructed in deep learning, so making
claims about learning and generalization is not possible. We elaborate on further difficulties, as well
as the connection of our phenomenon of interest to the related phenomenon of representational drift,
in Appendix A.3.

Here, we revisit the neural data from a recent work with precisely the desirable qualities above:
(Berners-Lee et al., 2023), who study neural activity during learned odor discrimination task in
mouse piriform cortex. The mice are trained to discriminate one target odor from hundreds of
nontarget odors, then continue to be trained for weeks on the same task after reaching behavioral
mastery (“overtraining”), with neural firing rate data recorded during this time. After overtraining,
they are given held-out test examples. Our starting point in this work are two empirical observations
in (Berners-Lee et al., 2023) that we seek to model and explain.

• Decoding accuracy of training labels from population activity increases throughout over-
training.

• Mice overtrained for longer tend to do better on held-out test examples after the overtraining
period is complete.

Our goal in this work is to understand the representational dynamics in cortex at play underlying
these observations, and to what extent, if any, they are similar to those at play in deep neural net-
works where learning continues after training accuracy reaches ceiling (Power et al., 2022). Our
contributions are the following:

• We find that target-nontarget odor class representations in mouse piriform cortex continue
actively separating during overtraining while behavior remains unchanged, loosely resem-
bling the “hidden progress” (Barak et al., 2022; Nanda et al., 2023) that often taking place
in synthetic deep learning settings.

• We find that the margin of the maximum margin classifier at each day of overtraining
is increasing in mouse cortex, implying that points (odor trials) sufficiently close to the
optimal decision boundary may be classified incorrectly at the beginning of overtraining,
but correctly at the end, despite no outward change in behavior.

• We construct a synthetic model of piriform cortex performing this task exhibits these prop-
erties, as well as the grokking phenomenology. We interpret the resulting dynamics and
use targeted ablations to trace the continued learning to margin maximization.

• We use our insight to suggest a new, fine-grained and neural explanation for the overtrain-
ing reversal effect, an empirical puzzle from experimental psychology in which animals
overtrained on a task learn its reversal more quickly than those not.

We also note that Berners-Lee et al. (2023) are not the first to observe such effects experimen-
tally: similar effects in sharpening of already-learned odor representations was also observed by
Shakhawat et al. (2014); Kadohisa & Wilson (2006), so that the phenomena we seek to model in this
work are likely to be robust at least in the setting of mouse olfaction.

2 RELATED WORK

Lazy/rich learning and margin maximization. We cast our ideas in the language of “lazy” and
“rich” regimes of representation learning, introduced in machine learning (Chizat et al., 2019; Jacot
et al., 2018). Such characterization of learning regimes has become increasingly popular in com-
putational neuroscience (Chizat et al., 2019; Farrell et al., 2023; Flesch et al., 2021; 2022; Ito &
Murray, 2023). In machine learning, lazy learning refers to a trained neural network being well
approximated by a kernel method in its initial neural tangent kernel (NTK) and the rich regime is
when this approximation breaks down as the network learns task-relevant features and its weights
move far from initialization. In classification problems, margin maximization can be one type of
rich learning (Mohamadi et al., 2024; Matyasko & Chau, 2017), where the margin of a classifier is
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Figure 1: (Left) Behavior of mice on a binary discrimination task of odors, where mice indicate
their selected choice by licking left or right. Y-axis is fraction of licks left vs right on a given day.
Day 8 is the first day of overtraining. Correct lick for non-target is left, and right for target. The
mice can discriminate near-perfectly as overtraining begins. Reproduced with modification from
(Berners-Lee et al., 2023). (right) Increase in decoding accuracy from 10-fold linear discriminant
analysis for each session. Shaded colored lines in background show standard errors for each mouse.

defined as the distance from the decision boundary to the nearest data point. There are some sub-
tleties around defining margin maximization in a setting where a decoder is being retrained on an
evolving feature map; we state a precise working definition in Section 3.1.2.

Grokking. Much theoretical work has been done to understand the grokking phenomenon, discov-
ered by Power et al. (2022), in which task-specific representation learning occurs long after training
accuracy has saturated (Nanda et al., 2023; Barak et al., 2022; Liu et al., 2022a). Current theories
explaining grokking are varied: Liu et al. (2022b) claim it is due to weight norm at initialization,
Nanda et al. (2023) suggest it is driven by weight decay, Varma et al. (2023) suggest it is due to com-
petition between memorizing and generalizing neural circuits. A flurry of recent theoretical papers
unify these views this as late-time feature learning, where networks begin lazy and then abruptly
transition into the rich regime much later during training (Kumar et al., 2023; Lyu et al., 2023). Re-
cent empirical evidence has accumulated in support of this perspective (Edelman et al., 2024; Clauw
et al., 2024; Mohamadi et al., 2024), where rich learning often takes the form of margin maximiza-
tion in classification tasks. For instance, Morwani et al. (2023) and Mohamadi et al. (2024) show
that on certain classes of tasks, margin maximization during overtraining provably causes grokking.

3 REVISITING NEURAL DATA FROM OVERTRAINING

3.1 SETUP

Berners-Lee et al. (2023) collected tetrode recordings from posterior piriform cortex in adult mice
during overtraining on a binary odor discrimination task (Figure 1). The posterior piriform cortex
(PPC) is a key brain region involved in olfactory processing (Blazing & Franks, 2020; Srinivasan &
Stevens, 2017). An odor is defined as an n-hot vector of length k, with n = 3, k = 13. In other
words, a unique combination of three chemicals out of thirteen possible chemicals. The “target”
odor is uniquely defined as consisting of three specific chemicals, where non-targets never contain
any of these three. The discrimination task mice are trained on is to distinguish the target from the
nontarget odors. After an initial training period of 8 days, the mice master the task, reaching ceiling
behavioral performance (see Figure 1a), yet training continues in the same way for a further 18 days
(“overtraining”). This period is when firing rate data is recorded. After this overtraining period is
complete, the mice are exposed to held-out odors (“test/probe” examples), which share one odorant
with the target odor and therefore are more difficult to correctly classify.
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Figure 2: Representational similarity matrices plotting average pairwise correlation between target
and nontarget population responses from piriform cortex on the first (top) and last (bottom) days of
overtraining. We drop the last few days of data for Mouse T due to inconsistencies in data; method-
ological details in A.1. We compare the separations (anticorrelation) above to that to random/ablated
baselines in Appendix A.5, finding them significantly larger.

3.1.1 REPRESENTATIONS OF TARGET/NONTARGET ODORS SEPARATE DURING
OVERTRAINING

The key object of study throughout the neural data reanalysis will be the population firing rate ma-
trix X ∈ RN×D which contains the neural response vector (activations) for each trial (presented
stimulus) on a given-mouse day. There are around N ≈ 200 trials per day each recording around
D ≈ 15 neurons, and around 15-20 days for each of 4 mice overall. We compute the average dot
product (over trials) between the (z-scored) firing rates between target and nontarget trials, finding
that representations of target and non-target odors continue to separate over the course of overtrain-
ing. We plot the representational similarity matrices at the beginning and end of overtraining for
each mouse (Figure 2), with further methodological details deferred to Appendix A.1.

The measurement of such representational similarity metrics is standard in neuroscience (Kriegesko-
rte et al., 2008), and similar to common interpretability techniques in deep learning that involve
probing for directions in activation space (Bau et al., 2019; Olah et al., 2020; Elhage et al., 2021;
Zhang & Nanda, 2023) and comparing them, for instance by computing their dot product. The con-
tinued separation of class representations between the target and nontarget odors in Figure 2 provides
evidence that, despite no visible changes in behavior, there is continued representation learning in
mouse PPC during overtraining on this task. Such continued learning may aid in generalization on
unseen odors, as indeed Berners-Lee et al. (2023) find empirically to be the case.

What do these task-relevant changes look like visually? In Figure 3, we plot the projection of odor
representations on a given session onto the first 2 principal components of the firing rate matrix for
that session, which is trials by neurons for each mouse. We see generally that the bottom row has
more separated representations than the top row, providing a qualitative view of how target odors
are more distinguishable in PPC representation space after overtraining than before. These results
provide a glimpse of the representational dynamics at play as decoder accuracy is increasing, broadly
consistent with the increasing separation we see quantitatively in Figure 2. Note that this continued
representation learning (“rich feature learning”) despite no changes in training accuracy (“behavior”)
is precisely what characterizes the abrupt generalization found in the grokking phenomenology in
deep learning (Lyu & Li, 2019; Kumar et al., 2023; Mohamadi et al., 2024).
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Figure 3: Neural representations (projected onto the top 2 principal components) of target and
nontarget odors on the first (top) and last (bottom) day of overtraining for each mouse, showing
qualitative separation during overtraining measured quantitatively in the representational similarity
matrices in Figure 2. Cluster centers plotted for ease of visual comparison.

3.1.2 REPRESENTATIONAL CHANGES LEAD TO AN IMPROVED MAXIMUM MARGIN
CLASSIFIER

We now take an alternative perspective on the class separation of odor representations and instead
examine the robustness of the learned classifier, as measured by its margin, a classical notion of
confidence and robustness from statistical learning theory (Bishop, 2006).

We begin by clarifying a few distinct notions of margin maximization that apply when a decoder is
trained on an evolving hidden representation.

1. A linear decoder is trained on a fixed feature representation ϕ for a fixed number of steps,
which may or may not involve convergence of the decoder.

2. A linear decoder is trained on a fixed feature representation ϕ to convergence.
3. The feature representation ϕt changes over time, and at each time step t, a linear decoder

is trained on the feature representation to convergence.

While the margin of the classifier defined by the decoder can increase as the decoder is trained for
more steps on a fixed feature representation as in (1), if the margin of the max-margin (converged)
classifier is increasing in (3), it implies the features are evolving to allow for a max-margin classifier
with larger margin. This latter notion of margin-maximization that involves feature learning is the
notion of margin-maximization we will use.

We can define this mathematically as follows. Let ϕt(x) ∈ RN be the representation at time t for
data x, and let w(t) be the parameters of the max margin SVM solution to the label classification
problem with ϕt(xi) as input point i and yi as label. Then the margin M(t) takes the form:

M(t) =
1

|w(t)|
where w(t) = min

w
|w|2 such that yiw · ϕ(xi)t ≥ 1. (1)

In these terms, our hypothesis is that the evolution on odor representations takes the form of (max)
margin maximization.

While the “margin” of a classifier usually refers to the distance to the single closest point, we take
it to refer to the distance to the closest 1% of points, as neural activity underlying individual points
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Figure 4: The average distance from the decision boundary within the smallest 1% and 5% distances
extracted from a linear support vector machine trained on population data from PPC. We normalize
margins for each mice so data are comparable across mice, shaded bands show standard errors.

(trials) is highly variable. We track the closest points to the learned decision boundary in a linear
SVM trained on the same population decoding data to convergence with a fixed number of steps
throughout. We measure the average distance from this classifier to the closest 1% (hardest ex-
amples) as well as 5% (hard examples) of points, finding in Figure 4 that these quantities increase
substantially during overtraining.

Therefore, PPC representations evolve to increase the margin of the maximum margin classifier
trained on those representations, similar to how many works find that deep neural networks which
“grok” during overtraining on classification tasks are implicitly driven to do so by maximizing mar-
gin (Morwani et al., 2023; Mohamadi et al., 2024; Lyu & Li, 2019). This margin-maximization
perspective is provocative not only because it provides a geometric and intuitive picture of contin-
ued learning in this setting, but because it is suggestive of why certain generalizing solutions are
learned. For instance, Morwani et al. (2023); Mohamadi et al. (2024); Lyu & Li (2019) prove in
various settings that the reason that neural networks often solve particular tasks (eg. modular arith-
metic) using very specific types of features (eg. Fourier features in Nanda et al. (2023)), is because
the regularized optimization trajectories are implicitly biased towards margin-maximizing solutions.

We emphasize that since test data (unseen test odors) is missing during the training period, we cannot
make claims about whether the cortical representation begins lazy or rich (ie. evolve significantly
during the initial 7-day learning period compared to initialization), and this is an important avenue
for future work and limitation of our reanalysis. While the optimization algorithms at play in brains
are poorly understood, it is speculatively possible that some form of “implicit-bias” towards gener-
alizing solutions may also be the reason that overtrained mice do not just memorize their training
odors, but learn representations that are helpful on difficult, held-out examples.

4 THEORY & MODELING

4.1 A SYNTHETIC MODEL OF MOUSE PIRIFORM CORTEX

Setup. We construct a synthetic version of the odor discrimination task that captures key compu-
tational considerations at an abstract level. We consider a more biologically plausible counterpart
in Appendix A.7, finding the same phenomenology persists in the same way. We take our earlier
definition of odors as n-hot vectors of odorants (chemicals) in {0, 1}k that we pass through a ran-
dom projection, inspired by the functional role of the glomeruli (Blazing & Franks, 2020), with
n = 10, k = 100. We train a one-hidden layer multilayer perceptron (MLP) on these embeddings
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to classify the one target odor from 200 non-target odors. We use a ReLU nonlinearity to simulate
non-negative firing rates. We also hold out 20 test examples that share an odorant (a single entry in
the bit string) with the target. These examples are thus closer in both Hamming and projected space
to the target, and therefore harder to discriminate. We train the MLP with vanilla gradient descent
on a cross-entropy loss, as is standard in classification.
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Figure 5: Recapitulating and interpreting mouse piriform cortex dynamics in a simple model. Top
left: training and test loss over the course of training. Top right: margin over the course of training.
Bottom: projections of the top 2 principal components for several training epochs. Notice how the
target and probes (test trials) separate during overtraining (Epochs 1000-9000) despite the target
never being trained on a probe example.

Mouse behavior and neural dynamics are captured by an overtrained MLP. This simple model
captures the key computational phenomena at play in piriform data that was the subject of analysis
in Section 3. In Figure 5, we can see that the test loss (on the probe trials) continues to decrease
after training loss plateaus at a low value, in line with a continued increase in the classifier margin.
The readout layer of our MLP acts as the “decoder” on the hidden layer representation, which are
evolving to allow for an increased max-margin solution to be found. We also see a separation
between the target and the nontarget representations emerge during training (up to epoch 1000).
However, at epoch 1000, when training loss has converged, the target and probes are not yet easily
separable. Strikingly, overtraining on the target-nontarget separation task improves performance
on the probe odors, which are out-of-distribution from the training set. This happens because the
network maximizes margin between the target and nontarget representations during the overtraining
period after epoch 1000. This manifests as the red dot (target) gradually separating from the green
cluster (test probes) during overtraining. There is an abrupt grokking-like transition in test accuracy
(the fraction of probe trials correctly classified) during the overtraining period, Epochs 1000-9000,
exactly as we see in Figure 6.

We can test whether margin maximization is the causal factor in this simple model by ablating it and
asking whether late-time test loss improvements vanish concomitantly. We do this by replacing the
Cross-Entropy objective, which is known to drive late-time margin maximization (Lyu & Li, 2019;
Lyu et al., 2023), with a Hinge loss which has a hard-margin objective instead. This means after
the model achieves a margin C on each training point, loss on that point vanishes, so the late-time
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Figure 6: Probe trials are learned in order of increasing overlap with target. (Left) Tracking the
Fisher Discriminant (FD) between target and probe classes throughout training. This measures sig-
nal to noise in representation space. (Right) The accuracy (“behavioral performance”) on increas-
ingly difficult trials over time, exhibiting grokking.

loss incentive for margin maximization is removed. We find in this ablated setting margin saturates
approximately when training loss does, and that test-loss saturates at this point in training as well,
so that the grokking-like effect is ablated. Mathematical details and plots are in Appendix A.6,
supporting the notion of a causal link.

Feature learning in the synthetic model. We increased the dimension of the task “odor” vector
as well as the number of nonzero entries so that we can introduce many types of “probe” trials that
share increasing amounts of odors (overlap) with the target, allowing us to vary difficulty. Note that
our model is never trained on the probes, but monitoring probe accuracy allows us to measure how
margin maximization on the original nontarget odors (which are guaranteed to have zero overlap
with the target) can be helpful in solving more difficult trials.

In Figure 6, we track the Fisher Discriminant (FD) between target and probe classes, as well as
the accuracy on discriminating the two throughout training. The FD is a statistical quantity that
uses the linear combination of the features that maximize the separation between two classes, and
represents the direction in the feature space along which the projected class means are maximally
separated while minimizing the variance within each class. This is the quantity that allows the linear
discriminant analysis decoding accuracy to increase; the portion of the lines after low train loss is
reached mimics how the median LDA posterior probability on the correct class increases in Figure
1 (right). Mathematical details about the Fisher Discriminant and its relation to margin, LDA, and
more are deferred to Appendix A.4.

Possible biological drivers of late time learning. Certain types of loss functions have been proven
in a deep learning setting to drive late-time margin maximization (Soudry et al., 2017; Lyu & Li,
2019). Here, we speculate on biologically plausible components of the objective in cortex that may
plausibly serve a similar role. A simple but plausible driver of late-time learning is the set of en-
ergetic/metabolic constraints on biological organisms. Such constraints been suggested to give rise
to a variety of neural phenomena (Sterling & Laughlin, 2015), for example disentangled represen-
tations (Pehlevan et al., 2017; Olshausen & Field, 1996; Plumbley, 2003; Whittington et al., 2023).
Pertinently, such constraints, in the form of weight decay in machine learning, are often the driving
force for grokking in some settings (Nanda et al., 2023; Liu et al., 2022b). These constraints force
neural networks to deviate from using a lazy (kernel) method, and force the weights to move in
task-relevant directions (Lyu & Li, 2019; Kumar et al., 2023). Another possibility in Berners-Lee
et al. (2023) is a very small supervised error signal from occasional mistakes made by the mice for
idiosyncratic reasons that could plausibly be driving late-time learning (See Figure 1).

Finally, a key plausible driver of late-time learning in cortex is the existence of unsupervised terms
in the implicit objective of organisms that penalize low confidence predictions. For instance, cross-
entropy loss is nonzero even when an example is correctly classified because it can be seen as
penalizing the uncertainty of model predictions, rather than merely correctness. The fact that the
loss is nonvanishing even when predictions are correct serves as a signal to guide task-relevant
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learning during overtraining. If biological learning systems store uncertainty in predictions and/or
use them for behavior, as indeed is known to be the case in rodent cortex (Kepecs et al., 2008) and
brains more generally (Lak et al., 2017; Fetsch et al., 2014; Komura et al., 2013), then such implicit
penalties on uncertainty will serve a similar functional role to an unsupervised term that keeps loss
nontrivial even as training accuracy saturates. This nonvanishing loss during behavioral plateau can
plausibly drive continued feature learning during overtraining.

4.2 RICH LEARNING DURING OVERTRAINING CAN EXPLAIN OVERTRAINING REVERSAL

Does our model of the dynamics underlying learning during overtraining make any new predictions
outside our immediate setup? One concrete prediction of late-time feature learning is faster adap-
tation under task reversal for any learned task. In machine learning this means fast adaptation of
a predictor to distribution shift of the form y(x) 7→ −y(x). If a network learns features to com-
pute y(x), it is possible many such features can be reused to compute −y(x). This is not true if
the network learns y(x), for instance, in the lazy regime, in which case y was fit using the initial
features, which were not task-dependent, so cannot be advantageously “repurposed” for a reversed
variant of the task. This particular prediction about reversal learning may seem as oddly specific to a
machine learning audience, but in fact overtraining reversal has been a topic of study by experimen-
tal pyschologists for decades (Mackintosh, 1969; Richman et al., 1972; Mead, 1973). Theoretical
work in psychology offers qualitative cognitive explanations in terms of attention allocation (Love-
joy, 1966), where our model of overtraining naturally posits a stronger, more fine-grained, neural
model for overtraining reversal that is the first of its kind to our knowledge. We begin by defining
the phenomenon.

The Overtraining Reversal Effect. The reversal effect is the empirical finding that animals that
are overtrained on a task more quickly adapt when the task is reversed. Concretely, when animals
are given a perceptual discrimination problem and the rewarded mapping is reversed, those animals
that were overtrained on the original mapping adapt to the task reversal in fewer trials than those
that were not overtrained, see (Mackintosh, 1969) for further discussion.1 We propose a simple
explanation for this phenomenon in terms of feature learning in the modern machine learning sense.

A Mathematical Model. We illustrate this with the simplest possible network model that exhibits
this effect, a two layer linear network (Saxe et al., 2013). Our reversal learning proceeds in two steps.
First, a two layer linear network with N hidden neurons f(x) = 1

Nγ0
w2 ·h(x) where h(x) = W 1x

is optimized for T steps on task y(x). After this, a new readout vector v is introduced to give a new
output frev(x) =

1
Nγ0

v · h(x) which is trained on the reversed task −y(x). The matrix W 1 can be
updated in the second phase of learning as well. At large width N , we can invoke mean field theory
ideas (Bordelon & Pehlevan, 2022) (Appendix F.1.1), allowing us to describe the hidden kernel
K(x,x′) = 1

Nh(x) · h(x′) dynamics in both phases of training. For whitened data and square
loss, it suffices to compute the projection of the kernel K, Ky = y⊤Ky and the projection of the
predictions fy = y⊤f along the direction of the labels y, which give

Ky(t) =
√

1 + γ2
0fy(t)

2 , ∂tfy(t) = 2
√

1 + γ2
0fy(t)

2 (y − fy(t)) (2)

We show that the kernel evolves only in this yy⊤ direction in Figure 7 (a), where points separate
by their target category. These dynamics are run from time t = 0 to time T , which gives a terminal
value of the kernel alignment Ky(T ). In the second phase of learning (t > T ) where the new output
frev is fit, the predictions on the reversal task in the y direction evolve as

∂tfrev,y(t) =
√

(Ky(T ) + 1)2 + 4γ2
0frev,y(t)2 (−y − frev,y(t)) (3)

We note that larger kernel-target overlap Ky(T ) leads to faster training in this second phase t >
T , as rate of learning on the second task is a direct function of alignment on the first task. We
verify this with simulations in Figure 7 (b). Since Ky(T ) is monotonically increases with T , longer
training on the first task will accelerate learning of the reversed task, providing an explanation for
overtraining reversal. The key intuition is that adaptation time depends on alignment Ky = K−y ,
where y⊤Ky = (−y⊤)K(−y), so overtraining leads to faster adaptation.

1We note that there has been debate on whether the phenomenon is general across species and tasks (Beck
et al., 1966; Warren, 1978).
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Figure 7: A simple two layer model explains faster reversal learning after overtraining on the original
task. (a) We plot the original hidden representations (projected from N hidden dimensions to the
top two principal components) of a width N = 250 network for 4 odor mixtures, with two odors
positive and two odors negatively labeled. (b) When training a new readout on the reversal task
−y(x) after pretraining for t steps on the original labels y(x), we find that additional pretraining
steps T accelerate learning the reversal task, consistent with theory.

5 CONCLUSION

We find that recent work in mouse olfaction provides evidence for rich sensory learning taking
place under the veil of a behavioral plateau in mice. This suggests that difficult tasks that require
significant changes in learned representations may benefit from overtraining, even if behavioral
performance remains outwardly unchanging. It also offers a glimpse of shared structure between
artificial and biological networks, where phenomenologically similar dynamics appear in both cortex
and MLPs.

Our work has a number of limitations. A key limitation of our work is that the neural evidence we
draw upon is observational, and new experiments in systems neuroscience are required to validate
this hypothesis. We describe in detail a proposed experimental setup in Appendix A.2. Another
is that the number of neurons recorded per mouse-day (around 20) is small, so that trends can be
noisy (see Appendix A.5 for an example). A third limitation is that we consider only olfactory
cortex, and only one type of perceptual discrimination task – whether such late-time learning is a
universal property across animals and tasks remains to be seen. We hope our hypotheses drive further
work on learning dynamics in cortex during overtraining in animals. Our study raises several new
questions: What are the classes of tasks in which such overtraining is beneficial, and what do they
have in common? Can deep learning models of cortex hint at the answer? What is the nature of the
implicit objective in sensory cortex driving this late-time representation learning? Altogether, our
work aims toward a more complete characterization of the behavior of sensory cortex on perceptual
discrimination tasks, and to unify the mechanics underlying such behavior with existing theory and
observations in deep learning.

6 ETHICS STATEMENT

Our work models the dynamics of learning during overtraining in mice and MLPs, aiming towards
a more complete characterization of learning in both artificial and biological neural networks. We
do not note any important ethical consequences in particular.

7 REPRODUCIBILITY STATEMENT

We model the data of (Berners-Lee et al., 2023), which is publicly available for open reproduction,
and will open source our code to train and interpret artificial networks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shahab Bakhtiari. Can deep learning model perceptual learning? The Journal of Neuroscience, 39
(2):194, 2019.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-
den progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

Carol A Barnes, Matthew S Suster, Jiemin Shen, and Bruce L McNaughton. Multistability of cog-
nitive maps in the hippocampus of old rats. Nature, 388(6639):272–275, 1997.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Gan dissection: Vi-
sualizing and understanding generative adversarial networks. Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

C. H. Beck, J. M. Warren, and R. Sterner. Overtraining and reversal learning by cats and rhesus
monkeys. Journal of Comparative and Physiological Psychology, 62(2):332–335, 1966. doi:
10.1037/h0023674.

Alice Berners-Lee, Elizabeth Shtrahman, Julien Grimaud, and Venkatesh N Murthy. Experience-
dependent evolution of odor mixture representations in piriform cortex. PLoS Biology, 21(4):
e3002086, 2023.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.
ISBN 978-0-387-31073-2.

Robin M Blazing and Kevin M Franks. Odor coding in piriform cortex: mechanistic insights into
distributed coding. Current opinion in neurobiology, 64:96–102, 2020.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks. Advances in Neural Information Processing Systems, 35:32240–32256,
2022.

Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neural dynamics as sampling:
a model for stochastic computation in recurrent networks of spiking neurons. PLoS computational
biology, 7(11):e1002211, 2011.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Kenzo Clauw, Daniele Marinazzo, and Sebastiano Stramaglia. Information-theoretic progress mea-
sures reveal grokking is an emergent phase transition. In ICML 2024 Workshop on Mechanistic
Interpretability, 2024.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
evolution of statistical induction heads: In-context learning markov chains. arXiv preprint
arXiv:2402.11004, 2024.

Neil Elhage, A Nanda, Chris Olah, Shan Carter, Nick Cammarata Gabriel Schubert Wang, and Curtis
Hernandez. A mathematical framework for transformer circuits. In Transformer Circuits Thread,
2021. https://transformer-circuits.pub/.

K Anders Ericsson, Ralf Th Krampe, and Clemens Tesch-Römer. The role of deliberate practice in
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A APPENDIX

A.1 METHODOLOGICAL AND IMPLEMENTATION DETAILS

The raw data consists of around 70 sessions, each representing a recording of 20 random neurons
on a given mouse-day. The data is spikes over time for each neuron on each trial, of which there
are 200-300 in a session. After odor onset, mice are given 2.5s to lick in response. We count the
number of spikes in the final 500ms part of this window and decode on this number, which gives us a
N ×T neurons by trials spike count matrix to decode on for each mouse-day. We drop neurons with
low (less than 4) number of spikes across all trials classifying them as unresponsive to the odors,
we z-score this matrix and use 10-fold cross validation to get decoding accuracy, over 20 iterations.
Since session to session data is very noisy, we plot smoothed statistics using a sliding window and
plot standard error of all statistics. It should be noted the last few days of mouse T overtrainining are
dropped because of notable inconsistencies in neural data such as the decoding accuracy plummeting
to far below chance while behavior remained high, suggesting an unknown and idiosyncratic cause
for unreliable decoding accuracy in this mouse.2 Note that the activity matrix was z-scored across
trials, so every neuron contributed equally in our analysis.

A.2 TESTABLE PREDICTIONS & EXPERIMENTAL PROPOSALS

A.2.1 A CONCRETE PROPOSAL FOR PIRIFORM CORTEX

While reanalysis of existing data suggests that rich learning during overtraining is plausible, reanal-
ysis on its own insufficient on their own to confidently establish a new empirical phenomenology. In
particular, since the focus of (Berners-Lee et al., 2023) is studying an increase in target-selectivity
and how training history affects the form of the learned representations, targeted experiments at-
tempting to falsify our hypothesis may be helpful. We outline what one such experiment in piriform
cortex may look like. Note that such an experimental setup can be applied to any part of sensory
cortex in which at least hundreds of neurons can be recorded over several (10+) contiguous days of
overtraining.

We propose an experiment of a similar flavor to that of (Berners-Lee et al., 2023), with several
important changes. These changes include:

• Using several, as opposed to one, target odors would prevent the mice from memorizing the
target and thus would make the task require more learning of odor identity, leaving more
space for rich learning during overtraining.

• We would include a spectrum of difficult, held-out, examples, of n−1 types if an odorant is
an n-hot vector of chemicals. Then, we would define j-probe trial as those that would share
j elements with the target, allowing us to modulate distance in both Hamming and projected
space, and therefore difficulty of classification as measured by distance to boundary.

• Out of every 200 trials on a given mouse-day, n − 1 would be probe trials, one for each
type. This would be included during the initial training period of 8 days, as well as during
and after overtraining, which is not done in (Berners-Lee et al., 2023). This would ensure
the test set has minimal impact on learning compared to the training set (which would be
200/n times more frequent).

• We would also ensure mice have as much time to recover between overtraining sessions as
learning sessions, so the same amount of rich learning can potentially take place, and that
conditions during overtraining are kept as similar to those seen during learning, as possible,
to compare feature learning on equal footing.

A.2.2 IMPORTANT EXPERIMENTAL DETAILS FOR GENERAL SENSORY DISCRIMINATION
TASKS

In seeking to test our hypothesis, there are a few key experimental details that apply broadly to
experiments on sensory cortex beyond olfaction.

2(Berners-Lee et al., 2023) include these unreliable decoding trials in their analysis.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• The task needs to involve diverse and novel stimuli. This can be measured by ensuring the
ability to decode stimuli from population activity is not significantly higher than change
before learning.

• The task needs to be difficult, but possible to master. This is a tricky requirement: here,
mice reach up to 90% behavioral performance, which is close to the upper bound possible
given noise and fluctuating conditions. Conversely, the otherwise relevant work in vision
of (Goltstein et al., 2021) trains mice to discriminate gratings based on frequency and ori-
entation. This task is not fully learnable, as the mice reach ceiling of 70%. Since a primary
part of our hypothesis is that this late-time rich learning can persist when task performance
is near-ceiling and thus in the absence of large error signal, an error rate of 30% is too high
to test our hypothesis.

• It is crucial to separate a part of the data that is dedicated toward learning the task, namely
the “training” set, and a part of the data dedicated toward testing generalization, namely
the “test” set. As in the piriform setting, constructing some test examples to be partic-
ularly challenging by construction is likely to elucidate whether useful yet hidden repre-
sentation learning takes place in sensory cortex during overtraining. Test trials should be
infrequent so their effect on learning is small, but should be included throughout learning
so that notions of training and test performance can be determined for the entire training-
overtraining-test timeline.

• Chronic recordings should include the evolution of population activity both during training
and overtraining. In this work, we cannot examine whether representations begin lazy or
rich during learning, since data and probe trials are only available during the overtraining,
and not the training, period. We note that mice are good organisms for such a task be-
cause larger animals, like macaques, take much longer and are more expensive to train, and
chronic and invasive recordings during training can run the risk of causing serious damage
to the organism. Conversely, smaller organisms like fruit flies cannot be trained to solve
difficult perceptual discrimination tasks with in-vivo neural recordings, in any meaningful
sense.

On such setups, our theory predicts continued increases in decoding accuracy for category label
for several days after training performance saturates and stops changing noticeably, and separation
between task-relevant class representations.

A.3 CONTINUED INTRODUCTION

A third difficulty, in addition to the two mentioned in the main introduction, is that to see genuine
representation learning during overtraining, the task must be difficult, but possible to master. In
the deep learning setting of grokking, for instance, this is made precise by specifying that grokking
occurs under a certain regime of task-model alignment (Kumar et al., 2023). Many settings in exper-
imental neuroscience either study passive exposure (no perceptual task learning) (Rust & DiCarlo,
2010; Freedman et al., 2003), use tasks which are easy (high initial decoding accuracy) for sensory
cortex (Wang et al., 2020), or use tasks that are too hard in the sense that the animal does only
slightly above chance by the end (Goltstein et al., 2021).

Closely related, but distinct from our desired phenomenology of study is that of representational
drift. In neuroscience, our understanding of the stability of neural network representations over time
has also been revised. Classical work in neuroscience operated under the implicit assumption that
neural representations were supported by stable neuronal activity (Barnes et al., 1997; Thompson
& Best, 1990). While many neurons do show stable responses to stimuli, the recent discovery of
“representational drift” shows that the population activity underlying some task-relevant stimulus
can change over time (Kentros et al., 2004; Mankin et al., 2012; Ziv et al., 2013; Rule et al., 2019;
Schoonover et al., 2021). Representational drift is commonly conceived as a diffusive process (Qin
et al., 2023), and there are arguments that such drift can offer advantages in cortical processing, or
confer robustness (Nakamura et al., 2021; Buesing et al., 2011). Our focus is instead on the learning
of representations during overtraining on a task, and therefore our phenomenology of interest is
orthogonal to, but may potentially co-occur with, representational drift.
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A.4 MATHEMATICAL DETAILS ON FISHER DISCRIMINANT, LDA, AND MARGIN

Here we provide some background on the key statistical quantities we track, both in piriform cortex
and our synthetic model, and their relations to each other. The Fisher Linear Discriminant (FD)
is a statistical quantity that measures the ratio of cluster center separation to intra-cluster variance.
Informally, it quantifies the signal to noise (SNR) in a binary classification problem in representation
space, and is a quantity that Linear Discriminant Analysis (LDA) relies on for classification. It is
particularly useful when the goal is to reduce the dimensionality of data while preserving as much
class-discriminative information as possible.

Consider a dataset consisting of n samples, each of which belongs to one of two classes: C1 and C2.
Let xi ∈ Rd denote the d-dimensional feature vector of the i-th sample. The FD seeks a projection
vector w ∈ Rd such that when the data is projected onto this vector, the separation between the
projected means of the two classes is maximized relative to the projected variance within each class.

Formally, the projection of a data point x onto the vector w is given by yi = w⊤xi.

The objective of the FD is to find w that maximizes the SNR

J(w) =
(µ1 − µ2)

2

s21 + s22
,

where µ1 = w⊤m1 and µ2 = w⊤m2 are the means of the projected points for classes C1 and C2,
respectively, with m1 = 1

n1

∑
xi∈C1

xi and m2 = 1
n2

∑
xi∈C2

xi being the mean vectors of the
classes in the original feature space. The terms s21 and s22 represent the variances of the projected
points for classes C1 and C2, respectively.

To express J(w) in terms of the original data, we can define the within-class scatter matrix Sw and
the between-class scatter matrix Sb as

Sw =
∑

xi∈C1

(xi −m1)(xi −m1)
⊤ +

∑
xi∈C2

(xi −m2)(xi −m2)
⊤,

Sb = (m1 −m2)(m1 −m2)
⊤.

Then, we have that the Fisher criterion can then be rewritten as

J(w) =
w⊤Sbw

w⊤Sww
.

Then to maximize J(w), we differentiate it with respect to w and set the derivative to zero. This
leads to the generalized eigenvalue problem given by

Sbw = λSww.

The solution w that maximizes J(w) is the eigenvector corresponding to the largest eigenvalue of
the matrix S−1

w Sb.

The FD is closely related to Linear Discriminant Analysis (LDA) in the following sense. In LDA,
the assumption is that the data from each class is normally distributed with a common covariance
matrix Σ. The LDA decoding rule assigns a new observation x to the class C1 or C2 based on which
class’s linear discriminant function is maximized with

δk(x) = x⊤Σ−1mk − 1

2
m⊤

k Σ
−1mk + log πk,

where πk is the prior probability of class Ck, and k ∈ {1, 2}. The LDA solution involves projecting
the data onto a lower-dimensional space using the same criterion as the Fisher Linear Discrimi-
nant, making the FD effectively equivalent to LDA when the data follows a Gaussian distribution
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Figure 8: Cluster separation (anticorrelation between representations for classes) over 500 random
firing rate matrices mean-matched with our z-scored firing rate matrix. σ denotes standard deviation.
More negative is better.

with equal covariance matrices across classes. This is why we track the Fisher Discriminant in
our synthetic model: because we see mean and median LDA posterior probability on the correct
class increase during overtraining, suggesting that SNR as measured by Fisher Discriminant is also
increasing.

The connection between FD and margin maximization can be understood in simpler, more quali-
tative terms: by examining the concept of separating hyperplanes in the context of binary classifi-
cation. In margin-based methods such as SVMs, the goal is to find a hyperplane that maximizes
the margin, which is the distance between the hyperplane and the nearest points from each class
(support vectors). The FD also seeks to maximize the separation between classes, but it does so by
maximizing the ratio of the between-class variance to the within-class variance. It can be thought of
as a “soft margin” of sorts.

If the data is linearly separable, the direction w found by FD will tend to align with the direction
that maximizes the margin between classes, although FD does not explicitly enforce the maximum
margin criterion as SVM does. However, in many cases, the Fisher criterion leads to a solution that
approximates the maximum margin direction, particularly when the distributions of the classes are
approximately Gaussian with equal covariances, which is why in practice these two quantities often
tend to vary together, as indeed they do both in our neural data and our synthetic model. Regardless,
they measure different things.

A.5 REPRESENTATIONAL SEPARATION ABLATION

Since we z-score the firing rates, the diagonals of the correlatation matrices will be positive by
definition as they take the form ||z||. However, the expectation of the off-diagonals is zero for
a set of random firing rates, with variance depending on dimension. If we are claiming there is
significant separation in representations, we must check that the anticorrelation between the two
firing rates is far from chance for our dimension D ≈ 15. In Figure 8, we plot the distribution of
anticorrelations for a mean-matched firing rate matrix with firing rate vectors drawn from a Gaussian
for each mouse, and draw a line to represent the anticorrelation (representational quality, since the
task is to discriminate two classes) both before and after the overtraining period. We plot these in
Figure 8.

We can see generally that 1) overtraining causes separation, in the sense that representations are
more anticorrelated after overtraining compared to training, and that 2) even at the beginning of
overtraining (red lines) the separation is nontrivial compared to chance. This makes sense because
the mice can perform the task at ceiling, so we expect representations at the beginning of overtrain-
ing (after a week of overtraining) to be much better than chance. The caveats are that the data is
noisy: for instance, Mouse S has anticorrelation slightly decrease compared to the beginning of
overtraining. Such limitations of the data emphasize that our findings are suggestive rather than
conclusive, and we aim to inspire further experimental work and pose our findings as hypotheses
that this data suggest are plausible rather than definitively validated.
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Figure 9: Loss function ablation for synthetic model that traces asymptotic margin maximization
induced by cross-entropy as the cause for late-time decrease in test loss/late-time separation of rep-
resentations. “Late-time” refers to when training loss plateaus at a low value.

A.6 HARD MARGIN ABLATIONS

We begin with a review of the Cross-Entropy vs Hinge loss definitions. Let y ∈ {0, 1} represent
the true class label, and ŷ ∈ [0, 1] represent the predicted probability for the positive class (i.e.,
P (y = 1 | x) ). The cross-entropy loss LCE for a single example is defined as:

LCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ))

In hinge loss, the labels y are typically encoded as y ∈ {−1,+1}, and the model outputs a score
f(x) ∈ R, where the sign of f(x) determines the class prediction. For simplicity, let’s assume f(x)
is the output of a linear model, f(x) = w · x+ b.

The hinge loss Lhinge for a single example is defined as:

Lhinge (y, f(x)) = max(0, C − y · f(x))

where C is the hard margin parameter to be specified, which we take as C = 1. The key point is
that in a Hinge objective, loss vanishes after the learned classifier classifies each training example
with margin at least C, whereas loss does not vanish in this discontinuous way for the Cross-Entropy
objective, driving continued late-time learning. We can see in Figure 10that test loss stops improving
when train loss does, and this is coincedent with an abrupt ceasation in the increase in margin, in
contrst to the continued margin maximization driven by Cross-Entropy in the main text.

A.7 BIOLOGICALLY PLAUSIBLE MODEL

We now repeat the above experimental setup of our synthetic model with an architecture that takes
piriform cortex more seriously (Stern et al., 2018; Krishnamurthy et al., 2022; Mathis et al., 2016).
The persistance of our phenomenology and trends suggest the objective and nature of the task, rather
than architectural details, are the key here.

Our biologically faithful model consists of three main processing layers plus an output layer, with
additional feedback connections to model recurrent dynamics. The first layer serves as a sensory
input layer, analogous to inputs from the olfactory bulb. It projects the input to a larger dimensional
space, uses ReLU activation followed by dropout with probability 0.2 to maintain sparse coding,
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Figure 10: Architecture ablation for biologically plausible model of piriform cortex trained on the
same binary classification task to separate target and nontarget odors. We see loss on held out probe
odors continues to decrease after low train loss is achieved, since cross-entropy loss is once again
used as the objective.

a key feature of sensory representations in the piriform cortex. The second layer acts as a dense
associative layer, modeling the extensive recurrent connectivity between pyramidal cells. This layer
maintains the expanded dimensionality from layer one and includes a parallel feedback pathway.
The feedback is implemented through a separate linear transformation followed by ReLU activation,
and the result is added back to the main pathway via a skip connection. Both the main and feedback
pathways use the same dimensionality to preserve the associative nature of this layer. The third
layer implements modulatory control, inspired by inhibitory interneuron circuits. This layer reduces
dimensionality compared to layer two and uses LeakyReLU activation followed by a higher dropout
rate (0.3) to model inhibitory effects. The reduction in dimensionality reflects the modulatory rather
than representational role of this layer. The output layer performs a final linear transformation to a
single scalar value (since we’re training on binary classification). We train without weight decay and
learning rate 1e-2. We also add Gaussian noise to the forward pass to simulate the non-deterministic
nature of sensory cortex, hence why there are multiple target odor representations.
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