

000
001
002
003

VISUAL PLANNING: LET'S THINK ONLY WITH IMAGES

004 **Anonymous authors**
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908<br

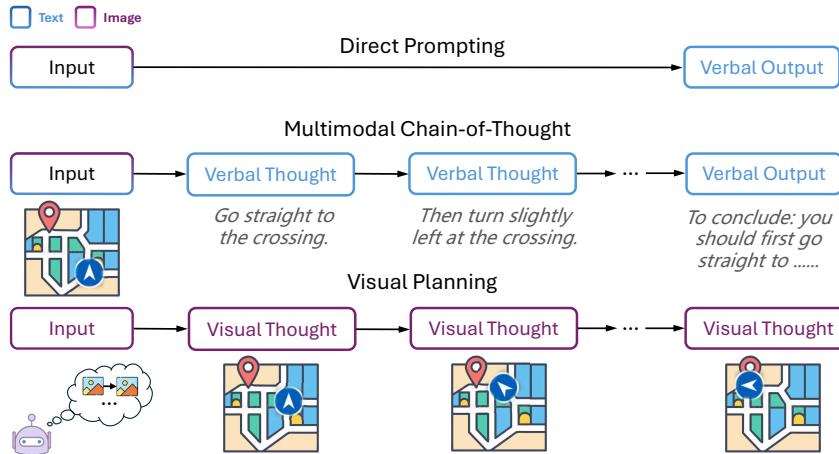


Figure 1: Comparison of reasoning paradigms. The traditional approaches (*top* and *middle* rows) generate verbose and inaccurate textual plan, while the Visual Planning paradigm (*bottom* row) predicts the next visual state directly, forming a pure image trajectory without language mediation.

Cognitive science also offers compelling motivation for this question (Moulton & Kosslyn, 2009). Dual Coding Theory (Paivio, 1991) proposes that human cognition operates through both verbal and nonverbal channels, each capable of independent representational and inferential processes. Recent work on MLLMs incorporates interleaved text and images as reasoning steps (Hu et al., 2024; Li et al., 2025). However, they still remain fundamentally text-driven and rely on tool-based visualizations as auxiliary information for reasoning traces, with reasoning still mainly embedded in verbal traces. For instance, Visual Sketchpad (Hu et al., 2024) employs external tools to generate sketches as visual aids, and MVoT (Li et al., 2025) generates per-step visualizations from language-based actions but still reasons in text for decision-making. As such, a truly visual-only reasoning paradigm that avoids any text-based reasoning proxies remains underexplored.

In this work, we propose a new paradigm, *Visual Planning*, where reasoning is structured as a sequence of images, but without the mediation of language. To the best of our knowledge, this is the first attempt to investigate whether models can achieve planning purely through visual representations. Rather than generating textual rationales and answers, our approach produces step-by-step visualizations that encode planning or inference steps directly in images. As a pioneering exploration, it circumvents the modality mismatch that occurs when visual problems must be forced into explanations in verbal form, reinforces state transitions, and provides a new trackable interface for tasks like navigation (Li et al., 2024a), and visual problem-solving (Hao et al., 2025).

Specifically, we explore this paradigm using the Large Vision Model (LVM) (Bai et al., 2024) trained exclusively on images and video frames with **no** textual data. This design choice removes potential confounders introduced by language-based supervision and enables a clean investigation of whether models can reason purely within the visual modality. Motivated by the success of reinforcement learning in acquiring reasoning capabilities within the language modality (Guo et al., 2025a) and its strong generalization performance (Chu et al., 2025), we propose Visual Planning via Reinforcement Learning (VPRL), a novel two-stage reinforcement learning framework empowered by GRPO (Shao et al., 2024) for visual planning. It involves a distinct initializing stage for encouraging the exploration of the policy model in the given environment, which is then followed by reinforcement learning with a progress reward function.

We validate the feasibility of our paradigms on grid-based navigation as a representative of spatial planning tasks, including MAZE (Ivanitskiy et al., 2023), FROZENLAKE (Wu et al., 2024b), and MINIBEHAVIOR (Jin et al., 2023), where one agent is requested to navigate to a target location successfully without violating environment constraints. Our experiments reveal that the visual planning paradigm substantially surpasses the traditional textual reasoning method by supervised fine-tuning (SFT), achieving 27% higher average exact-match rate. In addition to better performance, our novel method VPRL exhibits stronger generalization to out-of-distribution scenarios than the

108 SFT method in the visual planning paradigm (VPFT). To the best of our knowledge, we are the first
 109 to apply RL to image generation in the context of planning, with contributions as follows:
 110

- 111 • We propose a new reasoning paradigm, *Visual Planning*, and validate the feasibility of visual
 112 reasoning without any use of text and language for reasoning.
- 113 • We introduce VPRL, a novel two-stage training framework that applies RL to achieve visual
 114 planning via sequential image generation.
- 115 • We demonstrate empirically that VPRL significantly outperforms the traditional textual reasoning
 116 paradigm and supervised baselines in visual spatial planning settings, achieving substantial gains
 117 in task performance and exhibiting improved generalization.

119 2 VISUAL PLANNING VIA REINFORCEMENT LEARNING

120 2.1 THE VISUAL PLANNING PARADIGM

123 The majority of prior visual reasoning benchmarks (Goyal et al., 2017; Akula et al., 2021; Yue et al.,
 124 2024) can be and is typically tackled by grounding the visual information in the textual domain
 125 (Gurari et al., 2018; Peng et al., 2024; Zhang et al., 2024a), followed by a few steps of textual
 126 reasoning. However, once the visual content is mapped to text (e.g., object names, attributes, or
 127 relations), the problem gets reduced to a language reasoning task, where the reasoning is carried out
 128 by the language model, even without reflecting any information from the visual modality.

129 Our visual planning paradigm is fundamentally different. It performs planning purely within the
 130 visual modality as a holistic process, where the actions are not explicitly predicted but instead
 131 implicitly represented by transitions between visual states. We formally define visual planning as a
 132 process of generating a sequence of intermediate images $\hat{\mathcal{T}} = (\hat{v}_1, \dots, \hat{v}_n)$, where each \hat{v}_i represents
 133 a visual state that together constitute a visual planning trajectory, given the input image v_0 . Specifically,
 134 let π_θ denote a generative vision model parameterized by θ . The visual planning trajectory $\hat{\mathcal{T}}$ is
 135 generated autoregressively, where each intermediate visual state \hat{v}_i is sampled conditioned on the
 136 initial state and previously generated states:

$$138 \hat{v}_i \sim \pi_\theta(v_i | v_0, \hat{v}_1, \dots, \hat{v}_{i-1}). \quad (1)$$

140 2.2 REINFORCEMENT LEARNING FOR LARGE VISION MODELS

142 Reinforcement learning (RL) has shown notable advantages in improving the generalization of
 143 autoregressive models by optimizing with *sequence-level* rewards beyond token-level supervision
 144 signals (Chu et al., 2025). In autoregressive image generation, an image is represented as a *sequence*
 145 of *visual tokens*. Inspired by the success of RL in language reasoning (Guo et al., 2025a), we
 146 introduce an RL-based training framework for visual planning empowered by Group Relative Policy
 147 Optimization (GRPO) (Shao et al., 2024). It leverages the transitions between visual states to compute
 148 the reward signals while verifying the constraints from the environments. To enforce the policy
 149 model that generates valid actions with diverse exploration during the RL process, we then propose
 150 a novel two-stage reinforcement learning framework for visual planning. In Stage 1, we first apply
 151 supervised learning to initialize the policy model with random trajectories. Model’s visual planning
 152 is then optimized by the RL training in Stage 2.

153 **Stage 1: Policy Initialization.** In this stage, we initialize the model π_θ by training it on random
 154 trajectories obtained by random walks in the environment. The goal here is to generate valid sequences
 155 of visual states and retain exploration capability in a ‘simulated’ environment. For training, each
 156 trajectory \mathcal{T} consists of a sequence of visual states (v_0, \dots, v_n) . From each trajectory, we extract
 157 $n - 1$ image pairs of the form $(v_{\leq i}, v_{i+1})$, where $v_{\leq i}$ represents the prefix sequence (v_0, \dots, v_i) .
 158 Given an input prefix $v_{\leq i}$, to prevent overfitting to the specific transition and encourage stochasticity,
 159 we randomly sample one candidate state \tilde{v}_{i+1} from all possible valid next states as the supervision
 160 target, and minimize the following loss function of visual planning via fine-tuning (VPFT):

$$161 \mathcal{L}_{\text{VPFT}}(\theta) = -\mathbb{E}_{(v_{\leq i}, \tilde{v}_{i+1})} [\log \pi_\theta(\tilde{v}_{i+1} | v_{\leq i})]. \quad (2)$$

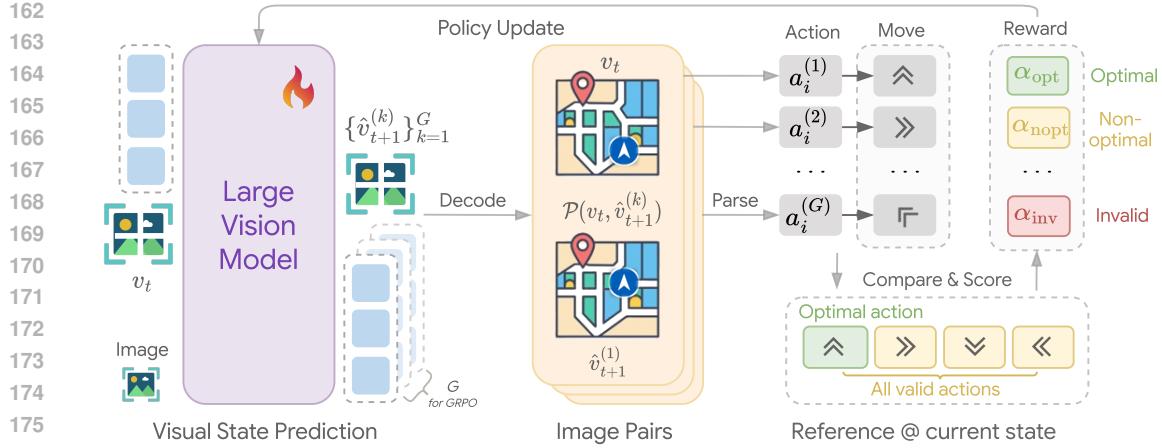


Figure 2: An overview of the proposed VPRL framework, illustrated with autoregressive large vision models for image generation in the context of a visual navigation task. We train the visual policy model with GRPO, using the *progress* reward that encourages progressing actions and penalizes invalid actions, yielding goal-aligned visual planning.

Overall, the first stage serves as a warm-up for subsequent optimization, focusing on producing visually coherent outputs and enhancing the generation quality.

Stage 2: Reinforcement Learning for Visual Planning. Building on Stage 1, where the model is initialized with random trajectories, it acquires the effective exploration capability. This property is essential for RL, as it ensures coverage over all possible transitions and prevents collapse to suboptimal behaviors. Stage 2 then leverages this ability to simulate the outcomes of potential actions by generating the next visual state and guiding the model to effectively do the planning. During this stage, the RL algorithm provides feedback and rewards based on the correctness of the simulated actions, gradually enabling the model to learn effective visual planning.

Specifically, given an input prefix $v_{\leq i}$, the behavior model $\pi_{\theta_{\text{old}}}$ samples a group of G candidate responses $\{\hat{v}_{i+1}^{(1)}, \dots, \hat{v}_{i+1}^{(G)}\}$. The candidate response is then scored using a composite reward function $r(v_i, \hat{v}_{i+1}^{(k)})$, which quantifies whether the generated visual state represents meaningful progress toward the goal state. The reward design and implementations are described in detail in the next paragraph.

Instead of relying on a learned critic to estimate value functions which may introduce additional sources of uncertainty and complexity, GRPO provides more computationally efficient and interpretable training signals by computing relative advantages through comparisons within the group. In this case, the relative advantage of each candidate is $A^{(k)} = \frac{r^{(k)} - \text{mean}\{r^{(1)}, r^{(2)}, \dots, r^{(G)}\}}{\text{std}\{r^{(1)}, r^{(2)}, \dots, r^{(G)}\}}$. To guide the model toward producing responses with higher advantages, we update the policy π_{θ} by maximizing the following objective:

$$\mathcal{J}_{\text{VPRL}}(\theta) = \mathbb{E}_{v_{\leq i} \sim \mathcal{D}, \{\hat{v}_{i+1}^{(k)}\}_{k=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | v_{\leq i})} \left[\frac{1}{G} \sum_{i=1}^G \min \left(\rho^{(k)} A^{(k)}, \text{clip} \left(\rho^{(k)}, 1 - \epsilon, 1 + \epsilon \right) A^{(k)} \right) - \beta D_{\text{KL}}(\pi_{\theta} || \pi_{\text{ref}}) \right], \quad (3)$$

where \mathcal{D} is the prefix distribution and $\rho^{(k)} = \frac{\pi_{\theta}(\hat{v}_{i+1}^{(k)} | v_{\leq i})}{\pi_{\theta_{\text{old}}}(\hat{v}_{i+1}^{(k)} | v_{\leq i})}$ is the importance sampling ratio.

Reward Design. Unlike discrete actions or text tokens, visual outputs are sparse, high-dimensional, and not easily decomposable into interpretable units. In our visual planning framework, the challenge is even more specific: whether the generated visual state can correctly reflect the intended planning action. Consequently, our reward design emphasizes both adherence to environment constraints (validity of state transitions) and progress toward the goal.

216 Formally, let \mathcal{A} denote the set of *valid* actions and \mathcal{E} the set of *invalid* ones (e.g., violations of
 217 physical constraints or hallucinated new entities in the environment). To interpret and evaluate the
 218 intended action that connects the current state v_i to a generated candidate state $\hat{v}_{i+1}^{(k)}$, we introduce 1)
 219 the *dynamics interpreter* $\mathcal{D} : \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{A} \cup \mathcal{E}$ to parse the transition and 2) the *progress estimator*
 220 $P : \mathcal{V} \rightarrow \mathbb{N}$ to quantify the progress.
 221

222 The dynamics interpreter \mathcal{D} evaluates the transitions $a \in \mathcal{A} \cup \mathcal{E}$ for validity, which, by implementation,
 223 can be a dynamics model (Qiu et al., 2025) or a rule-based system to elicit actions from state pairs,
 224 or a neural model as holistic validator that judges transitions without explicitly inferring actions.
 225 The progress estimator $P(v)$ quantifies progress by estimating the remaining steps or effort required
 226 to reach the goal from each visual state. By comparing the agent’s current and predicted state, we
 227 partition the generated candidate states $\mathcal{A} \cup \mathcal{E}$ into three disjoint subsets:
 228

$$\mathcal{A}_{\text{opt}} = \{a \in \mathcal{A} : P(\hat{v}_{i+1}^{(k)}) < P(v_i)\}, \quad \mathcal{A}_{\text{nopt}} = \{a \in \mathcal{A} : P(\hat{v}_{i+1}^{(k)}) \geq P(v_i)\}, \quad \mathcal{E}_{\text{inv}} = \mathcal{E}.$$

229 Here, \mathcal{A}_{opt} corresponds to optimal actions that reduce the distance to the goal, $\mathcal{A}_{\text{nopt}}$ captures non-
 230 optimal but still valid actions, and \mathcal{E}_{inv} denotes invalid ones determined by the dynamics interpreter.
 231

232 Based on this partition, we define the *progress reward* function $r(v_i, \hat{v}_{i+1}^{(k)})$:

$$\underbrace{\alpha_{\text{opt}} \cdot \mathbb{I}[\mathcal{D}(v_i, \hat{v}_{i+1}^{(k)}) \in \mathcal{A}_{\text{opt}}]}_{\text{optimal}} + \underbrace{\alpha_{\text{nopt}} \cdot \mathbb{I}[\mathcal{D}(v_i, \hat{v}_{i+1}^{(k)}) \in \mathcal{A}_{\text{nopt}}]}_{\text{non-optimal}} + \underbrace{\alpha_{\text{inv}} \cdot \mathbb{I}[\mathcal{D}(v_i, \hat{v}_{i+1}^{(k)}) \in \mathcal{E}_{\text{inv}}]}_{\text{invalid}}, \quad (4)$$

233 where $\alpha_{\text{opt}}, \alpha_{\text{nopt}}, \alpha_{\text{inv}}$ are reward coefficients. In our experiments, we set $\alpha_{\text{opt}} = 1$, $\alpha_{\text{nopt}} = 0$, and
 234 $\alpha_{\text{inv}} = -5$, thereby rewarding progressing actions, assigning zero to non-progressing actions, and
 235 heavily penalizing invalid transitions.
 236

237 3 EXPERIMENTS AND RESULTS

238 **Tasks.** To evaluate our proposed visual planning paradigm, we select representative tasks where
 239 planning can be expressed and executed entirely in the visual modality. We focus on tasks where
 240 state transitions are visually observable, distinguishing them from language-centric tasks like code
 241 generation (Lai et al., 2023) or traditional visual question answering. This design allows us to analyze
 242 planning behavior without relying on textual rationales or symbolic outputs. To compare visual
 243 planning with language-based reasoning, we experiment with 3 visual navigation environments:
 244 FROZENLAKE (Wu et al., 2024b), MAZE (Ivanitskiy et al., 2023), and MINIBEHAVIOR (Jin et al.,
 245 2023). All of them can be solved in both modalities, which enables a direct parallel comparison of
 246 pros and cons between visual planning and language reasoning strategies.
 247

- 248 • **FROZENLAKE:** It is initially proposed by Wu et al. (2024b) and implemented with Gym (Brockman,
 249 2016). It simulates a grid-based frozen lake, where the agent is supposed to start from the designated
 250 position and find its way to the destination safely without falling into the ‘holes’.
- 251 • **MAZE:** Given an initial image describing the maze layout, the model is supposed to go through the
 252 maze from the starting point (green point) to the destination (red flag).
- 253 • **MINIBEHAVIOR:** The agent is first required to reach the printer from the starting point and pick
 254 it up. After that, the agent should go to the table and drop the printer. This task consists of 2
 255 additional actions, including ‘pick’ and ‘drop’.

256 We construct synthetic datasets for the tasks with varying levels of complexity in patterns and
 257 environments. Details on data collection and implementation are provided in Appendix E.1.
 258

259 **Models.** To explore visual planning without any language influence as confounders and enables
 260 a clean investigation, we select models trained exclusively on visual data without any exposure to
 261 textual data during pretraining. For visual planning, we use the Large Vision Model (LVM-7B)
 262 (Bai et al., 2024) as the backbone, which is only trained on image sequences and videos. We train
 263 the model with 1) supervised fine-tuning over golden planning trajectory (**VPFT**) and 2) two-stage
 264 reinforcement learning (**VPRL**), resulting in two system variants with visual planning. For RL
 265 training, we start with a rule-based parsing function as the dynamics interpreter to parse the image
 266 pairs to actions, and a heuristic progress estimator, with details enclosed in Appendix E.3.
 267

270
271 Table 1: Performance of the closed- and open-source models on FROZENLAKE, MAZE, and
272 MINIBEHAVIOR. VPRL performs consistently the best (**bold**) across all tasks. \dagger denotes the post-
273 trained model. **A** represents texts and represents images. The last column AVG. reports the
274 average performance across three tasks.

Model	Input	Output	FROZENLAKE		MAZE		MINIBEHAVIOR		AVG.	
			EM (%)	PR (%)	EM (%)	PR (%)	EM (%)	PR (%)	EM (%)	PR (%)
Closed-Source Model										
Gemini 2.0 Flash										
- Direct		A	21.2	47.6	8.3	31.4	0.7	29.8	10.1	36.3
- CoT		A	27.6	52.5	6.9	29.8	4.0	31.2	12.8	37.8
Gemini 2.5 Pro (<i>think</i>)		A	72.0	85.0	21.5	35.5	37.6	59.9	43.7	60.1
Open-Source Model										
Qwen 2.5-VL-Instruct-7B										
- Direct		A	1.2	15.0	0.6	14.5	0.3	9.8	0.7	13.1
- CoT		A	8.2	29.1	2.3	15.2	0.5	14.7	3.7	19.7
- SFT \dagger		A	68.6	84.4	60.9	70.3	31.3	56.1	53.6	69.9
LVM-7B										
- VPFT \dagger (ours)			75.4	79.5	59.0	64.0	33.8	52.2	56.1	65.2
- VPRL \dagger (ours)		91.6	93.2	74.5	77.6	75.8	83.8	80.6	84.9	

288
289 For baselines, to facilitate parallel comparison for language-based planning, we adopt Qwen 2.5-
290 VL-Instruct (Bai et al., 2025), on both inference-only (Direct¹ and CoT) and post-training settings
291 (SFT and RL), trained on the same data as the visual planner. We further evaluate multimodal
292 reasoning performance of proprietary models with Gemini 2.0 Flash (Kampf & Brichtova, 2025) and
293 advanced thinking model Gemini 2.5 Pro (Gemini, 2025). Full training details, model versions, and
294 hyperparameters are provided in Appendix E.4.

295
296 **Evaluation Metrics.** We adopt two complementary evaluation metrics for the selected tasks. Let
297 $\mathcal{O} = \{\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, \dots, \mathcal{T}^{(M)}\}$ denote the set of all shortest optimal trajectories of length n , where
298 each trajectory is $\mathcal{T}^{(m)} = (v_1^{(m)}, \dots, v_n^{(m)})$, and let $\hat{\mathcal{T}} = (\hat{v}_1, \dots, \hat{v}_n)$ denote the predicted trajectory.

300 • **Exact Match (EM)** is defined as $EM = \max_{m \in \{1, \dots, M\}} \prod_{j=1}^n \mathbb{I}(\hat{v}_j = v_j^{(m)})$, evaluating whether
301 $\hat{\mathcal{T}}$ coincides with any $\mathcal{T}^{(m)} \in \mathcal{O}$. EM requires the entire trajectory to be valid and of minimal
302 length, and accepts all optimal solutions rather than a single reference. Here, the equality $\hat{v}_j = v_j^{(m)}$
303 refers to whether the two states can be reached from their respective previous states by applying
304 the same action. This means that the comparison is made at the level of environment transitions
305 rather than a pixel-wise match between images. In other words, two states are treated as the same if
306 they represent the same underlying configuration, even when their pixel values are not identical.

307 • **Progress Rate (PR)** is defined as $PR = \max_{m \in \{1, \dots, M\}} \frac{1}{n} \sum_{j=1}^n \left[\prod_{k=1}^j \mathbb{I}(\hat{v}_k = v_k^{(m)}) \right]$, measur-
308 ing the ratio of consecutive correct steps (valid forward moves) from the start that align with at
309 least one optimal trajectory. PR thus provides a softer signal than EM, capturing the model’s ability
310 to make meaningful progress towards a full solution. The same state equality is applied as in EM.

312
313 **Textual planning falls short in both proprietary models and open-sourced tuning baselines.**
314 Table 1 shows that proprietary models yield average EM below 50% and PR only marginally above
315 50% at best, underscoring the challenges these tasks pose for current models despite being intuitive
316 for humans. On the other hand, while task-specific training provides partial improvement, the overall
317 performance of fine-tuned textual planners remains unsatisfactory, through either directly generating
318 planned actions (SFT in Table 1) or first captioning the image with different textual representations
319 and then generating answers (Table 2). We also observe that, unlike the notable gains of RL in the
320 pure language domain (Guo et al., 2025a), RL yields limited performance gains when applied to
321 text-based planning with multimodal inputs. Table 2 shows that when using progress reward as
322 in VPRL or directly using the Progress Rate metric as the outcome reward, none of the variants
323 surpasses the SFT baseline. We attribute the bottleneck of language-based planning with SFT and

¹Direct denotes answer prediction without being instructed to conduct intermediate reasoning.

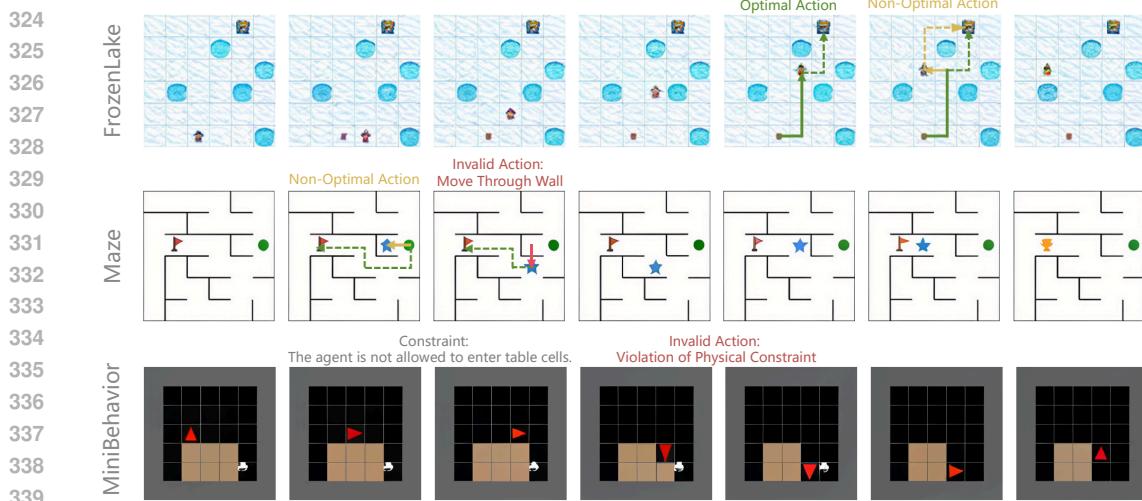


Figure 3: Illustration of each task with generated visual planning traces from LVM, covering different types of actions (optimal, non-optimal and invalid). More cases can be found in Appendix F.6.

RL to the modality gap, which leads to inaccuracies in grounding visual information into text and thereby constrains performance. Further discussion is provided in Section 4.

Visual planning achieves better performance than textual baselines via RL. While supervised fine-tuning (VPFT) achieves performance comparable to text-based SFT, it remains constrained by imitation and limited exposure to diverse trajectories. By contrast, our two-stage reinforcement learning framework (VPRL) substantially improves the planning capability, achieving the strongest overall results. After Stage 2 optimization, the model attains near-perfect accuracy on FROZENLAKE (91.6% EM, 93.2% PR) and maintains strong performance on more complex MAZE and MINIBEHAVIOR tasks, outperforming VPFT by over 20% on average. As expected, the improvement is fully driven by outcome-based optimization in Stage 2, as Stage 1 alone yields near-random behavior (Table 10 in Appendix F.6). Unlike VPFT, which mainly fits the training distribution, VPRL enables exploration of diverse actions and learning from their consequences through reward-driven updates, thereby capturing underlying planning rules and achieving stronger performance.

VPRL shows robustness with scaling complexity. The advantage of RL also holds when we study the performance of different methods with respect to task difficulties, where a larger grid usually relates to higher difficulties. In Figure 5, as the grid size increases from 3×3 to 6×6 in the FROZENLAKE environment, Gemini 2.5 Pro’s EM score drops sharply from 98.0% to 38.8%. In comparison, our visual planners not only maintain higher accuracy at all grid sizes but also exhibit a much flatter performance curve. Similarly, VPRL demonstrates even greater stability than VPFT, with EM remaining at 97.6% on 3×3 grids and still achieving 82.4% on 6×6 , indicating strong robustness. We observe similar trends in other tasks; see Appendix F.3 for other tasks.

4 DISCUSSIONS AND ANALYSIS

Error Analysis and Case Study. We conduct error analysis for language-based planning and visual planning. We observe that textual planning systems with both SFT and RL are prone to errors when grounding visual inputs to verbalized descriptions during the inference process, with 25.7% of generated coordinate-based layout descriptions and 22.3% of generated ASCII-based

Table 2: Performance of text-based planning variants on FROZENLAKE. See Table 7 in Appendix F.2 for the full results.

Model	EM (%)	PR (%)
Qwen 2.5-VL-Instruct-7B		
- SFT		
- Direct	68.6	84.4
- w/ Coordinates	74.4	82.7
- w/ ASCII	73.1	83.4
- GRPO		
- w/ VPRL progress reward	54.4	69.9
- w/ PR metric reward	60.1	74.3

Figure 4: Visualization of a test example from FROZENLAKE comparing visual planning variants (VPFT and VPRL) with language-based reasoning variants.

representations being mismatched with ground-truth layouts. Qualitative analysis of response from textual RL baselines (Figure 9 in Appendix F.2.1) and proprietary models (Figure 4) also reveal similar observations. Taken together, these results demonstrate an inherent modality gap where language may not be the most accurate and effective representation for vision-first problem. For visual planning, Figure 3 presents visual planning traces generated by LVM across different tasks. We observe that the model occasionally takes non-optimal actions that deviate from the shortest path (FROZENLAKE example). Surprisingly, VPRL demonstrates the ability to take detours to bypass the obstacles while still progressing towards the goal, whereas VPFT lacks this flexibility and gets stuck, as shown in Figure 4. Additional traces covering optimal, non-optimal, and invalid cases can be found in Appendix F.6. Beyond these in-domain analyses, we further evaluate generalization on larger unseen grids and perturbed image inputs, with results reported in Appendix F.4.

Random policy initialization enables exploration. We ablate whether we could directly use VPFT as the policy model for GRPO training rather than intentionally initialize a model with random trajectories. We hypothesize that VPFT, trained via teacher-forcing, inherently limits exploration by repeatedly generating similar actions, resulting in identical rewards. In this case, it yields zero advantage, preventing policy updates and hindering effective learning. We empirically validate this hypothesis by comparing the exploration capabilities of VPFT with VPRL Stage 1 (Figure 6). We observe that VPFT’s entropy rapidly declines throughout training, eventually approaching zero, indicating severe exploration limitations. Although earlier VPFT checkpoints exhibit higher entropy, they produce significantly more invalid actions. In contrast, VPRL Stage 1 demonstrates significantly higher entropy, closely approaching the entropy of the uniform random planner, while maintaining a lower invalid action ratio, justifying the necessity of Stage 1 random initialization for RL framework.

VPRL reduces invalid action failure. Another important benefit of VPRL lies in its effectiveness in reducing invalid actions. To quantify this, we analyze all failed trajectories and compute the proportion that contains at least one invalid action, as opposed to failures caused by non-optimal but valid plans. We refer to this as the *invalid-failure* ratio. As shown in Table 6, VPFT exhibits a high ratio ranging from 61% to 78% over three tasks, while VPRL reduces this ratio by at least 24% in all cases, demonstrating that VPRL not only improves success rates, but also encourage the model to stay within valid action spaces during planning.

5 RELATED WORK

MLLM Reasoning. Recent work has extended CoT prompting (Wei et al., 2022c) to MLLMs through approaches such as grounding visual inputs into symbolic representations, such as graphs or bounding boxes (Zhang et al., 2024b; Lei et al., 2024). Other approaches integrate tools to generate visualizations during reasoning (Hu et al., 2024; Zhou et al., 2024). For example, o3 model (OpenAI,

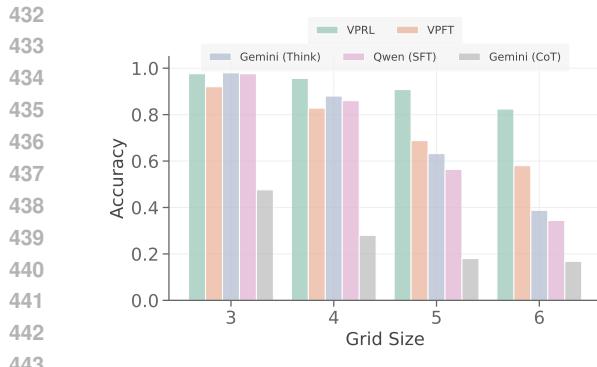


Figure 5: Evaluation of model performance on FROZENLAKE under varying levels of difficulty. As the environment complexity increases with larger grid sizes, language-based reasoning methods experience a sharp decline in performance, whereas visual planning methods exhibit a more gradual drop, demonstrating greater robustness.

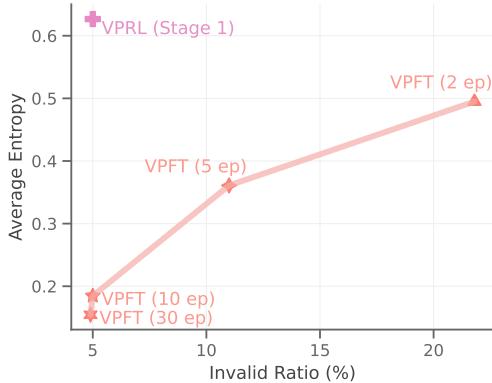


Figure 6: Comparison of exploration capabilities between VPFT and VPRL Stage 1 on FROZENLAKE. VPRL Stage 1 achieves significantly better exploration efficiency, balancing high entropy with a low invalid action ratio, whereas VPFT struggles with diminishing entropy and increased invalid actions over training.

2025) incorporates visual rationales using tools such as cropping and zooming. MVoT (Li et al., 2025) is also essentially a form of tool use: instead of relying on external modules, it invokes itself to generate visualizations of textual reasoning. These methods primarily conduct reasoning in language, with visual components merely illustrating the textual rationale rather than serving as the medium of reasoning. In this work, we take a step further to explore whether multi-step planning can emerge purely within visual representations, enabling reasoning without relying on language at all.

Reinforcement Learning for Visual Reasoning. Reinforcement learning has been applied across a wide range of vision-related tasks, especially given the rise of GRPO as in DeepSeek-R1 (Guo et al., 2025a). Concurrently, in object detection, visual perception (Yu et al., 2025) is optimized through rewarding high Intersection-over-Union (IoU) scores between predicted and ground-truth bounding boxes (Shen et al., 2025). For visual reasoning tasks such as Visual Question Answering (VQA), GRPO has been utilized to optimize the models for longer, more coherent, and logically grounded reasoning traces in textual responses (Liu et al., 2025; Zhou et al., 2025; Zhang et al., 2025b; Team et al., 2025). More recently, similar methods have also been applied to image generation tasks for recursive refinement with textual instructions (Guo et al., 2025b; Wang et al., 2025; Jiang et al., 2025). These approaches focus on pixel-level fidelity and semantic alignment with text, whereas our work leverages RL for goal-oriented visual planning, optimizing multi-step decision-making through visual state transitions without any reliance on language.

Action-conditional Generative Models. Action-conditional generative models has focused on constructing latent representations of the world and predicting future observations conditioned on given actions (Ha & Schmidhuber, 2018; Ball et al., 2025). These models learn transition dynamics and are central to model-based reinforcement learning, where they allow agents to simulate potential outcomes without interacting directly with the environment (Hafner et al., 2019). While effective for representation learning and short-horizon prediction, action-conditional generative models do not perform planning and must therefore be coupled with an external planner. In contrast, our approach constitutes a holistic planner that internalizes planning within the visual generative flow, which is more effective for visual tasks than traditional text-based planners that suffer from a modality gap. It can also benefit from action-conditional generative models by using predicted observations as inputs.

6 CONCLUSION

In this work, we present Visual Planning as a new paradigm for reasoning in visually oriented tasks, challenging the prevailing reliance on language as the primary medium for structured inference. By enabling models to operate entirely through visual state transitions without textual mediation, we show that purely visual representations provide performance comparable to text-based planning in spatially grounded and dynamic tasks, establishing visual planning as a viable alternative. More

486 importantly, our proposed two-stage reinforcement learning framework, VPRL, empowered by
 487 GRPO, further enhances the planning capabilities of large vision models. It obtains significant gains
 488 across three visual navigation tasks, achieving 27% EM improvements in task performance than
 489 language-based planning and showing stronger generalization on out-of-distribution scenarios. These
 490 findings underscore the promise of visual planning as a powerful alternative to text-based approaches.
 491 We believe our work opens up a rich new direction for multimodal research, offering a foundation for
 492 building more intuitive, flexible, and powerful reasoning systems across a wide range of domains.
 493

494 REFERENCES

496 Arjun Akula, Soravit Changpinyo, Boqing Gong, Piyush Sharma, Song-Chun Zhu, and Radu Soricut.
 497 CrossVQA: Scalably generating benchmarks for systematically testing VQA generalization. In
 498 Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings
 499 of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 2148–2166,
 500 Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
 501 Linguistics. doi: 10.18653/v1/2021.emnlp-main.164. URL <https://aclanthology.org/2021.emnlp-main.164/>.
 502

503 Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
 504 Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical re-
 505 port. *arXiv preprint arXiv:2305.10403*, 2023. URL <https://doi.org/10.48550/arXiv.2305.10403>.
 506

507 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 508 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 509 2025.
 510

511 Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan L. Yuille, Trevor Darrell, Jitendra
 512 Malik, and Alexei A. Efros. Sequential modeling enables scalable learning for large vision models.
 513 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,
 514 USA, June 16-22, 2024*, pp. 22861–22872, 2024. doi: 10.1109/CVPR52733.2024.02157. URL
 515 <https://doi.org/10.1109/CVPR52733.2024.02157>.

516 Philip J. Ball, Jakob Bauer, Frank Belletti, Bethanie Brownfield, Ariel Ephrat, Shlomi Fruchter,
 517 Agrim Gupta, Kristian Holsheimer, Aleksander Holynski, Jiri Hron, Christos Kaplanis, Marjorie
 518 Limont, Matt McGill, Yanko Oliveira, Jack Parker-Holder, Frank Perbet, Guy Scully, Jeremy Shar,
 519 Stephen Spencer, Omer Tov, Ruben Villegas, Emma Wang, Jessica Yung, Cip Baetu, Jordi Berbel,
 520 David Bridson, Jake Bruce, Gavin Buttimore, Sarah Chakera, Bilva Chandra, Paul Collins, Alex
 521 Cullum, Bogdan Damoc, Vibha Dasagi, Maxime Gazeau, Charles Gbadamosi, Woohyun Han,
 522 Ed Hirst, Ashyana Kachra, Lucie Kerley, Kristian Kjems, Eva Knoepfel, Vika Koriakin, Jessica
 523 Lo, Cong Lu, Zeb Mehring, Alex Moufarek, Henna Nandwani, Valeria Oliveira, Fabio Pardo, Jane
 524 Park, Andrew Pierson, Ben Poole, Helen Ran, Tim Salimans, Manuel Sanchez, Igor Saprykin,
 525 Amy Shen, Sailesh Sidhwani, Duncan Smith, Joe Stanton, Hamish Tomlinson, Dimple Vijaykumar,
 526 Luyu Wang, Piers Wingfield, Nat Wong, Keyang Xu, Christopher Yew, Nick Young, Vadim Zubov,
 527 Douglas Eck, Dumitru Erhan, Koray Kavukcuoglu, Demis Hassabis, Zoubin Gharamani, Raia
 528 Hadsell, Aäron van den Oord, Inbar Mosseri, Adrian Bolton, Satinder Singh, and Tim Rocktäschel.
 529 Genie 3: A new frontier for world models. 2025.

530 G Brockman. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.

531 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 532 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 533 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 534 Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
 535 Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
 536 Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
 537 shot learners. In *Advances in Neural Information Processing Systems 33: Annual Con-
 538 ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
 539 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfc4967418bfb8ac142f64a-Abstract.html>.

540 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M³CoT: A novel
 541 benchmark for multi-domain multi-step multi-modal chain-of-thought. In Lun-Wei Ku, Andre
 542 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association*
 543 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 8199–8221, Bangkok, Thailand,
 544 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.446.
 545 URL <https://aclanthology.org/2024.acl-long.446/>.

546 Zihui Cheng, Qiguang Chen, Jin Zhang, Hao Fei, Xiaocheng Feng, Wanxiang Che, Min Li, and Libo
 547 Qin. Comt: A novel benchmark for chain of multi-modal thought on large vision-language models.
 548 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 23678–23686,
 549 2025.

550 Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole: An open, autoregressive, native large
 551 multimodal models for interleaved image-text generation. *arXiv preprint arXiv:2407.06135*, 2024.

552 Rohan Choudhury, Guanglei Zhu, Sihan Liu, Koichiro Niinuma, Kris Kitani, and László Jeni.
 553 Don't look twice: Faster video transformers with run-length tokenization. *Advances in Neural*
 554 *Information Processing Systems*, 37:28127–28149, 2024.

555 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Sergey Levine, and
 556 Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation model post-training.
 557 In *The Second Conference on Parsimony and Learning (Recent Spotlight Track)*, 2025. URL
 558 <https://openreview.net/forum?id=d3E3LWmTar>.

559 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 560 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 561 pp. 12873–12883, 2021.

562 Gemini. Gemini 2.5: Our most intelligent AI model. March 2025.
 563 URL [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/)
 564 gemini-model-thinking-updates-march-2025/. Accessed: 2025-05-09.

565 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V
 566 in VQA matter: Elevating the role of image understanding in Visual Question Answering. In
 567 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.

568 Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and Xin Wang. Vision-and-language navigation:
 569 A survey of tasks, methods, and future directions. In Smaranda Muresan, Preslav Nakov,
 570 and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for*
 571 *Computational Linguistics (Volume 1: Long Papers)*, pp. 7606–7623, Dublin, Ireland, May
 572 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.524. URL
 573 <https://aclanthology.org/2022.acl-long.524/>.

574 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 575 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 576 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

577 Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Peng Gao, Hongsheng Li, and Pheng-
 578 Ann Heng. Can we generate images with cot? let's verify and reinforce image generation step by
 579 step. *arXiv preprint arXiv:2501.13926*, 2025b.

580 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
 581 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
 582 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3608–3617,
 583 2018.

584 David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2(3), 2018.

585 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
 586 Davidson. Learning latent dynamics for planning from pixels. In *International conference on*
 587 *machine learning*, pp. 2555–2565. PMLR, 2019.

594 Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and
 595 Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning
 596 benchmark. *arXiv preprint arXiv:2501.05444*, 2025.

597

598 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 599 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Interna-
 600 tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.*
 601 OpenReview.net, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

602

603 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
 604 Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal language
 605 models. *arXiv preprint arXiv:2406.09403*, 2024.

606

607 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 608 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 609 arXiv:2410.21276*, 2024.

610

611 Michael Igorevich Ivanitskiy, Rusheb Shah, Alex F Spies, Tilman Räuker, Dan Valentine, Can Rager,
 612 Lucia Quirke, Chris Mathwin, Guillaume Corlouer, Cecilia Diniz Behn, et al. A configurable
 613 library for generating and manipulating maze datasets. *arXiv preprint arXiv:2309.10498*, 2023.

614

615 Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann
 616 Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level
 617 and token-level cot. *arXiv preprint arXiv:2505.00703*, 2025.

618

619 Emily Jin, Jiaheng Hu, Zhuoyi Huang, Ruohan Zhang, Jiajun Wu, Li Fei-Fei, and Roberto Martín-
 620 Martín. Mini-BEHAVIOR: A procedurally generated benchmark for long-horizon decision-
 621 making in embodied AI. In *NeurIPS 2023 Workshop on Generalization in Planning*, 2023. URL
 622 <https://openreview.net/forum?id=Gh19pYaVh5>.

623

624 Kat Kampf and Nicole Brichtova. Experiment with gemini 2.0 flash native im-
 625 age generation, March 2025. URL <https://developers.googleblog.com/en/experiment-with-gemini-20-flash-native-image-generation/>. Accessed:
 2025-04-27.

626

627 Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
 628 Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
 629 code generation. In *International Conference on Machine Learning*, pp. 18319–18345. PMLR,
 2023.

630

631 Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li, and Yang Liu. Scaffolding coordinates to promote
 632 vision-language coordination in large multi-modal models. *arXiv preprint arXiv:2402.12058*,
 2024.

633

634 Chengzu Li, Caiqi Zhang, Han Zhou, Nigel Collier, Anna Korhonen, and Ivan Vulić. TopViewRS:
 635 Vision-language models as top-view spatial reasoners. In Yaser Al-Onaizan, Mohit Bansal, and
 636 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natu-
 637 ral Language Processing*, pp. 1786–1807, Miami, Florida, USA, November 2024a. Associa-
 638 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.106. URL <https://aclanthology.org/2024.emnlp-main.106/>.

639

640 Chengzu Li, Chao Zhang, Simone Teufel, Rama Sanand Doddipatla, and Svetlana Stoyanchev.
 641 Semantic map-based generation of navigation instructions. In Nicoletta Calzolari, Min-Ýen Kan,
 642 Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Proceedings of
 643 the 2024 Joint International Conference on Computational Linguistics, Language Resources and
 644 Evaluation (LREC-COLING 2024)*, pp. 14628–14640, Torino, Italia, May 2024b. ELRA and ICCL.
 645 URL <https://aclanthology.org/2024.lrec-main.1274/>.

646

647 Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, and
 648 Furu Wei. Imagine while reasoning in space: Multimodal visualization-of-thought. *arXiv preprint
 649 arXiv:2501.07542*, 2025.

648 Drew Linsley*, Junkyung Kim*, Alekh Ashok, and Thomas Serre. Recurrent neural circuits for
 649 contour detection. In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=H1gB4RVKvB>.
 650

651 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. *Transactions of the Association*
 652 *for Computational Linguistics*, 11:635–651, 2023. doi: 10.1162/tacl_a_00566. URL <https://aclanthology.org/2023.tacl-1.37/>.
 653

654 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 655 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.
 656

657 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *7th International*
 658 *Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*.
 659 OpenReview.net, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.
 660

661 Samuel T. Moulton and Stephen M. Kosslyn. Imagining predictions: mental imagery as mental
 662 emulation. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364:1273 –
 663 1280, 2009.
 664

665 OpenAI. Introducing OpenAI o3 and o4-mini: Our smartest and most capable models to date.
 666 April 2025. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.
 667 Accessed: 2025-05-16.

668 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 669 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 670 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 671 27744, 2022.
 672

673 Allan Paivio. Dual coding theory: Retrospect and current status. *Canadian Journal of Psychology/Revue canadienne de psychologie*, 45(3):255, 1991.
 674

675 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Qixiang Ye, and
 676 Furu Wei. Grounding multimodal large language models to the world. In *The Twelfth International*
 677 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=1LmqxkfSIw>.
 678

679 Yifu Qiu, Yftah Ziser, Anna Korhonen, Shay B Cohen, and Edoardo M Ponti. Bootstrapping world
 680 models from dynamics models in multimodal foundation models. *arXiv preprint arXiv:2506.06006*,
 681 2025.
 682

683 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 684 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 685 and videos. *arXiv preprint arXiv:2408.00714*, 2024.
 686

687 Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
 688 Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittweiser, Ioannis
 689 Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer,
 690 Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu,
 691 James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin
 692 Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
 693 Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas,
 694 Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal,
 695 Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren
 696 Sezener, and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
 697 of context. *CoRR*, abs/2403.05530, 2024. doi: 10.48550/ARXIV.2403.05530. URL <https://doi.org/10.48550/arXiv.2403.05530>.
 698

699 Jonathan Roberts, Mohammad Reza Taesiri, Ansh Sharma, Akash Gupta, Samuel Roberts, Ioana
 700 Croitoru, Simion-Vlad Bogolin, Jialu Tang, Florian Langer, Vyas Raina, et al. Zerobench:
 701 An impossible visual benchmark for contemporary large multimodal models. *arXiv preprint*
arXiv:2502.09696, 2025.

702 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 703 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 704 reasoning in open language models. *ArXiv preprint*, abs/2402.03300, 2024. URL <https://arxiv.org/abs/2402.03300>.

705

706 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 707 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 708 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

709

710 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 711 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 712 llms. *arXiv preprint arXiv:2501.12599*, 2025.

713 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 714 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 715 learning. <https://github.com/huggingface/trl>, 2020.

716

717 Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang Jiang.
 718 Simplear: Pushing the frontier of autoregressive visual generation through pretraining, sft, and rl.
 719 *arXiv preprint arXiv:2504.11455*, 2025.

720 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 721 Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International
 722 Conference on Learning Representations*, 2022a. URL <https://openreview.net/forum?id=gEZrGC0zdqR>.

723

724 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
 725 Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In
 726 Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural
 727 Information Processing Systems*, 2022b. URL https://openreview.net/forum?id=_VjQ1MeSB_J.

728

729 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
 730 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
 731 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural
 732 Information Processing Systems*, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022c.

733

734 Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai,
 735 and Xiang Bai. Liquid: Language models are scalable multi-modal generators. *arXiv preprint
 736 arXiv:2412.04332*, 2024a.

737

738 Qiucheng Wu, Handong Zhao, Michael Saxon, Trung Bui, William Yang Wang, Yang Zhang, and
 739 Shiyu Chang. Vsp: Assessing the dual challenges of perception and reasoning in spatial planning
 740 tasks for vlms, 2024b.

741

742 En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian Sun,
 743 Chunrui Han, Zheng Ge, et al. Perception-r1: Pioneering perception policy with reinforcement
 744 learning. *arXiv preprint arXiv:2504.07954*, 2025.

745

746 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 747 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
 748 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on
 749 Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

750

751 Huanyu Zhang, Chengzu Li, Wenshan Wu, Shaoguang Mao, Ivan Vulić, Zhang Zhang, Liang Wang,
 752 Tieniu Tan, Furu Wei, et al. A call for new recipes to enhance spatial reasoning in mllms. *arXiv
 753 preprint arXiv:2504.15037*, 2025a.

754

755 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
 756 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024a.

757

758 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao.
 759 R1-vl: Learning to reason with multimodal large language models via step-wise group relative
 760 policy optimization. *arXiv preprint arXiv:2503.12937*, 2025b.

756 Zhuosheng Zhang, Aston Zhang, Mu Li, hai zhao, George Karypis, and Alex Smola. Multimodal
757 chain-of-thought reasoning in language models. *Transactions on Machine Learning Research*,
758 2024b. ISSN 2835-8856.

759 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
760 zero's" aha moment" in visual reasoning on a 2b non-sft model. *arXiv preprint arXiv:2503.05132*,
761 2025.

762 Qiji Zhou, Ruochen Zhou, Zike Hu, Panzhong Lu, Siyang Gao, and Yue Zhang. Image-of-thought
763 prompting for visual reasoning refinement in multimodal large language models, 2024.

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A THE USE OF LARGE LANGUAGE MODELS
811812 Large language models (LLMs) were used as general-purpose tools in this work. Specifically, LLMs
813 assisted in polishing the writing to improve clarity and readability.
814815 B ETHICS STATEMENT
816817 Our research adheres to rigorous ethical guidelines. We verified the licenses of all softwares and
818 datasets we used in this study and ensured full compliance with their terms. Furthermore, we have
819 thoroughly assessed the project and do not anticipate any additional potential risks.
820821 C REPRODUCIBILITY STATEMENT
822823 Appendix E.1 introduces the datasets in details with statistics and processing procedure. Appendix E.2
824 introduces models we used in our paper, and Appendix E.3 provides detailed information regarding
825 reward implementation for VPRL method. All hyper-parameters and training details are listed in
826 Appendix E.4 for reproducibility. Appendix E.5 introduces the licences for the data and models we
827 used. Prompting templates are shown in Appendix G. All data and scripts will be released publicly
828 upon acceptance to facilitate reproducibility.
829830 D LIMITATIONS AND FUTURE WORK
831832 In this work, we focus exclusively on Large Vision Model (LVM) to investigate visual planning
833 capabilities by eliminating language as a confounding factor *for research purposes*. As such, this
834 choice constraints the model size to 7B as the only available size of LVM, and excludes recently
835 released native multimodal models capable of generating multimodal outputs (Chern et al., 2024;
836 Wu et al., 2024a). However, we argue that the visual planning paradigm can be extended to broader
837 multimodal generation models for use in more diverse tasks, combined with more modalities, as long
838 as they support image generation.
839840 Additionally, explicitly generating images introduces computational overhead during inference
841 compared to a textual response. However, we argue that language-based reasoning performs worse
842 than visual planning and can be equally or even more time-consuming, especially for thinking models
843 (Gemini, 2025). In our demonstration, Gemini generated over 7,000 thinking tokens yet failed to
844 provide the correct answer in the end. The computation overhead introduced by image generation
845 can be alleviated through more compact image representations using fewer tokens (Choudhury et al.,
2024), which we advocate for future research.
846847 Another limitation in this work lies in the implementation of dynamics interpreter. For simplicity,
848 we adopt the rule-based approach that compares pixel-wise features between the current state and
849 the previous state (details in Appendix E.3). While effective in our controlled setup, broader task
850 settings involving more complex visual structures are yet to be explored. Nevertheless, we argue
851 that the underlying reward formulation remains extensible, but the primary challenge lies in defining
852 reliable progress signals as visual transitions become more complex. Such signals could be supported
853 by either dynamic models that elicit actions from pairs of images (e.g. segmentation (Ravi et al.,
854 2024) or contour detection (Linsley* et al., 2020)) or a holistic neural model (e.g. Gemini (Gemini,
855 2025) or a learned reward model) that directly judges whether the transitions are valid without
856 explicitly inferring actions. Alternatively, trajectory-level rollouts with final success feedback could
857 be leveraged to identify actions that contribute to progress toward successful outcomes, eliminating
858 the requirement for an explicit dynamics interpreter. We encourage future research to explore more
859 robust and scalable designs for interpreting visual transitions to advance visual planning systems.
860861 **Broader Impact.** This work introduces a novel paradigm of visual planning, where agents reason and
862 act entirely within the visual modality without reliance on textual intermediaries. By demonstrating
863 that models can plan through sequences of images, this research opens new possibilities for the
864 way human and AI system interacts, particularly in domains like robotics, navigation, and assistive
865 technologies, where perception and decision-making are tightly coupled. As the first step toward
866 planning grounded purely in visual representations, our work lays the foundation for AI systems that
867

864 integrate both verbal and non-verbal reasoning. We advocate for future research into more holistic
 865 multimodal thinking systems where interleaved text and image traces enable richer, more human-like
 866 reasoning, and emphasize the importance of strengthening the visual component in such traces for
 867 improved planning and cognition.
 868

869 E IMPLEMENTATION DETAILS

870 E.1 DATASET

873 **Task Action Space.** FROZENLAKE and MAZE both involve four primitive navigation actions:
 874 up, down, left, and right. MINIBEHAVIOR includes a more complex action space with two
 875 additional operations: pick, drop.
 876

877 **Dataset preparation.** For both FROZENLAKE and MAZE, we construct environments of grid sizes
 878 ranging from 3×3 to 6×6 . For each size, we sample 1250 environments, with 1000 used for training
 879 and 250 held out for testing (Table 3). Each environment here is guaranteed to have a unique layout,
 880 and the agent is randomly initialized at a grid from which the goal is reachable, forming the initial
 881 state v_0 . Due to the relatively limited diversity of environments layout in MINIBEHAVIOR, where the
 882 complexity arises primarily from the action space, sampling unique environments in a small grid size
 883 becomes challenging. Therefore, we focus only on grid sizes 7×7 and 8×8 , allowing duplicates in
 884 layout but varying agent spawn positions to ensure sufficient data volume. To prevent data leakage,
 885 we split the dataset based on layout identity, ensuring no layout overlap between the training and test
 886 sets.
 887

888 We next describe the dataset construction procedures corresponding to the training setups outlined in
 889 Section 3, with the number of samples per task summarized in Table 4.

- 890 • **SFT in Text (Baseline):** For each environment, we sample an optimal trajectory consisting of
 891 a sequence of visual states (v_0, \dots, v_n) as the ground truth. Each transition between states
 892 is determined by an action, enabling us to derive a corresponding verbalized action sequence
 893 (a_0, \dots, a_{n-1}) . The input to the model is formulated by concatenating a textual prompt with an
 894 image representation of the initial state v_0 , while the target output is the verbalized action sequence
 895 representing the optimal trajectory. We further ablate different variants of the baseline with various
 896 representations and tuning methods (SFT and RL) in Appendix F.2. The detailed prompts for all
 897 variants are provided in Appendix G.
- 898 • **VPFT:** We utilize the same set of optimal trajectories as the language-based reasoning baseline
 899 described above. In the visual scenario, each trajectory generates multiple input-target pairs by
 900 pairing the state at timestep t as the input with the subsequent state at timestep $t + 1$ as the target.
- 901 • **VPRL:**
 - 902 – Stage 1: This dataset serves solely for format control training of the visual backbone. For
 903 each environment, we enumerate all possible trajectories from the initial state as v_0 and
 904 generate corresponding input-target pairs. Duplicate pairs are filtered to maintain a balanced
 905 distribution.
 - 906 – Stage 2: To ensure fairness and comparability, this dataset uses the same input states as VPFT.
- 907 • **VPFT^{*}:** We conduct an ablation study (indicated with ^{*}) where VPFT is also trained in two stages,
 908 mirroring the structure of VPRL. Stage 1 follows the same procedure as VPRL Stage 1, focusing
 909 on format supervision using enumerated visual inputs. Stage 2 reuses the original VPFT training
 910 pipeline, learning from optimal trajectories. Experimental results and analysis see Appendix F.5.

911 *Note:* For both textual and visual planning setups, evaluation is performed using only the initial state
 912 v_0 of each test environment as input.
 913

914 **Dataset Statistics.** We evaluate the performance of different system variants in in-distribution and
 915 out-of-distribution (OOD) settings. Table 3 shows the training data distribution over different grid
 916 sizes across three tasks. The numbers of training and testing samples for different system variants are
 917 shown in Table 4. For OOD evaluation, the enlarged grid sizes are shown in Table 9. OOD evaluation
 918 data includes 250 samples for each task.

918
 919 Table 3: Distribution of training dataset by grid sizes for each task. Value indicates the number of
 920 environments.

FROZENLAKE				
Grid Size	3	4	5	6
Train	1000	1000	1000	1000
Test	250	250	250	250
MAZE				
Grid Size	3	4	5	6
Train	1000	1000	1000	1000
Test	250	250	250	250
MINIBEHAVIOR				
Grid Size	7		8	
Train	796		801	
Test	204		199	

933
 934 Table 4: Number of training and test samples for each task and method. For visual planning, the
 935 numbers here are represented in image pairs, which correspond to the same number of trajectories for
 936 SFT in Text.

Task	Split	SFT in Text	VPFT	VPRL		VPFT*	
				Stage 1	Stage 2	Stage 1	SFT
FROZENLAKE	Train	4000	12806	170621	12806	170621	12806
	Test	1000	1000	N/A	1000	N/A	1000
MAZE	Train	4000	14459	156682	14459	156682	14459
	Test	1000	1000	N/A	1000	N/A	1000
MINIBEHAVIOR	Train	1597	9174	90808	9174	90808	9174
	Test	403	403	N/A	403	N/A	403

E.2 MODELS

950 Large Vision Model (LVM) (Bai et al., 2024) is an autoregressive models for image generation,
 951 which is only pretrained with image sequences with no exposure to language data. The model uses a
 952 tokenizer based on the VQGAN architecture (Esser et al., 2021), which extracts visual information
 953 from raw images and encodes it into 256 tokens from a fixed codebook. The image is generated in an
 954 auto-regressive manner with discrete tokens, which are then fed into the image detokenizer. Although
 955 LVM supports multiple model sizes, only the 7B-parameter version is publicly available; thus, we
 956 use this variant in our experiments. For a fair comparison, we use Qwen 2.5-VL-Instruct (Bai et al.,
 957 2025) with a matching parameter size as our language-based baseline.

E.3 REWARD IMPLEMENTATION

960 We adopt a rule-based state-action parsing function as the dynamics interpreter \mathcal{D} and heuristic
 961 progress estimator P in VPRL. For the progress estimator, we apply the Breadth First Search (BFS)
 962 to search for the optimal trajectories and calculate the progress at each position in the grid for each
 963 task, in order to obtain a progress map covering all positions. The progress map are then used as a
 964 reward signal to guide VPRL training.

965 Specifically, for state-action parsing function, we parse the state and identify the difference between
 966 the current state and the previous state through a pixel-wise feature extractor. We first convert both
 967 input and predicted states into a coordinate-based representation by dividing the image into a grid
 968 based on its size. Each region corresponds to a discrete coordinate in the environment. To reduce
 969 sensitivity to color and focus on structural differences, we convert all images to grayscale. We
 970 subsequently compute the Intersection-over-Union (IoU) between each coordinate in the predicted
 971 state and the coordinate in the input state that contains the player (input coordinate). The coordinate
 in the predicted state with the highest IoU is selected as the predicted agent position. The action is

972

973

Table 5: Hyper-parameters of training both textual and visual planners.

974

975

Hyper-Parameters	SFT in Text	RL in Text	VPFT	VPRL		VPFT*	
				Stage 1	Stage 2	Stage 1	SFT
Epochs	30	10	30	10	10	10	30
Learning Rate	1e-5	1e-5	1.5e-4	1.5e-4	5e-5	1.5e-4	1.5e-4
Train Batch Size	4	1	8	8	1	8	8
Group Size	N/A	8	N/A	N/A	10	N/A	N/A
Grad Accumulation	1	1	1	1	1	1	1
GPUs	8	8	8	8	8	8	8

981

982

983

then inferred by comparing the start and predicted positions according to task-specific movement rules. For example, in the MAZE environment, movement across walls is not allowed and would be considered invalid.

984

985

986

Notably, to detect the invalid transitions, such as the disappearance of agents, we also calculate the pixel-wise mean squared error (MSE) between corresponding coordinates to measure local visual differences. If two coordinates exhibit significant MSE differences exceeding a predefined threshold, we treat them as the potential source and destination of a movement (agent disappears from one and appears in another). If only one such coordinate is found, we treat it as a disappearance event, indicating an invalid transition.

987

988

989

990

991

992

In MINIBEHAVIOR, we extend this logic to identify pick and drop actions. A pick is detected when the IoU between the printer’s location in the input and predicted states falls below a threshold, indicating that the printer has been removed. A drop is inferred when a coordinate corresponding to the table region shows a large MSE increase, suggesting the printer has been placed there. Additional edge cases in these tasks are omitted for brevity.

993

994

995

996

997

For reward computation, if the predicted action is valid, we compare the progress values from the heuristic progress estimator P between the input and predicted states. A reward of 1 is given if the predicted state shows greater progress toward the goal than the input state; otherwise, the reward is 0. Invalid actions are penalized with a reward of -5.

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

Our method and reward modeling approach are readily generalizable to other visual tasks. With reference to computer vision techniques such as segmentation (Ravi et al., 2024) and contour detection (Linsley* et al., 2020), the pixel-level analysis used in our framework can be easily extended to a wide range of structured visual environments. Furthermore, our reward design is broadly applicable to planning tasks in general. Since actions in most planning settings can naturally be categorized into one of three types (valid and helpful, valid but non-progressing, or invalid), our simple reward structure remains intuitive and effective across tasks.

1011

1012

1013

1014

E.4 TRAINING DETAILS

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

In addition to VPRL, we include several training system variants as baselines that differ in supervision modalities (language vs. image) and optimization methods (SFT vs. RL), allowing us to compare language-based and vision-based planning while assessing the role of reinforcement learning.

Visual Planning via Fine-Tuning (VPFT). We propose Visual Planning via Fine-Tuning (VPFT) as a simplified variant of our framework, which shares the same training architecture as Stage 1 in Section 2.2, but replaces random trajectories with optimal planning trajectories. For each environment, we sample a distinct trajectory $(v_0^{\text{opt}}, v_1^{\text{opt}}, \dots, v_n^{\text{opt}})$ representing the minimal-step path from the initial state $v_0^{\text{opt}} = v_0$ to the goal. At each step, the model is trained to predict the next state v_{i+1}^{opt} given the prefix $v_{\leq i}^{\text{opt}}$. The objective is identical to Equation 2, with supervision from the optimal trajectory.

Supervised Fine-Tuning (SFT) in Text. In this baseline, planning is formulated in the language modality. Instead of generating an intermediate visual consequence of an action, the model produces a textual description of the intended action sequence. Formally, given an visual input state v and a textual prompt p , which represents the task description, the model is trained to generate a verbalized action sequence $t = (t_1, \dots, t_L)$, where each token $t_i \in \mathcal{V}_{\text{text}}$ represents an action. The input to

1026

1027 Table 6: We compute the percentage of failed trajectories that are caused by at least one invalid
1028 action, rather than a suboptimal but valid action. Lower values indicate better action validity control.

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

Task	Invalid-Failure Ratio (%)	
	VPRL	VPFT
FROZENLAKE	36.9	60.6
MAZE	25.1	73.7
MINIBEHAVIOR	29.6	78.3

1040

1041

1042

1043

the model is the concatenation of the prompt tokens and the visual tokens, and the target is the corresponding action sequence. Following prior work on supervised fine-tuning (SFT) (Wei et al., 2022a) in autoregressive models, we minimize the cross-entropy loss for action prediction:

$$\mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{(v,t)} \left[\sum_{i=1}^L \log \pi_\theta(t_i | t_{<i}, v, p) \right]. \quad (5)$$

1044

1045

1046

1047

1048

Beyond directly training on action labels, we further conduct an ablation on FROZENLAKE with textual variants that verbalize the input state before predicting the action sequence. In particular, we explore two structured representations: **Coordinate** descriptions and **ASCII** grids. During training, the target sequence consists of the description tokens (encoding the environment layout in either coordinate or ASCII form) concatenated with the action labels that lead to the goal.

1049

1050

1051

1052

1053

Reinforcement Learning (RL) in Text. We also extend RL to textual planning in the FROZENLAKE environment as an ablation. We optimize the textual planner with Group Relative Policy Optimization (GRPO). The reward design combines a fixed *format reward*, which enforces the correct output structure, with an outcome reward defined in two variants: (1) a progress-based reward identical to that used in VPRL, or (2) the Progress Rate (PR) metric directly used as the reward.

1054

1055

1056

1057

1058

For all post-training experiments, we apply Low-Rank Adaptation (LoRA) (Hu et al., 2022) on both attention layers and feed-forward layers. The detailed hyper-parameters are shown in Table 5. Only the loss of the targets is calculated in an instruction-tuning manner (Wei et al., 2022a) for SFT. The image tokenizer and detokenizer are frozen during training. We use the AdamW optimizer Loshchilov & Hutter (2019) for all training procedures.

1059

1060

1061

1062

1063

1064

1065

1066

When SFT for textual planning and visual planning, we train the model for a maximum of 30 epochs. For VPRL, we first do stage 1 on random trajectories for 10 epochs for the purpose of exploration. We then use GRPO to optimize the model for planning for another 10 epochs for stage 2. We sample a group of 10 candidate responses per prompt to compute the advantages accordingly. To encourage a balance between exploration and exploitation, we apply a KL divergence penalty with a coefficient $\beta = 0.001$. For RL in the textual modality, we adopt the same 10 training epochs for fairness, with a group size of 8. We use the TRL library for training (von Werra et al., 2020). We've conducted our experiments on the machine with 8×A100 GPUs.

1067

1068

E.5 LICENSES

1069

1070

1071

1072

Model-wise, Large Vision Model and Qwen 2.5 VL are under the Apache-2.0 license. TRL is under the Apache-2.0 license. We collect the MAZE dataset with our own Python scripts. FROZENLAKE is collected from OpenAI Gym under the MIT License.

1073

1074

F RESULTS

1075

1076

1077

1078

1079

The reward curves with standard deviation for all tasks are shown in Figure 7. The shaded regions indicate the standard deviation across groups. For better visualization, we apply Gaussian smoothing to both the reward values and their corresponding standard deviations.

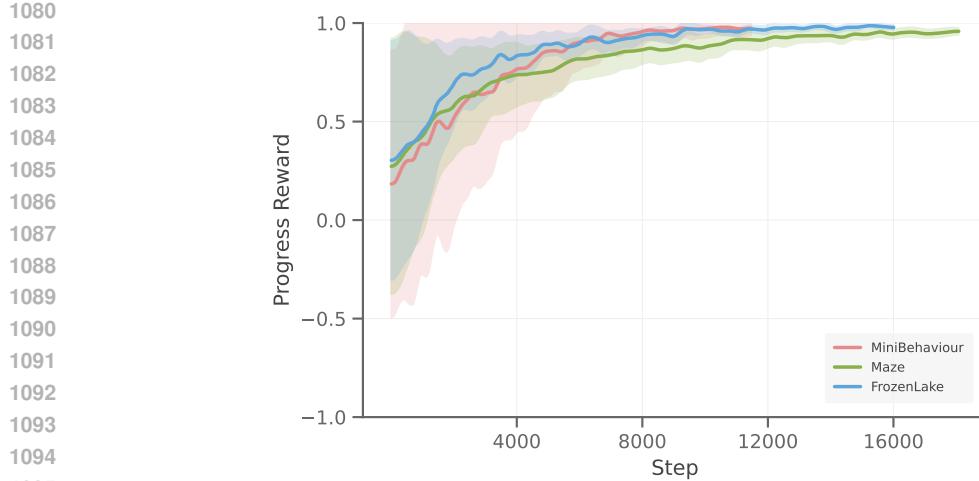


Figure 7: Reward curves with standard deviation for VPRL on FROZENLAKE, MAZE and MINIBEHAVIOR.

Table 7: Performance of text-based variants of Qwen-2.5-VL-Instruct-3B and 7B on FROZENLAKE. We report Exact Match (EM) and Progress Rate (PR) across all difficulty levels (L3–L6) and their average.

Model	EM (%)					PR (%)				
	L3	L4	L5	L6	Avg.	L3	L4	L5	L6	Avg.
Qwen 2.5-VL-Instruct-3B										
- SFT										
- Direct	87.2	72.0	48.8	28.0	59.0	89.4	84.3	71.3	60.1	76.3
- w/ Coordinates	87.2	78.0	64.8	30.8	65.2	89.6	82.5	74.0	57.2	75.8
- w/ ASCII	79.6	75.6	58.8	34.0	62.0	83.3	82.5	74.8	59.1	74.9
- GRPO										
- w/ VPRL progress reward	69.2	52.8	41.2	26.0	47.3	73.6	72.2	66.2	55.0	66.8
- w/ PR metric reward	70.8	60.0	41.6	23.6	49.0	75.5	76.1	65.7	56.0	68.4
Qwen 2.5-VL-Instruct-7B										
- SFT										
- Direct	97.6	86.0	56.4	34.4	68.6	98.1	92.1	78.9	68.4	84.4
- w/ Coordinates	93.2	88.0	74.8	41.6	74.4	94.1	89.7	81.5	65.5	82.7
- w/ ASCII	93.2	86.0	68.0	45.2	73.1	94.1	88.6	81.3	69.6	83.4
- GRPO										
- w/ VPRL progress reward	72.4	64.0	50.4	30.8	54.4	76.2	76.3	69.2	57.8	69.9
- w/ PR metric reward	82.8	68.8	51.6	37.2	60.1	84.9	79.6	71.5	61.0	74.3
LVM-7B										
- VPFT (ours)	92.0	82.8	68.8	58.0	75.4	93.1	84.7	73.4	66.9	79.5
- VPRL (ours)	97.6	95.6	90.8	82.4	91.6	98.4	96.0	93.0	85.6	93.2

F.2 TRAINED TEXTUAL BASELINES AND REWARD DESIGN

To strengthen the comparison with our visual planners, we train different text-based baselines beyond the direct action-sequence SFT model reported in the main paper. We are interested in: 1) whether different textual representation influences the performance of language-based reasoning, and 2) whether reinforcement learning can help to improve the language-based planning performance with multimodal input.

Trained SFT variants. Specifically, we experiment with two alternative SFT variants that first describe the environment layout in different formats (coordinates and ASCII) before predicting the action sequence.

1134
1135 Table 8: Exact Match performance of VPFT and VPFT* across different grid sizes in FROZENLAKE.
1136
1137
1138

Model	Exact Match (%)			
	3×3	4×4	5×5	6×6
VPFT*	86.4	73.6	50.0	33.2
VPFT	92.0	82.8	68.8	58.0

1142
1143 Table 9: Out-of-distribution (OOD) performance on enlarged grids. Models are trained on smaller
1144 grids and evaluated on the sizes indicated in parentheses.
1145

Model	FROZENLAKE (7×7)		MAZE (7×7)		MINIBEHAVIOR (9×9)	
	EM (%)	PR (%)	EM (%)	PR (%)	EM (%)	PR (%)
VPFT	9.6	15.3	9.2	17.8	0.0	5.8
VPRL	20.4	31.2	10.0	21.6	0.4	14.7

- **SFT with Coordinates:** The model is trained to first output a coordinate-based description of the grid environment (e.g., positions of the agent, goal, and obstacles), followed by the full action sequence.
- **SFT with ASCII:** The model is trained to output an ASCII-based description of the environment layout before producing the action sequence. Specifically, S denotes the starting position, G the goal, H an ice hole, and F a passable cell.

The example input-output formats for different text-based reasoning variants are shown in Figure 8 in Appendix F.2.1.

We experiment with both variants for Qwen-2.5-VL-Instruct-3B and 7B, training them with the same configurations as the original text SFT baseline. As shown in Table 7, the SFT variants with either coordinates or ASCII do not provide consistent significant improvements over the direct SFT baseline. Specifically, these variants with additional structural descriptions in either coordinates or ASCII yield slight gains in EM, but exhibit lower PR compared to the direct SFT baseline. Moreover, both variants still fall short of VPRL, suggesting that enriching textual input alone is insufficient to bridge the gap between visual and text-based planning.

RL-trained text baseline. We also explore the feasibility of applying RL to improve the planning performance with multimodal input, given the success of RL in the pure language planning domain (Guo et al., 2025a). We train an RL-based text model using Qwen-2.5-VL-Instruct-3B and 7B with the GRPO algorithm, with output format shown in Figure 8.

We adopt the same progress-based reward design as in VPRL for fair comparison, in addition to a simple *format reward* that ensures reasoning is enclosed within `<think>` tag and the final answer within `<answer>` tag.

- If the action is optimal (i.e., aligned with some optimal trajectory from the current state), it receives a reward of +1.
- If the action is valid but non-optimal, it receives 0.
- If the action is invalid (e.g., colliding with walls or stepping into holes), it receives -5, and all subsequent actions are also treated as invalid.

To prevent reward hacking through excessively short rollouts, any sequence shorter than the length of the optimal trajectory is padded with invalid actions for the remaining steps, which are considered “stay-in-place” moves, in other words, invalid transitions. Finally, to make rewards comparable across sequences of varying lengths, we normalize the total reward by sequence length $\sum_{t=1}^T r_t/T$.

We train the text RL baselines for 10 epochs, consistent with VPRL. Using the VPRL progress reward described above, the model achieves 54.4% EM (Table 7). We suspect that this limited performance

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

Input Example

Task: Generate the shortest valid sequence of actions that moves the elf from the starting position to the goal without stepping into any ice holes (see detailed prompts in Appendix G).

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

SFT (w/ Coordinates)

After analysis, the layout of the given image is as follows:
 - Starting position: (3, 3)
 - Goal: (2, 2)
 - Ice holes: (1, 1), (2, 3)
 - Passable cells: (1, 2), (1, 3), (2, 1), (3, 1), (3, 2)

Based on the above layout, the final answer is: <ANSWER>left up</ANSWER>

SFT (w/ ASCII)

The symbols used to represent the grid are:
 - S denotes the starting position, G the goal, H the ice hole, F passable cells.

HFH
FGH
FFS

Based on the above layout, the final answer is: <ANSWER>left up</ANSWER>

GRPO

<think>
 1. The elf is in the bottom right cell.
 2. The goal is in the top center cell.
 3. The top left cell has an ice hole, so the elf cannot go left there.
 4. The elf needs to move one cell left to the center cell.
 5. Then the elf needs to move one cell up to the goal cell.

The sequence of actions are:
 1. Move one cell left to the center cell.
 2. Move one cell up to the goal cell.
 </think>

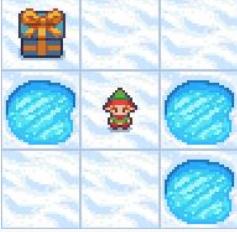
<answer>left up</answer>

Figure 8: Examples of model outputs under different trained textual variants: SFT (w/ Coordinate), SFT (w/ ASCII), and GRPO. Each variant follows a distinct format for representing the environment. Even for the relatively simple 3×3 example input, we observe that the ASCII and GRPO models still produce erroneous layout descriptions.

is due to the reward design not being sufficiently discriminative. In particular, trajectories that contain the same number of optimal and non-optimal actions receive identical rewards regardless of their order (e.g., starting with optimal actions and then switching to non-optimal ones yields the same return as the reverse). As a result, the model tends to first learn to produce valid actions in general, and only later to distinguish optimal actions among them.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

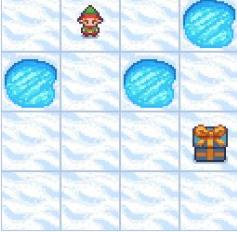
Level 3



<think>
1. The elf is at the center cell.
2. The goal is the gift box in the top left corner.
3. The elf needs to move 1 cell left and 1 cell up.
4. There are ice holes directly below and to the right, so they are impassable.
</think>

<answer>left up</answer>

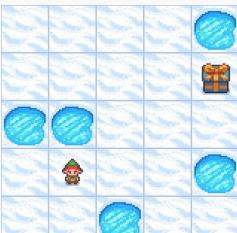
Level 4



<think>
1. The elf is at the top left section of the grid.
2. The goal is the gift box in the bottom right section.
3. The elf needs to move 3 cells down and 1 cell right.
4. There are ice holes directly below and to the right, so the elf cannot move through them.
</think>

<answer>down down down
right</answer>

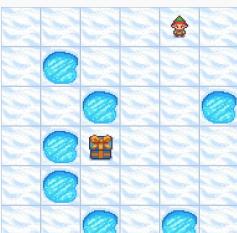
Level 5



<think>
1. The elf is at the bottom left.
2. The goal is the gift box in the top right.
3. The elf needs to move 3 cells right and 2 cells up.
4. There are ice holes directly above and to the right, so the elf cannot move through them.
</think>

<answer>right right right up
up</answer>

Level 6



<think>
1. The elf is at the top right.
2. The goal is the gift box at the bottom left.
3. The elf needs to move 3 cells down and 1 cell left.
4. There are ice holes directly below and to the right of the elf, so we cannot use those paths.
</think>

<answer>left down down down</answer>

Figure 9: Examples of responses from the textual GRPO baseline with PR metric as the reward on FROZENLAKE across different difficulty levels. Each box shows the input image and the corresponding model output. In all cases, the model produces incorrect layout descriptions, which in turn lead to incorrect predicted action sequences.

To address this issue, we further design an alternative reward function by directly adopting the Progress Rate (PR) metric from the main paper. This formulation encourages the model to focus on generating consecutive valid forward moves from the start, rather than separating the learning of validity and optimality. Under the same training conditions, this reward improves EM to 60.1%, but the performance still lags behind the direct SFT baseline. As we discussed in Section 4 (error analysis paragraph), we attribute the bottleneck of language-based planning with RL to the modality

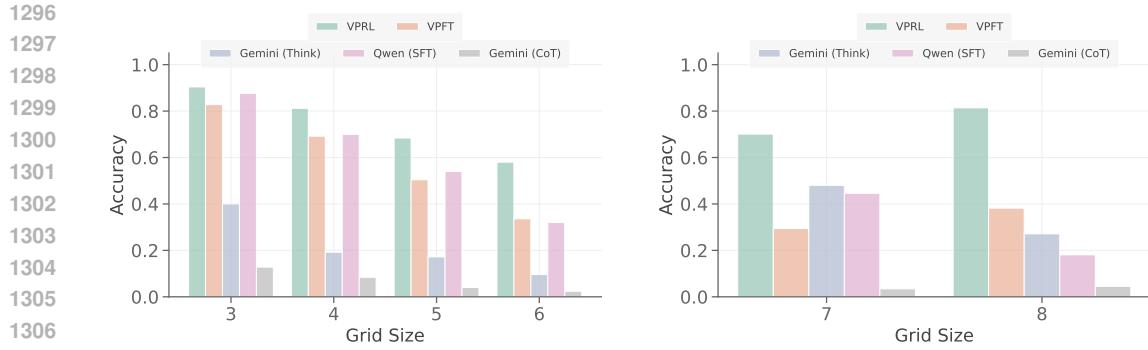


Figure 10: Performance across different grid sizes, reflecting task difficulty. **Left: MAZE. Right: MINIBEHAVIOR.** Visual planners consistently maintain higher accuracy and exhibit flatter performance curves, indicating robustness to increasing complexity.

gap, which introduces inaccuracies in grounding visual information into text, causing exploration to proceed from misinterpreted states and thereby reducing the overall effectiveness of learning. By contrast, our visual planning paradigm avoids this modality gap by operating directly in the visual domain, ensuring exploration within the correct state space via RL.

F.2.1 EXAMPLES OF TRAINED TEXTUAL VARIANTS

Outputs of different textual variants are illustrated in Figure 8, including SFT with coordinate and ASCII representations, as well as GRPO with reasoning traces. Even for the relatively simple 3×3 input, and despite all variants producing the correct final predictions shown in the figure, we observe that the ASCII and GRPO models still generate erroneous layout descriptions: in the ASCII case, the passable cell at the top right is misclassified as an ice hole, while in the GRPO case, the goal position is incorrectly identified.

We also conduct further qualitative analysis of responses from the textual RL baseline trained with the PR metric as the reward (Figure 9). In all cases, the model produces incorrect layout descriptions, which in turn lead to incorrect predicted action sequences, highlighting the modality gap in grounding visual information into text.

F.3 PERFORMANCE WITH SCALING DIFFICULTIES

We evaluate the performance of different methods with respect to task difficulty in MINIBEHAVIOR and MAZE, as shown in Figure 10. Our visual planners consistently achieve higher accuracy across all grid sizes and exhibit notably flatter performance curves, indicating greater robustness to increasing environment complexity.

Interestingly, in MINIBEHAVIOR, we observe that the accuracy of visual planners increases with grid size, which is in contrast to the trend exhibited by textual planners. We hypothesize that this is due to the fixed layout components in this task, specifically, the presence of only a table and a printer. This maintains consistent layout complexity across different grid sizes and allows knowledge acquired in smaller grids to generalize effectively to larger grids. This suggests that visual planning better captures and transfers structural patterns in the environment.

F.4 OUT-OF-DISTRIBUTION PERFORMANCE

Figure 11 illustrates generated images from VPFT and VPRL on OOD scenarios across MAZE, FROZENLAKE, and MINIBEHAVIOR tasks. Notably, both models exhibit a certain level of visual generalization to unseen configurations, such as larger grids with finer step granularity, despite not encountering them during training.

We subsequently quantitatively test generalization by evaluating the model on OOD environments with larger grid sizes. We find that SFT models perform poorly, while VPRL still demonstrates a

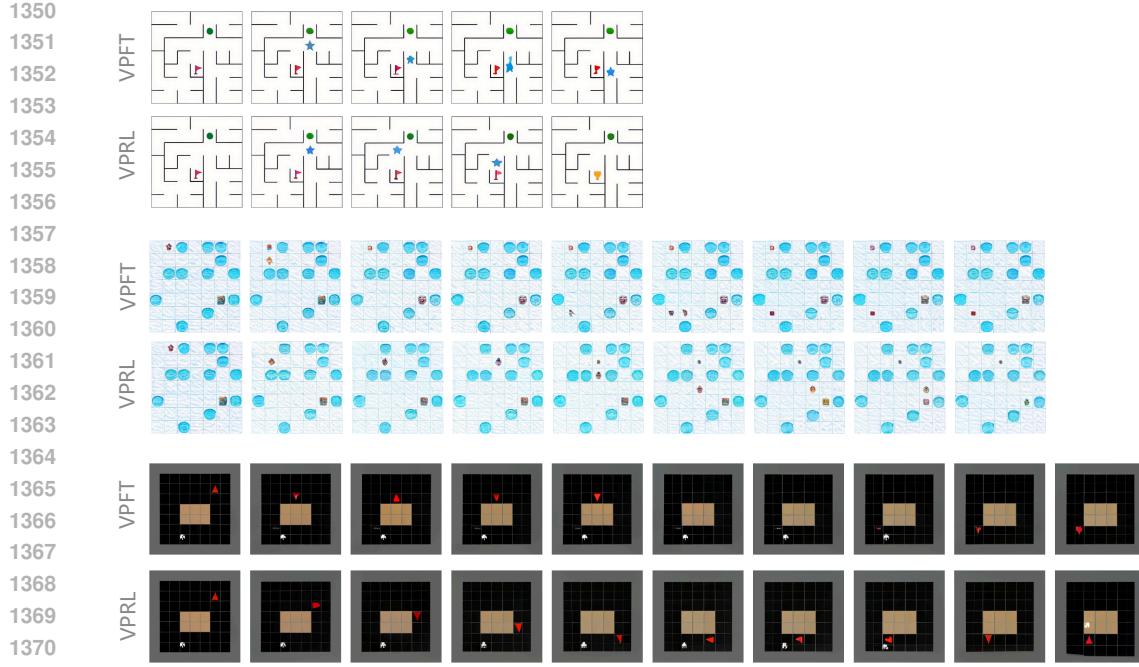


Figure 11: Qualitative comparison of visual planning outputs from VPFT (top) and VPRL (bottom) on out-of-distribution (OOD) scenarios with unseen larger grid size across MAZE, FROZENLAKE, and MINIBEHAVIOR. Each example shows a failure case from VPFT contrasted with a successful trajectory generated by VPRL under the same environment configuration.

certain level of visual planning capability, as shown in Table 9. VPRL consistently outperforms VPFT in both Exact Match and Progress Rate, suggesting that it, to some degree, captures underlying planning strategies rather than merely memorizing training patterns.

Finally, we analyze the robustness of VPRL by qualitatively testing its behavior under perturbed inputs. As shown in Figure 12, we mask portions of the input images with black or gray patches to simulate partial occlusion of the environment. Remarkably, the model continues to produce coherent planning traces within the masked environments, while preserving structural consistency with the visible input regions. This observation highlights the generalization capability of our visual planner, as it adapts to incomplete visual information without deviating from the underlying environment layout.

F.5 ABLATION: THE ROLE OF STAGE 1

To better understand the role of Stage 1 in our two-stage framework, we conduct an ablation study isolating its impact. The primary purpose of Stage 1 is not to improve planning performance directly, but rather to initialize a policy with strong exploration capacity and valid output formats. To verify this, we reuse the original VPFT training pipeline, i.e., learning from optimal trajectories, but start from the Stage 1 checkpoint as VPFT*. Surprisingly, this variant yields lower final performance on FROZENLAKE compared to standard VPFT. This result supports our hypothesis that Stage 1 does not contribute to planning ability itself, but instead provides an exploration-friendly initialization that facilitates effective reinforcement learning in Stage 2.

F.6 VISUAL PLANNING RESULTS

VPRL Stage 1 and Stage 2. Table 10 presents results for each stage of VPRL. After Stage 1, the model learns to generate plausible images but lacks goal-directed behavior, resulting in near-random performance across tasks. In Stage 2, reinforcement learning instills purposeful planning, enabling the model to align generations with the goal and outperform VPFT across all benchmarks.

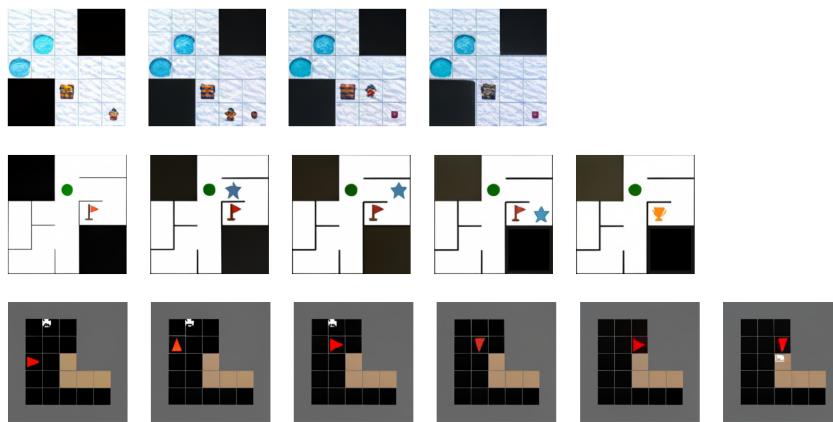


Figure 12: Qualitative analysis of VPRL under perturbed inputs (the first image of each trace). When parts of the input environment are masked (black/gray regions), VPRL maintains consistent planning traces aligned with the visible structure, demonstrating robustness to incomplete visual information without deviating from the underlying environment layout.

Table 10: Performance comparison of VPRL Stage 1 and Stage 2 across all three tasks.

Model	FROZENLAKE		MAZE		MINIBEHAVIOR	
	EM (%)	PR (%)	EM (%)	PR (%)	EM (%)	PR (%)
VPRL Stage 1	11.1	27.2	9.6	22.7	0.5	14.2
VPRL Stage 2	91.6	93.2	74.5	77.6	75.8	83.8

Generated Visual Planning Traces for Illustration. Figure 13 shows the generated visual planning traces for FROZENLAKE, with Figure 14 for MAZE and Figure 15 for MINIBEHAVIOR. Each visual trajectory begins with the initial state as the input (the first frame), followed by a sequence of intermediate states generated by VPRL that form the predicted visual plan.

We include examples from three categories: (1) **Optimal cases**, where the model successfully generates the shortest valid path to the goal; (2) **Non-optimal cases**, where the agent fails to reach the goal within the optimal number of steps due to intermediate non-optimal actions; and (3) **Invalid cases**, in which the generated trajectory contains invalid actions that violate environment constraints, preventing task completion. Notably, as illustrated in Figure 3, we still observe occasional planning errors. While reinforcement learning significantly improves generalization compared to supervised fine-tuning, it does not fully eliminate such failure cases.

1458

1459

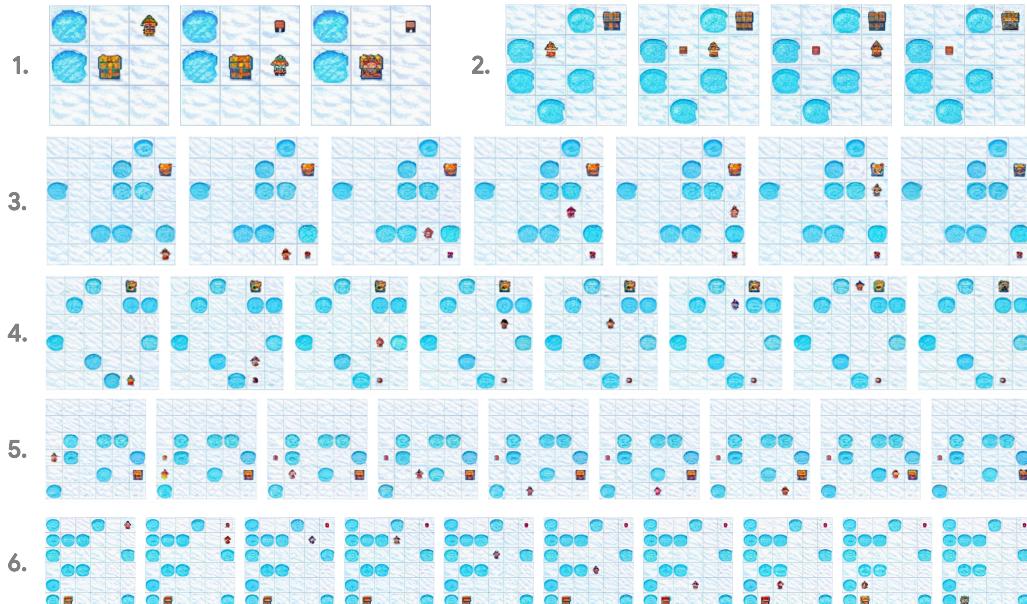
1460

1461

Correct Cases

1462

1463



1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

Non-optimal Cases

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

Invalid Cases

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Figure 13: Generated visual planning trajectories from VPRL on the FROZENLAKE test set. We illustrate three representative categories: optimal, non-optimal, and invalid cases. In non-optimal examples, the model occasionally enters local loops but still has the chance to make progress toward the goal, see the first and third trajectories. In invalid cases, despite a significant reduction in failure rate, VPRL still exhibits errors such as disappearing agents, contradictory actions (e.g., simultaneous left and right), or unrealistic teleportation.

1512

1513

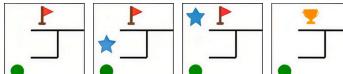
1514

1515

1516

Correct Cases

1517

1. 2.

1518

3. 4.

1519

5. 6.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

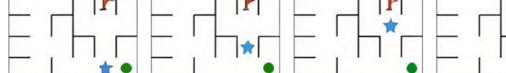
1534

1535

1536

Non-optimal Cases

1537

1. 2. 

1538

1539

1540

1541

1542

1543

1544

1545

1546

Invalid Cases

1547

1. 2.

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

Figure 14: Generated visual planning trajectories from VPRL on the MAZE test set. We illustrate three representative categories: optimal, non-optimal, and invalid cases. In non-optimal examples, similar to FROZENLAKE, the model occasionally enters redundant loops but still progresses toward the goal. Invalid cases include maze-specific errors, such as the agent erroneously traversing through walls, violating the structural constraints of the environment. Notably, we observe that in the last invalid case, the agent is able to plan an optimal trajectory in subsequent steps.

1563

1564

1565

Figure 15: Generated visual planning trajectories from VPRL on the MINIBEHAVIOR test set.

Figure 16: Qualitative comparison between original images (top), predicted images by the model (middle), and reconstructed images obtained by encoding and decoding the original inputs (bottom).

Table 11: Exact Match (EM) and Progress Rate (PR) on FROZENLAKE under VPRL when using ground-truth images versus self-generated images as inputs during inference.

Model	EM (%)					PR (%)				
	L3	L4	L5	L6	Avg.	L3	L4	L5	L6	Avg.
VPRL										
- (w/ self-generated images)	97.6	95.6	90.8	82.4	91.6	98.4	96.0	93.0	85.6	93.2
- (w/ ground-truth images)	98.4	95.2	93.2	81.6	92.1	98.5	95.8	94.1	85.3	93.4

F.7 IMAGE QUALITY ANALYSIS

It can be observed that the intermediate images on FROZENLAKE generated by the visual planner in Figure 4 contain noticeable artifacts, and we suspect that this noise arises from the limitation of the image tokenizer rather than from the model’s image generation ability. To verify this, we include an additional analysis on FROZENLAKE that illustrates how the tokenizer reconstructs images in our framework.

Limitations of the Image Tokenizer. Figure 16 confirms that the artifacts observed in our predicted images originate from the tokenizer rather than from the prediction process itself. When encoding a ground-truth image into visual tokens and decoding it back, the reconstructed output shows similar artifacts inevitably introduced by the tokenizer to those in the model’s predictions, which makes the reconstruction not identical to the original image. At the same time, we observe that the intermediate images produced by the model are already comparable in quality to the reconstructed images. While our work focuses on planning rather than image generation quality, this observation indicates that the visual planner generates images that are sufficient for effective planning.

We consider this behavior to be encouraged by the dynamics interpreter. During the training, the dynamics interpreter serves as an implicit format constraint. Any generated image that it cannot parse is treated as an invalid transition and receives a penalty, enforcing the model to maintain the semantic structure of the environment in its generated images.

Robustness to Intermediate Image. We subsequently conduct a quantitative study to evaluate whether providing high-quality intermediate images at inference improves performance. Instead of feeding back the model’s self-generated image at each step, we replace it with the ground-truth image rendered by the environment, which serves as a high-quality version.

1674

1675 Table 12: Average inference token cost across FROZENLAKE, MAZE, and MINIBEHAVIOR. We also
1676 report the average of the task-level average costs. Higher values indicate higher computational cost.

Model	FROZENLAKE	MAZE	MINIBEHAVIOR	Avg.
Closed-Source Models				
Gemini 2.0 Flash				
- Direct	10.8	12.5	14.8	12.7
- CoT	150.5	166.5	196.5	171.2
Gemini 2.5 Pro (<i>think</i>)	885.6	1030.2	1619.9	1178.6
Open-Source Models				
Qwen 2.5-VL-Instruct-7B				
- Direct	13.4	95.9	13.9	41.1
- CoT	306.2	316.4	272.3	298.3
- SFT	10.7	11.4	13.2	11.8
LVM-7B				
- VPFT (ours)	819.2	957.2	1471.2	1082.5
- VPRL (ours)	819.2	957.2	1471.2	1082.5

1693

1694 Table 11 shows that the performance with and without high-quality images remains similar across
1695 all grid sizes. This shows that our visual planner is robust to visual noise and does not depend on
1696 perfectly rendered images to plan effectively.

1697

1698

F.8 COMPUTATIONAL COST ANALYSIS

1699

1700 To provide a quantitative comparison of the computational
1701 cost between visual planning and traditional textual rea-
1702 soning, we further analyse the token usage of both the
1703 visual planner and the textual baselines during inference.
1704 We compute the average number of generated tokens for
1705 all models reported in Table 1 across all tasks. In addition,
1706 we include a more detailed breakdown of the token cost
1707 for the trained textual planner variants listed in Table 2,
1708 evaluated on FROZENLAKE.1709 Table 12 and Table 13 summarise the resulting inference
1710 token cost. As expected, visual planning introduces a
1711 noticeable computational overhead due to repeated im-
1712 age generation. However, this additional cost remains
1713 affordable in practice when compared with textual CoT.
1714 On average across the three tasks, the token cost of our visual planner is roughly 3 times that of
1715 Qwen 2.5-VL-Instruct-7B with CoT and around 6 times that of Gemini 2.0 Flash with CoT, suggesting
1716 that our method is still computationally feasible. We also observe that thinking models, such as
1717 Gemini 2.5 Pro, produce the largest number of tokens among all tasks, indicating that visual planning
1718 is not always the most expensive option.

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728 Table 13: Average inference token cost
1729 of trained textual planner variants on
1730 FROZENLAKE.

Model	Token Cost
Qwen 2.5-VL-Instruct-7B	
- SFT	
- Direct	10.7
- w/ Coordinates	179.0
- w/ ASCII	84.3
- GRPO	
- w/ VPRL progress reward	129.8
- w/ PR metric reward	74.9

1728 **G PROMPTING TEMPLATES**
17291730 **FROZENLAKE (Direct)**

1731
1732 Task: Frozen Lake Shortest Path Planning
1733
1734 You are given an image of a grid-based environment. In this environment:
1735 - An elf marks the starting position.
1736 - A gift represents the goal.
1737 - Some cells contain ice holes that are impassable for the elf.
1738 - The elf can move in one of four directions only: "up", "down", "left",
1739 or "right". Each move transitions the elf by one cell in the
1740 corresponding absolute direction. Diagonal movement is not permitted.
1741
1742 Your task is to analyze the image and generate the shortest valid
1743 sequence of actions that moves the elf from the starting position to
1744 the goal without stepping into any ice holes.
1745
1746 Provide your final answer enclosed between <ANSWER> and </ANSWER>, for
1747 example: <ANSWER>right up up</ANSWER>.

1748 **FROZENLAKE (Coordinate & ASCII Representation)**
1749

1750 Task: Frozen Lake Shortest Path Planning
1751
1752 You are given an image of a grid-based environment. In this environment:
1753 - An elf marks the starting position.
1754 - A gift represents the goal.
1755 - Some cells contain ice holes that are impassable for the elf.
1756 - The elf can move in one of four directions only: "up", "down", "left",
1757 or "right". Each move transitions the elf by one cell in the
1758 corresponding absolute direction. Diagonal movement is not permitted.
1759
1760 Your task is to analyze the image and generate the shortest valid
1761 sequence of actions that moves the elf from the starting position to
1762 the goal without stepping into any ice holes.
1763
1764 Describe the layout of the environment based on your analysis of the
1765 image, then provide your final answer enclosed between <ANSWER> and
1766 </ANSWER>, for example: <ANSWER>right up up</ANSWER>.

1767 **FROZENLAKE (GRPO)**

1768 Task: Frozen Lake Shortest Path Planning
1769
1770 You are given an image of a grid-based environment. In this environment:
1771 - An elf marks the starting position.
1772 - A gift represents the goal.
1773 - Some cells contain ice holes that are impassable for the elf.
1774 - The elf can move in one of four directions only: "up", "down", "left",
1775 or "right". Each move transitions the elf by one cell in the
1776 corresponding absolute direction. Diagonal movement is not permitted.
1777
1778 Your task is to analyze the image and generate the shortest valid
1779 sequence of actions that moves the elf from the starting position to
1780 the goal without stepping into any ice holes.
1781
1782 Present your reasoning enclosed within <think> and </think> tags. For
1783 example:
1784 <think>Reasoning steps go here.</think>
1785
1786 Then, provide your final answer enclosed within <answer> and </answer>
1787 tags. For example:
1788 <answer>right up up</answer>

1782

MAZE

1783

1784 Task: Maze Shortest Path Planning

1785

1786 You are given an image of a maze environment. In this environment:

1787

- A green circle marks the starting position of the agent.
- A red flag marks the goal.
- The agent can move in one of four cardinal directions only: "up", "down", "left", or "right". Each move shifts the agent by exactly one cell in that direction. Diagonal movement is not permitted.
- The black maze walls are impassable. The agent cannot pass through any wall segment.

1792

1793

Your task is to analyse the image and produce the shortest valid sequence of actions that moves the agent from its starting position to the goal without crossing any wall.

1794

1795

Provide your final answer enclosed between <ANSWER> and </ANSWER>, for example: <ANSWER>right up up</ANSWER>.

1796

1797

MINIBEHAVIOR

1798

1799

Task: Mini-Behavior Installing the Printer

1800

1801

You are given an image of a grid-based environment. In this environment:

1802

1803

- The red triangle represents the agent.

1804

1805

- The white icon represents the printer, which must be picked up by the agent.

1806

- The brown tiles represent the table, where the printer must be placed.

1807

The agent can take the following actions:

1808

- "up", "down", "left", "right": each action shifts the agent by exactly one cell in that direction. Diagonal movement is not permitted.
- "pick": pick up the printer if it is in one of the four adjacent cells surrounding the agent. This action is invalid if there is no adjacent printer.
- "drop": drop the printer onto the table if the agent is adjacent to a table cell. This action is invalid if there is no adjacent table.

1809

1810

The agent can take the following actions:

1811

- "up", "down", "left", "right": each action shifts the agent by exactly one cell in that direction. Diagonal movement is not permitted.

1812

- "pick": pick up the printer if it is in one of the four adjacent cells surrounding the agent. This action is invalid if there is no adjacent printer.

1813

- "drop": drop the printer onto the table if the agent is adjacent to a table cell. This action is invalid if there is no adjacent table.

1814

Constraints:

1815

- The agent cannot move through the table tiles.

1816

- The agent cannot move through the printer until it has been picked up.

1817

After picking it up, the agent may move through the cell that previously contained the printer.

1818

1819

Your task is to analyse the image and produce the shortest valid sequence of actions that allows the agent to pick up the printer and then place it on the table.

1820

1821

Provide your final answer enclosed between <ANSWER> and </ANSWER>, for

1822

1823

example: <ANSWER>right down right pick left drop</ANSWER>.

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835