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ABSTRACT

Recent advancements in Large Language Models (LLMs) and their multimodal
extensions (MLLMs) have substantially enhanced machine reasoning across diverse
tasks. However, these models predominantly rely on pure text as the medium
for both expressing and structuring reasoning, even when visual information is
present. In this work, we argue that language may not always be the most natural
or effective modality for reasoning, particularly in tasks involving spatial and
geometrical information. Motivated by this, we propose a new paradigm, Visual
Planning, which enables planning through purely visual representations for these
“vision-first” tasks, as a supplementary channel to language-based reasoning. In this
paradigm, planning is executed via sequences of images that encode step-by-step
inference in the visual domain, akin to how humans sketch or visualize future
actions. We introduce a novel reinforcement learning framework, Visual Planning
via Reinforcement Learning (VPRL), empowered by GRPO for post-training large
vision models, leading to substantial improvements in planning in a selection of
representative visual navigation tasks, FROZENLAKE, MAZE, and MINIBEHAVIOR.
Our visual planning paradigm outperforms all other planning variants that conduct
reasoning in the text-only space. Our results establish Visual Planning as a viable
and promising supplement to language-based reasoning, opening new avenues for
tasks that benefit from intuitive, image-based inference.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Ouyang et al., 2022; Anil et al., 2023) have
demonstrated strong capabilities in language understanding and generation, as well as growing
competence in complex reasoning, enabled by their chain-of-thought reasoning abilities (Wei et al.,
2022b). Building on these advances, recent work extends LLMs to support multiple modalities,
yielding so-called Multimodal Large Language Models (MLLMs) (Reid et al., 2024; Hurst et al.,
2024): they incorporate visual embedded information at the input to tackle a broader spectrum of
tasks, such as visual spatial reasoning (Liu et al., 2023; Li et al., 2024a) and navigation (Gu et al.,
2022; Li et al., 2024b). However, despite their multimodal inputs, these methods perform reasoning
purely in the text format during inference, from captioning visual content (Hao et al., 2025) to
generating verbal rationales (Zhang et al., 2024b).

Building on this observation, we argue that performing multimodal reasoning only in the text pathway
may not always offer the most intuitive or effective strategy, particularly for tasks that depend heavily
on visual information and/or are ‘vision-first’ by design. Indeed, recent results from multimodal
benchmarks (Roberts et al., 2025; Li et al., 2024a; Chen et al., 2024; Cheng et al., 2025) offer growing
evidence that purely language-based reasoning falls short in certain domains, particularly those
involving spatial, geometric, or physical dynamics (Zhang et al., 2025a). Such reliance on grounding
visual information into text before reasoning introduces a modality gap that hinders the model’s ability
to capture visual features and state transitions. This highlights a potential shortcoming of current
MLLMs: while they process image inputs, they do not naturally “think” in images. For instance, tasks
such as planning a route through a maze, designing the layout of a room, or predicting the next state
of a mechanical system are often better served by visual representations, as verbal descriptions may
be less effective and struggle to accurately capture complex spatial reasoning relationships. These
examples suggest a broader question, which we aim to tackle in this work: can models directly plan
in non-verbal modalities, such as images, without being mediated by text?
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Verbal Thought …

Multimodal Chain-of-Thought

Input

Input Verbal Thought

Visual Thought …

Visual Planning

Input Visual Thought Visual Thought

Verbal Output

Verbal Output

…

Text Image

Go straight to 
the crossing. 

Then turn slightly 
left at the crossing. 

To conclude: you 
should first go 
straight to ...... 

Figure 1: Comparison of reasoning paradigms. The traditional approaches (top and middle rows)
generate verbose and inaccurate textual plan, while the Visual Planning paradigm (bottom row)
predicts the next visual state directly, forming a pure image trajectory without language mediation.

Cognitive science also offers compelling motivation for this question (Moulton & Kosslyn, 2009).
Dual Coding Theory (Paivio, 1991) proposes that human cognition operates through both verbal and
nonverbal channels, each capable of independent representational and inferential processes. Recent
work on MLLMs incorporates interleaved text and images as reasoning steps (Hu et al., 2024; Li et al.,
2025). However, they still remain fundamentally text-driven and rely on tool-based visualizations as
auxiliary information for reasoning traces, with reasoning still mainly embedded in verbal traces. For
instance, Visual Sketchpad (Hu et al., 2024) employs external tools to generate sketches as visual
aids, and MVoT (Li et al., 2025) generates per-step visualizations from language-based actions but
still reasons in text for decision-making. As such, a truly visual-only reasoning paradigm that avoids
any text-based reasoning proxies remains underexplored.

In this work, we propose a new paradigm, Visual Planning, where reasoning is structured as a sequence
of images, but without the mediation of language. To the best of our knowledge, this is the first attempt
to investigate whether models can achieve planning purely through visual representations. Rather
than generating textual rationales and answers, our approach produces step-by-step visualizations that
encode planning or inference steps directly in images. As a pioneering exploration, it circumvents
the modality mismatch that occurs when visual problems must be forced into explanations in verbal
form, reinforces state transitions, and provides a new trackable interface for tasks like navigation (Li
et al., 2024a), and visual problem-solving (Hao et al., 2025).

Specifically, we explore this paradigm using the Large Vision Model (LVM) (Bai et al., 2024) trained
exclusively on images and video frames with no textual data. This design choice removes potential
confounders introduced by language-based supervision and enables a clean investigation of whether
models can reason purely within the visual modality. Motivated by the success of reinforcement
learning in acquiring reasoning capabilities within the language modality (Guo et al., 2025a) and its
strong generalization performance (Chu et al., 2025), we propose Visual Planning via Reinforcement
Learning (VPRL), a novel two-stage reinforcement learning framework empowered by GRPO (Shao
et al., 2024) for visual planning. It involves a distinct initializing stage for encouraging the exploration
of the policy model in the given environment, which is then followed by reinforcement learning with
a progress reward function.

We validate the feasibility of our paradigms on grid-based navigation as a representative of spatial
planning tasks, including MAZE (Ivanitskiy et al., 2023), FROZENLAKE (Wu et al., 2024b), and
MINIBEHAVIOR (Jin et al., 2023), where one agent is requested to navigate to a target location
successfully without violating environment constraints. Our experiments reveal that the visual
planning paradigm substantially surpasses the traditional textual reasoning method by supervised
fine-tuning (SFT), achieving 27% higher average exact-match rate. In addition to better performance,
our novel method VPRL exhibits stronger generalization to out-of-distribution scenarios than the
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SFT method in the visual planning paradigm (VPFT). To the best of our knowledge, we are the first
to apply RL to image generation in the context of planning, with contributions as follows:

• We propose a new reasoning paradigm, Visual Planning, and validate the feasibility of visual
reasoning without any use of text and language for reasoning.

• We introduce VPRL, a novel two-stage training framework that applies RL to achieve visual
planning via sequential image generation.

• We demonstrate empirically that VPRL significantly outperforms the traditional textual reasoning
paradigm and supervised baselines in visual spatial planning settings, achieving substantial gains
in task performance and exhibiting improved generalization.

2 VISUAL PLANNING VIA REINFORCEMENT LEARNING

2.1 THE VISUAL PLANNING PARADIGM

The majority of prior visual reasoning benchmarks (Goyal et al., 2017; Akula et al., 2021; Yue et al.,
2024) can be and is typically tackled by grounding the visual information in the textual domain
(Gurari et al., 2018; Peng et al., 2024; Zhang et al., 2024a), followed by a few steps of textual
reasoning. However, once the visual content is mapped to text (e.g., object names, attributes, or
relations), the problem gets reduced to a language reasoning task, where the reasoning is carried out
by the language model, even without reflecting any information from the visual modality.

Our visual planning paradigm is fundamentally different. It performs planning purely within the
visual modality as a holistic process, where the actions are not explicitly predicted but instead
implicitly represented by transitions between visual states. We formally define visual planning as a
process of generating a sequence of intermediate images T̂ = (v̂1, . . . , v̂n), where each v̂i represents
a visual state that together constitute a visual planing trajectory, given the input image v0. Specifically,
let πθ denote a generative vision model parameterized by θ. The visual planning trajectory T̂ is
generated autoregressively, where each intermediate visual state v̂i is sampled conditioned on the
initial state and previously generated states:

v̂i ∼ πθ(vi|v0, v̂1, ..., v̂i−1). (1)

2.2 REINFORCEMENT LEARNING FOR LARGE VISION MODELS

Reinforcement learning (RL) has shown notable advantages in improving the generalization of
autoregressive models by optimizing with sequence-level rewards beyond token-level supervision
signals (Chu et al., 2025). In autoregressive image generation, an image is represented as a sequence
of visual tokens. Inspired by the success of RL in language reasoning (Guo et al., 2025a), we
introduce an RL-based training framework for visual planning empowered by Group Relative Policy
Optimization (GRPO) (Shao et al., 2024). It leverages the transitions between visual states to compute
the reward signals while verifying the constraints from the environments. To enforce the policy
model that generates valid actions with diverse exploration during the RL process, we then propose
a novel two-stage reinforcement learning framework for visual planning. In Stage 1, we first apply
supervised learning to initialize the policy model with random trajectories. Model’s visual planning
is then optimized by the RL training in Stage 2.

Stage 1: Policy Initialization. In this stage, we initialize the model πθ by training it on random
trajectories obtained by random walks in the environment. The goal here is to generate valid sequences
of visual states and retain exploration capability in a ‘simulated’ environment. For training, each
trajectory T consists of a sequence of visual states (v0, . . . , vn). From each trajectory, we extract
n − 1 image pairs of the form (v≤i, vi+1), where v≤i represents the prefix sequence (v0, . . . , vi).
Given an input prefix v≤i, to prevent overfitting to the specific transition and encourage stochasticity,
we randomly sample one candidate state ṽi+1 from all possible valid next states as the supervision
target, and minimize the following loss function of visual planning via fine-tuning (VPFT):

LVPFT(θ) = −E(v≤i, ṽi+1)

[
log πθ

(
ṽi+1

∣∣ v≤i

)]
. (2)
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Figure 2: An overview of the proposed VPRL framework, illustrated with autoregressive large vision
models for image generation in the context of a visual navigation task. We train the visual policy
model with GRPO, using the progress reward that encourages progressing actions and penalizes
invalid actions, yielding goal-aligned visual planning.

Overall, the first stage serves as a warm-up for subsequent optimization, focusing on producing
visually coherent outputs and enhancing the generation quality.

Stage 2: Reinforcement Learning for Visual Planning. Building on Stage 1, where the model is
initialized with random trajectories, it acquires the effective exploration capability. This property
is essential for RL, as it ensures coverage over all possible transitions and prevents collapse to
suboptimal behaviors. Stage 2 then leverages this ability to simulate the outcomes of potential actions
by generating the next visual state and guiding the model to effectively do the planning. During this
stage, the RL algorithm provides feedback and rewards based on the correctness of the simulated
actions, gradually enabling the model to learn effective visual planning.

Specifically, given an input prefix v≤i, the behavior model πθold samples a group of G candidate
responses {v̂(1)i+1, . . . , v̂

(G)
i+1}. The candidate response is then scored using a composite reward function

r(vi, v̂
(k)
i+1), which quantifies whether the generated visual state represents meaningful progress toward

the goal state. The reward design and implementations are described in detail in the next paragraph.

Instead of relying on a learned critic to estimate value functions which may introduce additional
sources of uncertainty and complexity, GRPO provides more computationally efficient and inter-
pretable training signals by computing relative advantages through comparisons within the group. In

this case, the relative advantage of each candidate is A(k) =
r(k)−mean{r(1),r(2),...,r(G)}

std{r(1),r(2),...,r(G)} . To guide the

model toward producing responses with higher advantages, we update the policy πθ by maximizing
the following objective:

JVPRL(θ) = E
v≤i∼D, {v̂(k)

i+1}G
k=1∼πθold (·|v≤i)[

1

G

G∑
i=1

min
(
ρ(k)A(k), clip

(
ρ(k), 1− ϵ, 1 + ϵ

)
A(k)

)
− β DKL (πθ ||πref)

]
,

(3)

where D is the prefix distribution and ρ(k) =
πθ(v̂

(k)
i+1|v≤i)

πθold (v̂
(k)
i+1|v≤i)

is the importance sampling ratio.

Reward Design. Unlike discrete actions or text tokens, visual outputs are sparse, high-dimensional,
and not easily decomposable into interpretable units. In our visual planning framework, the challenge
is even more specific: whether the generated visual state can correctly reflect the intended planning
action. Consequently, our reward design emphasizes both adherence to environment constraints
(validity of state transitions) and progress toward the goal.
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Formally, let A denote the set of valid actions and E the set of invalid ones (e.g., violations of
physical constraints or hallucinated new entities in the environment). To interpret and evaluate the
intended action that connects the current state vi to a generated candidate state v̂

(k)
i+t, we introduce 1)

the dynamics interpreter D : V × V → A ∪ E to parse the transition and 2) the progress estimator
P : V → N to quantify the progress.

The dynamics interpreter D evaluates the transitions a ∈ A∪E for validity, which, by implementation,
can be a dynamics model (Qiu et al., 2025) or a rule-based system to elicit actions from state pairs,
or a neural model as holistic validator that judges transitions without explicitly inferring actions.
The progress estimator P (v) quantifies progress by estimating the remaining steps or effort required
to reach the goal from each visual state. By comparing the agent’s current and predicted state, we
partition the generated candidate states A ∪ E into three disjoint subsets:

Aopt =
{
a ∈ A : P (v̂

(k)
i+1) < P (vi)

}
, Anopt =

{
a ∈ A : P (v̂

(k)
i+1) ≥ P (vi)

}
, Einv = E .

Here, Aopt corresponds to optimal actions that reduce the distance to the goal, Anopt captures non-
optimal but still valid actions, and Einv denotes invalid ones determined by the dynamics interpreter.

Based on this partition, we define the progress reward function r(vi, v̂
(k)
i+1):

αopt · I
[
D(vi, v̂

(k)
i+1) ∈ Aopt

]︸ ︷︷ ︸
optimal

+ αnopt · I
[
D(vi, v̂

(k)
i+1) ∈ Anopt

]︸ ︷︷ ︸
non-optimal

+ αinv · I
[
D(vi, v̂

(k)
i+1) ∈ Einv

]︸ ︷︷ ︸
invalid

, (4)

where αopt, αnopt, αinv are reward coefficients. In our experiments, we set αopt = 1, αnopt = 0, and
αinv = −5, thereby rewarding progressing actions, assigning zero to non-progressing actions, and
heavily penalizing invalid transitions.

3 EXPERIMENTS AND RESULTS

Tasks. To evaluate our proposed visual planning paradigm, we select representative tasks where
planning can be expressed and executed entirely in the visual modality. We focus on tasks where
state transitions are visually observable, distinguishing them from language-centric tasks like code
generation (Lai et al., 2023) or traditional visual question answering. This design allows us to analyze
planning behavior without relying on textual rationales or symbolic outputs. To compare visual
planning with language-based reasoning, we experiment with 3 visual navigation environments:
FROZENLAKE (Wu et al., 2024b), MAZE (Ivanitskiy et al., 2023), and MINIBEHAVIOR (Jin et al.,
2023). All of them can be solved in both modalities, which enables a direct parallel comparison of
pros and cons between visual planning and language reasoning strategies.

• FROZENLAKE: It is initially proposed by Wu et al. (2024b) and implemented with Gym (Brockman,
2016). It simulates a grid-based frozen lake, where the agent is supposed to start from the designated
position and find its way to the destination safely without falling into the ‘holes’.

• MAZE: Given an initial image describing the maze layout, the model is supposed to go through the
maze from the starting point (green point) to the destination (red flag).

• MINIBEHAVIOR: The agent is first required to reach the printer from the starting point and pick
it up. After that, the agent should go to the table and drop the printer. This task consists of 2
additional actions, including ‘pick’ and ‘drop’.

We construct synthetic datasets for the tasks with varying levels of complexity in patterns and
environments. Details on data collection and implementation are provided in Appendix E.1.

Models. To explore visual planning without any language influence as confounders and enables
a clean investigation, we select models trained exclusively on visual data without any exposure to
textual data during pretraining. For visual planning, we use the Large Vision Model (LVM-7B)
(Bai et al., 2024) as the backbone, which is only trained on image sequences and videos. We train
the model with 1) supervised fine-tuning over golden planning trajectory (VPFT) and 2) two-stage
reinforcement learning (VPRL), resulting in two system variants with visual planning. For RL
training, we start with a rule-based parsing function as the dynamics interpreter to parse the image
pairs to actions, and a heuristic progress estimator, with details enclosed in Appendix E.3.
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Table 1: Performance of the closed- and open-source models on FROZENLAKE, MAZE, and
MINIBEHAVIOR. VPRL performs consistently the best (bold) across all tasks. † denotes the post-
trained model. ~ represents texts and Õ represents images. The last column AVG. reports the
average performance across three tasks.

Model Input Output FROZENLAKE MAZE MINIBEHAVIOR AVG.

EM (%) PR (%) EM (%) PR (%) EM (%) PR (%) EM (%) PR (%)

Closed-Source Model

Gemini 2.0 Flash
- Direct ~+ Õ ~ 21.2 47.6 8.3 31.4 0.7 29.8 10.1 36.3
- CoT ~+ Õ ~ 27.6 52.5 6.9 29.8 4.0 31.2 12.8 37.8

Gemini 2.5 Pro (think) ~+ Õ ~ 72.0 85.0 21.5 35.5 37.6 59.9 43.7 60.1

Open-Source Model

Qwen 2.5-VL-Instruct-7B
- Direct ~+ Õ ~ 1.2 15.0 0.6 14.5 0.3 9.8 0.7 13.1
- CoT ~+ Õ ~ 8.2 29.1 2.3 15.2 0.5 14.7 3.7 19.7
- SFT† ~+ Õ ~ 68.6 84.4 60.9 70.3 31.3 56.1 53.6 69.9

LVM-7B
- VPFT† (ours) Õ Õ 75.4 79.5 59.0 64.0 33.8 52.2 56.1 65.2
- VPRL† (ours) Õ Õ 91.6 93.2 74.5 77.6 75.8 83.8 80.6 84.9

For baselines, to facilitate parallel comparison for language-based planning, we adopt Qwen 2.5-
VL-Instruct (Bai et al., 2025), on both inference-only (Direct1 and CoT) and post-training settings
(SFT and RL), trained on the same data as the visual planner. We further evaluate multimodal
reasoning performance of proprietary models with Gemini 2.0 Flash (Kampf & Brichtova, 2025) and
advanced thinking model Gemini 2.5 Pro (Gemini, 2025). Full training details, model versions, and
hyperparameters are provided in Appendix E.4.

Evaluation Metrics. We adopt two complementary evaluation metrics for the selected tasks. Let
O = {T (1), T (2), . . . , T (M)} denote the set of all shortest optimal trajectories of length n, where
each trajectory is T (m) = (v

(m)
1 , . . . , v

(m)
n ), and let T̂ = (v̂1, . . . , v̂n) denote the predicted trajectory.

• Exact Match (EM) is defined as EM = maxm∈{1,...,M}
∏n

j=1 I(v̂j = v
(m)
j ), evaluating whether

T̂ coincides with any T (m) ∈ O. EM requires the entire trajectory to be valid and of minimal
length, and accepts all optimal solutions rather than a single reference. Here, the equality v̂j = v

(m)
j

refers to whether the two states can be reached from their respective previous states by applying
the same action. This means that the comparison is made at the level of environment transitions
rather than a pixel-wise match between images. In other words, two states are treated as the same if
they represent the same underlying configuration, even when their pixel values are not identical.

• Progress Rate (PR) is defined as PR = maxm∈{1,...,M}
1
n

∑n
j=1

[∏j
k=1 I(v̂k = v

(m)
k )

]
, measur-

ing the ratio of consecutive correct steps (valid forward moves) from the start that align with at
least one optimal trajectory. PR thus provides a softer signal than EM, capturing the model’s ability
to make meaningful progress towards a full solution. The same state equality is applied as in EM.

Textual planning falls short in both proprietary models and open-sourced tuning baselines.
Table 1 shows that proprietary models yield average EM below 50% and PR only marginally above
50% at best, underscoring the challenges these tasks pose for current models despite being intuitive
for humans. On the other hand, while task-specific training provides partial improvement, the overall
performance of fine-tuned textual planners remains unsatisfactory, through either directly generating
planned actions (SFT in Table 1) or first captioning the image with different textual representations
and then generating answers (Table 2). We also observe that, unlike the notable gains of RL in the
pure language domain (Guo et al., 2025a), RL yields limited performance gains when applied to
text-based planning with multimodal inputs. Table 2 shows that when using progress reward as
in VPRL or directly using the Progress Rate metric as the outcome reward, none of the variants
surpasses the SFT baseline. We attribute the bottleneck of language-based planning with SFT and

1Direct denotes answer prediction without being instructed to conduct intermediate reasoning.
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Optimal Action Non-Optimal Action

Non-Optimal Action

                            Constraint: 
The agent is not allowed to enter table cells.

Invalid Action: 
Violation of Physical Constraint

Invalid Action: 
Move Through Wall

Figure 3: Illustration of each task with generated visual planning traces from LVM, covering different
types of actions (optimal, non-optimal and invalid). More cases can be found in Appendix F.6.

RL to the modality gap, which leads to inaccuracies in grounding visual information into text and
thereby constrains performance. Further discussion is provided in Section 4.

Table 2: Performance of text-based plan-
ning variants on FROZENLAKE. See Ta-
ble 7 in Appendix F.2 for the full results.

Model EM (%) PR (%)

Qwen 2.5-VL-Instruct-7B
- SFT

- Direct 68.6 84.4
- w/ Coordinates 74.4 82.7
- w/ ASCII 73.1 83.4

- GRPO
- w/ VPRL progress reward 54.4 69.9
- w/ PR metric reward 60.1 74.3

Visual planning achieves better performance than tex-
tual baselines via RL. While supervised fine-tuning
(VPFT) achieves performance comparable to text-based
SFT, it remains constrained by imitation and limited ex-
posure to diverse trajectories. By contrast, our two-stage
reinforcement learning framework (VPRL) substantially
improves the planning capability, achieving the strongest
overall results. After Stage 2 optimization, the model at-
tains near-perfect accuracy on FROZENLAKE (91.6% EM,
93.2% PR) and maintains strong performance on more
complex MAZE and MINIBEHAVIOR tasks, outperform-
ing VPFT by over 20% on average. As expected, the
improvement is fully driven by outcome-based optimiza-
tion in Stage 2, as Stage 1 alone yields near-random behavior (Table 10 in Appendix F.6). Unlike
VPFT, which mainly fits the training distribution, VPRL enables exploration of diverse actions
and learning from their consequences through reward-driven updates, thereby capturing underlying
planning rules and achieving stronger performance.

VPRL shows robustness with scaling complexity. The advantage of RL also holds when we study
the performance of different methods with respect to task difficulties, where a larger grid usually
relates to higher difficulties. In Figure 5, as the grid size increases from 3 × 3 to 6 × 6 in the
FROZENLAKE environment, Gemini 2.5 Pro’s EM score drops sharply from 98.0% to 38.8%. In
comparison, our visual planners not only maintain higher accuracy at all grid sizes but also exhibit
a much flatter performance curve. Similarly, VPRL demonstrates even greater stability than VPFT,
with EM remaining at 97.6% on 3× 3 grids and still achieving 82.4% on 6× 6, indicating strong
robustness. We observe similar trends in other tasks; see Appendix F.3 for other tasks.

4 DISCUSSIONS AND ANALYSIS

Error Analysis and Case Study. We conduct error analysis for language-based planning and
visual planning. We observe that textual planning systems with both SFT and RL are prone to
errors when grounding visual inputs to verbalized descriptions during the inference process, with
25.7% of generated coordinate-based layout descriptions and 22.3% of generated ASCII-based
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Prompt: You are given an image of a grid-based environment. ...., your task is to generate the shortest valid sequence of actions. 

..., provide your final answer enclosed between <ANSWER> and </ANSWER>.

V
P
F
T

V
P
R
L

Gemini 2.5 Pro

<think> I frame the picture as a 5 × 7 grid, label the elf, gift, and every ice hole, and plan a Breadth-First Search. 

..., after expanding every reachable cell,  the queue drains while row 2, a full wall of five holes, blocks all upward

routes, [7000+ words omitted], I re-inspect the grid, and confirm the proof: no valid path exists. </think>

So the correct reply is an empty action list: <ANSWER></ANSWER>

   Qwen 2.5 VL Instruct-SFT

<ANSWER>
left left up up up right

</ANSWER>

Non-Optimal Action

Violation of Constraint

Figure 4: Visualization of a test example from FROZENLAKE comparing visual planning variants
(VPFT and VPRL) with language-based reasoning variants.

representations being mismatched with ground-truth layouts. Qualitative analysis of response from
textual RL baselines (Figure 9 in Appendix F.2.1) and proprietary models (Figure 4) also reveal
similar observations. Taken together, these results demonstrate an inherent modality gap where
language may not be the most accurate and effective representation for vision-first problem. For
visual planning, Figure 3 presents visual planning traces generated by LVM across different tasks.
We observe that the model occasionally takes non-optimal actions that deviate from the shortest path
(FROZENLAKE example). Surprisingly, VPRL demonstrates the ability to take detours to bypass
the obstacles while still progressing towards the goal, whereas VPFT lacks this flexibility and gets
stuck, as shown in Figure 4. Additional traces covering optimal, non-optimal, and invalid cases can
be found in Appendix F.6. Beyond these in-domain analyses, we further evaluate generalization on
larger unseen grids and perturbed image inputs, with results reported in Appendix F.4.

Random policy initialization enables exploration. We ablate whether we could directly use VPFT
as the policy model for GRPO training rather than intentionally initialize a model with random
trajectories. We hypothesize that VPFT, trained via teacher-forcing, inherently limits exploration
by repeatedly generating similar actions, resulting in identical rewards. In this case, it yields zero
advantage, preventing policy updates and hindering effective learning. We empirically validate
this hypothesis by comparing the exploration capabilities of VPFT with VPRL Stage 1 (Figure 6).
We observe that VPFT’s entropy rapidly declines throughout training, eventually approaching zero,
indicating severe exploration limitations. Although earlier VPFT checkpoints exhibit higher entropy,
they produce significantly more invalid actions. In contrast, VPRL Stage 1 demonstrates significantly
higher entropy, closely approaching the entropy of the uniform random planner, while maintaining a
lower invalid action ratio, justifying the necessity of Stage 1 random initialization for RL framework.

VPRL reduces invalid action failure. Another important benefit of VPRL lies in its effectiveness
in reducing invalid actions. To quantify this, we analyze all failed trajectories and compute the
proportion that contains at least one invalid action, as opposed to failures caused by non-optimal but
valid plans. We refer to this as the invalid-failure ratio. As shown in Table 6, VPFT exhibits a high
ratio ranging from 61% to 78% over three tasks, while VPRL reduces this ratio by at least 24% in all
cases, demonstrating that VPRL not only improves success rates, but also encourage the model to
stay within valid action spaces during planning.

5 RELATED WORK

MLLM Reasoning. Recent work has extended CoT prompting (Wei et al., 2022c) to MLLMs
through approaches such as grounding visual inputs into symbolic representations, such as graphs or
bounding boxes (Zhang et al., 2024b; Lei et al., 2024). Other approaches integrate tools to generate
visualizations during reasoning (Hu et al., 2024; Zhou et al., 2024). For example, o3 model (OpenAI,
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Figure 5: Evaluation of model performance on
FROZENLAKE under varying levels of difficulty.
As the environment complexity increases with
larger grid sizes, language-based reasoning meth-
ods experience a sharp decline in performance,
whereas visual planning methods exhibit a more
gradual drop, demonstrating greater robustness.
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Figure 6: Comparison of exploration capabilities
between VPFT and VPRL Stage 1 on FROZEN-
LAKE. VPRL Stage 1 achieves significantly bet-
ter exploration efficiency, balancing high entropy
with a low invalid action ratio, whereas VPFT
struggles with diminishing entropy and increased
invalid actions over training.

2025) incorporates visual rationales using tools such as cropping and zooming. MVoT (Li et al.,
2025) is also essentially a form of tool use: instead of relying on external modules, it invokes itself to
generate visualizations of textual reasoning. These methods primarily conduct reasoning in language,
with visual components merely illustrating the textual rationale rather than serving as the medium of
reasoning. In this work, we take a step further to explore whether multi-step planning can emerge
purely within visual representations, enabling reasoning without relying on language at all.

Reinforcement Learning for Visual Reasoning. Reinforcement learning has been applied across a
wide range of vision-related tasks, especially given the rise of GRPO as in DeepSeek-R1 (Guo et al.,
2025a). Concurrently, in object detection, visual perception (Yu et al., 2025) is optimized though
rewarding high Intersection-over-Union (IoU) scores between predicted and ground-truth bounding
boxes (Shen et al., 2025). For visual reasoning tasks such as Visual Question Answering (VQA),
GRPO has been utilized to optimize the models for longer, more coherent, and logically grounded
reasoning traces in textual responses (Liu et al., 2025; Zhou et al., 2025; Zhang et al., 2025b; Team
et al., 2025). More recently, similar methods have also been applied to image generation tasks for
recursive refinement with textual instructions (Guo et al., 2025b; Wang et al., 2025; Jiang et al., 2025).
These approaches focus on pixel-level fidelity and semantic alignment with text, whereas our work
leverages RL for goal-oriented visual planning, optimizing multi-step decision-making through visual
state transitions without any reliance on language.

Action-conditional Generative Models. Action-conditional generative models has focused on
constructing latent representations of the world and predicting future observations conditioned on
given actions (Ha & Schmidhuber, 2018; Ball et al., 2025). These models learn transition dynamics
and are central to model-based reinforcement learning, where they allow agents to simulate potential
outcomes without interacting directly with the environment (Hafner et al., 2019). While effective for
representation learning and short-horizon prediction, action-conditional generative models do not
perform planning and must therefore be coupled with an external planner. In contrast, our approach
constitutes a holistic planner that internalizes planning within the visual generative flow, which is
more effective for visual tasks than traditional text-based planners that suffer from a modality gap. It
can also benefit from action-conditional generative models by using predicted observations as inputs.

6 CONCLUSION

In this work, we present Visual Planning as a new paradigm for reasoning in visually oriented tasks,
challenging the prevailing reliance on language as the primary medium for structured inference. By
enabling models to operate entirely through visual state transitions without textual mediation, we
show that purely visual representations provide performance comparable to text-based planning in
spatially grounded and dynamic tasks, establishing visual planning as a viable alternative. More

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

importantly, our proposed two-stage reinforcement learning framework, VPRL, empowered by
GRPO, further enhances the planning capabilities of large vision models. It obtains significant gains
across three visual navigation tasks, achieving 27% EM improvements in task performance than
language-based planning and showing stronger generalization on out-of-distribution scenarios. These
findings underscore the promise of visual planning as a powerful alternative to text-based approaches.
We believe our work opens up a rich new direction for multimodal research, offering a foundation for
building more intuitive, flexible, and powerful reasoning systems across a wide range of domains.
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Furu Wei. Imagine while reasoning in space: Multimodal visualization-of-thought. arXiv preprint
arXiv:2501.07542, 2025.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=Ghl9pYaVh5
https://developers.googleblog.com/en/experiment-with-gemini-20-flash-native-image-generation/
https://developers.googleblog.com/en/experiment-with-gemini-20-flash-native-image-generation/
https://aclanthology.org/2024.emnlp-main.106/
https://aclanthology.org/2024.emnlp-main.106/
https://aclanthology.org/2024.lrec-main.1274/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Drew Linsley*, Junkyung Kim*, Alekh Ashok, and Thomas Serre. Recurrent neural circuits for
contour detection. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=H1gB4RVKvB.

Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. Transactions of the Association
for Computational Linguistics, 11:635–651, 2023. doi: 10.1162/tacl_a_00566. URL https:
//aclanthology.org/2023.tacl-1.37/.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Samuel T. Moulton and Stephen M. Kosslyn. Imagining predictions: mental imagery as mental
emulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 364:1273 –
1280, 2009.

OpenAI. Introducing OpenAI o3 and o4-mini: Our smartest and most capable models to date.
April 2025. URL https://openai.com/index/introducing-o3-and-o4-mini/.
Accessed: 2025-05-16.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Allan Paivio. Dual coding theory: Retrospect and current status. Canadian Journal of Psycholo-
gy/Revue canadienne de psychologie, 45(3):255, 1991.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Qixiang Ye, and
Furu Wei. Grounding multimodal large language models to the world. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=lLmqxkfSIw.

Yifu Qiu, Yftah Ziser, Anna Korhonen, Shay B Cohen, and Edoardo M Ponti. Bootstrapping world
models from dynamics models in multimodal foundation models. arXiv preprint arXiv:2506.06006,
2025.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer,
Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu,
James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin
Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal,
Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren
Sezener, and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context. CoRR, abs/2403.05530, 2024. doi: 10.48550/ARXIV.2403.05530. URL https:
//doi.org/10.48550/arXiv.2403.05530.

Jonathan Roberts, Mohammad Reza Taesiri, Ansh Sharma, Akash Gupta, Samuel Roberts, Ioana
Croitoru, Simion-Vlad Bogolin, Jialu Tang, Florian Langer, Vyas Raina, et al. Zerobench:
An impossible visual benchmark for contemporary large multimodal models. arXiv preprint
arXiv:2502.09696, 2025.

13

https://openreview.net/forum?id=H1gB4RVKvB
https://openreview.net/forum?id=H1gB4RVKvB
https://aclanthology.org/2023.tacl-1.37/
https://aclanthology.org/2023.tacl-1.37/
https://openreview.net/forum?id=Bkg6RiCqY7
https://openai.com/index/introducing-o3-and-o4-mini/
https://openreview.net/forum?id=lLmqxkfSIw
https://openreview.net/forum?id=lLmqxkfSIw
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.05530


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. ArXiv preprint, abs/2402.03300, 2024. URL https:
//arxiv.org/abs/2402.03300.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang Jiang.
Simplear: Pushing the frontier of autoregressive visual generation through pretraining, sft, and rl.
arXiv preprint arXiv:2504.11455, 2025.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
id=gEZrGCozdqR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022b. URL https://openreview.net/forum?id=
_VjQlMeSB_J.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022c.

Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai,
and Xiang Bai. Liquid: Language models are scalable multi-modal generators. arXiv preprint
arXiv:2412.04332, 2024a.

Qiucheng Wu, Handong Zhao, Michael Saxon, Trung Bui, William Yang Wang, Yang Zhang, and
Shiyu Chang. Vsp: Assessing the dual challenges of perception and reasoning in spatial planning
tasks for vlms, 2024b.

En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian Sun,
Chunrui Han, Zheng Ge, et al. Perception-r1: Pioneering perception policy with reinforcement
learning. arXiv preprint arXiv:2504.07954, 2025.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
standing and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Huanyu Zhang, Chengzu Li, Wenshan Wu, Shaoguang Mao, Ivan Vulić, Zhang Zhang, Liang Wang,
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A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used as general-purpose tools in this work. Specifically, LLMs
assisted in polishing the writing to improve clarity and readability.

B ETHICS STATEMENT

Our research adheres to rigorous ethical guidelines. We verified the licenses of all softwares and
datasets we used in this study and ensured full compliance with their terms. Furthermore, we have
thoroughly assessed the project and do not anticipate any additional potential risks.

C REPRODUCIBILITY STATEMENT

Appendix E.1 introduces the datasets in details with statistics and processing procedure. Appendix E.2
introduces models we used in our paper, and Appendix E.3 provides detailed information regarding
reward implementation for VPRL method. All hyper-parameters and training details are listed in
Appendix E.4 for reproducibility. Appendix E.5 introduces the licences for the data and models we
used. Prompting templates are shown in Appendix G. All data and scripts will be released publicly
upon acceptance to facilitate reproducibility.

D LIMITATIONS AND FUTURE WORK

In this work, we focus exclusively on Large Vision Model (LVM) to investigate visual planning
capabilities by eliminating language as a confounding factor for research purposes. As such, this
choice constraints the model size to 7B as the only available size of LVM, and excludes recently
released native multimodal models capable of generating multimodal outputs (Chern et al., 2024;
Wu et al., 2024a). However, we argue that the visual planning paradigm can be extended to broader
multimodal generation models for use in more diverse tasks, combined with more modalities, as long
as they support image generation.

Additionally, explicitly generating images introduces computational overhead during inference
compared to a textual response. However, we argue that language-based reasoning performs worse
than visual planning and can be equally or even more time-consuming, especially for thinking models
(Gemini, 2025). In our demonstration, Gemini generated over 7,000 thinking tokens yet failed to
provide the correct answer in the end. The computation overhead introduced by image generation
can be alleviated through more compact image representations using fewer tokens (Choudhury et al.,
2024), which we advocate for future research.

Another limitation in this work lies in the implementation of dynamics interpreter. For simplicity,
we adopt the rule-based approach that compares pixel-wise features between the current state and
the previous state (details in Appendix E.3). While effective in our controlled setup, broader task
settings involving more complex visual structures are yet to be explored. Nevertheless, we argue
that the underlying reward formulation remains extensible, but the primary challenge lies in defining
reliable progress signals as visual transitions become more complex. Such signals could be supported
by either dynamic models that elicit actions from pairs of images (e.g. segmentation (Ravi et al.,
2024) or contour detection (Linsley* et al., 2020)) or a holistic neural model (e.g. Gemini (Gemini,
2025) or a learned reward model) that directly judges whether the transitions are valid without
explicitly inferring actions. Alternatively, trajectory-level rollouts with final success feedback could
be leveraged to identify actions that contribute to progress toward successful outcomes, eliminating
the requirement for an explicit dynamics interpreter. We encourage future research to explore more
robust and scalable designs for interpreting visual transitions to advance visual planning systems.

Broader Impact. This work introduces a novel paradigm of visual planning, where agents reason and
act entirely within the visual modality without reliance on textual intermediaries. By demonstrating
that models can plan through sequences of images, this research opens new possibilities for the
way human and AI system interacts, particularly in domains like robotics, navigation, and assistive
technologies, where perception and decision-making are tightly coupled. As the first step toward
planning grounded purely in visual representations, our work lays the foundation for AI systems that
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integrate both verbal and non-verbal reasoning. We advocate for future research into more holistic
multimodal thinking systems where interleaved text and image traces enable richer, more human-like
reasoning, and emphasize the importance of strengthening the visual component in such traces for
improved planning and cognition.

E IMPLEMENTATION DETAILS

E.1 DATASET

Task Action Space. FROZENLAKE and MAZE both involve four primitive navigation actions:
up, down, left, and right. MINIBEHAVIOR includes a more complex action space with two
additional operations: pick, drop.

Dataset preparation. For both FROZENLAKE and MAZE, we construct environments of grid sizes
ranging from 3×3 to 6×6. For each size, we sample 1250 environments, with 1000 used for training
and 250 held out for testing (Table 3). Each environment here is guaranteed to have a unique layout,
and the agent is randomly initialized at a grid from which the goal is reachable, forming the initial
state v0. Due to the relatively limited diversity of environments layout in MINIBEHAVIOR, where the
complexity arises primarily from the action space, sampling unique environments in a small grid size
becomes challenging. Therefore, we focus only on grid sizes 7× 7 and 8× 8, allowing duplicates in
layout but varying agent spawn positions to ensure sufficient data volume. To prevent data leakage,
we split the dataset based on layout identity, ensuring no layout overlap between the training and test
sets.

We next describe the dataset construction procedures corresponding to the training setups outlined in
Section 3, with the number of samples per task summarized in Table 4.

• SFT in Text (Baseline): For each environment, we sample an optimal trajectory consisting of
a sequence of visual states (v0, . . . , vn) as the ground truth. Each transition between states
is determined by an action, enabling us to derive a corresponding verbalized action sequence
(a0, . . . , an−1). The input to the model is formulated by concatenating a textual prompt with an
image representation of the initial state v0, while the target output is the verbalized action sequence
representing the optimal trajectory. We further ablate different variants of the baseline with various
representations and tuning methods (SFT and RL) in Appendix F.2. The detailed prompts for all
variants are provided in Appendix G.

• VPFT: We utilize the same set of optimal trajectories as the language-based reasoning baseline
described above. In the visual scenario, each trajectory generates multiple input-target pairs by
pairing the state at timestep t as the input with the subsequent state at timestep t+ 1 as the target.

• VPRL:

– Stage 1: This dataset serves solely for format control training of the visual backbone. For
each environment, we enumerate all possible trajectories from the initial state as v0 and
generate corresponding input-target pairs. Duplicate pairs are filtered to maintain a balanced
distribution.

– Stage 2: To ensure fairness and comparability, this dataset uses the same input states as VPFT.

• VPFT*: We conduct an ablation study (indicated with *) where VPFT is also trained in two stages,
mirroring the structure of VPRL. Stage 1 follows the same procedure as VPRL Stage 1, focusing
on format supervision using enumerated visual inputs. Stage 2 reuses the original VPFT training
pipeline, learning from optimal trajectories. Experimental results and analysis see Appendix F.5.

Note: For both textual and visual planning setups, evaluation is performed using only the initial state
v0 of each test environment as input.

Dataset Statistics. We evaluate the performance of different system variants in in-distribution and
out-of-distribution (OOD) settings. Table 3 shows the training data distribution over different grid
sizes across three tasks. The numbers of training and testing samples for different system variants are
shown in Table 4. For OOD evaluation, the enlarged grid sizes are shown in Table 9. OOD evaluation
data includes 250 samples for each task.
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Table 3: Distribution of training dataset by grid sizes for each task. Value indicates the number of
environments.

FROZENLAKE

Grid Size 3 4 5 6
Train 1000 1000 1000 1000
Test 250 250 250 250

MAZE

Grid Size 3 4 5 6
Train 1000 1000 1000 1000
Test 250 250 250 250

MINIBEHAVIOR

Grid Size 7 8
Train 796 801
Test 204 199

Table 4: Number of training and test samples for each task and method. For visual planning, the
numbers here are represented in image pairs, which correspond to the same number of trajectories for
SFT in Text.

Task Split SFT in Text VPFT VPRL VPFT*

Stage 1 Stage 2 Stage 1 SFT

FROZENLAKE
Train 4000 12806 170621 12806 170621 12806
Test 1000 1000 N/A 1000 N/A 1000

MAZE
Train 4000 14459 156682 14459 156682 14459
Test 1000 1000 N/A 1000 N/A 1000

MINIBEHAVIOR
Train 1597 9174 90808 9174 90808 9174
Test 403 403 N/A 403 N/A 403

E.2 MODELS

Large Vision Model (LVM) (Bai et al., 2024) is an autoregressive models for image generation,
which is only pretrained with image sequences with no exposure to language data. The model uses a
tokenizer based on the VQGAN architecture (Esser et al., 2021), which extracts visual information
from raw images and encodes it into 256 tokens from a fixed codebook. The image is generated in an
auto-regressive manner with discrete tokens, which are then fed into the image detokenizer. Although
LVM supports multiple model sizes, only the 7B-parameter version is publicly available; thus, we
use this variant in our experiments. For a fair comparison, we use Qwen 2.5-VL-Instruct (Bai et al.,
2025) with a matching parameter size as our language-based baseline.

E.3 REWARD IMPLEMENTATION

We adopt a rule-based state-action parsing function as the dynamics interpreter D and heuristic
progress estimator P in VPRL. For the progress estimator, we apply the Breadth First Search (BFS)
to search for the optimal trajectories and calculate the progress at each position in the grid for each
task, in order to obtain a progress map covering all positions. The progress map are then used as a
reward signal to guide VPRL training.

Specifically, for state-action parsing function, we parse the state and identify the difference between
the current state and the previous state through a pixel-wise feature extractor. We first convert both
input and predicted states into a coordinate-based representation by dividing the image into a grid
based on its size. Each region corresponds to a discrete coordinate in the environment. To reduce
sensitivity to color and focus on structural differences, we convert all images to grayscale. We
subsequently compute the Intersection-over-Union (IoU) between each coordinate in the predicted
state and the coordinate in the input state that contains the player (input coordinate). The coordinate
in the predicted state with the highest IoU is selected as the predicted agent position. The action is
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Table 5: Hyper-parameters of training both textual and visual planners.
Hyper-Parameters SFT in Text RL in Text VPFT VPRL VPFT*

Stage 1 Stage 2 Stage 1 SFT
Epochs 30 10 30 10 10 10 30
Learning Rate 1e-5 1e-5 1.5e-4 1.5e-4 5e-5 1.5e-4 1.5e-4
Train Batch Size 4 1 8 8 1 8 8
Group Size N/A 8 N/A N/A 10 N/A N/A
Grad Accumulation 1 1 1 1 1 1 1
GPUs 8 8 8 8 8 8 8

then inferred by comparing the start and predicted positions according to task-specific movement
rules. For example, in the MAZE environment, movement across walls is not allowed and would be
considered invalid.

Notably, to detect the invalid transitions, such as the disappearance of agents, we also calculate the
pixel-wise mean squared error (MSE) between corresponding coordinates to measure local visual
differences. If two coordinates exhibit significant MSE differences exceeding a predefined threshold,
we treat them as the potential source and destination of a movement (agent disappears from one
and appears in another). If only one such coordinate is found, we treat it as a disappearance event,
indicating an invalid transition.

In MINIBEHAVIOR, we extend this logic to identify pick and drop actions. A pick is detected
when the IoU between the printer’s location in the input and predicted states falls below a threshold,
indicating that the printer has been removed. A drop is inferred when a coordinate corresponding to
the table region shows a large MSE increase, suggesting the printer has been placed there. Additional
edge cases in these tasks are omitted for brevity.

For reward computation, if the predicted action is valid, we compare the progress values from the
heuristic progress estimator P between the input and predicted states. A reward of 1 is given if the
predicted state shows greater progress toward the goal than the input state; otherwise, the reward is 0.
Invalid actions are penalized with a reward of -5.

Our method and reward modeling approach are readily generalizable to other visual tasks. With
reference to computer vision techniques such as segmentation (Ravi et al., 2024) and contour detection
(Linsley* et al., 2020), the pixel-level analysis used in our framework can be easily extended to a
wide range of structured visual environments. Furthermore, our reward design is broadly applicable
to planning tasks in general. Since actions in most planning settings can naturally be categorized
into one of three types (valid and helpful, valid but non-progressing, or invalid), our simple reward
structure remains intuitive and effective across tasks.

E.4 TRAINING DETAILS

In addition to VPRL, we include several training system variants as baselines that differ in supervision
modalities (language vs. image) and optimization methods (SFT vs. RL), allowing us to compare
language-based and vision-based planning while assessing the role of reinforcement learning.

Visual Planning via Fine-Tuning (VPFT). We propose Visual Planning via Fine-Tuning (VPFT) as a
simplified variant of our framework, which shares the same training architecture as Stage 1 in Section
2.2, but replaces random trajectories with optimal planning trajectories. For each environment, we
sample a distinct trajectory (vopt

0 , vopt
1 , . . . , vopt

n ) representing the minimal-step path from the initial
state vopt

0 = v0 to the goal. At each step, the model is trained to predict the next state vopt
i+1 given the

prefix vopt
≤i. The objective is identical to Equation 2, with supervision from the optimal trajectory.

Supervised Fine-Tuning (SFT) in Text. In this baseline, planning is formulated in the language
modality. Instead of generating an intermediate visual consequence of an action, the model produces
a textual description of the intended action sequence. Formally, given an visual input state v and a
textual prompt p, which represents the task description, the model is trained to generate a verbalized
action sequence t = (t1, . . . , tL), where each token ti ∈ Vtext represents an action. The input to
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Table 6: We compute the percentage of failed trajectories that are caused by at least one invalid
action, rather than a suboptimal but valid action. Lower values indicate better action validity control.

Task Invalid-Failure Ratio (%)

VPRL VPFT

FROZENLAKE 36.9 60.6
MAZE 25.1 73.7
MINIBEHAVIOR 29.6 78.3

the model is the concatenation of the prompt tokens and the visual tokens, and the target is the
corresponding action sequence. Following prior work on supervised fine-tuning (SFT) (Wei et al.,
2022a) in autoregressive models, we minimize the cross-entropy loss for action prediction:

LSFT(θ) = −E(v,t)

[
L∑

i=1

log πθ(ti | t<i, v, p)

]
. (5)

Beyond directly training on action labels, we further conduct an ablation on FROZENLAKE with
textual variants that verbalize the input state before predicting the action sequence. In particular, we
explore two structured representations: Coordinate descriptions and ASCII grids. During training,
the target sequence consists of the description tokens (encoding the environment layout in either
coordinate or ASCII form) concatenated with the action labels that lead to the goal.

Reinforcement Learning (RL) in Text. We also extend RL to textual planning in the FROZENLAKE
environment as an ablation. We optimize the textual planner with Group Relative Policy Optimization
(GRPO). The reward design combines a fixed format reward, which enforces the correct output
structure, with an outcome reward defined in two variants: (1) a progress-based reward identical to
that used in VPRL, or (2) the Progress Rate (PR) metric directly used as the reward.

For all post-training experiments, we apply Low-Rank Adaptation (LoRA) (Hu et al., 2022) on both
attention layers and feed-forward layers. The detailed hyper-parameters are shown in Table 5. Only
the loss of the targets is calculated in an instruction-tuning manner (Wei et al., 2022a) for SFT. The
image tokenizer and detokenizer are frozen during training. We use the AdamW optimizer Loshchilov
& Hutter (2019) for all training procedures.

When SFT for textual planning and visual planning, we train the model for a maximum of 30 epochs.
For VPRL, we first do stage 1 on random trajectories for 10 epochs for the purpose of exploration.
We then use GRPO to optimize the model for planning for another 10 epochs for stage 2. We sample
a group of 10 candidate responses per prompt to compute the advantages accordingly. To encourage
a balance between exploration and exploitation, we apply a KL divergence penalty with a coefficient
β = 0.001. For RL in the textual modality, we adopt the same 10 training epochs for fairness, with a
group size of 8. We use the TRL library for training (von Werra et al., 2020). We’ve conducted our
experiments on the machine with 8×A100 GPUs.

E.5 LICENSES

Model-wise, Large Vision Model and Qwen 2.5 VL are under the Apache-2.0 license. TRL is under
the Apache-2.0 license. We collect the MAZE dataset with our own Python scripts. FROZENLAKE is
collected from OpenAI Gym under the MIT License.

F RESULTS

F.1 VPRL TRAINING

The reward curves with standard deviation for all tasks are shown in Figure 7. The shaded regions
indicate the standard deviation across groups. For better visualization, we apply Gaussian smoothing
to both the reward values and their corresponding standard deviations.
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Figure 7: Reward curves with standard deviation for VPRL on FROZENLAKE, MAZE and
MINIBEHAVIOR.

Table 7: Performance of text-based variants of Qwen-2.5-VL-Instruct-3B and 7B on FROZENLAKE.
We report Exact Match (EM) and Progress Rate (PR) across all difficulty levels (L3–L6) and their
average.

Model EM (%) PR (%)

L3 L4 L5 L6 Avg. L3 L4 L5 L6 Avg.

Qwen 2.5-VL-Instruct-3B
- SFT

- Direct 87.2 72.0 48.8 28.0 59.0 89.4 84.3 71.3 60.1 76.3
- w/ Coordinates 87.2 78.0 64.8 30.8 65.2 89.6 82.5 74.0 57.2 75.8
- w/ ASCII 79.6 75.6 58.8 34.0 62.0 83.3 82.5 74.8 59.1 74.9

- GRPO
- w/ VPRL progress reward 69.2 52.8 41.2 26.0 47.3 73.6 72.2 66.2 55.0 66.8
- w/ PR metric reward 70.8 60.0 41.6 23.6 49.0 75.5 76.1 65.7 56.0 68.4

Qwen 2.5-VL-Instruct-7B
- SFT

- Direct 97.6 86.0 56.4 34.4 68.6 98.1 92.1 78.9 68.4 84.4
- w/ Coordinates 93.2 88.0 74.8 41.6 74.4 94.1 89.7 81.5 65.5 82.7
- w/ ASCII 93.2 86.0 68.0 45.2 73.1 94.1 88.6 81.3 69.6 83.4

- GRPO
- w/ VPRL progress reward 72.4 64.0 50.4 30.8 54.4 76.2 76.3 69.2 57.8 69.9
- w/ PR metric reward 82.8 68.8 51.6 37.2 60.1 84.9 79.6 71.5 61.0 74.3

LVM-7B
- VPFT (ours) 92.0 82.8 68.8 58.0 75.4 93.1 84.7 73.4 66.9 79.5
- VPRL (ours) 97.6 95.6 90.8 82.4 91.6 98.4 96.0 93.0 85.6 93.2

F.2 TRAINED TEXTUAL BASELINES AND REWARD DESIGN

To strengthen the comparison with our visual planners, we train different text-based baselines beyond
the direct action-sequence SFT model reported in the main paper. We are interested in: 1) whether
different textual representation influences the performance of language-based reasoning, and 2)
whether reinforcement learning can help to improve the language-based planning performance with
multimodal input.

Trained SFT variants. Specifically, we experiment with two alternative SFT variants that first
describe the environment layout in different formats (coordinates and ASCII) before predicting the
action sequence.
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Table 8: Exact Match performance of VPFT and VPFT* across different grid sizes in FROZENLAKE.

Exact Match (%)

Model 3×3 4×4 5×5 6×6

VPFT* 86.4 73.6 50.0 33.2
VPFT 92.0 82.8 68.8 58.0

Table 9: Out-of-distribution (OOD) performance on enlarged grids. Models are trained on smaller
grids and evaluated on the sizes indicated in parentheses.

Model FROZENLAKE (7×7) MAZE (7×7) MINIBEHAVIOR (9×9)

EM (%) PR (%) EM (%) PR (%) EM (%) PR (%)

VPFT 9.6 15.3 9.2 17.8 0.0 5.8
VPRL 20.4 31.2 10.0 21.6 0.4 14.7

• SFT with Coordinates: The model is trained to first output a coordinate-based description of the
grid environment (e.g., positions of the agent, goal, and obstacles), followed by the full action
sequence.

• SFT with ASCII: The model is trained to output an ASCII-based description of the environment
layout before producing the action sequence. Specifically, S denotes the starting position, G the
goal, H an ice hole, and F a passable cell.

The example input-output formats for different text-based reasoning variants are shown in Figure 8 in
Appendix F.2.1.

We experiment with both variants for Qwen-2.5-VL-Instruct-3B and 7B, training them with the same
configurations as the original text SFT baseline. As shown in Table 7, the SFT variants with either
coordinates or ASCII do not provide consistent significant improvements over the direct SFT baseline.
Specifically, these variants with additional structural descriptions in either coordinates or ASCII
yield slight gains in EM, but exhibit lower PR compared to the direct SFT baseline. Moreover, both
variants still fall short of VPRL, suggesting that enriching textual input alone is insufficient to bridge
the gap between visual and text-based planning.

RL-trained text baseline. We also explore the feasibility of applying RL to improve the planning
performance with multimodal input, given the success of RL in the pure language planning domain
(Guo et al., 2025a). We train an RL-based text model using Qwen-2.5-VL-Instruct-3B and 7B with
the GRPO algorithm, with output format shown in Figure 8.

We adopt the same progress-based reward design as in VPRL for fair comparison, in addition to a
simple format reward that ensures reasoning is enclosed within <think> tag and the final answer
within <answer> tag.

• If the action is optimal (i.e., aligned with some optimal trajectory from the current state), it receives
a reward of +1.

• If the action is valid but non-optimal, it receives 0.
• If the action is invalid (e.g., colliding with walls or stepping into holes), it receives −5, and all

subsequent actions are also treated as invalid.

To prevent reward hacking through excessively short rollouts, any sequence shorter than the length of
the optimal trajectory is padded with invalid actions for the remaining steps, which are considered
“stay-in-place" moves, in other words, invalid transitions. Finally, to make rewards comparable across
sequences of varying lengths, we normalize the total reward by sequence length

∑T
t=1 rt/T .

We train the text RL baselines for 10 epochs, consistent with VPRL. Using the VPRL progress reward
described above, the model achieves 54.4% EM (Table 7). We suspect that this limited performance
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Input Example

Task: Generate the shortest valid sequence of ac-
tions that moves the elf from the starting position
to the goal without stepping into any ice holes (see
detailed prompts in Appendix G).

SFT (w/ Coordinates)

After analysis, the layout of the given image is as follows:
- Starting position: (3, 3)
- Goal: (2, 2)
- Ice holes: (1, 1), (2, 3)
- Passable cells: (1, 2), (1, 3), (2, 1), (3, 1), (3, 2)

Based on the above layout, the final answer is: <ANSWER>left up</ANSWER>

SFT (w/ ASCII)

The symbols used to represent the grid are:
- S denotes the starting position, G the goal, H the ice hole, F passable cells.

HFH
FGH
FFS

Based on the above layout, the final answer is: <ANSWER>left up</ANSWER>

GRPO

<think>
1. The elf is in the bottom right cell.
2. The goal is in the top center cell.
3. The top left cell has an ice hole, so the elf cannot go left there.
4. The elf needs to move one cell left to the center cell.
5. Then the elf needs to move one cell up to the goal cell.

The sequence of actions are:
1. Move one cell left to the center cell.
2. Move one cell up to the goal cell.
</think>

<answer>left up</answer>

Figure 8: Examples of model outputs under different trained textual variants: SFT (w/ Coordinate),
SFT (w/ ASCII), and GRPO. Each variant follows a distinct format for representing the environment.
Even for the relatively simple 3 × 3 example input, we observe that the ASCII and GRPO models
still produce erroneous layout descriptions.

is due to the reward design not being sufficiently discriminative. In particular, trajectories that contain
the same number of optimal and non-optimal actions receive identical rewards regardless of their
order (e.g., starting with optimal actions and then switching to non-optimal ones yields the same
return as the reverse). As a result, the model tends to first learn to produce valid actions in general,
and only later to distinguish optimal actions among them.
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Level 3

<think>
1. The elf is at the center cell.
2. The goal is the gift box in the top left corner.
3. The elf needs to move 1 cell left and 1 cell up.
4. There are ice holes directly below and to the right, so
they are impassable.
</think>

<answer>left up</answer>

Level 4

<think>
1. The elf is at the top left section of the grid.
2. The goal is the gift box in the bottom right section.
3. The elf needs to move 3 cells down and 1 cell right.
4. There are ice holes directly below and to the right, so
the elf cannot move through them.
</think>

<answer>down down down
right</answer>

Level 5

<think>
1. The elf is at the bottom left.
2. The goal is the gift box in the top right.
3. The elf needs to move 3 cells right and 2 cells up.
4. There are ice holes directly above and to the right, so
the elf cannot move through them.
</think>

<answer>right right right up
up</answer>

Level 6

<think>
1. The elf is at the top right.
2. The goal is the gift box at the bottom left.
3. The elf needs to move 3 cells down and 1 cell left.
4. There are ice holes directly below and to the right of
the elf, so we cannot use those paths.
</think>

<answer>left down down down</answer>

Figure 9: Examples of responses from the textual GRPO baseline with PR metric as the reward on
FROZENLAKE across different difficulty levels. Each box shows the input image and the correspond-
ing model output. In all cases, the model produces incorrect layout descriptions, which in turn lead to
incorrect predicted action sequences.

To address this issue, we further design an alternative reward function by directly adopting the
Progress Rate (PR) metric from the main paper. This formulation encourages the model to focus
on generating consecutive valid forward moves from the start, rather than separating the learning
of validity and optimality. Under the same training conditions, this reward improves EM to 60.1%,
but the performance still lags behind the direct SFT baseline. As we discussed in Section 4 (error
analysis paragraph), we attribute the bottleneck of language-based planning with RL to the modality
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Figure 10: Performance across different grid sizes, reflecting task difficulty. Left: MAZE. Right:
MINIBEHAVIOR. Visual planners consistently maintain higher accuracy and exhibit flatter perfor-
mance curves, indicating robustness to increasing complexity.

gap, which introduces inaccuracies in grounding visual information into text, causing exploration to
proceed from misinterpreted states and thereby reducing the overall effectiveness of learning. By
contrast, our visual planning paradigm avoids this modality gap by operating directly in the visual
domain, ensuring exploration within the correct state space via RL.

F.2.1 EXAMPLES OF TRAINED TEXTUAL VARIANTS

Outputs of different textual variants are illustrated in Figure 8, including SFT with coordinate and
ASCII representations, as well as GRPO with reasoning traces. Even for the relatively simple 3× 3
input, and despite all variants producing the correct final predictions shown in the figure, we observe
that the ASCII and GRPO models still generate erroneous layout descriptions: in the ASCII case, the
passable cell at the top right is misclassified as an ice hole, while in the GRPO case, the goal position
is incorrectly identified.

We also conduct further qualitative analysis of responses from the textual RL baseline trained with
the PR metric as the reward (Figure 9). In all cases, the model produces incorrect layout descriptions,
which in turn lead to incorrect predicted action sequences, highlighting the modality gap in grounding
visual information into text.

F.3 PERFORMANCE WITH SCALING DIFFICULTIES

We evaluate the performance of different methods with respect to task difficulty in MINIBEHAVIOR
and MAZE, as shown in Figure 10. Our visual planners consistently achieve higher accuracy across all
grid sizes and exhibit notably flatter performance curves, indicating greater robustness to increasing
environment complexity.

Interestingly, in MINIBEHAVIOR, we observe that the accuracy of visual planners increases with grid
size, which is in contrast to the trend exhibited by textual planners. We hypothesize that this is due to
the fixed layout components in this task, specifically, the presence of only a table and a printer. This
maintains consistent layout complexity across different grid sizes and allows knowledge acquired
in smaller grids to generalize effectively to larger grids. This suggests that visual planning better
captures and transfers structural patterns in the environment.

F.4 OUT-OF-DISTRIBUTION PERFORMANCE

Figure 11 illustrates generated images from VPFT and VPRL on OOD scenarios across MAZE,
FROZENLAKE, and MINIBEHAVIOR tasks. Notably, both models exhibit a certain level of visual
generalization to unseen configurations, such as larger grids with finer step granularity, despite not
encountering them during training.

We subsequently quantitatively test generalization by evaluating the model on OOD environments
with larger grid sizes. We find that SFT models perform poorly, while VPRL still demonstrates a
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Figure 11: Qualitative comparison of visual planning outputs from VPFT (top) and VPRL (bottom)
on out-of-distribution (OOD) scenarios with unseen larger grid size across MAZE, FROZENLAKE,
and MINIBEHAVIOR. Each example shows a failure case from VPFT contrasted with a successful
trajectory generated by VPRL under the same environment configuration.

certain level of visual planning capability, as shown in Table 9. VPRL consistently outperforms
VPFT in both Exact Match and Progress Rate, suggesting that it, to some degree, captures underlying
planning strategies rather than merely memorizing training patterns.

Finally, we analyze the robustness of VPRL by qualitatively testing its behavior under perturbed
inputs. As shown in Figure 12, we mask portions of the input images with black or gray patches to
simulate partial occlusion of the environment. Remarkably, the model continues to produce coherent
planning traces within the masked environments, while preserving structural consistency with the
visible input regions. This observation highlights the generalization capability of our visual planner,
as it adapts to incomplete visual information without deviating from the underlying environment
layout.

F.5 ABLATION: THE ROLE OF STAGE 1

To better understand the role of Stage 1 in our two-stage framework, we conduct an ablation study
isolating its impact. The primary purpose of Stage 1 is not to improve planning performance directly,
but rather to initialize a policy with strong exploration capacity and valid output formats. To verify
this, we reuse the original VPFT training pipeline, i.e., learning from optimal trajectories, but start
from the Stage 1 checkpoint as VPFT*. Surprisingly, this variant yields lower final performance on
FROZENLAKE compared to standard VPFT. This result supports our hypothesis that Stage 1 does not
contribute to planning ability itself, but instead provides an exploration-friendly initialization that
facilitates effective reinforcement learning in Stage 2.

F.6 VISUAL PLANNING RESULTS

VPRL Stage 1 and Stage 2. Table 10 presents results for each stage of VPRL. After Stage 1, the
model learns to generate plausible images but lacks goal-directed behavior, resulting in near-random
performance across tasks. In Stage 2, reinforcement learning instills purposeful planning, enabling
the model to align generations with the goal and outperform VPFT across all benchmarks.
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Figure 12: Qualitative analysis of VPRL under perturbed inputs (the first image of each trace). When
parts of the input environment are masked (black/gray regions), VPRL maintains consistent planning
traces aligned with the visible structure, demonstrating robustness to incomplete visual information
without deviating from the underlying environment layout.

Table 10: Performance comparison of VPRL Stage 1 and Stage 2 across all three tasks.

Model FROZENLAKE MAZE MINIBEHAVIOR

EM (%) PR (%) EM (%) PR (%) EM (%) PR (%)

VPRL Stage 1 11.1 27.2 9.6 22.7 0.5 14.2
VPRL Stage 2 91.6 93.2 74.5 77.6 75.8 83.8

Generated Visual Planning Traces for Illustration. Figure 13 shows the generated visual planning
traces for FROZENLAKE, with Figure 14 for MAZE and Figure 15 for MINIBEHAVIOR. Each
visual trajectory begins with the initial state as the input (the first frame), followed by a sequence of
intermediate states generated by VPRL that form the predicted visual plan.

We include examples from three categories: (1) Optimal cases, where the model successfully
generates the shortest valid path to the goal; (2) Non-optimal cases, where the agent fails to reach
the goal within the optimal number of steps due to intermediate non-optimal actions; and (3) Invalid
cases, in which the generated trajectory contains invalid actions that violate environment constraints,
preventing task completion. Notably, as illustrated in Figure 3, we still observe occasional planning
errors. While reinforcement learning significantly improves generalization compared to supervised
fine-tuning, it does not fully eliminate such failure cases.
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Figure 13: Generated visual planning trajectories from VPRL on the FROZENLAKE test set. We
illustrate three representative categories: optimal, non-optimal, and invalid cases. In non-optimal
examples, the model occasionally enters local loops but still has the chance to make progress toward
the goal, see the first and third trajectories. In invalid cases, despite a significant reduction in failure
rate, VPRL still exhibits errors such as disappearing agents, contradictory actions (e.g., simultaneous
left and right), or unrealistic teleportation.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Correct Cases

Non-optimal Cases

Invalid Cases

\

a

1.

3.

4.

5.

6.

1.

2.

1.

2.

2.

Figure 14: Generated visual planning trajectories from VPRL on the MAZE test set. We illustrate
three representative categories: optimal, non-optimal, and invalid cases. In non-optimal examples,
similar to FROZENLAKE, the model occasionally enters redundant loops but still progresses toward
the goal. Invalid cases include maze-specific errors, such as the agent erroneously traversing through
walls, violating the structural constraints of the environment. Notably, we observe that in the last
invalid case, the agent is able to plan an optimal trajectory in subsequent steps.
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Figure 15: Generated visual planning trajectories from VPRL on the MINIBEHAVIOR test set.
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Original Images

Predicted Images

Reconstructed Images

Figure 16: Qualitative comparison between original images (top), predicted images by the model
(middle), and reconstructed images obtained by encoding and decoding the original inputs (bottom).

Table 11: Exact Match (EM) and Progress Rate (PR) on FROZENLAKE under VPRL when using
ground-truth images versus self-generated images as inputs during inference.

Model EM (%) PR (%)

L3 L4 L5 L6 Avg. L3 L4 L5 L6 Avg.

VPRL
- (w/ self-generated images) 97.6 95.6 90.8 82.4 91.6 98.4 96.0 93.0 85.6 93.2
- (w/ ground-truth images) 98.4 95.2 93.2 81.6 92.1 98.5 95.8 94.1 85.3 93.4

F.7 IMAGE QUALITY ANALYSIS

It can be observed that the intermediate images on FROZENLAKE generated by the visual planner in
Figure 4 contain noticeable artifacts, and we suspect that this noise arises from the limitation of the
image tokenizer rather than from the model’s image generation ability. To verify this, we include an
additional analysis on FROZENLAKE that illustrates how the tokenizer reconstructs images in our
framework.

Limitations of the Image Tokenizer. Figure 16 confirms that the artifacts observed in our predicted
images originate from the tokenizer rather than from the prediction process itself. When encoding a
ground-truth image into visual tokens and decoding it back, the reconstructed output shows similar
artifacts inevitably introduced by the tokenizer to those in the model’s predictions, which makes the
reconstruction not identical to the original image. At the same time, we observe that the intermediate
images produced by the model are already comparable in quality to the reconstructed images. While
our work focuses on planning rather than image generation quality, this observation indicates that the
visual planner generates images that are sufficient for effective planning.

We consider this behavior to be encouraged by the dynamics interpreter. During the training, the
dynamics interpreter serves as an implicit format constraint. Any generated image that it cannot parse
is treated as an invalid transition and receives a penalty, enforcing the model to maintain the semantic
structure of the environment in its generated images.

Robustness to Intermediate Image. We subsequently conduct a quantitative study to evaluate
whether providing high-quality intermediate images at inference improves performance. Instead of
feeding back the model’s self-generated image at each step, we replace it with the ground-truth image
rendered by the environment, which serves as a high-quality version.
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Table 12: Average inference token cost across FROZENLAKE, MAZE, and MINIBEHAVIOR. We also
report the average of the task-level average costs. Higher values indicate higher computational cost.

Model FROZENLAKE MAZE MINIBEHAVIOR Avg.

Closed-Source Models

Gemini 2.0 Flash
- Direct 10.8 12.5 14.8 12.7
- CoT 150.5 166.5 196.5 171.2

Gemini 2.5 Pro (think) 885.6 1030.2 1619.9 1178.6
Open-Source Models

Qwen 2.5-VL-Instruct-7B
- Direct 13.4 95.9 13.9 41.1
- CoT 306.2 316.4 272.3 298.3
- SFT 10.7 11.4 13.2 11.8

LVM-7B
- VPFT (ours) 819.2 957.2 1471.2 1082.5
- VPRL (ours) 819.2 957.2 1471.2 1082.5

Table 11 shows that the performance with and without high-quality images remains similar across
all grid sizes. This shows that our visual planner is robust to visual noise and does not depend on
perfectly rendered images to plan effectively.

F.8 COMPUTATIONAL COST ANALYSIS

Table 13: Average inference token cost
of trained textual planner variants on
FROZENLAKE.

Model Token Cost

Qwen 2.5-VL-Instruct-7B
- SFT

- Direct 10.7
- w/ Coordinates 179.0
- w/ ASCII 84.3

- GRPO
- w/ VPRL progress reward 129.8
- w/ PR metric reward 74.9

To provide a quantitative comparison of the computational
cost between visual planning and traditional textual rea-
soning, we further analyse the token usage of both the
visual planner and the textual baselines during inference.
We compute the average number of generated tokens for
all models reported in Table 1 across all tasks. In addition,
we include a more detailed breakdown of the token cost
for the trained textual planner variants listed in Table 2,
evaluated on FROZENLAKE.

Table 12 and Table 13 summarise the resulting inference
token cost. As expected, visual planning introduces a
noticeable computational overhead due to repeated im-
age generation. However, this additional cost remains
affordable in practice when compared with textual CoT.
On average across the three tasks, the token cost of our visual planner is roughly 3 times that of
Qwen 2.5-VL-Instruct-7B with CoT and around 6 times that of Gemini 2.0 Flash with CoT, suggesting
that our method is still computationally feasible. We also observe that thinking models, such as
Gemini 2.5 Pro, produce the largest number of tokens among all tasks, indicating that visual planning
is not always the most expensive option.
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G PROMPTING TEMPLATES

FROZENLAKE (Direct)

Task: Frozen Lake Shortest Path Planning

You are given an image of a grid-based environment. In this environment:
- An elf marks the starting position.
- A gift represents the goal.
- Some cells contain ice holes that are impassable for the elf.
- The elf can move in one of four directions only: "up", "down", "left",

or "right". Each move transitions the elf by one cell in the
corresponding absolute direction. Diagonal movement is not permitted.

Your task is to analyze the image and generate the shortest valid
sequence of actions that moves the elf from the starting position to
the goal without stepping into any ice holes.

Provide your final answer enclosed between <ANSWER> and </ANSWER>, for
example: <ANSWER>right up up</ANSWER>.

FROZENLAKE (Coordinate & ASCII Representation)

Task: Frozen Lake Shortest Path Planning

You are given an image of a grid-based environment. In this environment:
- An elf marks the starting position.
- A gift represents the goal.
- Some cells contain ice holes that are impassable for the elf.
- The elf can move in one of four directions only: "up", "down", "left",

or "right". Each move transitions the elf by one cell in the
corresponding absolute direction. Diagonal movement is not permitted.

Your task is to analyze the image and generate the shortest valid
sequence of actions that moves the elf from the starting position to
the goal without stepping into any ice holes.

Describe the layout of the environment based on your analysis of the
image, then provide your final answer enclosed between <ANSWER> and
</ANSWER>, for example: <ANSWER>right up up</ANSWER>.

FROZENLAKE (GRPO)

Task: Frozen Lake Shortest Path Planning

You are given an image of a grid-based environment. In this environment:
- An elf marks the starting position.
- A gift represents the goal.
- Some cells contain ice holes that are impassable for the elf.
- The elf can move in one of four directions only: "up", "down", "left",

or "right". Each move transitions the elf by one cell in the
corresponding absolute direction. Diagonal movement is not permitted.

Your task is to analyze the image and generate the shortest valid
sequence of actions that moves the elf from the starting position to
the goal without stepping into any ice holes.

Present your reasoning enclosed within <think> and </think> tags. For
example:

<think>Reasoning steps go here.</think>

Then, provide your final answer enclosed within <answer> and </answer>
tags. For example:

<answer>right up up</answer>
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MAZE

Task: Maze Shortest Path Planning

You are given an image of a maze environment. In this environment:
- A green circle marks the starting position of the agent.
- A red flag marks the goal.
- The agent can move in one of four cardinal directions only: "up", "down

", "left", or "right". Each move shifts the agent by exactly one cell
in that direction. Diagonal movement is not permitted.

- The black maze walls are impassable. The agent cannot pass through any
wall segment.

Your task is to analyse the image and produce the shortest valid sequence
of actions that moves the agent from its starting position to the

goal without crossing any wall.

Provide your final answer enclosed between <ANSWER> and </ANSWER>, for
example: <ANSWER>right up up</ANSWER>.

MINIBEHAVIOR

Task: Mini-Behavior Installing the Printer

You are given an image of a grid-based environment. In this environment:
- The red triangle represents the agent.
- The white icon represents the printer, which must be picked up by the

agent.
- The brown tiles represent the table, where the printer must be placed.

The agent can take the following actions:
- "up", "down", "left", "right": each action shifts the agent by exactly

one cell in that direction. Diagonal movement is not permitted.
- "pick": pick up the printer if it is in one of the four adjacent cells

surrounding the agent. This action is invalid if there is no adjacent
printer.

- "drop": drop the printer onto the table if the agent is adjacent to a
table cell. This action is invalid if there is no adjacent table.

Constraints:
- The agent cannot move through the table tiles.
- The agent cannot move through the printer until it has been picked up.

After picking it up, the agent may move through the cell that
previously contained the printer.

Your task is to analyse the image and produce the shortest valid sequence
of actions that allows the agent to pick up the printer and then

place it on the table.

Provide your final answer enclosed between <ANSWER> and </ANSWER>, for
example: <ANSWER>right down right pick left drop</ANSWER>.
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