
HSR-Enhanced Sparse Attention Acceleration
Bo Chen1, Yingyu Liang2,3 , Zhizhou Sha4 , Zhenmei Shi3 , Zhao Song5

1Middle Tennessee State University 2The University of Hong Kong
3University of Wisconsin-Madison 4Tsinghua University

5The Simons Institute for the Theory of Computing at the University of California, Berkeley,
bc7b@mtmail.mtsu.edu, yingyul@hku.hk, shazz20@mails.tsinghua.edu.cn,

zhmeishi@cs.wisc.edu, magic.linuxkde@gmail.com

Large LanguageModels (LLMs) have demonstrated remarkable capabilities across
various applications, but their performance on long-context tasks is often lim-
ited by the computational complexity of attention mechanisms. We introduce a
novel approach to accelerate attention computation in LLMs, particularly for long-
context scenarios. We leverage the inherent sparsity within attention mechanisms,
both in conventional Softmax attention and ReLU attention (with ReLUα activation,
α ∈ N+), to significantly reduce the running time complexity. Ourmethod employs
a Half-Space Reporting (HSR) data structure to identify non-zero or “massively ac-
tivated” entries in the attention matrix. We present theoretical analyses for two key
scenarios: generation decoding and prompt prefilling. Our approach achieves a
running time of O(mn4/5) significantly faster than the naive approach O(mn) for
generation decoding, where n is the context length,m is the query length, and d is
the hidden dimension. We can also reduce the running time for prompt prefilling
from O(mn) to O(mn1−1/⌊d/2⌋ + mn4/5). Our method introduces only provably
negligible error for Softmax attention. This work represents a significant step to-
wards enabling efficient long-context processing in LLMs.

1. Introduction
Large Language Models (LLMs) have showcased remarkable capabilities across various applica-
tions, including context-aware question answering, content generation, summarization, and dia-
logue systems, among others [1–4]. Long-context tasks of LLMs have gained more and more atten-
tion. Several LLMs extend their context length to 128K tokens, such as Yarn [5], GPT-4 [6], Claude
3.5 [7], Llama 3.1 [8], Phi-3.5 [9], Mistral Nemo [10], etc. A bottleneck for long-context tasks is the
computational cost of the attention mechanism in LLMs. The key to LLM success is the transformer
architecture [11], wildly used in various practical scenarios [12–16], whose critical component is
the attention mechanism. Let n be the data length, m be the length of query tokens, and d be the
feature dimension1. The conventional attention uses Softmax activation and is defined as follows:
Definition 1.1 (Softmax attention). Let Q ∈ Rm×d and K,V ∈ Rn×d denote the query, key, and value
matrix. The Softmax attention is:

Attns(Q,K, V ) := Softmax(QK⊤/
√
d)V = D−1AsV ∈ Rm×d,

where (1) As := exp(QK⊤/
√
d) ∈ Rm×n and exp is applied element-wise , (2) D := diag(As · 1n) ∈

Rm×m denotes the normalization matrix, (3) D−1As ∈ Rm×n denotes the attention matrix.

In practical LLM applications, there are two scenarios for attention computation depending on the
context length n and query length m. The first case, m = Θ(1), represents the generation decoding
based on the pre-computed Key Value Cache (KV), which stores the intermediate attention key and
value matrices. The second case,m = Θ(n), represents the prompt prefilling before text generation

1As d is always fixed in practice, there is no need to scale up d in analysis. Thus, in this work, we always
assume d is a small constant.

Second Conference on Parsimony and Learning (CPAL 2025).



or the cross-attention computation. However, in both cases, when the context window n becomes
larger, the running time will increase correspondingly, i.e., it will be linear and quadratic in n for
m = Θ(1) and m = Θ(n), respectively. Thus, reducing the running time of attention computations
with long context input becomes essential to minimize response latency and increase throughput
for LLMs.

In this work, we introduce novel methods to reduce the running time complexity for both cases, i.e.,
m = Θ(1) and m = Θ(n). We are inspired by the inherent sparsity within attention mechanisms.
Numerous prior studies have highlighted the significant sparsity in the attention matrix [17–21].
This manifestation of sparsity in Softmax attention is that a large number of attention scores, i.e.,
QK⊤, concentrate on a small number of entries, which is known as “massive activation”. Due to
this nature, Softmax attention can be accelerated by only calculating the entries that contain large
attention scores, introducing negligible approximation errors [22, 23].

When talking about ReLU activation, one can easily accelerate the computation process by only cal-
culating the entries activated by ReLU (since other non-activated entries will eventually be set to
zero by ReLU). ReLU attention is another attention mechanism widely used, substituting the con-
ventional Softmax activation function with ReLU. ReLU attention has demonstrated performance
comparable to Softmax attention in various downstream tasks [24, 25] (see Section 2 for more de-
tails). We present the formal definition of ReLU attention as follows.
Definition 1.2 (ReLU attention). Let Q ∈ Rm×d and K,V ∈ Rn×d denote the query, key, and value
matrix. Let α ∈ N+. The ReLU attention is:

Attnr(Q,K, V ) := D−1ArV ∈ Rm×d,

where (1) Ar := ReLUα(QK⊤/
√
d − b) ∈ Rm×n and ReLUα denotes the α-th power of ReLU activation

for any α ∈ N+, (2) D := diag(Ar · 1n) ∈ Rm×m denotes the normalization matrix, (3) b ∈ R denotes
position bias, (4) D−1Ar ∈ Rm×n denotes the attention matrix.

1 0 1 2 3 4 5 6
x

0
100
200
300
400
500
600

y

exp(x) and RELU (x b)
ReLU(x b)
ReLU2(x b)
ReLU3(x b)
ReLU4(x b)
exp(x)

Figure 1: The trending of the Softmax activation (exp) and
the ReLU activation with different powers. Here, we choose
b = 1.5 as the threshold for the ReLU activation.

To expedite the computation, the crit-
ical task is to identify the large/non-
zero entries for Softmax/ReLU at-
tention, respectively. In this work,
We utilize the half-space reporting
(HSR) data structure to tackle this
problem. HSRwas first introduced in
[26] to address the half-space range
reporting problem (More details can
be found in Section 3.2).

In our framework, we define the half-
space as the region where the at-
tention scores (the inner products of
key and query vectors) exceed some
threshold. We leverage the HSR data
structure’s ability to quickly answer
range reporting to expedite the iden-
tification of non-zero entries within
the ReLU attention matrix and large
entries in Softmax attention. Conse-
quently, we accelerate the computa-
tion for ReLU attention and expedite the computation of Softmax attention with negligible approx-
imation error, resulting in a substantial reduction in computation time.

Then, we state our results under the generation decoding scenario (m = Θ(1)) and prompt prefill-
ing scenario (m = Θ(n)). Whenm = Θ(1), we accelerate ReLU and Softmax attention computation
time over the naive approach fromO(mn) toO(mn4/5)with pre-processed KV cache (Algorithm 1).

2



When m = Θ(n), we accelerate ReLU and Softmax attention computation time over the naive ap-
proach from O(mn) to O(mn1−1/⌊d/2⌋ +mn4/5) (Algorithm 2). Furthermore, Section 7 shows that
the approximation error associatedwith Softmax attention utilizing “massive activated” entries only
is small in practice, which is consistent with our theoretical analysis.

Our contributions:

• To the best of our knowledge, this is the firstwork incorporating theHSRdata structurewith
attention computation to reduce the running time complexity with the help of the sparsity
within the attention mechanisms.

• We provide rigorous theoretical proofs for reducing the computational time (1) for ReLU
attention generation decoding fromO(mn) toO(mn4/5) (Algorithm 1); (2) for ReLU atten-
tion prompt prefilling from O(mn) to O(mn1−1/⌊d/2⌋ +mn4/5) (Algorithm 2).

• We achieve the same running time speed up for the conventional Softmax attention (The-
orem 4.2, 5.2), and we give rigorous theoretical proofs to ensure that the approximation
error remains negligible (Theorem 4.3). And we provide an empirical evaluation to prove
our theoretical error analysis (Section 7).

• We conduct empirical experiments on prominent LLMs to verify the approximation error
associated with Softmax attention utilizing “massive activated” entries only. The results
show that the error using a few top entries is already insignificant, consistent with our
theoretical analysis.

Comparison with Previous Works. [27] uses an approximated nearest neighbors search, which
requires that the data are well-conditioned, e.g., uniformly separated, while our algorithm supports
an exact nearest neighbor search. Their nearest neighbors search may introduce large approxima-
tion errors, while the approximation error of our algorithm can be small. On the other hand, [28]
uses low-rank approximation methods to accelerate the attention computation while they require
bounded entries assumptions, which is not required in this work. The bounded entry assumption
may not always be held in practical scenarios. Our work is based on practical observation that the
attention matrix is sparse.

Roadmap. Section 2 presents related work. Section 3 introduces essential concepts. Section 4
presents our main results, i.e., guarantees on run time reduction and approximation error. Sec-
tion 5 introduces the extension of our method on prompt prefilling scenarios. Section 6 provides
a summary of the techniques used in our proof. Section 7 provides our empirical evaluation for
the approximation error on Softmax attention. Section 8 discusses the potential of extending our
method. Section 9 concludes our algorithm and contributions.

2. Related Work

2.1. Attention Acceleration for Long Context Input
A long context window is essential for transformer-based LLMs in many downstream tasks. How-
ever, due to the quadratic time complexity associated with attention mechanisms, transformers are
usually hard to run inference efficiently. Numerous methods have been proposed to enhance the in-
ference efficiency. One approach involves using alternative architectures as proxies for attention to
support faster inference, such as Mamba [29, 30], PolySketchFormer [31], HopfieldModels [32–38]
and Linearizing Transformers [39, 40]. Another line of research focuses on approximating atten-
tion matrix computation [28, 41–54]. Nevertheless, these methods often rely on assumptions that
may not be practical. For instance, some approaches use polynomial methods to approximate the
exponential function, which requires all entries to be bounded by a small constant. However, our
HSR-enhanced attention framework is designed based on practical observation and validated by
empirical support. These advancements not only improve general model performance but also play
a crucial role in enhancing in-context learning capabilities, wheremodels leverage information from

3



the immediate context to perform tasks without fine-tuning. We refer the readers to some other re-
lated works [45, 55–64, 64–83].

2.2. ReLU Attention

ReLU attention employs the ReLU activation function in place of the traditional Softmax function for
attention computation. Previous studies have highlighted the promising potential of ReLU atten-
tion in various domains. From the empirical side, [24] has demonstrated that incorporating ReLU
as the activation function in vision transformers enhances performance on downstream tasks. [84]
has shown that transformers equipped with ReLU attention outperform those with Softmax atten-
tion, particularly when dealing with large key-value memory in machine translation tasks. From
the theoretical side, the scale-invariant property of ReLU attention [85] facilitates the scalability of
transformer networks. Furthermore, [86–88] have shown that the inherent properties of ReLU at-
tention contribute positively to the learning process of transformer models. Another key advantage
is that the ReLU function effectively sets all negative values to zero, allowing us to bypass these
non-contributory elements during attention computation and thereby reducing its running time.
Omitting these zero and negative entries does not introduce any error into the final output of the
ReLU attention mechanism.

2.3. Half-Space Reporting (HSR) Data Structure

The HSR data structure, initially proposed by [26], was developed to address the half-space range
reporting problem. The expedited range query capability inherent to HSR has been demonstrated
to significantly enhance computational efficiency across a variety of tasks. Studies such as [89] and
[90] have applied HSR to facilitate solving general linear programming (LP) problems. Another
line of research has highlighted HSR’s potential in expediting the training process of contemporary
neural networks [91, 92]. There is also a collection of research that concentrates on leveraging HSR
for the advancement of solutions to geometric and graphical challenges [93–95].

3. Preliminary

3.1. Notations

We first introduce basic notations used in this paper. For any positive integer n, we use [n] to denote
set {1, 2, · · · , n}. We use Var[] to denote the variance. For two vectors x ∈ Rn and y ∈ Rn, we use
⟨x, y⟩ to denote the inner product between x, y. We use 1n to denote a length-n vector where all the
entries are ones. We useXi,j to denote the i-row, j-th column ofX ∈ Rm×n. We use ∥A∥∞ to denote
the ℓ∞ norm of a matrix A ∈ Rn×d, i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |.

3.2. Half-Space Reporting (HSR) Data Structure

Due to the limitation of space, we provide only the core corollary of the HSR data structure here.
We refer the readers to Appendix B.4 for more details.

In [26], the author introduces a data structure named HSR to solve the half-space range reporting
problem. The interface of the HSR data structure can be summarized as in Algorithm 3. Intuitively,
the HSR data structure recursively partitions the set S and organizes the points in a tree data struc-
ture. Then for a given query (a, b), all k points ofSwith sgn(⟨a, x⟩−b) ≥ 0 are reported quickly. Note
that the query (a, b) here defines the half-space H in Definition B.10. We summarize the running
time complexity of the HSR data structure as follows:
Corollary 3.1 (HSR data-structure time complexity [26], informal version of Corollary B.12). Let
Tinit denote the pre-processing time to build the data structure, Tquery denote the time per query, and Tupdate
time per update. Given a set of n points in Rd, the half-space range reporting problem can be solved with the
following performances:

4



• Part 1. Tinit(n, d) = Od(n log n), Tquery(n, d, k) = O(dn1−1/⌊d/2⌋ + dk).

• Part 2. Tinit(n, d) = O(n⌊d/2⌋), Tquery(n, d, k) = O(d log(n) + dk).

4. Main Results on Generation Decoding
In this section, we present our key findings regarding generation decoding, m = Θ(1), for both
ReLU and Softmax attention mechanisms. We reduce the time complexity from a naive O(mn) to
O(mn4/5). Our method only introduces a negligible approximation error for Softmax attention.

HSR
(empty)

HSR
(ready)

ሚ𝑆𝑖,𝑗
Attention 

matrix

Inference

Init HSR

𝑂(𝑛⌊𝑑/2⌋)

Query HSR

𝑂(𝑚𝑛4/5)
Calculate Attention

𝑂(𝑚𝑛4/5)

Algorithm 1: Generation Decoding

QK

Init HSR

𝑂(𝑛 log 𝑛)
Query HSR

𝑂(𝑚𝑛1−1/⌊𝑑/2⌋ +𝑚𝑛4/5)

Algorithm 2: Prompt Prefilling

HSR
(empty)

HSR
(ready)

ሚ𝑆𝑖,𝑗
Attention 

matrix

Inference

Calculate Attention

𝑂(𝑚𝑛4/5)

QK

Init

Figure 2: An outline of our principal algorithms. Top: Algorithm 1 for generation decoding is de-
picted, with the key matrix K is fixed. During each inference step, the input query Q interacts
with the HSR data structure to get the activated indices set S̃i,j . Then, we can calculate the atten-
tion matrix according to S̃i,j . Bottom: Algorithm 2 for prompt prefilling is shown, where both the
key matrix K and the query matrix Q are variable across iterations. Consequently, the HSR data
structure must first be initialized withK, followed by querying it usingQ. Finally, according to the
activated entries set S̃i,j reported by the HSR data structure, the attention matrix can be calculated.
For more information, please refer to Remark 6.4.

We begin with introducing our result on ReLU attention generation decoding as follows:
Theorem 4.1 (Running time of ReLU attention generation decoding, informal version of Theo-
rem D.2). Let ReLU attention be defined as Definition 1.2. Assume each entry of K conforms Gaussian
N (0, σ2

k), and each entry ofQ conforms GaussianN (0, σ2
q ). Let δ ∈ (0, 1) denote the failure probability. Let

σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·
√
0.4 log n. Suppose we have KV CacheK,V ∈ Rn×d.

We want to generate a m length answer, where n ≫ m. Then, our inference function in Algorithm 1, with
probability at least 1− δ, takes O(mn4/5) time to generate the answer.

Theorem 4.1 shows that our Algorithm 1 accelerates the running time of ReLU attention generation
decoding from naive O(mn) to O(mn4/5), which is a significant speed up when the KV Cache is
large. We provide an example for the sparsity with different n in Table 1 in the Appendix. The at
least 1− δ success probability originates from the sparsity analysis of ReLU attention (Lemma 6.1),
where with probability at least 1 − δ, we have the number of non-zero entries of each row of the
attention matrix no larger than n4/5.

5



Algorithm 1 Generation decoding
1: data structure GenerationDecoding ▷ Lemma 6.2
2: members
3: HalfSpaceReport hsr ▷ Part 2 of Corollary 3.1
4: {Ki}i∈[n] ▷ Key matrix
5: V ∈ Rn×d ▷ Value matrix
6: b ∈ R ▷ Threshold of ReLU activation
7: end members
8: procedure Init({Ki}i∈[n], V, n, d)
9: {Ki}i∈[n], V ← {Ki}i∈[n], V ▷ Store necessary matrices
10: b← σa ·

√
0.4 log n ▷ Init essential parameters and data structure. Lemma 6.1

11: hsr.Init({Ki}i∈[n], n, d) ▷ It takes O(n⌊d/2⌋) time
12: end procedure
13: procedure Inference(Q ∈ Rm×d,m)
14: A← 0m×n

15: for i = 1→ m do ▷ Loop form query vectors
16: S̃i,fire ← hsr.Query(Qi, b) ▷ It takes O(n4/5) time
17: for j ∈ S̃i,fire do ▷ Calculate the ReLU attention output according to S̃i,fire

18: Ai,j ← ReLUα(⟨Qi,Kj⟩/
√
d− b) or Ai,j ← Softmax(⟨Qi,Kj⟩/

√
d)

19: end for
20: end for
21: return D−1AV
22: end procedure
23: end data structure

Then, we move on to presenting our result on Softmax attention generation decoding. Our results
consist of two parts: the improved running time and the approximation error analysis. Firstly, we
introduce our result about the improved running time of Softmax attention generation decoding as
follows:
Theorem 4.2 (Running time of Softmax attention generation decoding, informal version of Theo-
rem F.1). Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition B.2. We choose
the threshold b ∈ R in Algorithm 1 such that R = NN(n4/5, q,K). Then, we can show that the Softmax
attention with index set Âttns achieves outstanding running time under the Softmax attention generation
scenario: Suppose we have KV CacheK,V ∈ Rn×d. We want to generate am length answer, where n≫ m.
Our inference function in Algorithm 1 (replacing ReLU attention with Softmax attention) takes O(mn4/5)
time to generate the answer.

Theorem 4.2 demonstrates that if we choose the threshold b satisfying R = NN(n4/5, q,K), we can
achieve a significant running time improvement of the Softmax attention generation.

Indeed, this method introduces an approximation error due to the exclusion of certain entries. Nev-
ertheless, under mild assumptions about the distribution of the attention scores, we demonstrate
that this approximation error is indeed negligible. The proof’s intuitive explanation lies in the fact
that the majority of attention scores are focused on the small subset of entries that we retain. We
organize our results as follows:
Theorem 4.3 (Error analysis of Softmax attention with index set, informal version of Theorem G.2).
Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let q ∈ Rd

denote a single row ofQ ∈ Rm×d. Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0. Let the index setR and the Softmax attention
with index set Âttns be defined as Definition B.2. Let NN(r, q,K) ⊆ [n] denote the indices of top-r entries of
qK. Let R = NN(nγ , q,K) ⊆ [n], where |R| = nγ . Assume the query q and key cache K have (γ, β1, β2)
massive activation property (Definition B.3). Then, we have

∥Âttns(q,K, V )− Attns(q,K, V )∥∞ ≤
2∥V ∥∞

nγ+(β1−β2)·∥q∥2−1
.

6



Theorem 4.3 presents the error of Softmax attentionwith index set is relatively small. Consequently,
omitting the remaining less significant entries is a justifiable compromise.
Remark 4.4. Withmild assumptions onV , we can havemore precious results fromTheorem 4.3. For example,
if the entries in V conform to subgaussian distribution with constant variance, we have ∥V ∥∞ = O(log(n))
with high probability.

5. Extension on Prompt Prefilling
In this section, we extend our results to prompt prefilling scenarioswhere the number of queries and
keys is proportional, i.e., m = Θ(n). For ReLU attention, we leverage Part 1 result of Corollary 3.1
to accelerate the identification of non-zero entries (activated entries). We introduce our result on
ReLU attention as follows:

Algorithm 2 Prompt Prefilling
1: data structure PromptPrefilling ▷ Lemma 6.3
2: members
3: HalfSpaceReport hsr ▷ Part 1 of Corollary 3.1
4: end members
5:
6: procedure Inference({Ki}i∈[n], {Qr}r∈[m], V, n,m, d)
7: b← σa ·

√
0.4 log n. ▷ Threshold of ReLU activation (Lemma 6.1)

8: hsr.Init({Ki}i∈[n], n, d) ▷ It takes O(n log n) time
9: A← 0m×n

10: for i = 1→ m do ▷ Loop form query vectors
11: S̃i,fire ← hsr.Query(Qi, b) ▷ It takes O(n1−1/⌊d/2⌋ + k̃i) time.
12: for j ∈ S̃i,fire do ▷ Calculate the ReLU attention output according to S̃i,fire

13: Ai,j ← ReLUα(⟨Qi,Kj⟩/
√
d− b) or Ai,j ← Softmax(⟨Qi,Kj⟩/

√
d)

14: end for
15: end for
16: return D−1AV
17: end procedure
18: end data structure

Theorem 5.1 (Running time of ReLU attention prompt prefilling, informal version of Theorem C.2).
Let ReLU attention be defined as Definition 1.2. Assume each entry of K is from Gaussian N (0, σ2

k), and
each entry of Q is from Gaussian N (0, σ2

q ). Let δ ∈ (0, 1) denote the failure probability. Let σa = 4 · (1 +
d−1 log(m/δ))1/2 · σqσk. Let b = σa ·

√
0.4 log n. Suppose we have Q,K, V ∈ Rn×d. There exist an

algorithm (Algorithm 2), with probability at least 1− δ, takes O(n2−1/⌊d/2⌋ + n1+4/5) time to compute the
full ReLU attention of Q,K, V .

In Theorem 5.1, we improve the running time of ReLU attention prompt prefilling from O(n2) to
O(n2−1/⌊d/2⌋ + n1+4/5), which is a notable uplift of the running time when n is extremely large.

Then, we present our result on Softmax attention. Intuitively, we use the Part 1 result of Corollary 3.1
to identify those “massive activated” entries (top-r indices) within the attention matrix of Softmax
attention and calculate the Softmax attention with top-r indices. We organize our results as follows:
Theorem 5.2 (Running time of Softmax attention prompt prefilling, informal version of Theo-
rem F.2). Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1.
Let NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition B.2. We
choose the threshold b ∈ R in Algorithm 2 such that R = NN(n4/5, q,K). Then, we have the Softmax at-
tention with index set Âttns achieves outstanding running time under Softmax attention prompt prefilling
scenario: Suppose we havem = Θ(n). Algorithm 2 (replacing ReLU attention with Softmax attention) takes
O(n2−1/⌊d/2⌋ + n1+4/5) time to compute the full ReLU attention of Q,K, V .

7



Theorem 5.2 demonstrates our O(n2−1/⌊d/2⌋ + n1+4/5) running time on Softmax attention prompt
prefilling, which improves from naive running time O(n2).

6. Technical Overview
Section 6.1 introduces our analysis of the sparsity in the ReLU attention mechanism. Section 6.2
presents our results of two general attention frameworks. Section 6.3 provides our error analysis of
Softmax attention with index set. We have shown that with mild assumption on the distribution of
attention scores, the error of Softmax attention with index set is negligible.

6.1. Sparsity Analysis of ReLU Attention
Intuitively, the ReLU activation will deactivate some key and query pairs. We introduce the results
of employing the concentration inequality to quantitatively analyze the number of non-zero entries.
Lemma 6.1 (Sparsity analysis, informal version of Lemma E.3). Let the ReLU attention be defined as
Definition 1.2. LetQ ∈ Rm×d andK,V ∈ Rn×d be defined as Definition 1.2. Let b ∈ R denote the threshold
of ReLU activation, as defined in Definition 1.2. For i ∈ [m], let k̃i denote the number of non-zero entries
in i-th row of A ∈ Rm×n. Assume each entry of K is from Gaussian N (0, σ2

k), and each entry of Q is from
GaussianN (0, σ2

q ). Let δ ∈ (0, 1) denote the failure probability. Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.
Let b = σa ·

√
0.4 log n. Then, we have, with probability at least 1− δ, for all i ∈ [m], the number of non-zero

entries of the i-th row k̃i is at most 2n4/5.

In Lemma 6.1, we use k̃i to denote the number of non-zero entries in i-th row of attention matrix
Ar ∈ Rm×n. It indicates that if we choose b = σa

√
0.4 log n, with high probability, the number of

activated (non-zero) entries can be bounded by O(n4/5).

6.2. General Attention Frameworks
First, we introduce our general framework for generation decoding. Here, we use the Part 2 result
of the HSR data structure. As this framework is designed for the generation decoding task, the key
matrix K is fixed in each inference. Therefore, in the Init procedure, we initialize the HSR data
structure with the key matrix K. Then, in each inference, we use the same HSR data structure
to answer the query from each row of the query matrix Q. We provide the result of this general
generation decoding framework as follows.
Lemma 6.2 (General generation decoding framework, informal version of Lemma D.1). Let Q ∈
Rm×d and K,V ∈ Rn×d be defined as Definition 1.2. Assume each entry of K is from Gaussian N (0, σ2

k),
and each entry of Q is from Gaussian N (0, σ2

q ). Let δ ∈ (0, 1) denote the failure probability. Let σa =

4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·
√
0.4 log n. Let hsr data structure be defined as Part 2 in

Corollary 3.1. There exists an algorithm (Algorithm 1), with at least 1 − δ probability, has the following
performance:

• Part 1. The Init procedure runs in O(n⌊d/2⌋) time.

• Part 2. For each query, the Inference procedure runs in O(mn4/5) time.

The general framework for prompt prefilling is quite different from the previous one. Namely, we
choose the Part 1 result of the HSR data structure. Since in each inference, both the query matrix Q
and the key matrixK differ from any other inference, we first initialize the HSR data structure with
the key matrix K. Then, for each row of the query matrix Q, we query the HSR data structure to
find the activated entries.
Lemma 6.3 (General prompt prefilling framework, informal version of Lemma C.1). LetQ ∈ Rm×d

and K,V ∈ Rn×d be defined as Definition 1.2. Assume each entry of K is from Gaussian N (0, σ2
k), and

each entry of Q is from Gaussian N (0, σ2
q ). Let δ ∈ (0, 1) denote the failure probability. Let σa = 4 · (1 +

d−1 log(m/δ))1/2 ·σqσk. Let b = σa ·
√
0.4 log n. Let hsr data structure be defined as Part 1 in Corollary 3.1.

8



There exists an algorithm (Algorithm 2), with at least 1 − δ probability, computes full attention of Q,K, V
in O(mn1−1/⌊d/2⌋ +mn4/5) time.

Then, we use the following Remark to demonstrate the different intuitions behind Lemma 6.2 (Al-
gorithm 1) and Lemma 6.3 (Algorithm 2).
Remark 6.4. Algorithm 1 is tailored for generation decoding scenarios, where the key matrix K remains
constant throughout each inference. Consequently, our optimization efforts are directed at decreasing the time
required for individual inferences, which is achieved by adopting Part 2 of Corollary 3.1. In contrast, Algo-
rithm 2 is intended for prompt prefilling, a context in which the key matrixK varies with each inference. Thus,
our objective shifts to minimizing the time complexity associated with initializing the HSR data structure,
leading us to select Part 1 of Corollary 3.1. For more details, please refer to Figure 2.

6.3. Error Analysis of Softmax Attention with Top-r Indices
Calculating the Softmax attention on the “massive activated” index set will introduce an approxi-
mation error. In the following Lemma, we analyze the quantity of this approximation error. Here,
we use α to denote the summation of all entries activated by exp(x) function, andwe use α to denote
the summation of those entries which are excluded from “massive activated” index set. We provide
the general error bound of Softmax attention with an index set as follows:
Lemma 6.5 (General error analysis of Softmax attention with index set, informal version of
Lemma G.1). Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1.
Let q ∈ Rd denote a single row ofQ ∈ Rm×d. Let α, α and Âttns be defined as Definition B.2. Then, we have

∥Attns(q,K, V )− Âttns(q,K, V )∥∞ ≤
2α

α
· ∥V ∥∞.

Note that Lemma 6.5 only provides a general error analysis of Softmax attention with an index set.
Under mild assumption on the distribution of attention scores, we show that this error is actually
very small. For more details, please refer to Theorem 4.3.

7. Experiments
In this section, we present our empirical results of evaluating three mainstream LLMswith Softmax
attentionwith top-r indices on different r, showing that the results of the experiments are consistent
with our theoretical analysis.

Datasets. To estimate the approximation error of the Softmax attention with “massive acti-
vation” entries, we conduct experiments on the PaulGrahamEssays datasets from LLMTest-
NeedleInAHaystack [96]. Specifically, for each article in the dataset, we first input 215 = 32768
tokens to the LLMs, then generate 1024 tokens.

Metric. We evaluate the generation quality by the classical perplexity. Perplexity is defined as
the exponentiated average negative log-likelihood of a sequence. If we have a tokenized sequence
X = (x0, x1, · · · , xN ), then the perplexity of X is: Perplexity(X) = exp(− 1

N

∑N
i=1 log pθ(xi|x<i)),

where log pθ(xi|x<i) is the log-likelihood of the i-th token conditioned on the preceding tokens. In-
tuitively, it can be thought of as an evaluation of the model’s ability to predict uniformly among the
set of specified tokens in a corpus. Importantly, the tokenization procedure has a direct impact on
a model’s perplexity, which should be taken into consideration when comparing different models.

Models. To demonstrate the generalization of our approximation error bound, we conducted ex-
periments on three mainstream large models: LLaMA 3.1 8B Instruct2 [8], Mistral Nemo 12B In-
struct3 [10], and Phi 3.5 Mini 3.8B Instruct4 [9].

2https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
3https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
4https://huggingface.co/microsoft/Phi-3.5-mini-instruct

9

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://huggingface.co/microsoft/Phi-3.5-mini-instruct


Results. The experiments are conducted in the setting discussed in previous paragraphs. We eval-
uated the performance of three mainstream LLMs using Softmax attention with top-r indices. In
particular, we chose r from the set {22, 24, 26, 28, 210, 212, 215}. As depicted in Figure 3, a significant
increase in the perplexity (drop in performance) of LLMs is observed only when r falls below 24.
This suggests that the “massive activated” tokens are predominantly found within the top-24 en-
tries. In comparison to the total of 215 entries, the “massive activated” entries constitute a relatively
minor fraction. The observed results align with our theoretical analysis, confirming the approxima-
tion error of the Softmax attention with top-r indices is negligible for larger values of r.

22 24 26 28 210212215

25

50

75

Pe
rp

le
xi

ty

LLaMA 3.1
LLaMA 3.1

22 24 26 28 210212215

Softmax attention with top-r indices
0

5000

Mistral Nemo
Mistral Nemo

22 24 26 28 210212215

25

50

Phi 3.5
Phi 3.5

Figure 3: We evaluated the perplexity of threemainstream languagemodels: LLaMA3.1 8B Instruct,
Mistral Nemo 12B, and Phi 3.5 Mini 3.8B Instruct, using Softmax attention with top-r indices on the
PaulGrahamEssays dataset. The results indicate a significant increase in perplexity only when the
number of selected entries, r, falls below 24. This observation aligns with our earlier findings that
the proportion of “massive activated” entries is minimal compared to the total number of entries.
Furthermore, the approximation error introduced by using top-r indices in Softmax attention re-
mains negligible unless r becomes excessively small.

8. Discussion and Future Work

The sparsity within neural networks arises primarily from the incorporation of non-linear activa-
tion functions. These non-linear functions determine the mechanism or circuit of the neural net-
works [97]. Gaining insight into these non-linear layers not only enhances our understanding of
how neural networks work but also paves the way for optimizing training and inference. We believe
our analysis may inspire efficient neural network architecture design. This work represents the ini-
tial point of this envisioned blueprint. We concentrate on analyzing the combinations of LLMs and
fundamental non-linear activation functions, ReLU and Softmax. By analyzing these functions, we
aim to demonstrate to the research community that a thorough examination of a model’s nonlinear
characteristics can significantly enhance neural networks’ running-time complexity.

In real-world scenarios, various non-linear activation functions exist beyond ReLU and Softmax,
such as SELU(x) = scale ·(max(0, x)+min(0, α ·(exp(x)−1))) [98], CELU(x) = max(0, x)+min(0, α ·
(exp(x/α)−1)) [99], and PRELU(x) = max(0, x)+weight ·min(0, x) [100]. Analyzing these alterna-
tive functions poses multiple challenges. We will explore these additional functions in the future.

9. Conclusion

Thiswork investigates the exploitation of the intrinsic sparsity present in both ReLU and Softmax at-
tention mechanisms to decrease the computational complexity of generation decoding and prompt
prefilling scenarios. We employ the HSR data structure to accelerate the process of identifying non-
zero or “massive activated” entries within ReLU and Softmax attentions. Our approach results in
only a negligible approximation error for Softmax attention.

10



Acknowledgement
Research is partially supported by the National Science Foundation (NSF) Grants 2023239-DMS,
CCF-2046710, and Air Force Grant FA9550-18-1-0166.

References
[1] Romal Thoppilan, Daniel De Freitas, JamieHall, NoamShazeer, ApoorvKulshreshtha, Heng-

Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for
dialog applications. arXiv preprint arXiv:2201.08239, 2022.

[2] Andy Coenen, Luke Davis, Daphne Ippolito, Emily Reif, and Ann Yuan. Wordcraft: A
human-ai collaborative editor for story writing. arXiv preprint arXiv:2107.07430, 2021.

[3] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

[4] Tianyi Zhang, Faisal Ladhak, EsinDurmus, Percy Liang, KathleenMcKeown, andTatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of
the Association for Computational Linguistics, 12:39–57, 2024.

[5] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context
window extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

[6] OpenAI. Gpt-4 turbo, 2023. URL https://openai.com/blog/
new-models-and-developer-products-announced-at-devday.

[7] Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

[8] Meta. Llama 3, 2024. URL https://ai.meta.com/blog/meta-llama-3/.

[9] Marah Abdin, SamAde Jacobs, Ammar AhmadAwan, Jyoti Aneja, AhmedAwadallah, Hany
Awadalla, NguyenBach, Amit Bahree, ArashBakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable languagemodel locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

[10] MistralAI. Mistral nemo, 2024. URL https://mistral.ai/news/mistral-nemo/.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[12] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[13] Jacob DevlinMing-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. InProceedings of naacL-HLT, volume 1,
page 2. Minneapolis, Minnesota, 2019.

[14] Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose:
Grounding diffusion with token-level supervision. arXiv preprint arXiv:2312.03626, 2023.

[15] Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, Zhizhou Sha, and Zhuowen Tu.
Dolfin: Diffusion layout transformers without autoencoder. arXiv preprint arXiv:2310.16305,
2023.

11

https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://ai.meta.com/blog/meta-llama-3/
https://mistral.ai/news/mistral-nemo/


[16] Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and
Zhuowen Tu. Omnicontrolnet: Dual-stage integration for conditional image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7436–
7448, 2024.

[17] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[18] Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas
Hofmann. Dynamic context pruning for efficient and interpretable autoregressive transform-
ers. Advances in Neural Information Processing Systems, 36, 2023.

[19] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shri-
vastava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for
efficient llms at inference time. In International Conference on Machine Learning, pages 22137–
22176. PMLR, 2023.

[20] Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

[21] Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large lan-
guage models. arXiv preprint arXiv:2402.17762, 2024.

[22] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for effi-
cient generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2023.

[23] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for
before generation. arXiv preprint arXiv:2404.14469, 2024.

[24] Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Replacing softmax
with relu in vision transformers. arXiv preprint arXiv:2309.08586, 2023.

[25] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
International conference on machine learning, pages 9099–9117. PMLR, 2022.

[26] Pankaj K Agarwal, David Eppstein, and Jirí Matousek. Dynamic half-space reporting, geo-
metric optimization, and minimum spanning trees. In Annual Symposium on Foundations of
Computer Science, volume 33, pages 80–80. IEEE COMPUTER SOCIETY PRESS, 1992.

[27] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately
pruned in one-shot. In International Conference on Machine Learning, pages 10323–10337.
PMLR, 2023.

[28] Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural
Information Processing Systems, 36, 2023.

[29] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[30] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms
through structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

[31] Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers
via sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

12



[32] Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On
sparse modern hopfield model. In Thirty-seventh Conference on Neural Information Processing
Systems (NeurIPS), 2023.

[33] Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

[34] Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of mod-
ern hopfieldmodels: A fine-grained complexity analysis. In Forty-first International Conference
on Machine Learning (ICML), 2024.

[35] Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng
Goan, and Han Liu. Bishop: Bi-directional cellular learning for tabular data with general-
ized sparse modern hopfield model. In Forty-first International Conference on Machine Learning
(ICML), 2024.

[36] Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval
with larger capacity for modern hopfield models. In Forty-first International Conference on
Machine Learning (ICML), 2024.

[37] Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po
Wang, and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In
Forty-first International Conference on Machine Learning (ICML), 2024.

[38] Jerry Yao-Chieh Hu, Bo-Yu Chen, DennisWu, Feng Ruan, andHan Liu. Nonparametric mod-
ern hopfield models. arXiv preprint arXiv:2404.03900, 2024.

[39] Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedge-
hog & the porcupine: Expressive linear attentions with softmax mimicry. arXiv preprint
arXiv:2402.04347, 2024.

[40] Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and
Thomas Kollar. Linearizing large language models. arXiv preprint arXiv:2405.06640, 2024.

[41] JoshAlman andZhao Song. The fine-grained complexity of gradient computation for training
large language models. arXiv preprint arXiv:2402.04497, 2024.

[42] Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix
softmax attention to kronecker computation. InThe Twelfth International Conference on Learning
Representations, 2024.

[43] Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir
Zandieh. Hyperattention: Long-context attention in near-linear time. In The Twelfth Inter-
national Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=Eh0Od2BJIM.

[44] Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in
sublinear time and memory. arXiv preprint arXiv:2402.06082, 2024.

[45] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably
efficient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024.

[46] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pages 28043–28078. PMLR,
2023.

[47] Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convo-
lutions for long context compression. arXiv preprint arXiv:2406.05317, 2024.

13

https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM


[48] Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in
transformer. arXiv preprint arXiv:2406.14036, 2024.

[49] Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024.

[50] Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating
single layer attention in llm based on tensor and svm trick, and solving it in matrix multipli-
cation time. arXiv preprint arXiv:2309.07418, 2023.

[51] Harry Dong, Xinyu Yang, Zhenyu Zhang, ZhangyangWang, Yuejie Chi, and Beidi Chen. Get
morewith less: Synthesizing recurrencewith kv cache compression for efficient llm inference.
arXiv preprint arXiv:2402.09398, 2024.

[52] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer trans-
formers gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233,
2024.

[53] Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On compu-
tational limits and provably efficient criteria of visual autoregressive models: A fine-grained
complexity analysis. arXiv preprint arXiv:2501.04377, 2025.

[54] Yifang Chen, Jiayan Huo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fast gra-
dient computation for rope attention in almost linear time. arXiv preprint arXiv:2412.17316,
2024.

[55] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relumlpsmay
be all you need as practical programmable computers, 2024.

[56] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention
i/o complexity: Comprehensive analysis for backward passes, 2024.

[57] Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear
approximations: A novel pruning approach for attention matrix, 2024.

[58] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-
attention with provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

[59] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness prop-
erties of diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418,
2024.

[60] Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do
in-context learning differently? arXiv preprint arXiv:2405.19592, 2024.

[61] Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional
ability? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathemat-
ical and Empirical Understanding of Foundation Models, 2024.

[62] Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the
gems in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv
preprint arXiv:2409.17422, 2024.

[63] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of
sparsegpt. arXiv preprint arXiv:2408.12151, 2024.

[64] Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: O(
√
n)

passes, small space and fast runtime. arXiv preprint arXiv:2309.05135, 2023.

14



[65] Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm
for projectionmatrix vectormultiplicationwith application to empirical riskminimization. In
International Conference onArtificial Intelligence and Statistics (AISTATS), pages 101–156. PMLR,
2023.

[66] Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential pri-
vacy: fast algorithm for dynamic kronecker projection maintenance. In International Confer-
ence on Machine Learning (ICML), pages 32418–32462. PMLR, 2023.

[67] Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and mainte-
nance. PhD thesis, Master’s thesis, Carnegie Mellon University, 2022.

[68] Zhao Song, Lichen Zhang, and Ruizhe Zhang. Trainingmulti-layer over-parametrized neural
network in subquadratic time. In Innovations in Theoretical Computer Science (ITCS), pages
93:1–93:15, 2024.

[69] Yang Cao, Bo Chen, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and
Mingda Wan. Force matching with relativistic constraints: A physics-inspired approach to
stable and efficient generative modeling. arXiv preprint arXiv:2502.08150, 2025.

[70] Bo Chen, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song,
andMingdaWan. High-ordermatching for one-step shortcut diffusionmodels. arXiv preprint
arXiv:2502.00688, 2025.

[71] Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential
dependency: Looped transformers efficiently learn in-context bymulti-step gradient descent.
In International Conference on Artificial Intelligence and Statistics, 2025.

[72] Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit
complexity bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602,
2024.

[73] Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan,
Jason Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion
transformers. arXiv preprint arXiv:2412.12444, 2024.

[74] Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A Rossi, Hao Tan,
Tong Yu, Xiang Chen, et al. Numerical pruning for efficient autoregressive models. arXiv
preprint arXiv:2412.12441, 2024.

[75] Bo Chen, Xiaoyu Li, Yingyu Liang, Zhao Song, and Zhizhou Sha. Nrflow: Towards noise-
robust generative modeling via second-order flow matching. manuscript, 2025.

[76] Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Zhen Zhuang.
Neural algorithmic reasoning for hypergraphs with looped transformers. arXiv preprint
arXiv:2501.10688, 2025.

[77] Yekun Ke, Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Curse of attention:
A kernel-based perspective for why transformers fail to generalize on time series forecasting
and beyond. In Conference on Parsimony and Learning. PMLR, 2025.

[78] Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in
neural networks and transformers: A case study of modular arithmetic with multiple inputs.
In International Conference on Artificial Intelligence and Statistics, 2025.

[79] JiayuWang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, XinWang, Yixuan Li, and Neel Joshi. Is
a pictureworth a thousandwords? delving into spatial reasoning for vision languagemodels.
Advances in Neural Information Processing Systems, 36, 2024.

15



[80] Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, , Zhao Song, and Han Liu. On sta-
tistical rates and provably efficient criteria of latent diffusion transformers (dits). Advances in
Neural Information Processing Systems, 38, 2024.

[81] Jerry Yao-Chieh Hu, Weimin Wu, Yi-Chen Lee, Yu-Chao Huang, Minshuo Chen, and Han
Liu. On statistical rates of conditional diffusion transformers: Approximation, estimation
and minimax optimality. arXiv preprint arXiv:2411.17522, 2024.

[82] Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu.
Fundamental limits of prompt tuning transformers: Universality, capacity and efficiency.
arXiv preprint arXiv:2411.16525, 2024.

[83] Weimin Wu, Maojiang Su, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. Transformers
are deep optimizers: Provable in-context learning for deep model training. arXiv preprint
arXiv:2411.16549, 2024.

[84] Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, RuiWang, and Jiang Bian. A study on relu and
softmax in transformer. arXiv preprint arXiv:2302.06461, 2023.

[85] Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank Reddi, and Sanjiv Kumar. Robust
training of neural networks using scale invariant architectures. In International Conference on
Machine Learning, pages 12656–12684. PMLR, 2022.

[86] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural informa-
tion processing systems, 36, 2023.

[87] Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a
study through the random features lens. Advances in Neural Information Processing Systems,
36, 2023.

[88] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relumlpsmay
be all you need as practical programmable computers. In International Conference on Artificial
Intelligence and Statistics, 2025.

[89] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm for solv-
ing general lps. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 823–832, 2021.

[90] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Dynamic algorithms for
packing-covering lps via multiplicative weight updates. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1–47. SIAM, 2023.

[91] Lianke Qin, Zhao Song, and Yuanyuan Yang. Efficient sgd neural network training via sub-
linear activated neuron identification. arXiv preprint arXiv:2307.06565, 2023.

[92] Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algo-
rithm. arXiv preprint arXiv:2208.05395, 2022.

[93] Danny Z Chen, Michiel Smid, and Bin Xu. Geometric algorithms for density-based data clus-
tering. International Journal of Computational Geometry & Applications, 15(03):239–260, 2005.

[94] Wenqi Ju, Chenglin Fan, Jun Luo, Binhai Zhu, and Ovidiu Daescu. On some geometric prob-
lems of color-spanning sets. Journal of Combinatorial Optimization, 26:266–283, 2013.

[95] David Eppstein, Michael T Goodrich, Doruk Korkmaz, and Nil Mamano. Defining equitable
geographic districts in road networks via stable matching. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 1–4,
2017.

16



[96] Greg Kamradt. Llmtest-needleinahaystack, 2024. URL https://github.com/gkamradt/
LLMTest_NeedleInAHaystack.

[97] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. arXiv preprint arXiv:2209.11895, 2022.

[98] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. Advances in neural information processing systems, 30, 2017.

[99] Jonathan T Barron. Continuously differentiable exponential linear units. arXiv preprint
arXiv:1704.07483, 2017.

[100] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1026–1034, 2015.

[101] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model
selection. Annals of Statistics, pages 1302–1338, 2000.

[102] Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula of
laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

[103] Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-
parameterized neural networks? Advances in Neural Information Processing Systems, 34:22890–
22904, 2021.

17

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack


Appendix
Roadmap. In Section A, we discuss some limitations of our work. In Section B, we introduce more
fundamental lemmas and facts. In Section C, we extend the analysis to ReLU attention calculation,
demonstrating improved performance over standard attention computation under specific condi-
tions. In Section D, we first introduce and analyze the time complexity of ReLU attention generation
using half-space reporting (HSR) data structures. In Section E, we analyze the sparsity of ReLU at-
tention matrices. In Section F, we introduce our results on reducing the running time of Softmax
attention. In Section G, we analyze error bounds for Softmax attention with index sets, balancing
efficiency and accuracy.

Sequence Activated Sparsity
length entries ratio
1k 251 0.75
2k 437 0.78
4k 761 0.81
8k 1325 0.83
16k 2308 0.86
32k 4019 0.87
64k 6997 0.89
128k 12183 0.90
256k 21212 0.92
512k 36933 0.93
1024k 64304 0.94

Table 1: An illustration of the sparsity level attained by our algorithm across varying sequence
lengths, n. Our approach activates merely n4/5 entries per inference, resulting in a computational
savings of up to 90% when n = 1024k.

A. Limitations
Our work is fundamentally theoretical in nature. We concentrate on the theoretical analysis of our
proposed algorithms (Algorithms 1 and 2). Our study does not include an implementation of the
suggested algorithms, a limitation that arises from the absence of an existing implementation for
the original HSR data structure, initially proposed in [26]. We are confident that our theoretical
insights will inspire the development of future algorithmic designs.

B. Full Background and Definition
In this section, we display more fundamental concepts. In Section B.1, we introduce a modified
version of Softmax attention that operates on a specific subset of indices. It defines the top-r nearest
neighbors Softmax attention, which focuses on the most relevant entries in the attention matrix. In
Section B.2, we describe the massive activation property for attention mechanisms. In Section B.3,
we introduce several important probability properties and bounds. In Section B.4, we detail the
time complexity and performance of half-space reporting (HSR) data structures.

B.1. Softmax Attention with Index Set
Recall that we have already provided the definition of ReLU attention in Definition 1.2. Here, we
present the key concepts of Softmax attention. For Softmax attention, since we only calculate the
“massive activated” entries to get our approximated results, we introduce the formal definition:
Definition B.1 (Input with index set). Let K ∈ Rn×d and V ∈ Rn×d be defined in Definition 1.1. Let
R ⊆ [n] be an index set of size |R| = r ∈ [n]. LetR := [n] \R be the complementary set, where |R| = n− r.

18



We define

K̂ := KR ∈ Rr×d V̂ := VR ∈ Rr×d K := KR ∈ R(n−r)×d V := VR ∈ R(n−r)×d

as the submatrix of K and V , i.e., whose row index is in R or R, respectively.

We consider calculating the Softmax attention on the “massive activation” index set, where we de-
fine the “massive activation” index set as the top-r indices, where the formal definition is as follows:
Definition B.2 ( Top-r indices Softmax attention ). Let q ∈ Rd, K,V ∈ Rn×d be defined in Defini-
tion 1.1. Let NN(r, q,K) ⊆ [n] denote the indices of top-r entries of qK, where |NN(r, q,K)| = r. Let
K̂, V̂ ∈ Rr×d and K,V ∈ R(n−r)×d be defined in Definition B.1. We define the top-r nearest neighbors
(NN) Softmax attention computation Âttns(q,K, V ) ∈ Rd as follows:

Âttns(q,K, V ) := Softmax(qK̂⊤)V̂ = α̂−1ûV̂ ∈ Rd

where

û := exp(qK̂⊤) ∈ Rr and α̂ := ⟨û,1r⟩ ∈ R.

Furthermore, we define u := exp(qK
⊤
) ∈ Rn−r, α := ⟨u,1n−r⟩ ∈ R, and u := exp(qK⊤) ∈ Rn+1,

α := ⟨u,1n+1⟩ ∈ R.

In Definition B.2, we view the “massive activated” entries as the top-r entries. Therefore, we only
calculate the Softmax attention based on K̂, V̂ ∈ Rr×d, instead of K,V ∈ Rn×d.

B.2. Massive Activation
Now, we introduce our observations on the properties of the attention scores (the inner products of
query vectors and key vectors). This further facilitates the error analysis of the top-r indices Softmax
attention. To begin with, we provide the definition of the massive activation property as follows:
Definition B.3 (Massive activation property). Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0. Let NN(r, q,K) ⊆ [n]
denote the indices of top-r entries of qK⊤. We define (γ, β1, β2) massive activation for a query q ∈ Rd and
key cacheK ∈ Rn×d, if the following conditions hold:

• The top-nγ entries are massive, i.e., 1
nγ ·∥q∥2

∑
i∈NN(nγ ,q,K)⟨q,Ki⟩ ≥ β1 log(n).

• The remaining terms are upper bounded, i.e, ∀i ∈ [n] \ NN(nγ , q,K), 1
∥q∥2
⟨q,Ki⟩ ≤ β2 log(n).

An intuitive understanding of Definition B.3 is that the summation of “massive activated” entries
dominates the summation of all entries, and the entries we ignored only contribute little to the final
summation. Therefore, it is reasonable for us to omit those non “massive activated” entries.
Remark B.4. There are many distributions satisfying the property in Definition B.3, such as (1) K draw-
ing from any subexponential distribution, e.g., multivariate Laplace distributions, (2) K drawing from any
mixture of Gaussian distribution with n1−γ Gaussian clusters.

B.3. Probability Tools
We state several fundamental properties and bounds for some common distributions.
Fact B.5 (Weighted summation of Gaussian). If the following conditions hold:

• Let x ∈ Rd be a fixed vector and y ∈ Rd be a random vector.

• For i ∈ [d], let xi denote the i-th entry of x.

• Suppose for i ∈ [d], yi ∼ N (0, σ2).

Then the inner product of x and y, ⟨x, y⟩ conforms Gaussian distribution N (0, ∥x∥22σ2). Namely, we have
⟨x, y⟩ ∼ N (0, ∥x∥22σ2).

19



Fact B.6 (Independence between ⟨x, yi⟩ and ⟨x, yj⟩). If the following conditions hold:

• Let x ∈ Rd be a fixed vector.

• Let y1, y2, · · · yn ∈ Rd be n random vectors.

• For any i, j ∈ [n], i ̸= j, yi and yj are independent.

Then, for any i, j ∈ [n], i ̸= j, ⟨x, yi⟩ and ⟨x, yj⟩ are independent.

We provide tail bounds for chi-square and Gaussian distributed random variables:
Lemma B.7 (Chi-square tail bound, Lemma 1 in [101] ). Let X ∼ X 2

k be a chi-squared distributed
random variable with k degrees of freedom. Each one has zero means and σ2 variance.

Then, it holds that
Pr[X − kσ2 ≥ (2

√
kt+ 2t)σ2] ≤ exp (−t)

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp (−t)

Fact B.8 (Gaussian tail bound). Suppose we have a random variable x ∼ N (µ, σ).

Then, for t ∈ R, we have

Pr[x ≥ µ+ t] ≤ exp(− t2

2σ2
)

Proof. We can show
Pr[x ≥ µ+ t] = Pr[x− µ ≥ t]

= Pr[ex−µ ≥ et]

= inf
λ≥0

Pr[eλ(x−µ) ≥ eλt]

≤ inf
λ≥0

E[eλ(x−µ)]

eλt
(1)

where the first step, the second step follows from basic algebra, the third step follows from that the
inequality holds for any λ > 0, and the fourth step follows from Markov’s inequality.

Then we consider the numerator, and we use y = x− µ to simplify the calculation, we have

E[eλy] =
∫
R
eλy

e−y2/2σ2

√
2πσ

dy

=

∫
R

e−(y−λ/σ2)2· 1
2σ2 eλ

2σ2/2

√
2πσ

dy

= e
λ2σ2

2

∫
R

e−(y−λ/σ2)· 1
2σ2

√
2πσ

dy

= e
λ2σ2

2 (2)
where the first step follows from the definition of the moment generating function, the second and
the third steps follow from basic algebra, and the fourth step follows from the property of the prob-
ability density function.

Then we have

Pr[x ≥ µ+ t] ≤ inf
λ≥0

exp(
λ2 − σ2

2
− λt)

≤ exp(− t2

2σ2
)

where the first step follows from Eq. (1) and Eq.(2), the second step follows from the calculation of
infimum.

20



The Bernstein’s inequality for bounding sums of independent random variables is:
Lemma B.9 (Bernstein inequality [102]). Assume Z1, · · · , Zn are n i.i.d. random variables. ∀i ∈ [n],
E[Zi] = 0 and |Zi| ≤M almost surely. Let Z =

∑n
i=1 Zi. Then,

Pr [Z > t] ≤ exp

(
− t2/2∑n

j=1 E[Z2
j ] +Mt/3

)
,∀t > 0.

B.4. Half-Space Reporting (HSR) Data Structures

Algorithm 3 Half Space Report Data Structure
1: data structure HalfSpaceReport
2: Init(S, n, d) ▷ Initialize the data structure with a set S of n points in Rd

3: Query(a, b) ▷ a, b ∈ Rd. Output the set {x ∈ S : sgn(⟨a, x⟩ − b) ≥ 0}
4: end data structure

We restate the result from [26] for solving the half-space range reporting problem. The half-space
range reporting problem is a fundamental problem in computational geometry and can be formally
defined as follows:
Definition B.10 (Half-space range reporting [26, 103]). Given a set S of n points in Rd with initializa-
tion, we have an operation Query(H): given a half-spaceH ⊂ Rd, output all of the points in S that contain
in H , i.e., S ∩H .

The time complexity of the HSR data structure is:
Theorem B.11 (Agarwal, Eppstein and Matousek [26]). Let d be a fixed constant. Let t be a parameter
between n and n⌊d/2⌋. There is a dynamic data structure for half-space reporting that uses Od,ϵ(t

1+ϵ) space
and pre-processing time, Od,ϵ(

n
t1/⌊d/2⌋

log n+ k) time per query where k is the output size and ϵ > 0 is any
fixed constant, and Od,ϵ(t

1+ϵ/n) amortized update time.

As a direct corollary, we have
Corollary B.12 (HSR data-structure time complexity [26], formal version of Corollary 3.1). Let Tinit
denote the pre-processing time to build the data structure, Tquery denote the time per query, and Tupdate time per
update. Given a set of n points in Rd, the half-space range reporting problem can be solved with the following
performances:

• Part 1. Tinit(n, d) = Od(n log n), Tquery(n, d, k) = O(dn1−1/⌊d/2⌋ + dk).

• Part 2. Tinit(n, d) = O(n⌊d/2⌋), Tquery(n, d, k) = O(d log(n) + dk).

C. ReLU Attention Prompt Prefilling
In this section, we focus on optimizing the standard ReLU attention calculation. By leveraging a
HSR data structure and assuming sparsity, the time complexity can be reduced to O(n1+4/5d).
Lemma C.1 (General full attention computation framework, formal version of Lemma 6.3). If the
following conditions hold:

• Let Q ∈ Rm×d andK,V ∈ Rn×d be defined as Definition 1.2.

• Assume each entry ofK is from GaussianN (0, σ2
k), and each entry ofQ is from GaussianN (0, σ2

q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

21



• Let hsr data structure be defined as Part 1 in Corollary B.12.

There exists an algorithm (Algorithm 2), with at least 1 − δ probability, computes full attention of Q,K, V
in O(mn1−1/⌊d/2⌋ +mn4/5) time.

Proof. For i ∈ [m], let k̃i := |S̃i,fire| denote the number of non-zero entries in i-th row of A ∈ Rm×n.

The running time for Inference procedure can be written as

Tinit(n, d) +
m∑
i=1

Tquery(n, d, k̃i) +O(d

m∑
i=1

k̃i) +O(d

m∑
i=1

k̃i)

The first term Tinit(n, d) corresponds to the initialization of the hsr data structure. Since we use the
Part 1 result from Corollary B.12, the running time for initialization is Tinit(n, d) = Od(n log n).

The second term
∑m

i=1 Tquery(n, d, k̃i) comes from the HSR query operation (Line 11). Since we use
Part 1 result from Corollary B.12, we have

m∑
i=1

Tquery(n, d, k̃i) = O(mn1−1/⌊d/2⌋d+ d

m∑
i=1

k̃i)

= O(mn1−1/⌊d/2⌋d+mn4/5d)

where the first step follows from Tquery(n, d, k̃i) = O(dn1−⌊d/2⌋ + dk̃i) (Part 1 of Corollary B.12), the
second step follows from with high probability k̃i at most n4/5 (Lemma E.3).

The third term O(
∑m

i=1 k̃i) corresponds to calculating Aj,i (Line 13). By Lemma E.3, we have the
third term is O(mn4/5).

The fourth term O(
∑m

i=1 k̃i) corresponds to calculating D−1AV . Since for i-th row of A, there are
k̃i non-zero entries. Therefore, it takes O(

∑m
i=1 k̃i) time for calculating D−1A. Therefore, it takes

O(d
∑m

i=1 k̃i) time to calculate D−1AV . By Lemma E.3, with high probability, k̃i is at most n4/5.
Therefore, we have the third term as O(mn4/5d).

To sum up, the overall running time is O(mn1−1/⌊d/2⌋d+mn4/5d).

We can now derive a more specific result for the full ReLU attention computation:
Theorem C.2 (Running time of full ReLU attention computation, formal version of Lemma 5.1). If
the following conditions hold:

• Let ReLU attention be defined as Definition 1.2.

• Assume each entry ofK is from GaussianN (0, σ2
k), and each entry ofQ is from GaussianN (0, σ2

q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Suppose we have Q,K, V ∈ Rn×d.

There exists an algorithm (Algorithm 2), with probability at least 1 − δ, takes O(n2−1/⌊d/2⌋d + n1+4/5d)
time to compute the full ReLU attention of Q,K, V .

Proof. By Lemma C.1, we have that the FullAttentionComputation data structure (Algorithm 2)
can run Inference to calculate the ReLU attention, in O(m1−⌊d/2⌋nd+mn4/5d) time.

By our assumption, we have Q ∈ Rn×d. For each calculation, we only need to call FullAttention-
Computation.Inference(K,Q, V, n, n, d) for once.

Then, we have the ReLU attention calculation run in O(n1+4/5d) time.

22



D. ReLU Attention Generation Decoding
In this section, we present a theoretical analysis of the time complexity of ReLU attention generation
using an HSR data structure.
LemmaD.1 (General attention generation framework, formal version of Lemma 6.2). If the following
conditions hold:

• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Assume each entry ofK is from GaussianN (0, σ2
k), and each entry ofQ is from GaussianN (0, σ2

q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Let hsr data structure be defined as Part 2 in Corollary B.12.

Then, there exists an algorithm (Algorithm 1), with at least 1− δ probability, has the following performance:

• Part 1. The Init procedure runs in O(n⌊d/2⌋) time.

• Part 2. For each query, the Inference procedure runs in O(mn4/5d) time.

Proof. Proof of Part 1.

The Init procedure only runs the initialization of the HSR data structure. Since we use Part 2 result
from Corollary B.12, the running time of Init procedure is Tinit(n, d) = O(n⌊d/2⌋).

Proof of Part 2.

For i ∈ [m], let k̃i := |S̃i,fire| denote the number of non-zero entries in i-th row of A ∈ Rm×n.

The running time for Inference procedure can be written as
m∑
i=1

Tquery(n, d, k̃i) +O(d

m∑
i=1

k̃i) +O(d

m∑
i=1

k̃i)

The first term
∑m

i=1 Tquery(n, d, k̃i) corresponds to the HSR query operation (Line 16). Since we use
the Part 2 result from Corollary B.12, we have

m∑
i=1

Tquery(n, d, k̃i) = O(md log n+ d

m∑
i=1

k̃i)

= O(md log n+mn4/5d)

= O(mn4/5d)

where the first step follows from Tquery(n, d, k) = O(d log n + dk) in Part 2 of Corollary B.12, the
second step follows fromwith high probability, k̃i is atmostn4/5 (LemmaE.3), the third step follows
from log n < n4/5.

The second termO(d
∑m

i=1 k̃i) corresponds to calculatingAi,j (Line 18). There arem iterations, and
in each iteration, it calculates k̃i entries of A. Then, the second term isO(d

∑m
i=1 k̃i). By Lemma E.3,

with high probability, k̃i is at most n4/5. Therefore, we have the second term as O(mn4/5d).

Similar to the proof of Lemma C.1 this term is O(mn4/5d).

To sum up, we have the overall running time for Inference procedure is O(mn4/5d).

We now derive a comprehensive sparsity analysis for the ReLU attention mechanism:

23



Theorem D.2 (Running time of full ReLU attention generation, formal version of Theorem 4.1). If
the following conditions hold:

• Let ReLU attention be defined as Definition 1.2.

• Assume each entry ofK is from GaussianN (0, σ2
k), and each entry ofQ is from GaussianN (0, σ2

q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Suppose we have KV Cache K,V ∈ Rn×d. We want to generate a m length answer, where n≫ m.

There exists an algorithm (Algorithm 1), with at least 1 − δ probability, takes O(mn4/5d) time to generate
the answer.

Proof. We make use of the AttentionGeneration data structure (Algorithm 1) in Lemma D.1.

The generation process is an auto-regressive procedure, we define the following notations for better
understanding. For i ∈ [m], let qi, ki ∈ Rd denote the query vector of the i-th iteration, respectively.
Note that qi need to attend on both K ∈ Rn×d and {k1, k2, · · · , ki−1}.

For calculating the attention between qi and K ∈ Rn×d, we just need to call AttentionGeneration
.Inference(qi, 1) for once. Therefore, the running time for this part is O(n4/5d) time.

For calculating the attention between qi and {k1, k2, · · · , ki−1, ki}, it takes O(i · d) time.

Therefore, for a single query qi, the running time for getting the attention matrix A ∈ R1×(n+i) is
(n4/5 + i) · d. Since there are only n4/5 + i non-zero entries in A, it takes n4/5 + i time to calculate
D−1A. Then, it takes (n4/5 + i) · d time to calculateD−1AV . Since i ≤ m, the total running time for
calculating attention for a single query qi is O((n4/5 +m) · d).

There are m queries in total. The running time for m queries is O(mn4/5d+m2d).

Since we have n≫ m, the overall running time for the generation is O(mn4/5d).

E. Sparsity Analysis
To begin our analysis, we first examine the application of Bernstein’s inequality to the matrix K:
Lemma E.1 (Bernstein onK). If the following conditions hold:

• Let the ReLU attention be defined as Definition 1.2.

• Let Q ∈ Rm×d andK,V ∈ Rn×d be defined as Definition 1.2.

• Let b ∈ R denote the threshold of ReLU activation, as defined in Definition 1.2.

• For i ∈ [m], let k̃i denote the number of non-zero entries in i-th row of A ∈ Rm×n.

• Assume each entry of K is from Gaussian N (0, σ2
k)

• Let x ∈ Rd denote a single row of Q ∈ Rm×d.

• Let σa = ∥x∥2σk/
√
d.

Then, we can show that, with probability at least 1−exp(−Ω(n·exp(− b2

2σ2
a
))), the number of non-zero entries

k̃i is at most 2n · exp(− b2

2σ2
a
). Namely, we have

Pr[k̃i ≤ 2n · exp(− b2

2σ2
a

)] ≥ 1− exp(−Ω(n · exp(− b2

2σ2
a

)))

24



Proof. For simplicity, for i ∈ [n], j ∈ [d], we use Ki,j ∈ R to denote the (i, j)-th entry ofK ∈ Rn×d.

Let ri ∈ {0, 1} be the indicator function of ⟨x,Ki,∗⟩. Then, we have k̃i =
∑n

j=1 rj .

Since ri is an indicator function, then we have

|ri| ≤ 1.

By assumption, we haveKi,j ∼ N (0, σ2
k).

Let σa = ∥x∥2 · σk/
√
d.

By the property of Gaussian distribution (Fact B.5), we have ⟨x,Ki,∗⟩ ∼ N (0, d · σ2
a) and

⟨x,Ki,∗⟩/
√
d ∼ N (0, σ2

a).

For any i, j ∈ [n], by Fact B.6, we have ⟨x,Ki,∗⟩ and ⟨x,Kj,∗⟩ are independent, which implies ri and
rj are independent.

By the tail bound of Gaussian distribution (Fact B.8), we have

Pr[ri = 1] = Pr[⟨x,Ki,∗⟩/
√
d ≥ b]

≤ exp(− b2

2σ2
a

),

which implies

E[ri] ≤ exp(− b2

2σ2
a

), (3)

and

E[r2i ] ≤ exp(− b2

2σ2
a

),

which implies
n∑

i=1

E[r2i ] ≤ n · exp(− b2

2σ2
a

).

Since we have k̃i =
∑n

j=1 rj , by Eq. (3), we have

E[k̃i] ≤ n · exp(− b2

2σ2
a

).

Let k0 := n · exp(− b2

2σ2
a
). By the Bernstein inequality (Lemma B.9), we have

Pr[k̃i ≥ k0 + t] ≤ exp(− t2/2

k0 + t/3
) (4)

We choose t = k0, then we have

Pr[k̃i ≥ 2k0] ≤ exp(−3k0/8)

Then, we reach our conclusion: with probability at least 1− exp(−Ω(n · exp(− b2

2σ2
a
))), the number of

non-zero entries in each row of the attention matrix A is bounded by k̃i ≤ 2n · exp(− b2

2σ2
a
).

We turn our attention to bounding ∥x∥2:
Lemma E.2 (∥x∥2 bound). If the following conditions hold:

25



• Let Q ∈ Rm×d be defined as Definition 1.2.

• Let x ∈ Rd denote a single row of Q ∈ Rm×d.

• Assume each entry of Q is from N (0, σ2
q ).

Then, we can show that, for t ≥ 0 with probability 1− exp(−t), ∥x∥2 is at most
√
3 · (d+ t)1/2 ·σq . Namely,

we have

Pr[∥x∥2 ≤
√
3 · (d+ t)1/2 · σq] ≥ 1− exp(−t).

Proof. For simplicity, we use xi ∈ R to denote the i-th entry of x.

By the assumption, we have xi ∼ N (0, σ2
q ).

Since ∥x∥22 =
∑d

i=1 x
2
i , by Chi-square tail bound (Lemma B.7), we have

Pr[∥x∥22 − dσ2
q ≥ (2

√
dt+ 2t)σ2

q ] ≤ exp(−t),

which implies

Pr[∥x∥22 ≥ (2
√
dt+ 2t+ d)σ2

q ] ≤ exp(−t). (5)

Since we have 2
√
dt ≤ d+ t, Eq. (5) implies

Pr[∥x∥22 ≥ 3(d+ t)σ2
q ] ≤ exp(−t),

which is equivalent to

Pr[∥x∥2 ≥
√
3 · (d+ t)1/2 · σq] ≤ exp(−t).

We can now present our formal sparsity analysis, which builds upon the previous lemmas:
Lemma E.3 (Sparsity analysis, formal version of Lemma 6.1). If the following conditions hold:

• Let the ReLU attention be defined as Definition 1.2.

• Let Q ∈ Rm×d andK,V ∈ Rn×d be defined as Definition 1.2.

• Let b ∈ R denote the threshold of ReLU activation, as defined in Definition 1.2.

• For i ∈ [m], let k̃i denote the number of non-zero entries in i-th row of A ∈ Rm×n.

• Assume each entry ofK is fromGaussianN (0, σ2
k), and each entry ofK is fromGaussianN (0, σ2

q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

Then, we can show that, with probability at least 1− δ, for all i ∈ [m], the number of non-zero entries of the
i-th row k̃i is at most 2n4/5.

Proof. This proof follows from applying union bound on Lemma E.1 and Lemma E.2.

By Lemma E.2, we have

Pr[∥x∥2 ≤
√
3 · (d+ t)1/2 · σq] ≥ 1− exp(−t). (6)

We choose t = d+ log(m/δ). Then, Eq. (6) implies

Pr[∥x∥2 ≤ 4 · (d+ log(m/δ))1/2 · σq] ≥ 1− exp(−(d+ log(m/δ))). (7)

26



Let σa = ∥x∥2 · σk/
√
d. By Eq.(7), we have σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

By Lemma E.1, we have

Pr[k̃i ≤ 2n · exp(− b2

2σ2
a

)] ≥ 1− exp(−Ω(n · exp(− b2

2σ2
a

))). (8)

Let b = σa ·
√
0.4 log n. Then, Eq. (8) implies

Pr[k̃i ≤ 2n4/5] ≥ 1− exp(−O(n4/5)) (9)

Since we have n≫ d, this implies

exp(−O(n4/5)) ≤ exp(−d) (10)

Taking union bound over Eq. (7) and Eq. (9), we have

Pr[k̃i ≤ 2n4/5] ≥ 1− (exp(−O(n4/5) + exp(−(d+ log(m/δ))))

= 1− (exp(−O(n4/5) + (δ/m) · exp(−d)))
≥ 1− δ/m. (11)

where the first step follows from the union bound, the second step follows from basic algebra, the
third step follows from Eq. (10).

Since x ∈ R represents a single row of Q ∈ Rm×d, we already proved that for each fixed row of A,
the k̃i is at most 2n4/5 with probability 1− δ/m.

Taking the union bound overm rows inA, then we can show that with probability 1−δ, for all rows
of A, that row’s k̃i is at most 2n4/5.

F. Running Time of Softmax Attention
In this section, we provide our results on reducing the running time of Softmax attention. We begin
with introducing our result on Softmax attention generation.
Theorem F.1 (Running time of Softmax attention generation, formal version of Theorem 4.2). Let
Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let NN(r, q,K) ⊆
[n] and the Softmax attention with index set Âttns be defined as Definition B.2. We choose the threshold b ∈ R
in Algorithm 1 such that R = NN(n4/5, q,K). Then, we can show that the Softmax attention with index set
Âttns achieves outstanding running time under the Softmax attention generation scenario: Suppose we have
KV CacheK,V ∈ Rn×d. We want to generate am length answer, wherem = Θ(1). Algorithm 1 (replacing
ReLU attention with Softmax attention) takes O(mn4/5) time to generate the answer.

Proof. The Softmax attention generation scenario can be proved by substituting the ReLU attention
Attnr (Definition 1.2) with Softmax attention with index set Âttns (Definition B.2) in Algorithm 1
and Theorem 4.1.

Then, we move on to our result on Softmax full attention computation.
Theorem F.2 (Running time of Softmax full attention computation, formal version of Theorem 5.2).
Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition B.2. We choose
the threshold b ∈ R in Algorithm 2 such that R = NN(n4/5, q,K). Then, we can show that the Softmax
attention with index set Âttns achieves outstanding running time under full Softmax attention computation
scenario: Suppose we havem = Θ(n). Algorithm 2 (replacing ReLU attention with Softmax attention) takes
O(n2−1/⌊d/2⌋d+ n1+4/5d) time to calculate the attention output.

27



Proof. The Softmax full attention computation scenario can be proved by substituting the ReLU
attention Attnr (Definition 1.2) with Softmax attention with index set Âttns (Definition B.2) in Al-
gorithm 2 and Theorem 5.1.

G. Error Analysis of Softmax Attention
In this section, we provide an error analysis of the Softmax attention mechanism, deriving error
bounds for the general case and a specific case with the massive activation property.

The following lemmas establish error bounds for Softmax attention when using index sets, formal-
izing the approximation error in attention computation.
Lemma G.1 ( General error analysis of Softmax attention with index set, formal version of
Lemma 6.5 ). If the following conditions hold:

• Let Q ∈ Rm×d,K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1.

• Let q ∈ Rd denote a single row of Q ∈ Rm×d.

• Let α, α and Âttns be defined as Definition B.2.

Then we have

∥Attns(q,K, V )− Âttns(q,K, V )∥∞ ≤
2α

α
· ∥V ∥∞.

Proof. Recall that R = [n] \ R and K̂ = KR ∈ Rr×d and V̂ = VR ∈ Rr×d and K = KR ∈ R(n−r)×d

and V = VR ∈ R(n−r)×d as defined in Definition B.1. Also, we have û = exp(qK̂⊤) ∈ Rr and
α̂ = ⟨û,1r⟩ ∈ R and u = exp(qK

⊤
) ∈ Rn−r and α = ⟨u,1n−r⟩ ∈ R as defined in Definition B.2.

Then, we have

∥Attns(q,K, V )− Âttns(q,K, V )∥∞
= ∥(α̂+ α)−1(ûV̂ + uV )− α̂−1ûV̂ ∥∞
≤ ∥((α̂+ α)−1 − α̂−1)ûV̂ ∥∞ + ∥(α̂+ α)−1uV ∥∞
≤ |(α̂+ α)−1 − α̂−1| · ∥û∥1 · ∥V̂ ∥∞ + (α̂+ α)−1 · ∥u∥1 · ∥V ∥∞
= (α̂−1 − (α̂+ α)−1) · α̂ · ∥V̂ ∥∞ + (α̂+ α)−1 · α · ∥V ∥∞
≤ (α̂−1 − (α̂+ α)−1) · α̂ · ∥V ∥∞ + (α̂+ α)−1 · α · ∥V ∥∞
= 2(α̂+ α)−1 · α · ∥V ∥∞
= 2α−1 · α · ∥V ∥∞,

where the first step is by Definition B.2, the second step is by triangle inequality, the third step is
by ∥uV ∥∞ ≤ ∥u∥1 · ∥V ∥∞ for any vector u and conformable matrix V , and the fourth step is by
definition of α̂ and α, i.e., α̂ = ⟨û,1r⟩ = ∥û∥1 (note that each entry of û is positive), the fifth step
is by max{∥V̂ ∥∞, ∥V ∥∞} = ∥V ∥∞, the sixth step in by simple calculation and the last step is by
α̂+ α = α.

Building on this, we now present a more specific error analysis incorporating the massive activation
property:
Theorem G.2 (Error analysis of Softmax attention with index set, formal version of Theorem 4.3).
If the following conditions hold:

• Let Q ∈ Rm×d,K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1.

• Let q ∈ Rd denote a single row of Q ∈ Rm×d.

28



• Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0.

• Let the Softmax attention with index set Âttns be defined as Definition B.2.

• Let NN(r, q,K) ⊆ [n] denote the indices of top-r entries of qK.

• Let R = NN(nγ , q,K) ⊆ [n], where |R| = nγ .

• Assume the query q and key cache K have (γ, β1, β2) massive activation property.

Then, we can show that

∥Âttns(q,K, V )− Attns(q,K, V )∥∞ ≤
2∥V ∥∞

nγ+(β1−β2)·∥q∥2−1
.

Proof. Let α, α, α̂ be defined in Definition B.2. By Lemma G.1, we have

∥Attns(q,K, V )− Âttns(q,K, V )∥∞ ≤
2α

α
· ∥V ∥∞.

By Definition B.3, we have

α̂ =
∑

i∈NN(nγ ,q,K)

exp(⟨q,Ki⟩)

≥
∑

i∈NN(nγ ,q,K)

exp(∥q∥2β1 log(n))

= nγ+β1·∥q∥2 ,

where the first step is by Definition of α̂, the second step is by Definition B.3 and Jensen inequality,
and the last step is by simple calculation.

We also have

α =
∑

i∈[n]\NN(nγ ,q,K)

exp(⟨q,Ki⟩)

≤
∑

i∈[n]\NN(nγ ,q,K)

exp(∥q∥2β2 log(n))

≤ n1+β2·∥q∥2 ,

where the first step is by Definition of α, the second step is by Definition B.3, and the last step is by
simple calculation.

Finally, we finish the proof by the fact α̂+ α = α.

29


	.  Introduction
	.  Related Work
	.  Attention Acceleration for Long Context Input
	.  ReLU Attention
	.  Half-Space Reporting (HSR) Data Structure

	.  Preliminary
	.  Notations
	.  Half-Space Reporting (HSR) Data Structure

	.  Main Results on Generation Decoding
	.  Extension on Prompt Prefilling
	.  Technical Overview
	.  Sparsity Analysis of ReLU Attention
	.  General Attention Frameworks
	.  Error Analysis of Softmax Attention with Top- Indices

	.  Experiments
	.  Discussion and Future Work
	.  Conclusion
	.  Limitations
	.  Full Background and Definition
	.  Softmax Attention with Index Set
	.  Massive Activation
	.  Probability Tools
	.  Half-Space Reporting (HSR) Data Structures

	.  ReLU Attention Prompt Prefilling
	.  ReLU Attention Generation Decoding
	.  Sparsity Analysis
	.  Running Time of Softmax Attention
	.  Error Analysis of Softmax Attention

