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ABSTRACT

We study online reinforcement learning (RL) in non-stationary environments,
where a time-varying exogenous context process affects the environment
dynamics. Online RL is challenging in such environments due to “catastrophic
forgetting” (CF). The agent tends to forget prior knowledge as it trains on new
experiences. Prior approaches to mitigate this issue assume task labels (which
are often not available in practice), employ brittle regularization heuristics
or use off-policy methods that suffer from instability and poor performance.

We present Locally Constrained Policy Optimization (LCPO), an online RL
approach that combats CF by anchoring policy outputs on old experiences
while optimizing the return on current experiences. To perform this anchoring,
LCPO locally constrains policy optimization using samples from experiences
that lie outside of the current context distribution. We evaluate LCPO in
Mujoco, classic control and computer systems environments with a variety
of synthetic and real context traces, and find that it outperforms a variety
of baselines in the non-stationary setting, while achieving results on-par with
a “prescient” agent trained offline across all context traces.

1 INTRODUCTION

— Those who cannot remember the past are condemned to repeat it. (George Santayana, The
Life of Reason, 1905)

Reinforcement Learning (RL) has seen success in many domains (Mao et al. 2017 [Haarnojal
et al 2018a} [Mao et al. [2019b} [Marcus et al. [2019; [Zhu et al.l [2020; [Haydari & Yilmaz|
2022), but real-world deployments have been rare. A major hurdle has been the gap between
simulation and reality, where the environment simulators do not match the real-world
dynamics. Thus, recent work has turned to applying RL in an online fashion, i.e. continuously
training and using an agent in a live environment (Zhang et al.| [2021} |Gu et all [2021]).

While online RL is difficult in and of itself, it is particularly challenging in non-stationary
environments (also known as continual RL (Khetarpal et al.,[2020))), where the characteristics of
the environment change over time. A key challenge is Catastrophic Forgetting (CF) (McCloskey
. An agent based on function approximators like Neural Networks (NNs) tends
to forget its past knowledge when training sequentially on new non-stationary data. On-policy
RL algorithms (Sutton & Barto| [2018) are particularly vulnerable to CF in non-stationary
environments, since these methods cannot retrain on stale data from prior experiences.

In this paper, we consider problems where the source of the non-stationarity is an observed exoge-
nous context process that varies over time and exposes the agent to different environment dynam-
ics. Such context-driven environments (Sinclair et al.l 2023;|Mao et al2018;|Zhang et al.| 2023}
[Dietterich et al} 2018 [Pan et al [2022)) appear in a variety of applications. Examples include
computer systems subject to incoming workloads (Mao et al.L 2018)), locomotion in environments
with varying terrains and obstacles (Heess et al.| 2017b), robots subject to external forces (Pinto
et al. , and more. In contrast to most prior work (Alegre et al.| 2021} |(Chandak ct al.|
2020)), we do not restrict the context process to be discrete, piece-wise stationary or Markov.

Broadly speaking, there are three existing approaches to mitigate CF in online learning. One
class of techniques are task-based (Rusu et all 2016} Kirkpatrick et al.||2017; |[Schwarz et al.l
[2018; [Farajtabar et al.| |2019; |Zeng et al.[[2019). They assume explicit task labels that identify
the different context distributions which the agent encounters over time. Task labels make
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it easier to prevent the training for one context from affecting knowledge learned for other
contexts. In settings where task labels (or boundaries) are not available, a few proposals try to
infer the task labels via self-supervised (Nagabandi et al.l [2019b]) or Change-Point Detection
(CPD) approaches (Padakandla et al.||2020; [Alegre et all|2021)). These techniques, however,
are brittle when the context processes are difficult to separate and task boundaries are not
pronounced (Hamadanian et al| 2022). Our experiments show that erroneous task labels
lead to poorly performing agents in such environments (

A second category of approaches avoid task labels by approximating task-based methods with
heuristics (Schwarz et al.| [2018} |(Chaudhry et al.| 2018} |[Kaplanis et al 2018} [Woo et al.l [2022)).
However, these heuristics are based on brittle assumptions about the nature and cadence
of non-stationarity. For example, one approach implicitly assumes each episode is a distinct
task, and uses a window of past N episode to regularize learning (Woo et al}[2022)). These
assumptlons are rarely met and would hkdy lead to poor performance in practice, as we
observe in our analysis and evaluations(§ and . D 2| and in the Appendix).

The third category of approaches employ rehearsal, i.e., learning using past or generated data.
For example, off-policy learning (Sutton & Bartol |2018|) makes it possible to retrain on past
data These techniques (e.g., Experience Replay (Mnih et al[2013), CLEAR (Rolnick et al}
, etc.) store prior experience data in a buffer and sample from the buffer randomly to
train. Not only does this improve sample complexity, it sidesteps the pitfalls of sequential
learning and prevents CF (Rolnick et all |2019). However, off-policy methods come at the
cost of increased hyper-parameter sensitivity and unstable training (Duan et al., |2016;
let al.| [2016; [Haarnoja et al.| [2018b)). This brittleness is particularly catastrophic in an online
setting, as we also observe in our experiments (

We present LCPO (, an on-policy RL algorithm that “anchors” policy outputs for old
contexts while optimizing for the current context. Unlike prior work, LCPO does not rely
on task labels and only requires an Out-of-Distribution (OOD) detector, i.e., a function that
recognizes old experiences that occurred in a sufficiently different context than the current one.
LCPO malntains a bounded buffer of past experiences, similar to off-policy methods (Mnih|
F . But as an on-policy approach, LCPO does not use stale experiences to optimize

olicy. Instead it uses past data to constrain the policy optimization on fresh data, such
that the agent’s behav1or does not change in other contexts.

We evaluate LCPO on several environments with real and synthetlc contexts ( , and show that
it outperforms a variety of baselines across mentioned categories in the online 1earmng setting.
We also compare against a “prescient agent” that is trained offline on the entire context distri-
bution prior to deployment. The prescient agent does not suffer from CF. Among all the online
methods, LCPO is the closest to this idealized baseline. Our ablation results show that LCPO
is robust to variations in the OOD detector’s thresholds and works well with small experience
buffer sizes. LCPO’s source code is available online at https://github.com/LCPO-RL/LCPO.

2 PRELIMINARIES

Notation. We consider online reinforcement learning in a non-stationary context-driven
Markov Decision Process (MDP), where the context is observed (only up to the current time step
t) and exogenous. Formally, at time step ¢ the environment has state s; €S and context z; € Z.
The agent takes action a; € A based on the observed state s; and context z;, a; =m(s¢,2¢), and
receives feedback in the form of a scalar reward 1y =7(s¢,2¢,a¢), where 7(-,-,1) :Sx Zx A—Ris
the reward function. The environment’s state, the context, and the agent’s action determine the
next state, s;y1, according to a transition kernel, T'(s;+1]8¢,2¢,a¢). The context z; is an indepen-
dent stochastic process, unaffected by states s; or actions a;. Finally, dy defines the distribution
over initial states (sg). This model is fully defined by the tuple M =(S,Z,A,{z}2,,T,do,r).

Non-stationary contexts. The non-stationary context z={z;}{2; impacts the environ-
ment dynamics and implies a non-stationary environment. We assume the context process can
change arbitrarily: e.g., it can follow a predictable pattern, be i.i.d samples from some distri-
bution, be a discrete process or a multi-dimensional continuous process, experience smooth or
dramatic shifts, be piece-wise stationary, or include any mixture of the above. We have no prior
knowledge of the context process, the environment dynamics, or access to an offline simulator.
Examples of (observed) context processes include market demand in a supply chain system,
incoming request workloads in virtual machine allocation problem, customer distributions in
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airline revenue management (Sinclair et al.|[2023]), traffic information in vehicular networks
et all[2017), terrain profiles in a locomotion task (Heess et al [2017a)), network traffic for video
streaming (Mao et al.||2020)) and congestion control (Winstein & Balakrishnanl 2013]), etc.

Goal. We seek good long-term performance. Formally, for a given policy 7:S x Z — A and

context process z = {z: }$2, we define the lifelong return as J(w,z) = limt%ooz;‘le 7 for an
infinite horizon MDP. Similarly, for finite horizon MDPs of length H where episode i is subject
to context traces z; = (2m.i,2H.i+1,--,2H.(i+1)—1) and has an episodic return of R; :Zfilrt(l),

we define the lifelong return as J(m,2) =lim; 00> 1, £i For a policy sequence IT={m, }32,,
e.g., the sequence of policies resulting from a continual RL algorithm, we can define the lifelong

return J(I1,z) similarly.

Online RL. In most RL settings, a policy is trained in a separate training phase. During
testing, the policy is fixed and does not change. By contrast, online learning starts with the test
phase, and the policy must reach and maintain optimality within this test phase. An important
constraint in the online setting is that the agent gets to experience each interaction only once.
There is no way to revisit past interactions and try a different action in the same context. This is
a key distinction with training in a separate offline phase, such as in meta-learning
, where the agent can explore the same conditions many times.

Note that the policy that maximizes lifelong return 7* = argmax, J(7,z) has to be prescient,
i.e., it needs to have upfront knowledge of the context process z. Since an online agent
is causal and has only observed context values up to the current time step ¢, it can never
perform as well as this prescient policy. Therefore, in general online RL agents will have a
gap with prescient policies in terms of lifelong return. In certain special cases the online RL
can asymptotically reach the prescient policy, e.g., when the context process is Markovian the
entire context-driven MDP collapses to a standard MDP with a state §; =< s¢,2; >. However,
we do not intend to limit the context process in any way, and our aim it to minimize the gap
between the online and prescient agents for arbitrary context processes.

3 RELATED WORK

Non-stationary RL. Non-stationary RL is a family of sub-problems, such as CF, latent
context inference, meta-learning, etc (Khetarpal et al.| [2020)). In this work we focus on CF,
and highlight the differences of CF with other well-known non-stationary RL problems below.
Then, we will explore related work for CF in Machine Learning (ML) and RL. We highlight
other lines of work in §A]in the Appendix.

Latent Context Inference. These works consider a context-driven MDP where the context
z¢ is unobserved. The goal is to infer an estimated context Z; from other signals, such as transi-
tion functions, reward functions, etc (Hallak et al.|, [2015 |Zintgraf et al., [2019} [Xie et al.| 2020}
Caccia et al.l 2020} [Lee et all 2020} [He et al.] [2020F [Poiani et al.| 2021 [Chen et al.l 2022} [Huang]
et al.|[2022F |Feng et al.| [2022;|Ren et al.| 2022 |Woo et al.|[2022;|Bing et al.| [2022;|Luo et al.| {2022
Lee et al.,[2023). Once inferred, a traditional RL algorithm such as Soft Actor Critic (SAC

learns a policy 7(+|s¢,2;) from the state and inferred context, and is typically compared to an
‘upper-bound policy’ that observes the true context 7 (-|s¢,2¢ ). These works aim to recover the un-
observed context, while we focus on CF after observing the true/recovered context. In fact, the
‘upper-bound’ policies in these works are baselines we compare to in §] Combining LCPO with
this line of work to solve CF in environments with latent context is an interesting future work.

Catastrophic Forgetting. Three general techniques exist for mitigating CF in ML
et all 2019)); (1) regularizing the optimization to avoid memory loss during sequential train-
ing (Kirkpatrick et al} [2017; [Zenke et al| [2017; |[Farajtabar et al.| [2019; [Lopez-Paz & Ranzatol,
[2022]); (2) training separate parameters per task, and expanding/shrinking parameters as
necessary (Rusu et al.| 2016} [Shmelkov et al.l [2017}|Li et al.|[2019); (3) rehearsal, i.e. retraining
on original data or generative batches (Shin et al] 2017 [Isele & Cosgunl [2018} [Atkinson et al.|
[2021)); or combinations of these techniques ([Schwarz et al[[2018[ [Aljundi et al][2019).

Regularization techniques such as Elastic Weight Consolidation (EWC) and Orthogonal
Gradient Descent (OGD) require task labels. Approximations have been proposed for
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problems without task labels (Schwarz et al.| 2018 or boundaries (Woo et al.|[2022). Kaplanis|
(2018) use biologically inspired models of brain synapses to regularize networks.

Another class of approaches aim to infer task labels, by learning the transition dynamics of
the MDP, and detecting a new environment when a surprising sample is observed with respect
to the learned model (Doya et al.} 2002} |da Silva et al.| 2006} |[Padakandla et al.l 2020} |Alegre|
et al.| . The inferred labels are often used to train separate policies/models to mitigate

F. These methods are effective when MDP transitions are abrupt and have well-defined
boundaries, but are brittle and perform poorly in realistic environments with noisy and
hard-to-distinguish non-stationarities (Hamadanian et al.| [2022]).

For rehearsal, we can use learned models of the MDP to replay past experiences (Xu et al.| 2020
[Lee et al.|[2020; [Pong et al.| 2020 Huang et al}[2021}|Janner et al.|2021)). An alternative type o

rehearsal is off-policy training (Haarnoja et al.,|2018b;|van Hasselt et al.l2016) (e.g., Experience
Replay (Mnih et al.}|2013))), which can train on stale data, naturally circumvent sequential learn-
ing and avoid CF. However, off-policy RL is empirically unstable and sensitive to hyperparame-
ters due to bootstrapping and function approximation (Sutton & Barto,2018)), and is often out-
performed by on-policy algorithms in online settings (Duan et al.[[2016[Gu et al|[2016;[Haarnojal
2018Db). CLEAR (Rolnick et al|[2019) is an off-policy RL algorithm explicitly designed to
overcome CF with fast adaptations. Similarly, PT-DQN (Anand & Precup|2023) learns a perma-
nent Q-network to remember past tasks while learning a transient Q-network for fast adaptation.

Constrained Optimization. LCPO’s constrained optimization formulation is structurally
similar to Trust Region Policy Optimization (TRPO) (Schulman et al.| |2015)), despite our
problem being different than TRPO.

4 LOCALLY-CONSTRAINED PoOLICY OPTIMIZATION

Our goal is to learn a policy 7(+,-) that takes action a; ~7(s¢,2¢), in a context-driven MDP
characterized by an exogenous non-stationary context process.

4.1 ILLUSTRATIVE EXAMPLE

Consider a simple environment with a discrete context. In this grid-world problem depicted
in Figure[l] the agent can move in 4 directions in a 2D grid, and incurs a base negative reward
of —1 per step until it reaches the terminal exit state (no penalty in the last step) or fails
to within 20 steps. The grid can be in two modes; 1) ‘No Trap’ mode, where the center cell
is empty, and 2) ‘Trap Active’ mode, where walking into the center cell incurs a reward of
—10. When in ‘No Trap’ mode, the optimal path passes through the center cell, and the best
episodic return is —3. In the ‘Trap Active’ mode, the center cell’s penalty forces the optimal
path to go left at the blue cell for an optimal episodic return of —5. This environment mode
is our discrete context and the source of non-stationarity in this simple example. The agent
observes its current location and the context, i.e. whether the trap is on the grid (z;=1) or
not (z; =0) in every episode (beginning from the start square).

Advantage Actor Critic (A2C). We use the A2C algorithm to train a policy for this
environment, while its context changes every so often. Figure [Lddepicts the episodic return
across time and Figures [Id] and [T¢] depict the total variation distance between the optimal
and learned policy when the policy input is ‘No Trap’ mode (Figure or ‘Trap Active’ mode
(Figure. This distance represents how close the learned policy is to the optimal in either
context. The agent initially attains optimality for the ‘No Trap’ mode, but once the context
changes at epoch 4K it immediately forgets it. Note that during epochs 4K-16K, the A2C
agent is only trained on samples from the ‘Trap Active’ mode, and it’s output for the ‘No
Trap’ mode is drifting. When the context changes back to the ‘No Trap’ mode at epoch 16K,
the agent behaves sub-optimally (epochs 16K-18K) before relearning. Figure shows that
A2C also forgets the optimal ‘Trap Active’ policy during the final 4K epochs.

Key Insight. Since the policy observes the current context z¢, it should be able to distinguish
between different environment modes. Therefore, if the agent could surgically modify its policy
on the current state-context pairs 7(-|st,2:) and leave outputs for other state-context pairs
m(-|s¢,2’ # 2¢) unchanged, it would eventually learn a good policy for all contexts. In fact, tabu-
lar RL achieves this trivially in this finite discrete state-context space. To illustrate, we apply a
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Figure 1: A 3x3 grid-world problem with two modes and the optimal path visualized in blue.
(a) In the ‘No Trap’ mode, the center square is safe to pass through. (b) In the ‘Trap‘ mode,
the agent must avoid the trap with a longer path. (c) Episodic return across time in the grid
environment. (d and e) Total variation distance between learned and optimal policy outputs
for the (d) ‘No Trap’ mode, and the (e) ‘Trap Active’ mode at the blue cell (lower is better).
Tabular A2C and LCPO remember the optimal decision for either context during shaded
regions and instantly attain optimal returns when the environment switches.

tabular version of A2C: i.e., the policy and value networks are replaced with tables with separate
rows for each state-context pair (18 total rows). Figuresanddemonstrate that the tabular
RL policy for each context remains unchanged when it does not actively interact with that
context. This is because when an experience is used to update the table, it only updates the row
pertaining to its own state and context, and does not change rows belonging to other contexts.
Under sufficient conditions, tabular RL can provably converge to the optimal policy for such en-
vironments. Due to space constraints, we state the theorem and its proof in §Bin the Appendix.

Can we achieve a similar behavior with neural network function approximators? In general, up-
dating a neural network (say, a policy network) for certain state-context pairs will change the out-
put for all state-context pairs, leading to CF. But if we could somehow “anchor” the output of the
neural network on distinct prior state-context pairs (analogous to the cells in the tabular setting)
while we update the relevant state-context pairs, then the neural network would not “forget”.

LCPO. Achieving the aforementioned anchoring does not require task labels. We only
need to know if two contexts z; and z; are different. In particular, let the batch of recent
environment interactions < s¢,2¢,a¢,r+ > be B,. and let all previous interactions (from possibly
different contexts) be B,. Suppose we have a difference detector W (B,,B,.) that can be used
to sample experiences from B, that are not from the same distribution as the samples in the
recent batch B,, i.e., the difference detector provides out-of-distribution (OOD) samples with
respect to B,.. Then, when optimizing the policy for the current batch B,., we can constrain the
policy’s output on experiences sampled via W (B,,B,) to not change (see for details). We
name this approach Locally Constrained Policy Optimization (LCPO). The result for LCPO is
presented in Figures|ld|land While it does not retain its policy as perfectly as tabular A2C,
it does sufficiently well to recover near instantaneously upon the second switch at epoch 16K.

Change-Point Detection (CPD) vs. OOD Detection. CPD (and task labeling in
general) requires stronger assumptions than OOD detection. The context process has to be
piece-wise stationary to infer task labels and context changes must happen infrequently to
be detectable. Furthermore, online CPD is sensitive to outliers. In contrast, OOD is akin
to defining a distance metric on the context process and can be well-defined on any context
process. Consider the context process shown in Figure[2 We run this context process through
a CPD algorithm (Alegre et al.| [2021) for two different sensitivity factors o,,pcq, and represent
each detected change-point with a red vertical line. A slight increase in sensitivity leads
to 34 detected change-points, and these change-points are also not reasonable. There is no
obvious way to assign task labels for this smooth process and there aren’t clearly separated
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Figure 2: A sample context process z;, and detected change-points at two thresholds. Teasing
meaningful task boundaries is difficult for this process, but defining an OOD metric is intuitive.

segments that can be defined as tasks. However, an intuitive OOD detection method is
testing if the distance between z; and z; is larger than some threshold, i.e., |z; — z;| > 1.
Altogether, OOD is considerably easier in practice compared to CPD. Note that although
the grid-world example — and discrete context environments in general — is a good fit for CPD,
this environment was purposefully simple to explain the insight behind LCPO.

4.2 METHODOLOGY

Consider a parameterized policy my with parameters 6. Our task is to choose a direction
for changing 6 such that it improves the expected return on the most recent batch of
experiences B,., while the policy is ‘anchored’ on prior samples with sufficiently distinct
context distributions, W(B,,B;).

Algorithm 1 LCPO Training

1: initialize parameter vectors 0y, empty buffer B,
2: for each iteration do

3: B, <+ Sample a mini-batch of new interactions
4. S.«W(B,,B,)

5: U(—V@ﬁtot(e B )|90
6.
7
8

if S, 1s not em%ty then

g( VQDKL( ()/(105 )‘90)|90
: vc<—conjgrad( g(+))
9: while 0,4+ v. violates constraints do
10: Ve ¢V /2
11: 0« 0p+v.
12:  else
13: 0o« 6y+v

14:  By+ B,+B,

In supervised learning, this anchoring is straightforward to perform, e.g. by adding a
regularization loss that directs the neural network to output the ground truth labels for OOD
samples (Caruanal [1997)). In the case of an RL policy, however, we do not know the ground
truth (optimal actions) for anchoring the policy output. Moreover, using the actions we took
in prior contexts as the ground truth is not possible, since the policy may have not converged
at those times. Anchoring to those actions may cause the policy to relearn suboptimal actions
from an earlier period in training. To avoid these problems, LCPO solves a constrained
optimization problem that forces the policy to not change for OOD samples. Formally, we
consider the following optimization problem:

mein »Ctot (07B'r‘) é»CPG (07Br) +£e (ngr)

(1)
s.t. Dk, (GO,G;W(BQ,BT)) < Canchor
We use the standard definition of policy gradient loss, that optimizes a policy to maximize
returns ((Schulman et al.l 2018} [Mnih et al.l [2016; [Sutton & Barto} [2018)):

Lpc(0;B,)=E;,~B, lz v Tt] (2)

We use automatic entropy regularization (Haarnoja et all 2018c)), to react to and explore
in response to novel contexts. The learnable parameter 6. is adapted such that the entropy
coefficient is e’ , and the entropy remains close to a target entropy H. This worked well in
our experiments but LCPO could use any exploration method designed for non-stationary
context-driven environments.

L(0;B,)= eeeEshzt’\‘Br7atN7\' [logm(at|st,zt)] (3)
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We use KL-divergence as a measure of policy change, and for simplicity we use
Dk (QOaH;W(BaaBT‘)) as a shorthand for ES,ZNW(B(“BT-) [DKL (7‘('90 (872) | ‘7‘-9 (S,Z))] Here, 00
denotes the current policy parameters, and we are solving the optimization over 6 to determine
the new policy parameters.

Buffer Management. To avoid storing all interactions in B, we use reservoir sampling
, , where we randomly replace old interactions with new ones with probability 7,

ere ny is the buffer size and ng is the total interactions thus far. Reservoir sampling
guarantees that the interactions in the buffer are a uniformly random subset of the full set
of interactions. For a pseudo-code see §C.I]in the Appendix.

Difference detector. To realize W(B,, B,), we treat it as an OOD detection task. A
variety of methods can be used in practice (§5)), e.g., we can compute the Mahalanobis
distance (Mahalanobis| 2018)) — the normalized distance of each experience’s context with
respect to the average context in B, — and deem any distance above a certain threshold to
be OOD. To avoid a high computational overhead when sampling from W (B,,B; ), we sample
a larger batch from B,, and keep the state-context pairs that are OOD with respect to B,.
If not enough different samples exist, we do not apply the constraint for that update. For

a pseudo-code and further implementation details about the OOD detector, see and

Solving the constrained optimization. To solve this constrained optimization, we
approximate the optimization goal and constraint, and calculate a search direction accordingl

pseudocode in Algorithm. Our problem is structurally similar to TRPO
2015)), though the constraint is quite different. Similar to TRPO, we model the optimization
goal with a first-order approximation, i.e. Ly(6;) = Lo+ (0 —00)TVoLiot(05°)]6,, and the
constraint with a second order approximation D1, (0o,0;:) = (0—00)T V2D 1.(00,0;)]g, (0 —00).
The optimization problem can therefore be written as

mln (0—00)Tv

. (4)
(0 00) A(H_HO) < Canchor
where A;; = 89 507 DKL(90,9 W(BQ,B ), and v=VyLs(0;)]g,- This optimization problem

can be solved using the conjugate gradient method followed by a line search (Schulman et al
[2015} [Achiam et al.|[2017)).

Bounding policy change. The above formulation does not bound policy change on the
current context, which could destabilize learning. We could add a second constraint, i.e.
TRPO’s constraint, Dk, (00,0;B;) < Crecent (n0te that this constraint is different from that
in Equation , as the samples come from B, instead of W (B,,B,)). However, having two
second order constraints is computationally expensive. Instead, we guarantee the TRPO
constraint in the line search phase (lines 9-10 in Algorithm, where we repeatedly decrease
the gradient update size until both constraints are met.

5 EVALUATION

We evaluate LCPO across six environments: four from Gymnasium Mujoco (Towers et al.[2023]),
one from Gymnasium Classic Control (Towers et al.|[2023), and a straggler mitigation task from
computer systems (Mao et al.| 2019af [Hamadanian et al.[|2022)). These environments are subject
to synthetic or real context processes that affect their dynamics. Our experiments aim to answer
the following questions: (1) How does LCPO compare to baselines, and can it perform as well
as the pre-trained prescient policies (§5.1)? (2) How does the accuracy of the OOD sampler
W (") affect LCPO (7 (3) How does the maximum buffer size ny, o| affect LCPO
(§5.3)7 We include further ablations of LCPO and baselines in Appendices §E h and

Baselines We consider the following approaches for comparison: Regularization-based:
1) Online EWC (Kirkpatrick et al.[[2017;|Chaudhry et al.l|2018}|Schwarz et al.|[2018)), (2) Slidin
OGD (Farajtabar et al.[[2019;[Woo et al[[2022)) and (3) Benna-Fusi DQN (BFQDN) (Kaplanis
et al.| 2018]), Task Inference: (4) Model-Based Changepoint Detection (MBCD) (|Alegre
et al. H 'Rehearsal: (5) Model-Based Policy Optimization (MBPO) (Janner et al.|[2021)),
E R Rolnick et al} [2019), (7) PT-DQN (Anand & Precupl [2023), (8) SAC (Haarnojal

Lt al} [2018b)) and (9) Double Deep Q Network (DDQN) (Hasselt et al. |. |201()|) On-policy
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RL: (10) A2C (Mnih et al| [2016) and (11) TRPO (single-path) (Schulman et al 2015)),
both using Generalized Advantage Estimation (GAE) (Schulman et al.[[2018]), Prescient
RL: (12) as described in §2] the best of policies trained with A2C (Mnih et al[[2016), TRPO
(single-path) (Schulman et al.,[2015), DDQN (Hasselt et al, |2016|) and SAC (Haarnoja et al.|
2018b)). For more details about these baselines, refer to §D|in the Appendix

Experiment Setup. We use 25 random seeds for gymnasium (5 for slower schemes) and 10
random seeds for the straggler mitigation experiments, and use the same hyperparameters for
LCPO in all environments and contexts. Gym environments were modified to accept discrete ac-
tion space policies, as even prescient policies struggled to learn stable continuous space policies in
the presence of contexts (See §F.3|). Hyperparameters and neural network structures are noted in
Appendices §F.4land §G.2] These experiments were conducted on a machine with 2 AMD EPYC
7763 CPUs (256 logical cores) and 512 GiB of RAM. With 32 concurrent runs, experiments
finished in ~1082 hours. This figure does not include runtime devoted to tuning the baselines.

Environment and Contexts. We consider six environments: Modified ver-
sions of Pendulum-vl from the classic control environments, InvertedPendulum-v4,
InvertedDoublePendulum-v4, Hopper-v4 and Reacher-v4 from the Mujoco environments (Tow-
2023)), and a straggler mitigation environment (Hamadanian et al][2022). In the
gym environments, the context is an exogenous “wind” process that creates external force on
joints and affects movements. We append the external wind vectors from the last 3 time-steps
to the observation, since the agent cannot observe the external context that is going to be
applied in the next step, and a history of prior steps helps with the prediction. We create
4 synthetic context sequences with the Ornstein—Uhlenbeck process (Uhlenbeck & Ornstein|
, piece-wise Gaussian models, or hand-crafted signals with additive noise. These context
processes cover smooth, sudden, stochastic, and predictable transitions at short horizons.
All context traces are visualized in Figure[7]in the Appendix. Context traces 1 and 2 are
20 million, and context traces 3 and 4 are 8 million steps long. All baselines were allowed
a ‘warm-up’ period of 6 million time steps, and episodes were truncated at 200 steps. For the
straggler mitigation environments, we use workloads provided by the authors in
, that are from a production web framework cluster at AnonCo, collected from
a single day in February 2018. These workloads are visualized in Figure [8bin the appendix.

OOD detection. We set the buffer size ny to 1% of all samples, which is n, <200K. To
sample OOD state-context pairs W(B,,B,), we use distance metrics and thresholds. For gym
environments where the context is a wind process, we use L2 distance, i.e. if Wy, =E,~p, [w]
is the average wind vector observed in the recent batch B,, we sample a minibatch of states
in B, where W(B,,B;) ={w;|Yw; € B, : ||w; —wWy||2 >0c}. There exist domain-specific models
for workload distributions in the straggler mitigation environment, but we used Mahalanobis
distance as it is a well-accepted and general approach for outlier detection in prior work (Lee
let al.| 2018 [Podolskiy et al.||2021). Concretely, we fit a Gaussian multivariate model to the
recent batch B,., and report a minibatch of states in B, with a Mahalanobis distance further
than o from this distribution (see §C.2|in the Appendix for more details).

5.1 RESULTS

To evaluate across different gymnasium environments and traces, we score agents with
Normalized Return, i.e., for each environment and context process we report a scaled score
function where 0 and 1 are the minimum and maximum lifelong return across all agents. We
prefer agents with higher scores over different environments and traces. Figure [3a] provides
a summary of all gymnasium experiments (full details in Table [5|in the Appendix). LCPO
maintains a lead over baselines, is close to the best-performing prescient policy, all while
learning online and sequentially. We present a detailed analysis of baselines’ performance
in §D] and we summarize these findings below. We also report the wallclock time for each
scheme in §F.2]in the appendix; LCPO is ~1.5X as demanding as A2C.

Online EWC and Sliding OGD employ heuristics to circumvent the necessity of task labels
in the original techniques. Conceptually, they implicitly assume past episodes are separate
“tasks”. Empirically these heuristics are not successful at solving CF. As for BFDQN,
note that while the architecture was successful in simple environments, it failed
with more complex and challenging ones. In our experience, this architecture did not provide
any benefits compared to vanilla DDQN.
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Figure 3: CDF of normalized lifelong returns, where 0/1 denote the lowest /highest returns
among agents. Shaded regions denote 95% confidence intervals. (a) LCPO outperforms all
online agents, and remains the closest to prescient policies. (b) LCPO is affected by the OOD
threshold o, but still maintains its lead over baselines.

MBCD struggles to tease out meaningful task boundaries. In some experiments, it launches
anywhere between 3 to 7 policies just by changing the random seed. This observation is in
line with MBCD’s sensitivity in and prior work (Hamadanian et al.| [2022]).

MBPO performed poorly, even though we verified that its learned model of the environment
is highly accurate. CLEAR (Rolnick et al.| [2019) and PT-DQN (Anand & Precup|, [2023) are
highly hyperparameter sensitive due to how they address catastrophic forgetting. While we
tuned both extensively for the Pendulum-v1 environment, as we did for all baselines, they
fail catastrophically in other environments. SAC and Deep Q Network (DQN) struggle to
outperform A2C in the online case. This falls in line with prior observations (Hamadanian
et all [2022) and can be attributed to the instability and hyperparameter sensitivity o
off-policy RL (Duan et all [2016; |Gu et all 2016; [Haarnoja et all 2018b|) and the quick

adaptation that a fully online algorithm such as A2C provides (Sutton et al.| 2007)). In fact,
despite not having been designed for non-stationary RL, A2C is the most successful baseline.

Table 1: Tail latency (negative reward) and 95th percentile confidence ranges for different
algorithms and contexts in the straggler mitigation environment.

Online Learning

LCPO LCPO LCPO Online Best
Agg Med Cons MBCD MBPO EWC A2C TRPO DDQN SAC Prescient
Workload 1 1070 1076 1048 1701 2531 2711 1716 3154 1701 1854 984
+10 +16 +7 +112 +197 +232 +710 +464 +47 +245 (TRPO)
Workload 2 589 617 586 678 891 724 604 864 633 644 509
+43 +62 +27 +38 +54 +22 +109 +105 +7 +27 (A20)

For the straggler mitigation environment, Table [1| presents the latency metric (negative
reward) over two workloads. Recall that this environment uses real-world traces from a
production cloud network. The overall trends are similar to the gymnasium experiments, with
LCPO outperforming all other baselines. This table includes three variants of LCPO, that
will be discussed further in

5.2  SENSITIVITY TO OOD METRIC

LCPO applies a constraint to OOD state-context pairs, as dictated by the OOD sampler
W(Bg,B;). We vary the OOD threshold o—which the OOD method uses in sampling—and
monitor the normalized return for the gym environments in Figure [3D] and the straggler
mitigation environments in Table[I} In the gym environments, a lower value for o yields tighter
margin of difference before a sample is deemed OOD. LCPO is affected by o, with the smallest
threshold o2 =0.25 performing the best. However, LCPO still maintains a lead over the A2C
baseline across o variations. We also experiment with a handicapped OOD metric that observes
a state-context vector x; =< s¢,2; > without the ability to separate state and context. We use
the Mahalanobis distance OOD metric (Mahalanobis| 2018) at several thresholds o3, for this
experiment. Despite the handicap, the +Mahalanobis surpasses the LCPO +L2 agent
that we have used in this evaluation. This is not surprising, as the L2 distance is less robust than
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Mahalanobis distance, but easier to interpret. In the straggler mitigation environment LCPO
Agg, LCPO Med and LCPO Cons use o =5, 6 and 7, and a higher value for ¢ yields more con-
servative OOD samples (i.e., fewer samples are detected as OOD). The difference between these
three is significant: The model in LCPO Agg allows for 26.7x more samples to be considered
OOD compared to LCPO Cons. Table[I]provides the normalized return for LCPO with varying
thresholds, along with baselines. Notably, all variations of LCPO achieve similar results.

5.3 SENSITIVITY TO BUFFER SIZE

LCPO uses Reservoir sampling (Vitter, [1985) to maintain a limited number of samples ny,.
We evaluate how sensitive LCPO is to the
buffer size in Figure [4] (full results in Table 7]
in the Appendix). The full experiment
has 8-20M samples. LCPO maintains its
high performance, even with as little as 75
np =500 samples, but drops below this point
(statistically significant in over one thirds

A2C
== == = Best Prescient

LCPO np = 20M ==== LCPO n}, = 500
LCPO nj = 200K = = LCPO n;, = 25

of experiments). This is not surprising, as 25

the context traces do not change drastically

at short intervals, and even 500 randomly U T T T T T —
sampled points from the trace should be 04 05 06 07 08 09 10

. Normalized Return
enough to have a representation over all of

the trace. However, with more complicated
and high-dimensional contexts, a higher
buffer size would likely be necessary.

Figure 4: CDF of normalized returns of LCPO
in gym environments with various buffer sizes.
Shaded regions denote 95% confidence intervals.

LCPO loses performance with ny, <500.
6 DISCUSSION AND LIMITATIONS

Network Capacity. In general, online learning methods with bounded parameter counts
will reach the function approximator’s (neural network’s) maximum representational capacity.
LCPO is not immune from this, as we do not add parameters with more context traces. However,
neither are prescient agents. To isolate the effect of this capacity and CF, we compare against
prescient agents, rather than single agents trained on individual tasks or context traces (He
et al.l[2020)). This ensures a fair evaluation that does not penalize online learning for reaching
the capacity ceiling. If the maximum capacity has been reached, it may be beneficial to remove
significantly old samples from B, to allow LCPO to forget such contexts, thereby favoring
flexibility instead of stability.

Exploration. LCPO focuses on mitigating catastrophic forgetting in non-stationary RL.
An orthogonal challenge in this setting is efficient exploration, i.e. to explore when the context
distribution has changed but only once per new context. Our experiments used automatic
entropy tuning for exploration (Haarnoja et al..|2018b)), which, while empirically effective,
was not designed for non-stationary problems. LCPO may benefit from a better exploration
methodology such as curiosity-driven exploration (Pathak et al., [2017)).

Efficient Buffer Management. We used Reservoir Sampling (Vitter] |1985), which main-
tains a uniformly random buffer of all observed state-context samples so far. Future work
could explore strategies that selectively store or drop samples based on their context, e.g., to
maximize sample diversity.

7 CONCLUSION

We proposed and evaluated LCPO, a simple approach for online learning in non-stationary
context-driven environments. LCPO requires two conditions: (1) the non-stationarity must be
induced by an exogenous observed context process; and (2) a similarity metric is required that
can inform us if two contexts come from noticeably different distributions (OOD detection).
This is less restrictive than prior approaches that require either explicit or inferred task labels.
Our experiments showed that LCPO outperforms baselines on several environments with real
and synthetic context processes.

10
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REPRODUCIBILITY STATEMENT

For Theorem [B.2] we include the proof and assumptions in §B] We include detailed accounts
of environments, context traces, baselines, hyperparameters, software and hardware in §j|
in the main text and and in the Appendix. We include implementation details and
pseudo algorithms in and in the Appendix. A link to an anonymized source code is
also provided in
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APPENDIX A RELATED WORK: CONTINUED

Meta-learning. Here, in the general case, the environment can switch between a set of
possible MDPs without an explicit signal. At the ‘meta-train’ phase, the policy is allowed to
train on a part or all of the MDPs. At the ‘meta-test’ phase, the policy must make decisions in
a continual RL setup where the MDP may abruptly change, and it has to adapt to the current
MDP with few-shot adaptation (Al-Shedivat et al 2018 [Nagabandi et all [2019bffa)) or context
inference (Rakelly et all;[2019). In our problem setup, we assume no access to the environment
beforehand.

Multi-task RL. In this problem, there are several (e.g., 10 or 50) different tasks with
different MDPs. The goal of this line of work is to learn a shared policy for all tasks that
approaches the performance of learning separate policies per task (Yang et al.| 20205 Sodhani]
et al|[2021)). These tasks may come with contextual information about the task that can be
used in the policy (Sodhani et al[2021]). This problem is not continual RL, does not experience
CF, and the learner is allowed to explore all tasks at the same time. Often the goal is postitive
transfer learning, i.e., learning faster on all tasks in parallel than learning tasks separately

et al ROT7).

Another type of work focuses on speeding up the learning process for a set of new tasks by
pre-training on a set of old tasks (Xue et al.L 2024)). This line of work bears similarities to
multi-task RL and meta-learning.

Assuming there are no explicit signals for environment contexts, Wei & Luo| (2021)) provide a
regret-optimal black-box RL algorithm.

Interfernce in stationary RL. Investigating interference in vanilla RL (non-stationarity in
sample distribution) is an adjacent and interesting line of work (Bengio et al.||2020; [Pan et al.|
[2021}; |Liu et al.| [2023;|2018)). The type of non-stationarity discussed in these works is different
than what we study. Here, non-stationarity refers to the moving target of bootstrap losses, such
as Q-learning, due to shifting policies that change future data distributions. Non-stationarity in
our problem setup means the MDP itself is shifting, irrespective of the changes the policy makes.
The second type of non-stationarity cannot be resolved even with "perfect" RL algorithms
that deal with interference in stationary MDPs.

However, there may be ideas that are transferable. For example, this line of work suggests that
techniques such as GAE (Schulman et al.|[2018]) and target networks reduce interference (Bengio
let all 2020} [Liu et al. [2023). Another interesting avenue is experimentation with sparse
learning (Pan et al|[2021 [Liu et al.| [2018]).

Buffer limitation interference. A line of work, related to interference, deals with a type
of non-stationarity induced by having small buffers (e.g., 32 samples, compared to the typical
thousands to millions) in off-policy algorithms. These works aim to mimic an off-policy agent
with unbounded buffers, and do not focus on context-driven non-stationarity. They learn
policies that perform closely to unbounded agents via techniques such as following old target Q
networks (Lan et al.|[2023)) or utilizing sparse-gradient activation functions (Lan & Mahmood
2023)). Note that we do compare to DDQN and SAC with unbounded buffers.

APPENDIX B PROOF OF OPTIMALITY IN TABULAR CONTEXT-DRIVEN RL

Below, we show how the non-stationary environment in §2|can be learned with vanilla RL
algorithms, if the state, action and context spaces are finite, context switches occur at episode
boundaries. First, we prove Lemma and then we prove the main theorem Theorem [B.2

Lemma B.1. Given a monotonically decreasing sequence {a; 52, that satisfies the following

conditions:
o0 o
Zai =00 Za? <00 (5)
i=1 i=1

Consider any subsequence {3, };";1 , where for any 1 <j, there exists N x (j—1)<i< N xj such
that B;=q;.
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Prove that:

Y Bi=co > Br<oo (6)
j=1 j=1

Proof. First, note that since {o;}52, is monotonically decreasing, we have:
aNxi <Bi SN (i—1)+1 (7)

For the first equality, we have for all k> 0:

o0 o0
Zﬁi 2 ZOéin
=1 =1

oo
> E QN xitk
i=1
Thus, we have:

00 N oo
NxY Bi=> > B

i=1 k=1li=1

N oo
> ZZainJrk 9)

k=1i=1

oo
=) @

i=N+1

Therefore:
e} 1 00 1 N
Z@Zﬁzai—ﬁzaizm (10)
i=1 i=1 i=1

The second bound is trivially proven:

o0 o0
2 2
Zﬁi < ZaNx (i—1)+1
i=1 i=1
oo
2
<D o
i=1

<00

(11)

O

Theorem B.2. Consider a context-driven MDP as defined in §3. Under the following set of
assumptions, prove that the Q-learning algorithm (Watkins & Dayanl,|1992) converges to the
optimal policy:

1. Rewards are bounded bounded rewards |r:| > R.

2. We have a a monotonically decreasing sequence of learning rates {c; }52, where 0>

a; <1, and
o0 o0
Zai:oo Za?<oo (12)
i=1 i=1

3. The state, action and context spaces are finite |S|,|Al,| Z| < oo.

4. There exists N, such that for any context z € Z, z occurs at least once in any consecutive
subsequence of the context trace of size N .

5. The context only changes at episode terminations.
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LCPO (Algorithm 1)
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Figure 5: Architecture of LCPO.

Proof. As contexts only switch at episode boundaries, the Q-learning updates for each context
z € Z are isolated from Q-values of other contexts. Thus, for any context z € Z, we have a
separate Q-learning session. If I, denotes the set of episode indices where the context trace is

equal to z, If we prove
Zai:oo Zaf<oo (13)
i€l i€l

we can use the original Q-learning proof of convergence (Watkins & Dayanl [1992)).

To prove this, note that from assumption 5 we can surmise that that for any 1<j, there exists
N x (j—1) <i< N xj such that i € I.. Therefore based on Lemma §B.1] the subsequence of
learning rates satisfy the Watkins Q-learning condition. O

APPENDIX C LCPO IMPLEMENTATION

Here, we will discuss the implementation details of LCPO. Figure [5| depicts the overall
architecture of LCPO.

C.1 RESERVOIR SAMPLING

As discussed in LCPO needs to maintain a buffer B, of all samples observed so far.
However, this buffer will grow with time and incur extensive memory costs. To limit the
buffer size while maintaining a distribution of all samples observed so far, we utilize Reservoir
Sampling (Vitter} [1985)).

The pseudo-code for the implementation can be found in Algorithm [2] Reservoir sampling
operates by maintaining a bounded list of samples B,. While the number of samples in the
list B, has not reached max capacity ny, all samples are admitted. Once the buffer is full, a
random index is sampled in the range of 0 to ng —1, where ng is the number of samples observed
so far. If the index is smaller than ny, the element at index i is replaced with the new sample.
If it is larger, the sample is thrown away. This strategy bounds the size of B,, but maintains a
uniform distribution of samples from the true list of all samples observed so far.

C.2 OOD FuUNCTION

LCPO requires a definition for OOD samples, i.e., samples that come from contexts far away
from recent samples B,. Intuitively, the optimal policy conditioned on this OOD context
should be significantly different from the policy optimal conditioned on the current context.

Such metrics can be based on domain insight, where an expert who is familiar with how the
context value changes the MDP would define a function to detect OOD samples. Alternatively,
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Algorithm 2 Reservoir Sampling

1: Input: max capacity ng

2: B, < {} Initialize empty buffer
3: ng <0 Initialize sample count
4: for each new sample  do

5:  mng<ns+1 Increment the sample count
6: if ng>ny then
7 i~Unif(0,ns—1) Sample a random index smaller than n
8: if i <ny then
9: Replace element at index ¢ in B, with «
10: else
11: Throw new sample x away
12: else
13: B, <+ B,+{z} Append z to B,

it may be generic OOD criteria commonly used in the literature, such as L2 thresholding,
Mahalanobis distance, etc. In this case, the OOD function needs to be tuned to be meaningful,
which is a common challenge in OOD detection work. An interesting line of future work is to
utilize MDP transitions in the warm-up period for tuning the threshold online.

Concretely, LCPO requires an OOD function w(z,B;) that denotes whether z is OOD with
respect to B, or not. In the L2 thresholding used for the gym environments subject to
the wind context in §5| we calculate an average over B, i.e., p, = E,p, [w], and define
w(w,By) :=||w— iy |2 > 0o for some threshold o. For the Mahalanobis distance (Mahalanobis|
2018) measure used for the straggler mitigation experiments in we calculate an average
and standard deviation over B, i.e., iy, =Eyp, [w] and X, =Eyp, [(w— py)?], and define

w(w,By) 1= (w—p1y) T X (W — 1) > 0 for some threshold o.

C.3 0OOD SAMPLING

Finally when want to sample a batch of size b from W (B,,B, ), forming the full set W (B,,B;)
and then sampling randomly from it has a computational cost that scales with |B,|. To
avoid this cost, we instead sample s experiences from B, and keep the ones that are OOD. If
this results in at least b OOD experiences, we return the samples. If not, we conclude that
there aren’t enough OOD samples in B, with respect to B,.. A pseudo-code is provided in
Algorithm

Analytically we can model the sampling with a binomial distribution, where p=E, g, [w(z,B;)]
is the fraction of samples in B, that are OOD with respect to B,.. We will successfully get
a batch of OOD samples with the probability 1 — F'(b;s,p) where F(-;-,-) is the binomial
cumulative distribution function. In all experiments in §5| we have set s =>5b. With b=200, the
success probability is 5% when p=0.18 and 94% when p=0.22. In other words, if at least 22%
of the samples in B, are OOD, we are highly likely to be able to collect a batch of size b of
OOD samples, and unlikely if the rate is 18% or below.

Algorithm 3 OOD Sampler

Input: All samples buffer B,, Recent samples buffer B,., OOD function w(z,B,.), s max
sample count, b batch size

2: Initialize empty list Boyt < {}

3: 10

4: while |B,,:|<band i< s do

5.  z~ B, Sample from B,
6.
7
8

—_

if w(z,B;) Sample is OOD then
Bout < Bout+{z} Add sample to list
: 14141 Increment ¢
9: if |Byyt| =0 then
10:  return Byt
11: else
12 return {}
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APPENDIX D BASELINES

D.1 ONLINE EWC

EWC (Kirkpatrick et al.[|2017) regularizes online learning with a Bayesian approach assuming
task indices, and online EWC (Chaudhry et al.,|2018}; |Schwarz et al. 2018 generalizes it to
task boundaries. To adapt online EWC to our problem, we update the importance vector and
average weights using a weighted moving average in every time step. The underlying learning
approach is SAC (Haarnoja et al.| 2018D)).

EWC applies a regularization loss

N
‘Cewc:O‘ZHQt_aZH%k (14)
k=1

to the training loss, where IV are the number of tasks, 6} is the converged parameter set for task
k and F}, is the diagonal of the Fisher Information Matrix (FIM) of task &k on the converged
model for task k. Online EWC applies an approximation of this regularization loss

2 (15)

using a running average F;* of the diagonal of the Fisher Information Matrix (FIM), and a
running average of the parameters 6. The running average F}" is updated with a weighted
average F;'=(1—pB)F}_+pF};, where F} is the diagonal of the FIM respective to the recent

parameters and samplesEl Similarly, the running average 6; uses the same parameter (.

Eewc:a| |9t_02<—1|

Online EWC may constrain the policy output to remain constant on samples in the last ~ 371
epochs, but it has to strike a balance between how fast the importance metrics are updated
with the newest FIM (larger /) and how long the policy has to remember its training (smaller
B). This balance will ultimately depend on the context trace and how frequently they evolve.
We tuned « and /5 on Pendulum-v1 for all contexts, trying « € {0.05,0.1,0.5,1.0,10,100,1000}
and 371 € {1M,3M,10M} (M denotes 1 million). The returns are visualized in F igure@with
full details in Table[2] There is no universal 3 that works well across all contexts and online
EWC would not perform better than LCPO even if tuned to each context trace individually.
We ultimately chose 3! =3M samples to strike a balance across all contexts, but it struggled
to even surpass SAC on other environments.

N Best Prescient [l LCPO [ SAC W Online EWC

Context 1 Context 3
LT II II II 200 --=1= N e s s mwm mm mww —
—200
£
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o " Context'2 Context 4
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2 o
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Figure 6: Pendulum-v1 lifelong returns and 95% confidence bounds of Online EWC with 12
hyperparameter trials. Hyperparameters are labeled as {,371}, where « is the regularization
strength and § is the averaging weight. The optimal online EWC hyperparameter is sensitive
to the context, but LCPO is better even if online EWC is tuned per context.

D.2 Sribing OGD

OGD (Farajtabar et all [2019) projects gradients for new tasks to vector spaces that are
orthogonal to previous tasks loss functions. OGD needs task labels, and [Woo et al.| (2022)
circumvent this by making projecting.

'We deviate from the original notations {\7} (Rusu et al.|, 2016|), since they could be confused
with the MDP discount factor v and GAE discount factor A (Schulman et al.| [2018]).
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Table 2: Average and 95th percentile confidence ranges for lifelong returns for online EWC
variants in the Pendulum-v1 environment with external wind processes.

Online EWC

a=0.05 a=0.1 a=0.5 a=1.0
gL 1M 3M 10M 1M 3M 10M 1M 3M 10M 1M 3M 10M
Context -209 -207 -206 -199 -203 -204 -201 -204 -207 -208 -212 -209

Trace 1 +13.0 +9.59 +16.6 +5.47 +7.28 +8.06 +7.57 +11.5 +3.67 +9.69 +3.87 +4.49

Context -489 -545 -544 -477 -527 -525 -540 -531 -541 -545 -510 -539
Trace 2 +68.6 +74.1 +95.3 +26.9 +67.9 +47.6 +84.6 +65.9 +48.0 +49.0 +48.5 +71.2

Context -380 -356 -372 -422 -349 -393 -335 -340 -330 -320 -320 -316
Trace 3 +82.4 +108 +70.0 +102 +72.4 +111 +114 +66.1 +68.5 +29.1 +46.1 +45.7

Context -396 -400 -407 -413 -408 -397 -404 -406 -404 -412 -409 -416
Trace 4 +16.1 +36.7 +15.6 +21.1 +23.0 +31.9 +11.7 +15.4 +18.5 +23.5 +20.1 +21.7

OGD (Farajtabar et al [2019) circumvents CF by applying parameter updates that are
orthogonal to the losses of past tasks. To do this, after a task has finished training, OGD
calculates the gradient vector w.r.t. to samples for that task and stores those gradients. When
the next task training begins, gradient updates are projected to orthogonal spaces w.r.t. the
saved vectors from before. This procedure requires task labels and convergence. Sliding
OGD (Woo et al.| avoids needing task labels by using the gradient updates in the past
N episodes for projection. In other words, Sliding OGD implicitly assumes that each of the
past N episodes were “tasks” that have already finished training. This assumption is incorrect
in our problem setup, as the context trace may change slowly. As a result, the gradient vectors
of past episodes belong to the same “task” as the current episodes, and this projection fully
hinders training.

D.3 BEeNNA Fust DQN

This approach applies a biologically plausible model for synapses on neural network weights
in a deep Q network (Kaplanis et al,2018). Conceptually, the weights are regularized with
their past values in multiple different time scales. [Kaplanis et al.| (2018) note that while
the Benna-Fusi DQN architecture was successful in simple environments, it failed with more
complex and challenging ones. In our experience, this architecture did not provide any benefits
compared to vanilla DDQN.

D.4 MBCD

This work handles piece-wise stationary environments by inferring change-points and task
labels (Alegre et al. [2021)). It trains models to predict environment state transitions, and
launches new policies when the current model is inaccurate in predicting the state trajec-
tory based on the CUSUM algorithm . The underlying learning approach is
SAC (Haarnoja et al.| [2018Db]).

MBCD'’s sensitivity for detecting environment changes is a tunable hyperparameter; we tuned
it by trying 6 values in a logarithmic space spanning 10! to 10° on the evaluation context traces
with Pendulum-v1, and chose the best performing hyperparameter on the test set. MBCD still
endlessly spawned new policies for other environments, and therefore we limited the maximum
number of models to 7. Despite this, MBCD fails to perform well over the diverse set of
contexts. MBCD struggles to tease out meaningful task boundaries. In some experiments, it
launches anywhere between 3 to 7 policies just by changing the random seed. This observation
is in line with MBCD’s sensitivity in

D.5 MBPO

MBPO (Janner et al. [2021)) is a model-based approach that trains an ensemble of experts
to learn the environment model, and generates samples for an SAC (Haarnoja et al.| 2018b)
algorithm. If the model is accurate, it can fully replay prior contexts, thereby avoiding
catastrophic forgetting.

MBPO performed poorly. If the fault is the accuracy of the learned environment models,
it could be improved with approaches such online meta-learning (Finn et al.| [2019) or goal-
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oriented model-based learning (Pong et al.l |2020)).. We investigated the learned models for the

> al.} 202
Pendulum-v1 experiments manually. We found these models to be very accurate, since the
environment dynamics are simple.

To concretely verify that the accuracy of MBPO learned models is not the reason it underper-
forms, we instantiated an MBPO agent with access to the ground truth environment dynamics
and context traces (but not future context traces), which we call Ideal MBPO. We compare
the performance of Ideal MBPO vs. standard MBPO in Table[3] The performance of these
two agents is widely similar. This confirms the fact that the learning algorithm itself is the
problem, and not the learned models.

Table 3: Average and 95th percentile confidence ranges for lifelong returns for different
algorithms and conditions in the Pendulum-v1 environment with external wind processes. An
MBPO agent with access to the ground truth model performs similarly to the MBPO model.
Schemes with superiority beyond 95% confidence are highlighted in bold.

Online Learning
LCPO MBPO Ideal MBPO A2C Best Prescient

Context Trace 1 [0 192 Tian Tooy  -18T(SAC)
ComextTrace2 19007 [3y  Jsgu sy 76 (DY)
T T
Context Traced  [370  [00% faan 1306 3T (SAC)

The reason is the way that MBPO samples experiences for training. At every iteration, MBPO
samples a batch of actual interactions from its experience buffer and generates hypothetical
interactions from them. These hypothetical interactions amass in a second buffer, which is
used to train an SAC agent. During the course of training, the second buffer accumulates
more interactions generated from samples from the start of the experiment compared to
recent samples. This is not an issue when the problem is stationary, but in non-stationary RL
subject to an context process, this leads to over-emphasis of the context processes encountered
earlier in the experiment. As such, MBPO fails to even surpass SAC. Prior work has observed
the sensitivity of off-policy approaches to such sampling strategies (Isele & Cosgunl 2018}
[Hamadanian et al.}|2022)).

D.6 CLEAR

This approach aims to mitigate CF with off-policy learning and maintain quick adaptation
with on-policy learning (Rolnick et al.}|2019). They use IMPALA and V-trace (Espeholt et al.l
2018)) on recent batches for on-policy and stale batches for off-policy RL.

CLEAR (Rolnick et al.| [2019)) aims to mix the quick adaptation of on-policy RL and the CF
resilience of off-policy RL, but in practice this fusion makes it very hyperparameter sensitive.
The V-trace algorithm was originally intended to correct for lagging policies in a distributed
RL architecture (Espeholt et al.| [2018). V-trace uses clipped importance sampling to correct
for the drift between the logging and training policies, which reduces variance but biases the
loss. With small lags between workers, the bias is small. If V-trace is used in a scenario where
the logging and training policy are very different, such as in CLEAR (Rolnick et al.||2019), the
bias becomes significant enough to hinder training. CLEAR attempts to circumvent this by
inducing a regularization loss on the actor and critic. Yet, this regularization will count against
improving the RL policy for better returns, and will be brittle. The correct balance between
policy improvement and this regularization will ultimately depend on the environment and
context trace. While we tuned CLEAR extensively for the Pendulum-v1 environment, as we
did for all baselines, it fails catastrophically in other environments.
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D.7 PT-DQN

PT-DQN (Anand & Precup|, [2023)) learns two separate networks with two different goals; (1) a
permanent network that is updated infrequently and slowly, and aims to learn a generalized
estimate of Q-values in various tasks, and (2) a transient network that learns and forgets
aggressively, and aims to quickly learn the optimal policy for the current task. [Anand & Precup|
prove PT-DQN asymptotically converges to the optimum predictors in piece-wise
stationary prediction tasks with tabular input spaces.

Note that PT-DQN avoids catastrophic forgetting indirectly by slowly updating a permanent
Q-network. The hope is that it strikes the right balance in learning this network slowly enough
such that earlier contexts are not forgotten, but updates it frequently enough such that new
knowledge is not lost. This trade-off is brittle; how fast the transient Q-network should forget
and relearn, and how slowly the permanent Q-network should be updated highly depends on
(1) how quickly the context process changes, and (2) by how much these changes affect the
transition dynamics of the MDP. As was also observed with CLEAR (, balances of this
nature are brittle, due to the indirect nature of how these techniques address catastrophic
forgetting.

Thus, PT-DQN is understandly hyperparameter sensitive. Indeed, to tune PT-DQN on
Pendulum-v1 environment, (as done for all baselines), we carried out three rounds of grid-
search on five hyperparameters, totalling 440 different combinations. Despite PT-DQN
being competitive with DDQN on Pendulum-v1, the performance is unpredictable in other
environments.

D.8 Orr-poOLICY RL

Off-policy RL is potentially capable of overcoming CF due to replay buffers, at the cost of
unstable training. We consider DDQN (Hasselt et al.}|2016) and SAC (with automatic entropy
regularization, similar to LCPO) (Haarnoja et al.[|2018b]).

D.9 ON-poLicYy RL

On-policy RL is susceptible to CF, but more stable in online learning compared to off-policy
RL algorithms, and the fast adaptation of these algorithms can also help them ‘track’ the

optimal policy as the environment changes (Sutton et al.l|2007). We compare with A2C (Mnih
et al.)L 2016|) and TRPO (single-path) (Schulman et al|2015), with GAE (Schulman et al.|
5 4

[2018)) applied. Note that TRPO vine is not possible in online learning, as it requires rolling
back the environment world.

D.10 PRrEescCIENT RL

To establish an upper-bound on the best performance that an online learner can achieve,
we train prescient policies, as discussed in We allow prescient policies to have unlimited
access to the contexts and environment dynamics, i.e. they are able to replay any particular
environment and context as many times as necessary. Since prescient policies can interact
with multiple contexts in parallel during training, they do not suffer from CF. In contrast,
all other baselines (and LCPO) are only allowed to experience contexts sequentially as they
occur over time and must adapt the policy on the go. We report results for the best of four
prescient policies with the following model-free algorithms: A2C (Mnih et al} 2016, TRPO
(single-path) (Schulman et al.,[2015), DDQN (Hasselt et al} 2016 and SAC (Haarnoja et al.|

2018b)).

APPENDIX EE LCPO VARIANTS

In §2.2] we discussed our main approach to solving the constrained optimization problem below:

min Lpa(0;B,)

(16)
s.t. DKL (9070;W(BaaBr)) S Canchor
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The goal is to optimize the policy gradient loss, i.e. maximize returns on current input, while
minimizing policy change on past observed inputs with the anchoring constraint. We outlined
a solution to this problem, with a pseudo-code in Algorithm [I} that is essentially a second
order constrained optimization plus a line search phase:

min (0—0)" vpa
o (17)
s.t. (9—90)TA(9_00)§Canchor

where A;; = % %DKL (00,0;W (Ba,By)), and vpg =V Lpc(0;)|g,. However, there is another
way to solve this problem, that we discuss as follows.

E.1 LCPO-P

An alternative way to uphold the anchoring constraint is to directly add it as term in the loss
function. Let us define:

‘canchor (9790 ;Br 7Ba) =

18
Eq v (5., 5,) OB Loss(ma, (5.2) m0(s.2))] "
Where we use the Cross Entropy loss to incentivize policy anchoring. Then, we optimize the
following total loss:

mein L:PG(Q;')+H~£anch0r(0790;BT‘7Ba) (19)

This approach is even less compute intensive than LCPO, but is not possible in vanilla policy
gradient. This is because the gradient direction from Lgpchor is zero when 6 = 6y and will
not affect the optimization. Therefore, we have to repeat the gradient update several times
before this term has an effect. The optimization setup in Proximal Policy Optimization
(PPO) (Schulman et al.| [2017)) allows for several gradient steps with one batch of data, and
therefore we apply the above loss in the PPO optimization step. We dub this approach LCPO-P
(P stands for proximal).

Table 4: Average and 95th percentile confidence ranges for lifelong returns for LCPO and LCPO-
P and conditions in the Pendulum-v1 environment with external wind processes. Schemes
with superiority beyond 95% confidence are highlighted in bold.

LCPO LCPO-P Best Baseline Best Prescient

Context Trace 1 i-%)94?5 ;?,’1912 _QOi?EggC) -187 (SAC)
Context Trace 2 :;?2’5557 ;3%8383 _3718(%§C) -376 (DDQN)
Context Trace 3 :I-:i4£1 :‘;22?9 -262 f}g AR) -203 (SAQC)
Context Trace 4 :|;§7082 :‘;?59??2 _39:?:7(.‘/}720) -357 (SAQC)

We compare LCPO and LCPO-P in Table[d We tuned x on the Pendulum-v1 environment,
similar to all baselines, and finalized on x =10. Despite this, LCPO-P fail to outperform the
best baseline for each context trace even on Pendulum-v1. The stark contrast between LCPO
and LCPO-P is due to the difficulty in tuning x. LCPO’s optimization constraint guarantees
that the policy is anchored on past contexts, while the loss term added in LCPO-P motivates
for this change to be small. Although the setup in LCPO-P is the Lagrangian dual of the setup
in LCPO, they are only equivalent when & is tuned properly per each gradient step.
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Figure 7: External wind force, per axis and context trace.

APPENDIX F LOCOMOTION TASKS IN GYMNASIUM

F.1 FuLL RESULTS
Table 5] presents the lifelong return for all agents, environments and context traces. Table%

presents the lifelong return for multiple LCPO agents with different OOD thresholds o. Table
presents the lifelong return for multiple LCPO agents with different buffer sizes ny.
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Table 6: Average and 95th percentile confidence ranges for lifelong return in LCPO with
different OOD metrics and thresholds and other agents for different conditions in environments
with external wind processes. L2 stands for the L2-distance OOD metric and MHD stands for
the Mahalanobis distance OOD metric. Schemes with superiority beyond 95% confidence are
highlighted in bold (LCPO agents are only compared against baselines).

LCPO (L2) LCPO (L2)
02=0.25 c2=0.5 o2=1 oc2=2 o2=4 O'I%/IHDZG O'I%/IHD:12 Best Baseline Best Prescient
Tracel [060 406 4045 4orz 4035 40.96 By hsee)  sTsAC)

Eomeer B9 S0 D% Oh 8% O% Iasa e e mpaN)

Eomaees 2 200 2o e am o e fane  OUSEeMY e (sac)
Traced [5'¢s  i150 402 4290 4350 4306 Ioes PR T (SAC)

g Tracel 57 576 ioms 401 £010 a6 fots  POERYY s (rmeo)

T ome2 5% N I R ONL A% £i70n 2RO ssiaweo)

§omees Jit Jet jea el g e L005 Pl5ae” 165 (TRPO)

o

Bomaces JUS SRS, R3320 L0355 PLisT u2RPO)

g Trace 1 ilel.go :i:1614§0 i131.§4 :t161.§0 j:161.20 121211.0 ;t21211.7 1181&1270) 165 (TRPO)

Bomecer S22 RO 020 g S0 02 Lo1s AT eromeo)

3 Trace3 (11; 114 4098 4114 4111 L7er e 159 ra0aweo)

2) Trace 4 %07y Soi3 4033 4013  4oi3 Loz Loz 93'2:(0]?PSQN) 96.9 (TRPO)

E Trace 1 j:27‘%315 121501‘5 :{:254é8 j:23§%7 :i:232%8 :|:22523.9 127%1 201&7230) 240 (A20)

g Trace2 ;&:134.?3 113%33 :l:134.i4 j:13§33 1143.?)5 1174.39 j:lefgs 97‘;?:35.%30 131 (TRPO)

&

E Trace i541.36 i521.22)1 i520.§4 i520.?)1 1520.21 151355.2 fl?fz 481 gg.éc) 520 (A20)
Traced 320 4338 dzso 4239 421 7l 595 L5 319 (A20)
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F.2 COMPUTATIONAL LOAD

LCPO is about 1.5x more computationally demanding than the leading baseline A2C. Table[§]
depicts the total runtime per each environment interaction in the experiments in §5.1]

F.3 ACTION SPACE

Pendulum-v1 and Mujoco environments by default have continuous action spaces. We observed
instability while learning policies with continuous policy classes even for the prescient policies,
and were concerned about how this can affect the validity of our online experiments, which are
considerably more challenging. As the action space is tangent to our problem, we discretized
each dimension of the action space to 15 atoms, spaced equally from the minimum to the
maximum action in each dimension. This stabilized training greatly, and is not surprising, as
past work (Tang & Agrawall 2019) supports this observation. The reward metric, continuous
state space and truncation and termination conditions remain unchanged.
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Table 7: Average and 95th percentile confidence ranges for lifelong return in LCPO with
multiple buffer sizes and other agents for different conditions in environments with external
wind processes. Schemes with superiority beyond 95% confidence are highlighted in bold
(LCPO agents are only compared against baselines).

LCPO
ny =20M ny =200K ny, =500 ny =25 Best Baseline Best Prescient
Tracel 1%y fods  i062 408 ises ) -187(SAO)
om0 e Dm baw LIRS wwopaw
Eomaees 2o 200 0 30 260 (CLEAT g (sa)
Traced 300 Qoo dvs  daee  ainel) ssT(8A0)
o Tcel [y, dogs dume asas 0 War Y 257 (TRPO)
T omaez K% 5% K A %G9 ssaweo)
& Traces  [00s 032 dose  doas fcas ) 165 (TRPO)
Somes B P [ R A9 nawo
_§ Trace 1 ilfgo ilslézl i151;9 1151.36 113:5()5127@ 165 (TRPO)
Fomaeer S0 23 MY B A2 socwro)
3 Trace3 g Soos 408 4oer  Cud3)9 maomeo)
S meed A S20 sl sl 039 DDAN) g6 (rrpo)
Eomecer  FN 2 2% 5, MO 240 (A20)
g Trace2 i144&3 :tlsfi4 :I:133g6 i123fg4 97':;?5%50) 131 (TRPO)
Eomees % L Sh S PGP s
Trace 4 i22?28 1229.29 ¢249.§3 1257.23 261&%%90) 319 (A20)
Trace 1 I Dom dons  dose T tibe™)  -7s9 (DDAN)
g Mace2 g Ton dons  doie RS raiopay)
o
P Za Za Ea B4 RO aaosey
e 5 Za BM B TP ooy

Table 8: Average and 95% confidence interval for training time per environment interactions,
in psec.

LCPO  A2C TRPO DDQN  SAC  Sodi&  crpar  BFDQN  MBPO MBCD  Opine PTIDQN
0.78 0.52 0.45 0.45 0.50 0.65 0.43 0.31 2.19 5.62 3.97 0.42
4+0.03  +0.03  +0.03  +0.03  4+0.02  +0.01  +0.01 +0.01 £0.04 4032 +0.02 +0.01

We provide the achieved episodic return for all baselines in §5]in Table[J] over 10 seeds for
the Pendulum-v1 envioronment, which we can compare to SB3 (Raffin et al. [2021) and RL-
Zoo (Raffin| reported figures. These experiments finished in approximately 46 minutes.
A2C, DDQN and SAC were trained for 8000 epochs, and TRPO was trained for 500 epochs.
Evaluations are on 1000 episodes. As these results show, the agents exhibit stable training
with a discretized action space.
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Table 9: Average episodic returns and 95th percentile confidence ranges for different algorithms
in the Pendulum-v1 environment with discretized and continuous action space.

Episodic Return A2C TRPO DDQN SAC MBPO
Discrete -165+-5  -166+-8  -149+-2  -146+-2  -161+-3
SB3 (Raffin et al} [2021) + RL-Zoo (Raffin} [2020) -203 -224 — -176 —

F.4 EXPERIMENT SETUP

We use Gymnasium (v0.29.1, MIT license) and Mujoco (v3.1.1, Apache-2.0 license). Our
baseline and LCPO implementations use the Pytorch (Paszke et all|2019) (v1.13.1, BSD-style
license) library. Table[L0|is a comprehensive list of all hyperparameters used in training and
the environment.

All baselines were tuned on Pendulum-v1 via a multi-phased grid search, similar to that in
General parameters such as discount horizon were copied from the base RL algorithm
each baseline is using (e.g., online EWC is using SAC, and copied SAC-specific parameters
directly). Several LCPO hyperparameters were copied from TRPO, SAC and A2C (namely,
entropy target, entropy learning rate, damping coefficient, rollout length, A, v) and the rest
(Canchors Crecent and base entropy) were tuned with an informal search with a separate context
trace (not in the evaluation set) in Pendulum-v1. The OOD threshold o was not tuned with a

search.

APPENDIX G STRAGGLER MITIGATION
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Figure 8: Request arrival rate and processing time per input.

G.1 FULL RESULTS

Figure Q] plots the tail latency across experiment time in the straggler mitigation environment
for both contexts.

G.2 EXPERIMENT SETUP

We use the straggler mitigation environment from prior work (Hamadanian et all [2022), with
a similar configuration except with 9 actions (timeouts of 600™* and 1000™* added). Similar
to §F.4] our implementations of baselines and LCPO use the Pytorch (Paszke et all [2019)
(v1.13.1, BSD-style license) library. The environment code and dataset is not public and was
released to us with a proprietary license. Table[I1]is a comprehensive list of all hyperparameters
used in training and the environment.

All baselines were tuned on a separate workload. LCPO hyperparameters were copied from
the gymnasium experiments, except for base entropy which was tuned with an informal search
with a separate workload (not in the evaluation set).
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Figure 9: Tail latency with 95th percentile confidence intervals as training progresses (lower is
better). We consider an initial learning period of 3.5 million samples. LCPO remaius close to
the prescient throughout contexts, while baselines suffer from non-stationarity.
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Table 10: Training setup and hyperparameters for gymnasium environments with external

wind.
Group Hyperparameter Value
Hidden layers (64, 64)
Hidden layer activation Relu

Neural network

Output layer activation

Actors: Softmax, Critics and DDQN: Identity mapping

Optimizer

Adam (81 =0.9, 2 =0.999) (Kingma & Bal [2017)

Learning rate

Actor: 0.0004, Critic and DDQN: 0.001

Weight decay

1074

RL training (general)

Random seeds

25 in main experiments (§5.1), except for MBPO and MBCD
5 seeds in ablations (§5.2] §5.3] §D.1)

A (for GAE in A2C and TRPO)

0.9

¥ 0.99
A2C Rollout per epoch 200
Rollout per epoch 3200
TRPO Damping coefficient 0.1
Stepsize 0.01
Rollout per epoch 200
Batch Size 512
DDQN Initial fully random period 1000 epochs
e-greedy schedule 1 to 0 in 5000 epochs
Polyak o 0.01
Buffer size N All samples (N =20M or N=8M)
Rollout per epoch 200
Batch Size 512
Initial fully random period 1000 epochs
SAC Base Entropy 0.1
Entropy Target 0.1In(15)
Log-Entropy Learning Rate le-3
Polyak « 0.01
Buffer size N All samples (N =20M or N =8M)
Rollout per epoch 200
Base Entropy 0.03
Entropy Target 0.1In(15)
LCPO Log-Entropy Learning Rate le-3
Buffer Size ny 1% of samples (200K or 80K)
Damping coefficient 0.1
Canchor 0.0001
Crecent 0.1
o 1
PPO Clipping € 0.2
LCPO-P PPO Iterations (Max) 30
PPO Max KL 0.01
K 10
h 1000 (default was 100/300)
MBCD max_std 3 (default was 0.5)
N (ensemble size) 5
NN hidden layers (64, 64, 64)
M (model rollouts) 512
MBPO N (ensemble size) 5

k (rollout length)

1

G (gradient steps)

1
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Group Hyperparameter Value
averaging weight 3 0.00007 (equivalent to ~3M samples at rollout=200)
Online EWC scaling factor o 0.1
learning rate « le-4
Sliding OGD N (window size) 1000 episodes
Value Clone Coeflicient le-2
Policy Clone Coefficient le-3
CLEAR Entropy Coefficient 5e-3
V-Trace p 1
V-Trace ¢ 1
Depth 13
BFDQN Benna Fusi Buffer Length 2000
g1_2 le-3
Permanent Learning Rate le-5
Transient Learning Rate le-3
PT-DQN Target Update Period N 2000 steps
Permanent Update period K 20000 steps
Transient Forget Factor A 0.999
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Table 11: Training setup and hyperparameters for straggler mitigation experiments.

Group

Hyperparameter

Value

Neural network

Hidden layers

¢ network: (32, 16)

p network: (32, 32)

Hidden layer activation function

Relu

Output layer activation function

Actors: Softmax, Critics and DDQN: Identity mapping

Optimizer Adam (81 =0.9, 82=0.999) (Kingma & Bal [2017)
Learning rate 0.001
Weight decay 1074
Random seeds 10
RL training (general) X (for GAE in A2C and TRPO) 0.95
0% 0.9
A2C Rollout per epoch 4608
Rollout per epoch 10240
TRPO Damping coefficient 0.1
Stepsize 0.01
Rollout per epoch 128
Batch Size 512
DDQN Initial fully random period 1000 epochs
e-greedy schedule 1 to 0 in 5000 epochs
Polyak « 0.01
Buffer size N All samples (N =21M)
Rollout per epoch 128
Batch Size 512
Initial fully random period 1000 epochs
SAC Base Entropy 0.01
Entropy Target 0.11n(9)
Log-Entropy Learning Rate le-3
Polyak o 0.005
Buffer size N All samples (N =21M)
Rollout per epoch 128
Base Entropy 0.01
Entropy Target 0.11n(9)
LCPO Log-Entropy Learning Rate le-3
Buffer Size ny 210K
Damping coefficient 0.1
Canchor 0.0001
Crecent 0.1
h 300000 (default was 100/300)
MBCD max_std 3 (default was 0.5)
N (ensemble size) 5
NN hidden layers (64, 64, 64)
M (model rollouts) 512
MBPO N (ensemble size) 5
k (rollout length) 1

G (gradient steps)

1

Online EWC

averaging weight

0.00007 (equivalent to ~2M samples at rollout=128)

scaling factor o

0.1
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