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ABSTRACT

We examine gradient descent in matrix factorization and show that under large step
sizes the parameter space develops a fractal structure. We derive the exact critical
step size for convergence in scalar-vector factorization and show that near criticality
the selected minimizer depends sensitively on the initialization. Moreover, we show
that adding regularization amplifies this sensitivity, generating a fractal boundary
between initializations that converge and those that diverge. The analysis extends
to general matrix factorization with orthogonal initialization. Our findings reveal
that near-critical step sizes induce a chaotic regime of gradient descent where the
long-term dynamics are unpredictable and there are no simple implicit biases, such
as towards balancedness, minimum norm, or flatness.

1 INTRODUCTION

Understanding the properties of gradient descent in non-convex overparametrized optimization has
been a central pursuit in modern machine learning. The step size, or learning rate, is a critical factor
determining the dynamics and convergence of gradient descent optimization. In particular, it has a
major influence on the returned solution and its generalization performance (Nar and Sastry, [2018;
Jastrzebski et al.l |2020; Lewkowycz et al., [2020; |(Cohen et al., 2021)). Large step sizes have been
associated with flat and balanced minimizers of the training objective (Wu et al.,[2018; Wang et al.,
2022; [Menonl 2024)), sparse feature representations (Nacson et al., 2022} |Andriushchenko et al.|
2023), smooth solution functions (Mulayoff and Michaeli, |2020; [Nacson et al.l 2023), and improved
generalization (Ba et al.| 2022} |Qiao et al., 2024} Sadrtdinov et al., [2024). Yet, the theoretical
understanding of large step sizes remains limited, even in simple convex settings. Our investigation is
motivated by two fundamental questions:

Given an initial parameter, what is the critical (largest) step size that allows convergence?

What kind of implicit biases are induced by gradient descent with near-critical step size?

Addressing these questions is challenging, since large step sizes can produce highly complex, non-
monotonic, and even chaotic trajectories. In particular, trajectories may not converge to stationary
points but instead enter periodic or chaotic oscillations (Chen and Bruna, [2023}|Chen et al., 2024b;
Ghosh et al.} 2025)), or converge to a statistical distribution (Kong and Tao, [2020); trajectories that
eventually converge to a minimizer may still undergo chaotic oscillations during early training (Zhu
et al.,|2023}; Kreisler et al.,|2023; [Song and Yun, [2023)); and trajectories with nearby initializations
can diverge exponentially from one another (Herrmann et al., 2022} Jiménez-Gonzalez et al.,|2025).
Moreover, empirically, the set of step sizes and the set of initializations leading to convergence can
form fractal structures (see, respectively, Sohl-Dickstein), [2024; Zhu et al.| 2023)). In this work, we
provide precise answers to the above questions in the context of matrix factorization problems with
rigorous theoretical characterizations.

We begin by examining gradient descent in a simplified problem to factor a scalar target as the
inner product of two vectors. We show that two striking phenomena emerge at large step sizes: (i)
trajectories originating from arbitrarily small sets of initializations can converge to global minimizers
of the training loss with arbitrarily large norm, sharpness or imbalance, or to a saddle point; and
(ii) the set of initializations that converge, that is, the convergence region, has a fractal structure
(see the left panel in Figure [T). Thus gradient descent exhibits sensitivity to initialization and its
long-term behavior is unpredictable. Interestingly, while the convergence region is regular (in the
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Figure 1: Left: Gradient descent applied to L(u,v) = (u'v — 1)2 + 0.3(||ul|2 + [[v[|3) with
(u,v) € R, Shown is a random two-dimensional slice of R'?. Gray points are initializations from
which the algorithm does not converge; other points are colored by the value of one of the coordinates
of the converged minimizer. As we see, the convergence boundary is fractal, and the converged
solution depends sensitively on the initialization when this is near the boundary. Right: Gradient
descent applied to L(z,y) = (zy —1)? with (z,y) € R2. The green star marks a balanced minimizer
p, with its neighborhood O,, depicted as a blue disk with black boundary. The blue region with
dashed boundaries shows the preimage of O,, under GD®. The green diamond marks an imbalanced
minimizer, with its neighborhood and preimages shown in orange. For this problem the convergence
boundary is smooth but the convergence point for initializations near the boundary is chaotic.

almost everywhere sense) in the unregularized setting, it becomes fractal once regularization is
introduced. Further quantifying the unpredictability of gradient descent, we show that the topological
entropy of the gradient descent system is at least log 3. Also, we show that the fractal nature of the
boundary of the convergence region is captured by a self-similar curve, whose fractal dimension is
estimated as 1.249. To our knowledge, beyond the univariate training loss setting studied by Kong
and Tao| (2020); (Chen et al.| (2024b)), this is the first rigorous characterization of chaos in gradient
descent optimization.

We then extend our analysis to general matrix factorization by showing that, when the initialization
lies in a subspace defined by a set of orthogonal conditions, the gradient descent dynamics decouples
into several independent scalar factorization dynamics. Hence, all the results established for scalar
factorization remain valid and can be applied on this subspace. This includes, in particular, the
commonly used identity initialization. Our results also extend to shallow linear residual networks
(Hardt and Mal 2017} Bartlett et al., 2018]). We experimentally show that sensitivity to initialization
persist over more general settings, such as generic initialization and deep matrix factorization.

We further analyze the mechanisms underlying these phenomena and trace them to a folding behavior
of the update map GD(6) = 6 — nVL(6): the map GD sends a region C containing multiple
minimizers onto a larger region that contains C, in a multi-fold covering manner. As a consequence,
for any neighborhood O,, of a minimizer p € C, the number of connected components in the preimage
GD YV (O,) grows exponentially with the number of iterations N, and these components accumulate
near the boundary of the convergence region. The preimages associated with different minimizers
then become intricately interwoven near the boundary, giving rise to sensitive dependence on the
initialization and a self-similar fractal structure (see the right panel in Figure[T). Overall, our results
show that near-critical step sizes place gradient descent in a chaotic regime, where infinitesimal
perturbations on the initial conditions can lead to substantially different training outcomes. This
stands in sharp contrast to the stable dynamics observed at smaller step sizes.

1.1 MAIN CONTRIBUTION

The goal of this article is to provide rigorous insights into the dynamics of gradient descent with large
step sizes in matrix factorization. Our contributions can be summarized as follows:

» We derive the exact critical step size for convergence in scalar factorization and show that, at critical
step size, infinitesimal perturbations of the initialization can redirect gradient descent to global
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minimizers with arbitrarily large norm, imbalance, or sharpness, or to a saddle. We show that the
topological entropy of gradient descent system is at least log 3. We also show that the convergence
region in the parameter space is equal almost everywhere to a bounded, smooth domain.

» We show that, with /5 regularization, gradient descent selects either the minimal distance solution
or the maximal distance solution among all global minimizers. Near criticality, infinitesimal
perturbations of the initialization can switch this selection from one to the other. We show that if
the step size is below an explicit bound, the algorithm always selects the minimal distance solution.

* We show that adding ¢, regularization yields a fractal convergence boundary, whose geometry is
captured by a self-similar shape in R? after symmetry reduction. We numerically estimate the
fractal dimension of this shape. We further show that, up to a measure-zero set, the convergence
region has an unbounded interior.

* We extend these results to general matrix factorization under a range of initializations including
the identity initialization. We show that gradient descent partitions the parameter space into
components where it acts as a covering map, and reason that chaos arises when it is an expansion
on a component that contains multiple minimizers.

1.2 RELATED WORK

Gradient Descent Dynamics Under Large Step Sizes A main line of research on large-step-size
gradient descent focuses on the non-monotonic convergence of the loss and its impact on the final
model. Key perspectives include the Edge of Stability (Cohen et al., 2021} Ma et al., [2022; |Agarwala
et al., [2023; |Damian et al.,[2023;|Ahn et al.| 2022; 2023} Zhu et al., 2023} Wang et al.| 2023) and the
catapult phenomenon (Lewkowycz et al., 2020; Kalra and Barkeshli, [2023; Meltzer and Liu} [2023};
Zhu et al.| 2024aib). Compared to these works, our analysis extend to even larger (near-critical) step
sizes. Another line of work shows how a large step size can enhance feature learning in one step of
gradient descent (Ba et al.| 2022; Dandi et al., 2024; Moniri et al., [2025)), also comparing different
parametrizations (Sonthalia et al.|[2025)). Similar observations about the role of the step size in feature
learning have also been made in SGD (Andriushchenko et al.l 2023; [Lu et al.||2024) and pre-training
(Sadrtdinov et al., [2024). [Ziyin et al.[|(2022) observed that for a certain range of step sizes, SGD
can have undesirable behavior, such as convergence to local maxima. For linear networks, Kreisler
et al.|(2023) identified a monotonically decreasing quantity (sharpness) along the gradient descent
trajectories. |Wang et al.| (2022) showed large step size induces an implicit bias towards balanced
minimizers in matrix factorization. |Craciun and Ghoshdastidar (2024} proved the existence of a step
size threshold above which the algorithm diverges. Large-step-size gradient descent has also been
investigated in logistic regression (Wu and Su}, 2023 Wu et al., 2024; Meng et al.,|2024), and some
of the analysis has been further extended to shallow networks (Cai et al., [2024).

Chaos in Optimization |[Van Den Doel and Ascher|(2012) empirically observed chaos, specifically
positive finite-time Lyapunov exponents, for several variants of steepest descent methods. The
phenomenon named period-doubling bifurcation route to chaos has been widely observed in recent
literature (Kong and Tao, 2020; |Chen and Bruna, 2023} [Chen et al.| 2024b; Meng et al., [2024;
Danovski et al} [2024} (Ghosh et al., [2025)). Among them, only [Kong and Tao| (2020); |Chen et al.
(2024b) provided rigorous analyses for the chaotic dynamics. They showed the emergence of Li-Yorke
chaos, i.e., the existence of periodic orbits of arbitrary periods, for univariate training losses. In
comparison, our setting is high-dimensional. Additionally, we established not only the existence of
all periodic orbits, but also the sensitivity of the limiting point to initialization, which is more relevant
to practical optimization, particularly the implicit bias of the optimization algorithm.

2 PRELIMINARIES

We focus on the following shallow matrix factorization problem with ¢ regularization:

. 1 2 A 2 2
LO)=z||UTV-Y (|l 1% 1
i L(6) = 5 I e+ 5 U+ V1), M
where A > 0, U,V € R%*4v and the target matrix Y € R% *9v is a diagonal matrix. The diagonality
of Y is a weak assumption that can be achieved by reparametrization. Specifically, for arbitrary

Y consider the singular value decomposition ¥ = Py EyQ,T/ and the rotations U = INJPJ and
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V = VQy.. The objective then becomes L(U, V) = L||[UTV — Sy |2 + 3 (|U||% + || V[|%), where
the target is diagonal. Moreover, the optimization dynamics in minimizing L(U, V) is identical to
those in minimizing L(U, V') up to the rotation (see details in Appendix |C).

Gradient optimization in problem (I)) has been extensively studied, especially in small-step-size
regimes (see, e.g.,Saxe et al., 2013} |Arora et al., 2019; |Yun et al.| 2021} |Du et al., [2018}; L1 et al.,
2021; | Min et al.l 2023} |Chen et al.||[2024a). Its landscape enjoys a favorable structure: the global
minimum is attained and every stationary point is either a global minimizer or a strict saddle (L1 et al.|
2019bj |Valavi et al., 2020; |Zhou et al.,|2022). Nevertheless, this problem retains a key complexity
typical of neural network optimization: global minimizers can differ substantially (although they
yield the same end-to-end matrix). In particular, in the unregularized case, both the parameter norm
|U||% + ||V ||% and the imbalance [|[UU T — V'V T ||% can be arbitrarily large on the set of minimizers.
This makes the problem a natural testbed for studying how hyperparameter choices affect the implicit
biases of parameter optimization algorithms. We note that other forms of regularization have also
been studied in the literature, such as [|[UU T — V'V T |% (Tu et al.l 2016} |Ge et al.l 2017).

We consider gradient descent with constant step size 7 to solve problem (T):
Urpr = U = VeV, U = YT) =AUy, Vir = Ve = U (U Ve = Y) = AV,

We define the gradient descent update map GD,(§) = 6 — nVL(§) so that (Uyt1,Vit1) =
GD,,(Uy, V4). The basin of attraction of a stationary point 8* of L is the set of all initializations that

converge to 0%, {6: limy_, GD;V (0) = 9*}ﬂ The convergence region for step size 7, denoted by
D, is the union of the basins of attraction of all global minimizers. The critical step size n(U, V')
for an initialization (U, V') is defined as n(U, V) = sup {n: limy_. GD}(f) € M}, i.., the
supremum of the step sizes that allow convergence, where M denotes the set of all global minimizers.

We introduce notions for describing fractal geometry. A fractal is typically defined as a shape that
exhibits self-similarity and fine structure at arbitrarily small scales. Formally, we say a set S C R is
self-similar with degree k if there exist K homeomorphisms, ¢;: S — S,i =1,--- | k, that satisfy (i)
S = UF_, ¢:(9) and (ii) there exists an open set O C S such that U¥_, ¢;(O) C O and (¢;(0))%_;
are pairwise disjoint. Condition (i) states that S can be covered by k smaller copies of itself. Condition
(i1), which is known as the open set condition, ensures that those copies do not overlap much. This
definition is closely related to an Iterated Function System (IFS), a standard tool for analyzing fractals
(see, e.g., [Hutchinson, |198 1} [Falconer}, 2013). However, unlike IFS where the maps are required to be
contractive and the set .S to be compact, the shapes considered in our study may be unbounded.

Finally, we introduce notions related to chaos. Although there is no universal definition of chaos,
one common characterization of chaos is the sensitivity to initialization, which is often known as the
butterfly effect. In the context of optimization, this manifests as the phenomenon where infinitesimal
perturbations of the parameter initialization or step size can lead to substantially different training
outcomes (e.g., turning convergence into divergence, or shifting convergence from one minimizer to
another qualitatively different minimizer). In dynamical systems, one of the most important measures
of chaos is the ropological entropy. Informally, the topological entropy h(F’) of a dynamical system
F measures the exponential growth rate of the number of distinct trajectories of F' as a function of
the trajectory length. We defer the formal definition to Appendix A positive topological entropy
is widely regarded as a hallmark of chaos (see, e.g.,[Katok et al., [1995; Robinsonl [1998; [Vries|, |2014)).
In this paper, we adopt the above notions for fractals and chaos. We note that different definitions and
settings exist, and discuss their relation to our study in Appendix

3  SIMPLIFIED MATRIX FACTORIZATION

In this section, we study gradient descent in the special case of problem (I)) where d, = 1, i.e.,
factorizing a scalar y as the inner product of two vectors as u ' v. This and similar scalar factorization
settings have served as canonical models for understanding large-step-size dynamics (Lewkowycz
et al., [2020; [Wang et al.| 2022; Kreisler et al., 2023} |Ahn et al., 2023} [Zhu et al.,[2023)). Compared to
these works, our analysis extends to critical step sizes, rather than restricting to bounded step sizes,
and characterizes the chaos in gradient descent. Proofs for results in this section are in Appendix [E]

'In dynamical systems the basin of attraction is often defined for attractors. Here we extend the terminology
to include all stationary points, such as saddles, for simplicity of presentation.



Under review as a conference paper at ICLR 2026

3.1 CHAOS AT LARGE STEP SIZE

Consider the unregularized scalar factorization problem:

. 1o 2
g L(0) = 5(u' v —y)", )

where u,v € R%, d > 1 and y € R. Problem () retains several key complexities of the general prob-
lem (), including non-convexity, high-dimensionality, non-Lipschitz gradients, and an unbounded
set of global minimizers M = {u'v = y}.

In the following result, we characterize the critical step size for problem (2) and the emergence of
chaos under critical step sizes. We use B(0, €) to denote the ball of radius € centered at 6.

Theorem 1 (Unregularized Scalar Factorization). Consider gradient descent with step size 1 for
solving problem @). The following holds:

* Critical Step Size: For almost all initializations (u,v) € R??, the algorithm converges to a global

minimizer if n < n*(u, ) and fails to converge to any minimizer if n > 1™ (u, v), where the critical
step size is given by (when y = 0, we adopt the convention 1/0 = +00):

8
Wl 12 a2 02 L (1112)2 e
[ally +l12ll5 + y/(lully + [[7]5)? = 16y(aTv —y)

n*(t,v) = min

3

Therefore, when 1 satisfies n|y| < 1, the convergence region D,, is equal almost everywhere to

D) = {(w.v) € R ul3 + o]} + v/(Tull3 + ol — LoyluTv —y) < 3}

* Sensitivity to Initialization: Fix a step size n that satisfies nly| < 1. Let Ymin =
min {||0||: 8 € M} be the minimal norm over all global minimizers. Given arbitrary 6 € 0D,
e, K > 0and~y € [Ymin,0), there exist §',0" 0" € B(0,¢) such that, as N tends to infinity,
GD%V (0") converges to a global minimizer with norm =, GDS] (0" converges to a global minimizer

with |uu” —vv' || > K, and GDf,V(H’”) converges to (0,0), which is a saddle when y # 0.

* Trajectory Complexity: Assume n|y| < 1. The topological entropy of the gradient descent system
GD,, satisfies h(GD,,) > log 3. Moreover, GD,, has periodic orbits of any positive integer period.

Theorem [T| provides a tight convergence condition for gradient descent in problem (2). The critical
step size (3) consists of two components: The first term comes from the fact that, when n|y| > 1, all
global minimizers become unstable and only attract a measure-zero set. The second term is associated
with the convergence region. Notice that the critical step size depends smoothly on the initialization
and that for < 1/]y| the convergence region is equal almost everywhere to an ellipsoid D}, in R2d
(see right panel of Figure[T). This result improves the sufficient condition for convergence obtained
by Wang et al.| (2022), n < 13 (u,v) = min {ﬂ%’ m}. For y # 0, their threshold 77 is
strictly smaller than the critical step size 17" in (3)).

Theorem [I] provides a precise description of chaos in gradient descent: it has sensitive dependence
on the initialization. Note that in problem (2)), the squared norm of the parameter coincides with the
loss sharpness Ayax(V2L) at global minimizers (see Appendix@ . Hence, Theorem shows
that at critical step size, infinitesimal perturbations of the initialization can send the trajectory to a
minimizer with arbitrarily large norm, sharpness or imbalance, or to a saddle. This is a hallmark
of unpredictability: it is impossible to reduce the error in the prediction of the converging point by
improving the precision in the specification of the initialization. We remark that this form of strong
reachability from an arbitrarily small range of initial values is familiar in chaos theory, for examples,
the Julia sets in complex system and the Wada basin boundaries in flows and systems defined by
diffeomorphisms (see, e.g., |Devaney and Eckmann, [1987; Nusse and Yorke| |1996} |Aguirre et al.|
2001). However, these classical frameworks depend on properties not satisfied by our setting, for
instance, complex differentiability or invertibility of the system map, and thus do not apply here.

Theorem [I] quantitatively measures chaos in gradient descent: the topological entropy is positive
and is at least log 3. This implies that, roughly, the number of distinct gradient descent trajectories
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Figure 2: Left: Gradient descent applied to L(z,y) = (zy — 1)? with (x,y) € R2. Blue lines
and purple lines represent the basins of attraction of unstable minimizers and of the saddle (0, 0),
respectively. Right: For the same problem, we evenly sample initial values in an neighborhood
on D, (the blue square). We report the distributions of the squared norm and imbalance of the

converged minimizer (z*,y*), and of the number of iterations to reach a loss below 1075,

of length N grows at a rate of 3% (further interpretation for topological entropy is provided in
Appendix [B.T)). Beyond entropy, another aspect of trajectory complexity is shown: gradient descent
admits periodic orbits of any positive integer period. This property is closely related to Li-Yorke
chaos and was shown for gradient descent in univariate loss functions (Kong and Tao} [2020; |Chen
et al.| 2024b). Note, the parameter space of problem ([Z]) has dimension 2d with d > 1.

While Theorem [I] identifies the convergence region up to a measure-zero set, we now provide a
complete description of the region. In Appendix we showed that every minimizer with squared
norm larger than 2/7 is Lyapunov-unstable and that, the basins of attraction of unstable minimizers
and of the saddle have measure zero. Note, by Theorem |1} these measure-zero basins intersect 9D’
in arbitrarily small neighborhoods and exhibit fractal structure (see left panel of Figure [2). The
full convergence region D, is then the union of the smooth domain ’D; and the basins of unstable
minimizers, excluding the basin of with the saddle (0,0) when y # 0. We remark that, due to
their zero measure, the basins of unstable minimizers and of the saddle cannot be easily detected by
simulating training and were not been identified in prior work (Zhu et al., 2023)). We visualize them
with specialized techniques, with details provided in Appendix [H}

Additional experiments are conducted for the distributional behavior of gradient descent. In the right
panel of Figure |2, we evenly sampled 4002 initial values in a small neighborhood on D!, and ran
gradient descent for problem (2)). For initial values that converge, we report the distribution of the
squared norm and imbalancedness of the converged minimizers, as well as the number of iterations
for convergence (reaching a preset convergence criterion). Notice that as predicted the norms are
bounded by 2 /7. Notably, even though the initial values are drawn from a very small neighborhood,
the distributions have wide supports. This implies sensitivity to initialization not only at the point
level but also at the distribution level. Meanwhile, the distributions are not uniform, which means
that gradient descent exhibits a form of distributional implicit bias under large step sizes. We leave a
closer investigation of this interesting phenomenon to future work.

3.2 REGULARIZATION INDUCES FRACTAL CONVERGENCE BOUNDARY
Consider the scalar factorization problem with ¢5 regularization:

, Lo T 2 A2 2
o L) = 5w v =y)"+ S (llullz +[[vll2), ©)
where u,v € R%, d > 1, XA > 0and y € R. The added regularization makes the set of global
minimizers a bounded set. In particular, for problem @), M = {u = sgn(y)v, ||u||3 = |y| — A} when
A < |y| and M = {(0,0)} when X > |y|. Regularization is commonly used to mitigate unbounded
minimizers and to establish convergence results (Cabral et al., 2013} |Ge et al.,|2017; |Li et al.,|2019a).
However, and rather remarkably, we will show that for the regularized problem the global dynamics
of gradient descent becomes even more unpredictable than for the unregularized problem: not only is
the limiting point of convergent trajectories unpredictable but also the convergence itself.
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The predictability of convergence depends on the geometry of the boundary of the convergence region.
Two difficulties arise in analyzing this geometry: (i) the presence of basin of the saddle; and (ii) the
high-dimensionality of the convergence boundary. Specifically, we observe that the basin of attraction
of the saddle point intricately penetrates D,, and creates topological boundaries “within” D,, (see
Figure . However, such boundaries are not of interest, since they do not separate points inside D,
from those outside, i.e., both sides of boundary lie in D,,. This motivates us to instead consider the
boundary of D; = D, U S, where S, is the basin of the saddle. Note, the smooth domain D}, in the
unregularized problem plays an analogous role in clarifying the geometry of convergence region.

The second difficulty is the high dimensionality of the boundary 81);7' C R?4, To address this,
we identify and reduce the symmetry in 0D;/. We introduce the map 7': R%d — R2, T(u,v) =

(uTv, ||ul|? + ||v||3). The fiber of T, i.e., the preimage of a point in T'(R??), generically form a
manifold diffeomorphic to S¢~! x S?~! and hence have a regular shape (see Appendix D). In the
following, we show that gradient descent dynamics are captured by their evolution across the fibers.

Proposition 2. Let (uy, v;)¢>0 denote the gradient descent trajectory in problem @) with A > 0. Let
(z¢,wy) = T(ug,vy). There exists a planar map F : R? — R? that only depends on n, \, y such that
(zt41, wet1) = F(z,wy) holds for all t > 0. In particular, (ug,v;) converges to M if and only if
(z¢, wy) converges to {z = y}, and it converges to (0, 0) if and only if (z:,w;) converges to (0,0).

The map F' describes how the gradient descent trajectory evolves across the fibers of 7. Its formulation
is given in Appendix[D] By Proposition 2] all points lying in the same fiber share the same convergence
behavior. Therefore, roughly, the boundary 67),’7’ can be constructed by attaching fibers of 7' to the
the projected boundary T(@D;’ ); an example will be given below. Note, as the fibers are generically
smooth manifolds, any geometric complexity of 81);7/ will be captured by T(E)DZ ).

In the following result, we show that the convergence boundary of problem (@) has a self-similar
structure and gradient descent exhibits sensitivity to initialization near the convergence boundary.

Theorem 3 (Regularized Scalar Factorization). Consider gradient descent with step size n for
problem @) with 0 < A < min{(1/n) — |y|,1/(2n)}. Consider the map T (u,v) = (u'v, ||u|? +
[v]13). Let S, be the basin of attraction of (0,0), which is a saddle if A < |y|, and let D) = D, US,).

* Self-similarity: S, has measure zero and T(@D;’ ) is self-similar with degree three.

* Unboundedness: When y = 0, there exist constants a,b > 0 such that almost all initializations
(@, v) with |a"v| < aexp(—b(||u||3 + ||7]|2)) converge to a global minimizer.

* Sensitivity to Initialization: For any 0 € D,, the algorithm converges either to the closest
global minimizer p~ (0) = arg mingpe a ||p — 0|2, or the farthest p™(0) = arg max, e ||p — 0||?
(pT(0) # p~(0) when \ < |y|). Moreover, there exist infinitely many points on 0D, such that for

any open set O containing such a point, there exist 0’0" € O such that GD™ () converges to
p~(0") and GDN (0”) converges to p*(0"), as N tends to infinity.

Theorem [3| characterizes the geometry of the convergence boundary for problem (). Specifically,
8D;7’ can be understood as a fiber-bundle-like objecﬂ fibers of 1", which are generically smooth and
bounded manifolds, are attached to a self-similar set T'(0D!') with degree three (see the left panel
of Figure[3). The case of d = 1, i.e., u, v € R, is illustrated in the middle panel of Figure[3} in this
case, the fibers are generically a four-point set and hence, 8D§7’ simply consists of four copies of
T(0Dy)). To quantify the fractality, we estimate the box-counting dimension of 7'(0D;;), which turns
out to be 1.249 (see the right panel of Figure . This non-integer dimension implies that 7'(0Dy)) is
essentially more complex than any smooth curve, yet fails to occupy any planar area. The fractal
boundary marks unpredictability in convergence: when the initial point lies near the boundary, it
is practically impossible to determine whether it is inside or outside the convergence region. This
unpredictability is also quantified by the box-counting dimension, as explained in Appendix [B.2]

Theorem [3|shows that, up to a measure-zero set, the convergence region has an unbounded interior.
This sharply contrasts with the convergence region in the unregularized case, which coincides almost
everywhere with a bounded domain. By Theorem gradient descent converges provided that the u " v

21t is not a rigorous fiber bundle since the fiber 7~ ' (z, w) might degenerate when (z, w) is a singular value.
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Figure 3: Gradient descent is applied to L(u,v) = (uv — 0.5)2/2 4+ 0.1(u? + v?) where (u,v) € R2.
Left: the projected convergence boundary T(@D;,’ ) is self-similar with degree three: it is covered by
three smaller copies of itself (green, red, blue). Middle: The convergence boundary 82);7’ consists
of four replicates of 7'(0D)), separated by gray lines. The only two minimizers are shown as red
triangle and blue circle. Points are colored red if they converge to the red triangle, and blue if they
converge to the blue circle. Right: the box-counting dimension of T'(0D,,) is estimated as 1.249.

decays exponentially fast as a function of the squared norm ||u\|§ + Hv||§ Geometrically, this creates
an outward spike in the convergence region. Then, the self-similarity replicates this spike infinitely
many times and at multiple scales, giving rise to the spiky convergence boundary observed in Figure[3]
Although Theorem [3]shows the unboundedness only for the case y = 0, we observe qualitatively the
same convergence region for general targets (for an example, see left panel in Figure[T)).

Fractal basin boundaries have been extensively studied in dynamical systems (see, e.g.,|Grebogi et al.|
1983b; [McDonald et al., [1985). However, these classical approaches are either largely case-specific
or rely on properties that do not hold in our settings, for instance, invertibility of the system map. A
more detailed discussion is in Appendix [A] To our knowledge, our result provides the first rigorous
characterization of a fractal convergence region in the context of machine learning optimization.

Theorem [3] also shows that, although regularization eliminates unbounded global minimizers, the
selected minimizer remains unpredictable. Specifically, the algorithm always selects either the
minimal distance solution or the maximal distance solution over the set of global minimizers.
However, this selection becomes unpredictable near the convergence boundary, as both choices can
occur in arbitrarily small neighborhood (see middle panel of Figure[3). This stands is contrast with
gradient descent under small step sizes, which typically is biased to the minimal distance solution
(see, e.g.,/Gunasekar et al.,[2018} Boursier et al.,|2022). In fact, in Theorem@below, we show that
this bias appears when the step size is small enough.

In the following result, we show that both the convergence and the converged minimizer are pre-
dictable when step size is sufficiently small.

Theorem 4. Under the same conditions and notations as Theoremand letting Q(u,v) = ||UH§ +

Hv||§ + \/(HuH; + ||UH§)2 — 16y(uTv — y), the following holds for almost all initializations (u,v):
Ifn < 8/(4X 4+ Q(u,v)), then gradient descent converges to a global minimizer; If n < 4/(4\ +
Q(@,v)), then the particular minimizer it converges to is p~ (i, D).

Finally, we present another implication of the chaos in gradient descent. In Appendix [F} we show
for the case d = 1, i.e., L(u,v) = 3(uwv — y)? + 3 (u® + v?), u,v € R, A > 0, that, any continuous
dynamical invariant must be constant. In particular, the imbalance u? — v2, which is known to be
(approximately) preserved under gradient descent with small step sizes (Du et al., [2018; |Arora et al.,
2019), fails dramatically under large step sizes. Although this result does not directly extend to the

case d > 2, we anticipate that the chaos strongly constrains the form of dynamical invariants.

4 GENERAL MATRIX FACTORIZATION

We extend the results of Section [3|to matrix factorization (I). The key observation is that when the
initialization lies in a particular slice YW C R??% of the parameter space, the trajectory stays in the
slice and the dynamics decomposes into several parallel sub-dynamics in scalar factorization.
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Proposition 5. Consider gradient descent with step size 1) for problem (1)) with d > d,,. Consider
the set W = {(U,V) € R¥dv: (u' wl) = (u',v7) = (v',v7) =0, Vi # j}, where u’, v’ denote
the ith column of matrices U, V. The set W is forward-invariant, i.e., GD,, (W) C W. Moreover,
if the initialization (U, V) € W, then fori = 1,--- ,r, the trajectory of the columns (u',v*) is
identical to the trajectory of gradient descent applied to scalar factorization problem L;(u,v) =
LT —y;)? + 3(|Jull3 + ||[v]|3), with step size 1) and initialization (@', v").

With this observation, all results presented in Section E] extend verbatim to problem (T)) with initializa-
tions in WW. We present the detailed extensions in Appendix[G] Note, the slice W contains non-trivial,
i.e., non-zero, initializations if and only if d > d,. Thus, our results do not cover the low-rank
setting. However, JV contains the identity initializations U=oal;,V= B14 for d = d,, and the
zero-asymmetric initialization (Wu et al., [2019). The identity initialization is common in training
deep linear networks (Chou et al.| 2024; |Ghosh et al.,|2025) and is closely related the training of
linear residual networks (Hardt and Ma, 2017} Bartlett et al., 2018])). Our results therefore also apply
in those setting. Although our results are established for initializations in W, we experimentally
verify that the chaotic phenomena persist over general initializations and in deep matrix factorization;
details are provided in Appendix

Discussion of the mechanism We provide an intuitive explanation for the emergence of chaos in
matrix factorization. Although the update map GD,, is non-invertible, in Appendix @ we show that
the parameter space is partitioned by a measure-zero set K, so that the restriction of GD,, to each
connected component of R24 4~ \ K, is a covering map. This measure-zero set comprises primarily the
critical points of the map GD,;, {6 € R4 det J(GD,(6)) = det(I — nV?L(#)) = 0}, which
are the points where the Hessian of the loss has an eigenvalue equal to 1/7. We reason that chaotic
phenomena arise when there exists a connected component C C R2%dv \ KC,, that satisfies (i) C
contains at least two global minimizers, and (ii) C € GD,, (C). To see this, assume that GD,, has
covering degree m. For any minimizer p € C, since p € C C GD,,(C), there exists a neighborhood
Oy, of p such that GD™! (Op) has m connected components that are contained in C. By induction,
the preimage of O,, under the N'th iteration map, GD ¥ (Op), has m* components. Then the basin
of attraction of points near p is B(p) = U_, GD ™" (0,), which has infinitely many components.
These accumulate at the convergence boundary, as the boundary often contains an invariant set with
expanding directions and thus attracts inverse dynamics. Since the same phenomenon holds for all
global minimizers in C, their associated basins tend to be intricately interwoven near the convergence
boundary, which gives rise to sensitive dependence on the initialization (see right panel of Figure|T).
Additionally, by definition, B(p) = GD,,(B(p)), which means that B(p) can be folded m times onto
itself. This characterizes a self-similar structure. We point out that although this heuristic provides an
intuitive explanation for the emergence of chaos, a rigorous investigation is left for future work.

5 CONCLUSION

We offered a rigorous characterization of gradient descent with large step sizes in matrix factorization.
Our results reveal two striking phenomena: near the convergence boundary, the selection of the
minimizer is unpredictable, and adding regularization can induce a fractal convergence boundary that
makes the convergence itself unpredictable. As a driver of this complexity, we suggested a covering
map structure exhibited by the gradient update map on parameter regions where the inverse step size
is not an eigenvalue of the Hessian of the loss.

Limitations Although our characterizations substantially expand the state of knowledge in non-
convex overparametrized optimization in the particular setting of matrix factorization, further research
is needed to rigorously characterize the dynamics of large-step-size gradient descent in other settings,
such as general initializations, deep matrix factorization, or neural networks with nonlinear activation
functions. We believe the contributed insights can aid in the development of such program.

Future directions We showed that at large step sizes there may not exist any simple algorithmic
biases, but observed that biases could still be studied in a distribution sense. Further analyzing the
properties of the distribution over global minimizers that is induced by a distribution of initializations
is an interesting direction for future work. In particular, are there cases in which the distribution is
uniform over a subset of minimizers, or cases in which it will concentrate in a predictable way?
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Reproducibility statement Code to reproduce our experiments is made available at https:
//anonymous.4open.science/r/chaos—matrix—factorization—-07C5.
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APPENDIX
The appendix is organized into the following sections.

* Appendix[A} Relation to classical theory for chaos and fractals
* Appendix B} Measure of chaos in dynamical systems

* Appendix[C} Diagonality of the target matrix

* Appendix [D} Quotient dynamics of gradient descent

* Appendix[E} Proofs for Section

* Appendix [} Non-existence of continuous dynamical invariant
* Appendix[G} General matrix factorization

* Appendix [H} Experiment details

* Appendix [t Additional experiments

A RELATION TO CLASSICAL THEORY FOR CHAOS AND FRACTALS

A.1 CHAOTIC DYNAMICAL SYSTEMS

A common definition of chaotic dynamical systems is by Devaney and Eckmann|(1987)). A dynamical
system F': X — X, where X is the state space, is chaotic if: (i) it is sensitive to initialization, (ii) it
is topological transitive, and (iii) periodic points are dense in X. Here, sensitivity to initialization
requires that there exists § > 0 such that for any € X and any neighborhood of x, there exists
N > 0 and y in the neighborhood such that dist(F™ (x), F¥(y)) > 4. This is weaker than the
property we presented in Theorem [T]and Theorem 3} when the converged points of two trajectories
are different, the trajectories must differ by a positive difference at some time N, but not vice versa.
In Proposition we show that the boundary D!, as defined in Theorem |1} is invariant under
gradient descent. In Proposition , we show that when restricted to 81);7, the gradient descent system
is semi-conjugate to a one-dimensional system that is precisely Devaney chaotic. However, we show
in Proposition [T9]that the original gradient descent system is not Devaney-chaotic when d > 2 as it
fails to be topological transitive.

A system F': X — X is topological transitive if for any pair of non-empty open sets U, V, there
exists NV such that FN(U) NV # @. A family of dynamical systems that exhibit transitivity is
the family of Axiom-A diffeomorphisms (Smale||1967). These are dynamical systems where the set
of non-wandering points is hyperbolic and is equal to the closure of the set of periodic points. A
closed set A is hyperbolic if it is forward invariant and at each point = € A the tangent space of the
ambient space splits as a direct sum of stable and unstable subspaces. It is known that an Axiom-A
diffeomorphism is always transitive on each of its basic set (Bowen et al., 2008, Chapter 3). However,
gradient update maps typically are not expected to satisfy this definition as they in general are not
global diffeomorphisms.

Another definition of chaotic dynamical system is by |Li and Yorke| (1975). They considered a
dynamical system F': X — X with X C R being an interval chaotic if F' has a periodic orbit with
period three. They showed that if such a periodic orbit exists, then (i) F' has periodic orbit with any
period; (ii) there exists an uncountable set S C J such that, for every p, g € S with p # ¢,

limsup |[FN (p) — FN(q)| > 0, liminf |[FN(p) — FN(q)| =0,
N—o00 N—o0

and (iii) for every p € .S and a periodic point ¢ € J,

limsup |FY (p) — FY(q)| > 0.
N—o0
In Proposition , we showed that the restricted system GDn|3D% is semi-conjugate to a one-

dimensional system that is Li-Yorke chaotic. In general, Devaney chaos and Li-Yorke chaos do not
imply each other. For a detailed comparison between different notions of chaotic dynamical systems,
see Elaydil (2007).
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A.2 FRACTAL BASIN BOUNDARY

The fractal convergence boundary studied in this work falls into a more general notion, called a fractal
basin boundary. The seminal classification given by [McDonald et al.|(1985) divides fractal basin
boundaries into three categories: quasicircles, locally connected but not quasicircles, and locally
disconnected. The most regular type, quasicircle, is typical in the Julia sets of complex analytic maps.
However, as noted by [McDonald et al.| (1985)), properties of complex analytic maps do not generalize
to real maps, and hence quasicircle is uncommon in real systems. We observe that the convergence
boundary in our study falls in the second category, locally connected but not quasicircles. This type
of boundary has been observed in several planar maps, i.e., dynamical systems defined on regions of
R2. A well-known example is the following system:

Tpt1 = ApZpn mod (1),  Yni1 = Ayyn + cos(2may,).

The basin boundary of this system is precisely the Weierstrass curve. [ McDonald et al.|(1985) argued
that a typical characteristic of this type of boundaries is the local stratification structure, which also
appears in the convergence region in our case (see left panel in Figure[I). To our knowledge, however,
all examples of locally connected boundaries appearing in the literature, including those presented
by [McDonald et al.| (1985); [Hunt et al.| (1999); Rosa Jr and Ott| (1999), are bounded, whereas the
convergence region in our case is shown to be unbounded. Classical approaches do not apply to
our study, as most of those theoretical studies are case-specific. The last category has the most
complicated structure and, as noted by [Aguirre et al.| (2009), turns out to appear more commonly
in physical systems. Boundaries in this category typically exhibit a Cantor set structure. Examples
include the famous Hénon map and the horseshoe map. For a recent review of the fractal boundaries,
we refer readers to|Aguirre et al.[(2009).

B MEASURE OF CHAOS IN DYNAMICAL SYSTEM

We introduce two measures of chaos in dynamical systems. In Appendix we introduce the
topological entropy of a dynamical system and, in Appendix [B.2]we discuss how the fractal dimension
of the basin boundary implies unpredictability.

B.1 TOPOLOGICAL ENTROPY

Let F': X — X be a dynamical system, where X is the state space with a metric d. The idea behind
topological entropy is to measure how fast the number of “distinct” trajectories increases as the
trajectory length increases. To measure the difference between two trajectories of length N, consider
max d(F'(z), F(y)).

dn(z,y) = 0<i<N-1

Then, the number of “distinct” trajectories of length N is measured by
r(N,e) = max {|S]: dn(z,y) >e,Va,y € S,z #y},

where | S| is the number of elements in .S. The topological entropy of F', denoted h(F'), measures the
exponential growth rate of (N, ¢) as N increases. Specifically, h(F) is defined as follows:
logr(N,e)

h(F)= lim li —_—.
(F) =l Ny =g

We give an example to provide more intuition. Consider the following symbolic dynamical systems:
o: {0,1}% = {0,1}, a(sos152--) = (s152---).

Here the state space {0, 1}°° denotes the set of all infinite sequence of two symbols 0 and 1, whose

metric is defined by

d((sos1-++), (shs1 ) =D I3 — 551,

27
3=0

The system o is called the full-shift on two symbols. Despite its simple definition, this system is
unpredictable and chaotic (see, e.g.,[Devaney and Eckmann| |1987). In particular, periodic points are
dense in the state space, and, there exists a trajectory that is dense in the state space, i.e., there is a
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single trajectory that can come arbitrarily close to any point. In terms of predictability, consider two
points s = (sgs1---),s" = (s(s] - - ) that have the same first 7 elements, but differ starting from the
(m + 1)th element. By the definition of the distance, we have d(s, s") < Z;?O:O 1/2m+i = 1/2m+1,

However, for all N > m, we have d(c" (s), 0" (s)) > 1/2. Therefore, even if two initial points are
arbitrarily close to each other, one can not make any prediction on how close their trajectories will
remain in the long term. This unpredictability stems form the richness of “distinct” trajectories. In
fact, one can show that A(o) = log2 > 0 (see, e.g., Vries, 2014). Note, the topological entropy of
the gradient descent in matrix factorization is at least log 3 (Theorem [IJ).

B.2 BOX-COUNTING DIMENSION AND UNPREDICTABILITY

There have been numerous investigations discussing how a non-integer fractal dimension implies
unpredictability in dynamical systems (see, e.g., T€l, |1990; |Aguirre et al.|[2009). Here we provide a
brief introduction to this topic.

Recall that the box-counting dimension of a set S is defined as the following limit if it exists:

. log(N(e))
Dp(5) = gl_% W7

where N () is the number of boxes of side length ¢ needed to cover the set S. For a dynamical system
F: X — X where X C RP is the state space, let Dg be the box-counting dimension of a basin
boundary and D be the topology dimension of the state space. Consider a collection of trajectories
and randomly perturb their initial points by a scale ¢. Let f(e) denote the fraction of the trajectories
that converge to a different point, i.e., whose initial point lies in a different basin of attraction after
the perturbation. Thus, f(e) can be roughly viewed as the chance of making an error in predicting
the converged point when the precision in specifying the initial point is €. In general, the following
scaling relation holds (Grebogi et al., |1983a):

fle) ~eP7Pe,

where D — Dp is known as the uncertainty exponent. When the boundary is smooth, we have
Dp = D — 1 and thus f(e) ~ ¢, i.e., the accuracy of the prediction of the converged point is
proportional to the precision on the initial point. In contrast, when the boundary has a non-integer
dimension, we have D — 1 < Dp < D and hence D — Dp < 1. This implies that a substantial
increase in the precision in specifying the initial point leads to only a very small increase in the
accuracy of the prediction. This marks sensitivity to initialization and unpredictability. Note, the box-
counting dimension of the projected boundary T’ (87);7’ ) is estimated as 1.249, yielding an uncertainty
exponent 2 — 1.249 = 0.751 (see Section[3.2).

C DIAGONALITY OF THE TARGET MATRIX

We show that in matrix factorization (IJ), one may assume without lose of generality that the target
matrix is diagonal. This simplification is a standard technique that has been widely adopted in the
literature.

Let Y = PyzyQ; be the singular value decomposition of Y, where Py, Qy € O(d,) and

Yy € R%*dy is diagonal. Consider the change of coordinates U = U Py andV = VQ; Recall
that the U-update in minimizing L(U, V') is given by

U1 = U — 77Vt(VtTUt - YT) — nAUs.
In the new coordinate, we have
Upyr = U Py
=UPy —Vi(V, Uy — Y ") Py —nAU Py
= U —nViQy (QyV, Ui — Qy3Y) — n\U,
=0, - U‘Z&(‘Z&Tﬁt - Efo) - U)\Ut-

&)
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On the other hand, since the Frobenius norm is invariant under left- or right-multiplication by
orthogonal matrices, the loss function in the new coordinates is given by

- 1 S A - -

L0, V) =Sy UTVQy =Y+ S(IUP [IE + IVQy[1F)
1 -1 A= .

= 10TV =Syl + SUONE + IVIIE)-

Note the update iteration (3] coincides with the U-update in minimizing i(ﬁ , f/) with gradient
descent. An analogous calculation shows the same holds for the V'-update. Therefore, one may
directly study the gradient descent dynamics in minimizing L(U, V).

D QUOTIENT DYNAMICS OF GRADIENT DESCENT

We show that the gradient descent dynamics in the scalar factorization problem can be described by a
quotient system, and we further establish key properties of this system.

Consider the map
T:R* - R?, T(u,v) = (u'v—y, |[u]* + [lv]*).
Note that this definition differs from the one introduced in Section @] by a constant shift of —y,

where y € R is target scalar of problem (2). This adjustment is made purely for convenience in
presenting the proof. All results stated here extend trivially to the original formulation.

We will show that the gradient descent dynamics are fully captured by their evolution across the fibers
of the map 7. In other words, different initializations in the same fiber produce qualitatively identical
trajectories. This reflects an inherent symmetry of the system. The quotient system factors out this
symmetry and describes the fiber-wise dynamics. The term guotient dynamical system is borrowed
from the theory of equivariant dynamical systems (see, e.g.,|Golubitsky and Stewart} 2003)).

D.1 QUOTIENT DYNAMICAL SYSTEM

We first introduce two properties of the map 7': (i) the preimage of any measure zero set has measure
zero and (ii) the fiber of T is generically a smooth manifold.

Proposition 6. The preimage of any measure-zero set under the map 'T' is a measure-zero set.

Proof. By Ponomarev|(1987), it suffices to show the map 7" is a submersion almost everywhere, i.e.,
the Jacobian of 7" has rank two almost everywhere. Notice that

JT(u,v) = (27; 2%})

Hence, rank(JT') < 2 if and only if there exists ¢ # 0 such that cv = 2u and cu = 2v. This gives
c*v = 2cu = 4v, and hence, ¢ = 2 or v = 0. The set {v = 0} has zero measure. When ¢ = +2,

we have u = +v which also yields measure-zero set. This completes the proof. [
Proposition 7. For almost all (z,w) € T(R*) = {(z,w) € R*: w > 2|z + p|}, T '(z,w) is

diffeomorphic to S¥1 x S471,

Proof. Notice that
lut+vlf=w+2(z+p), lu—vli=w-2(+p).
Consider the linear bijection p = v + v and ¢ = u — v. It follows that
_ 2
T4z w) = {0, @): P} = w+2(z + ), lal} = w =202 + 1)}

Thus, the fiber is diffeomorphic to S¥=! x S9=! whenever w & 2(z + p) # 0. Note this only fails at
a measure-zero set, which completes the proof. O

Next, we prove Proposition 2] In the terminology of dynamical systems, this result shows that the
gradient descent system GD,, is semi-conjugate to a planar system f under the map 7.
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Proposition 8 (Proposition . Let (uy, vy)1>0 denote the gradient descent trajectory in problem (@)
with X\ > 0. Let (2, w;) = T (uy, vt). Consider the map f: R? — R? defined by

(%) = 223 + n?y22 + ((1 — nA\)? — qw + 2 w)z + yn?A? — 2ynA ©)
w) (1 =nA)? +n?2%)w — 4nz(1 = nA) (2 + y) '

We have that (zi41, wry1) = f(ze, we) holds for all t > 0. In particular, (us,v:) converges to
{uTv = y} if and only if (z¢,w;) converges to {z = 0}, and it converges to (0,0) if and only if
(z¢, wy) converges to (—y, 0).

Proof. To ease the notation, let (z,w) = (2, w) and (2/,w') = (2441, wyy1) for arbitrary t. We
have that

o = (u/)Tv/ —y
= (u—nzv —nu) " (v —nzu —n\v) —y
=z —nzw —2n\u' v+ 2 22u v + P hzw + 22w
=z —nzw —2n\(z +y) + n?2%(z +y) + n*hzw + P\ (2 + y)
=72+ ?y2® + (1= nA)? —nw + 9> Aw)z + yn?A* — 2ynA.
Also, we have that
w' = [lu']|* + [lv]|?
= (u—nzv —nu) " (u—nzv — nAu) + (v — nzu — ) " (v — nzu — NIv)
= ((1 =122 + 02w — dnz(1 — n\)(2 + y).
Note that, the loss function solely depends on u " v — 3. Thus (uy, v;) converges to {uTv = y} if and
only if (z;,w;) converges to {z = 0}. Also, note that, T'(u, v) = (—y,0) if and only if u = v = 0.
Thus (ug, v¢) converges to (0, 0) if and only if (2¢, w:) converges to (—y, 0). This completes the
proof. O

To further simplify the analysis, we consider the change of coordinates ¢(z,w) = (nz,nw). Note
that, under the map ¢(z, w) = (nz, nw), the system f, as defined in (@), is topologically conjugate to

F(*) =gofoot(?) = (F+mz+ (10N —wtnlw)z +ynX* —2yn*A
w) w) (1 =nN)? 4+ 22)w — 42(1 — nA\) (2 + 1Y)
_ <z3 4 (1= v)? = w+ vw)z + v — 2,“/)
B (1 =)+ 22)w —42(1 — v)(z + p) ’
(N

where we let 1 = ny and v = nA. With Cauchy-Schwartz inequality, it is straightforward to verify
that the state space of F'is

Q={(z,w) ER*: w>2/z+p|}.

The system F' has two parameters, p and v, whereas f has three, 7, y, A. Therefore, we instead study
the system F'. Note, trajectories of F' and those of f only differ by a scale. Thus all results for F’
extend trivially to f.

D.2 PROPERTIES OF THE QUOTIENT DYNAMICS

We show that the map F', as defined in (7, is a proper map, i.e., the preimage of any compact set is
compact.

Proposition 9 (Properness). When 0 < v < 1 — |u|, the map F is proper on Q.

Proof. Consider ||(z,wy)|| — oo for a sequence of points (zj,wy). Let (2, w},) = F(zg, wg).
Assume (zj,,w},) stays bounded. Since (zx,wy) is unbounded and (2 is a cone, one must have
wy, — 0o. Notice that

wh, = (1 —v)?* + 28)wp — 42 (1 — v)(2x + ).
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To make w), bounded, z;, has to be unbounded. However, as wy, > 2|z + p/,

1—v) 4+ Z)wp — Azl - 2 + pl - [1 - v]

> ((1—v)? + 2wy — 2|zx| - wy - |1 — v

> wi (|2 — (1= v))%

Since wy, |zx| are unbounded, w), has to be unbounded, which yields a contradiction. This completes

the proof. O

Consider the function () defined as follows
Q: Q=R Q(z,w) =w+ Vw? — 16puz.
We will frequently use @ as a Lyapunov-like function to study the dynamics of F'.

In the following result, we describe the level set structure of the function Q.

Lemma 10 (Level-set structure). Consider Q(z,w) = w + y/w? — 16uz. Then, Q(z,w) > 4|u|
for all (z,w) € Q2. Moreover, we have that

o Ifr = 4|u|, then for all (z,w) € , Q(z,w) = rifand only if w = 2sgn(p)(z+p) and w < 4|p
Q(z,w) > r holds for all other points.

’

o Ifr > 4|u|, then for all (z,w) € Q, Q(z,w) is less than, equal to, larger than r if and only if
—16uz — 12 + 2rw is less than, equal to, larger than 0, respectively.

Proof. When w > 2|z + ul,
w? — 16pz > 4(z + p)® — 16pz = 4(2 — p)* > 0.
Therefore, () is well-defined in 2.

When p = 0, we have that Q(z, w) = 2w. The claimed results clearly hold. In the sequel, consider

w# 0. Letr = Q(z,w) = w+ Jw? —16pz and s = w — /w? — 16puz. Then we have
z = (rs)/(16p) and w = (r + s)/2. Notice that

r? — 8% =(r+s)(r—s)=2w-2y/w? — 16uz > 0.

Since w > 2|z + p|, we have w? > 4(z + p)? and hence
r+5.9 rs 9
> 4(—
L2 2 4+
& (r? —16p%)(s* — 16p%) <0
o r > 4, [s] < 4lul.

®)

We have that for (z,w) € ,

w+ Vw? — 16pz = 4|p|

S Vw? = 16pz = 4pl —w

& w? = 16p2 = (4u — w)?, w < 4yl

& w = 2sgn(p)(z + p), w < 4fpl.
Therefore,

[Q(zw) = Alul} = {w = 2sgn(u)(z + ), w < Apl} < O,

and {Q(z,w) > r} = Q\ {Q(z,w) =r}.
Now we consider r > 4|u|. When w = 2(z + 1), we have

r+4u
5

—16pz -1 +2rw =0 w =
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When w = —2(z + p), we have

—4
—16pz — > +2rw =0 w = ! 5 M.
Therefore, the line —16pz — r2 4+ 2rw = 0 intersect with 9 at two points, whose w coordinates

are Ti;". Since r > 4|p|, we have that Ti% < 7 always holds. This implies that, for all

(z,w) € QN {~16pz — r? + 2rw < 0}, we have r — w > 0. Thus, we have that for (z,w) € Q
and r > 4|p

w4 w? — 16pz <71
& Vw2 —16pz <r—w
s w? — 16pz < (r —w)?
& —16pz —r’ + 2rw < 0.

The above clearly hold when < is changed to >. This completes the proof. O

We identifies three invariant sets of the quotient system F'. Recall that, a set S C 2 is said to be an
invariant set under F' if F'(S) C S.

Lemma 11 (Invariant boundary). The boundary 0S) consists of two lines: {w = 2(z 4+ pu), w > 0}
and {w = —2(z + p),w > 0}. Each of the lines is an invariant set of F. Meanwhile, when 0 < v <
1 — |p, the set {@Q = 4|u|} is invariant under F.

Proof. Let (z/,w’) = F(z,w). By direct computation, we have that
w' =22+ p) = (w =2z + p)) (1 + 2 = v)?,
w4202+ p) = (w+2(z + p) (=14 2 +v)%
It follows that if (z,w) € 90 = {w = £2(2 + p)}, F(z,w) € 9.

According to Lemma {Q =4y} = {w=2sgn(u)(z+p),w e [0,4|p]]}. When w =
2sgn(p)(z + w), we have that the w-update is given by

w = (s — )+ 0= 0)*) = 20 (seni0 5~ ) (1)
% _
K(w).

€))

w(s —1+v—|u)?

L

We will analyze the image set of ([0, 4|x|]). Clearly, the minimum of x([0,4|ul]) is k(0) = 0.
Let A = —1 + v — |p|. We have that £’ (w) = 0if w = —2A or w = —2A/3. Notice that when
0 <v < 1-—|u|, wehave 4] < —2A. Therefore, the maximum of ([0, 4|u|]) is either x(4|u|) or
k(—2A/3). When 4|pu| > —2A/3, we have (1 — v)/5 < || <1 — v. Notice that
—2A) 81 —wv+|u))?
30 27 '

Viewing x(=22) as a cubic function of |u|, we have that, as 1 — v > 0, k(=22) is convex on
(1-v)/5 < |u| < 1—v. Therefore, to show r(=22) < 4|u| for (1 —v)/5 < |u| < 1 —v, it suffices
to show this holds when p = (1 — v)/5 and = 1 — v. Notice that

w(

8 1—v 1—v 2527
—((1 - 3<4q. s (1-v)?2< ~ 1.56
(-0 + =)< (1-v)? < 5 ~ 156,
and that 8 o7
3 2
(1 — _ _ _ < 2
27(1 v+l-—v)y<d4(l-v)e (1-v) ST

which are all satisfied. Therefore, x(—2A/3) < 4|u| when 4|u| > —2A/3. Meanwhile, we have

r(Alul) = Alul(pl =1 +v)* = 4lpl(p] - a)*.
Since 0 < |p| < aand 0 < a < 1, k(4|p|) < 4|u|. Therefore, the image set of ([0, 4|p]]) is
contained [0, 4|u|]. This means that the set {@) = 4|u|} is invariant under F', which completes the
proof. O
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In the sequel, we present two important properties of the map F', which will be used in the proof of
our main results. In the following result, we identify the region on which a single update of F' leads
to a decrease, or an increase in the value of ().

Lemma 12 (Monotonicity region). Assume 0 < v < 1 — |u|. When v = 0, we have that, for
(z,w) € Q: (i) Q(F(z,w)) = Q(z,w) if and only if (z,w) lies in the set

Z 2 {w=pz+4}U{z =0} U{w = 2sgn(p)(z + p),w < 4ful};
and (i) If (z,w) ¢ Z, we have (Q(F(z,w)) - Q(z,w)) (w—pz—4) >0.
When v > 0, we have that, for (z,w) € Q, Q(F(z,w)) < Q(z,w) if and only if (z,w) lies in the set

w(z? —2v +v?) 42%2(v - 1)
{z2<—1/2—|—21/}u{w<— = 1) —V2_2y+22,22>—y2+21/ .

In particular, Q(z,w) > F(Q(z,w)) if Q(z,w) < 8 — 4v.

Proof. Let (2',w') = F(z,w). Assume that ;1 > 0. The case of ¢ < 0 can be proved via a
analogous procedure. Let r = Q(z,w) and let s = w — /w? — 16puz. When r = 4|u|, we have
that Q(F(z,w)) = Q(z,w) always holds, by Lemma|[l1] Consider r > 4|u|. Using Lemma [10]
we have that the sign of Q(2’,w’) — Q(z, w) is the same as that of the inner product between the
vector pointing from (z, w) to (z’, w’) and the normal vector (—8, Q(z, w)) of the line —16uz —
Q(z,w)? + 2Q(z,w)w = 0, which is given by
(—=8u) (2" = 2) + Q(z, w)(w' — w)
= —8u(2® + pu2® + (v — 2 —w +vw)z + viu — 2uv)+
Q(z,w)((V* = 2v + 2*)w — 4z(1 = v)(z + p)) (10)

oc 2 (r? — 160%) (r?s% + 8rs?(—1 + v) + 25617 (=2 + v)v)

o 1252 + 8urs? — 8rs® + 256p° 1% — 5124°v.
When v = 0, the above is equal to s?r(r — 8). By noticing that 7 > 4[| > 0, that the sign of 7 — 8

is the same as that of w — pz — 4 by Lemma[I0} and that s = 0 if and only if z = 0, we have all the
results for v = 0.

When v > 0, (T0) has the same sign as
2u(2® +v? —2v) — (1 — v)z(w — Vw? — 16uz).
We have that for (z,w) € ,

{2u(2* + 1% —2v) — (1 — v)z(w — Vw? — 16pz) << 0}

w(z? —2v +v?) 42%(v — 1)
—{z2§—y2+2u}u{w<— 1) —V2_2V+Z2,22>—1/2+2u .

Next, we show that {Q) < 8 — 4/} is contained in the above set. Notice that 8 > 4(|u| + v) always
holds when 0 < v < 1 — |u|. So 8 — 4v > 4| and, by Lemma([10} the level set {@Q = 8 — 4v} is on
the line

8 8 — 4v

st T

Then it suffices to show that when z2 > —v2 + 2u, the following holds

w

w(z? = 2v +v?) 42%2(v — 1)
z(v—=1) V2 —2u+ 22

Su ; 8 —4v
8 — 4v 2

= ( ) = 0. (11)

By direct computation, we have that the level set {Q) = 8 — 4v} intersects 0 at z = £(2 — v).
Hence, by the cone structure of €2, we have 22 < (2 — v)?if Q < 8 — 4v. Therefore, multiplying
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2(22 4+ v? — 2v) to both sides of the above inequality and assuming 2 > 0, we have that the inequality
is equivalent to

=2 1)
S (=224+2-v)?) (—p2+ A —-6v+20%)z —pu(—2v+1v2)) >0
& —p2t 4 (4 —6v+ 20z — p(—2v + %) > 0.

(=224 2= v)D) - (p? + (A= 6+ 207)z — (=2 + %)) 2 0
(12)

The symmetry axis of the parabolais (v — 1)(v — 2)/u > 0. Since 1 — v > p, the symmetry axis
lies in (2 — v, +00). Notice that

—p2® + (4= 6v+20°)z — p(—2v + 1?)|,_ ey > 0

<21 —v)V-v2+2v >0,

which is satisfied. Therefore, holds and holds. The case of z < 0 can be proved with a
similar procedure. Thus, we have that {Q < 8 — 4v} is inside the set {Q(z,w) > Q(F(z,w))}.

When p = 0, Q(z,w) = 2w. We have that
Q(F(z,w)) — Qz,w) =w(z® + (1 —v)?) —42°(1 —v) —w
=422(-14v) +w(z? — 2v +1?).

It is straightforward to verify that the claimed results hold for this case. This completes the proof. [

In the following result, we characterize the preimage map of F', which in general is a multi-valued
map.

Proposition 13 (Preimage structure). Assume 0 < v < 1 — |ul|. Consider the sets
B={(z,w) € Q°: Q(z,w) > 6 — 4v}
Ag={(z,w) € z<v -1}
As ={(z,w) € Q°: 2 >1—v}.
The restrictions F|a,), F |C1( As) are homeomorphisms onto Q2. Moreover, there exists homeo-

morphisms Go: Q — cl(Ap), G1: cl(B) = G1(cl(B)) C {(z,w) € Q: 2| <1—-v}, G3: Q —
cl(Az) such that F o G; is an identity map on the domain of G; fori = 0,1, 2.

Proof. Notice that the singular value of F' lies in the set
{det JF(z,w) = —(14+ 2z —v)(-14+ 2+ v)(1 —w— 32> = 2zp — 2v + wv + v*) = 0} . (13)
Since |p| < 1 — v, the bottom tip of €2, (—u, 0), lies in (v — 1,1 — v). Therefore, Ay is bounded by

w = —2(z + p) and z = v — 1. Notice that the parabola 1 — w — 32% — 2z — 2v +wv + v? = 0
intersects w = —2(z + p) at z = (—2pu — 1 4+ v)/3 and we have

(2p—14v)83>v—-1pu+v<l,
which is satisfied by assumption. Therefore, det J F’ vanishes nowhere on Ag.

We next show that F/(Ag) = Q°. For an arbitrary (zo,wp) € Q°, (z,w) € F~Y(zp,wp) if (2, w)
solves the following system

2 p2? + (1 —v)? —w+vw)z +v%p —2uv = 2 (14)
(1=v)?2+ 22w —42(1 —v)(z + p)) = wo.
For z # 0, solving is equivalent to solving
B4 p?+ (1—v) 2+ —2uw — 29 42(1—v)(z + p) +wo
N (1-v)z N 224+ (1-v)? ’
which is equivalent to solving the following quintic equation
p(2) = 2° + pzt —2(v — 1)223 + ((—20° +4v — 3)pu — 20) 2> 15)

+ -1 =3 +3v+wy— Dz + (v —1)*(ur(v —2) — 2) = 0.
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Notice that p(—o0) = —oo and p(—1) = (v — 1)?(wp — 2(z0 + p)) > 0. Hence, p has at least one
root in (—oco, —1). By Lemmal[11] in particular, by (9), we have that, when viewing F' as a map on
R2:

F7109Q) =00U{z = +1}, and F~}(Q) C Q.
Therefore, the above root of p corresponds to one preimage in Ag. This means that F'(Ag) = Q°.

For any compact set K C 2°. Note K is also compact in §2. Since F is proper by Proposition [9}
F~1(K) is compact. Since K N 9Q = @ and 9(Q) D F(dAp), we have F~1(K) N Ay = @.
Therefore, (F|a,) " (K) = F~Y(K)N Ay = F~1(K) Ncl(Ap), which is a closed in F~1(K). As
a closed subset of a compact space is compact, we have (F|4,) ' (K) is compact. Hence, F| 4, is a
proper map. Since {2° is simply-connected, by Hadamard Inverse Function theorem, we have that
F| 4, is a homeomorphism from A to Q2°.

We now show that F' maps 0 A bijectively to 0f2. Since Ay C cl(Ag), we have that F/(Ag) = Q° C
F(cl(Ag)). Since cl(Ap) is compact, therefore, F'|¢j(a,): cl(Ag) — €2 is proper, and hence is closed
(see, e.g., Theorem 4.95. Leel [2000). Therefore, F'(cl(Ag)) is a closed set that contains 2°. Hence,
cl(2°) = Q C F(cl(Ap)). Since F(Ag) = 02°, we have 9Q C F(0Ap), which means F'|54, is onto
o). By Lemma we know F'maps {z = v — 1} to {w = 2(z + p)} and maps {w = —2(z + u)}
to itself. When z = v — 1, the w-update is given by

W' = w((L = v)? + (1 +1)2) — 4(1 = v) (=L + 1) (~1 + p+v),

which is linear in w. Therefore, F'|,—;_, must be an injection. When w = —2(z + ), the w-update
is given by

w’zw(%—l—i—u—f—u)?

As a function w, w’ have two critical points, w = 2(1 — g — v) and w = 2(1 — u — v). Notice
that z = v — 1 intersects 092 at (v — 1,2(1 — p — v)). Then when (z,w) € cl(Ap), we have
w > 2(1—p—v). Since 1 — u — v > 0, we have that the above w’ is monotonic with w. Therefore,
Fei(4,) is an injection. It follows that, F|5.4, is a bijection to 9 and F|(4,) is a bijection to €2.
Note, F|¢i(4,) is proper by Proposition E]and by cl(Ap) is closed. Hence, F'|¢y4,) is a closed map
(see, e.g., Theorem 4.95. |Lee, 2000), which means its inverse is continuous. Hence, F|Cl( Ao) is a
homeomorphism. The proof for A, is similar and thus is omitted.

Finally, we analyze the behavior of F', as a map onto B. We show that every points in B are regular

values. Note that,

1—322 —2zp—2v + 12
1-v

&322 +2uz + (32 —8v +5) > 0.

6 —4v — >0

For this parabola, we have
(2u)? —4-3(3v° —8v +5) <0
& |ul* <30Bv—-5)(r—-1)
=(1-v)?<-303v-5)(1-v)

= <7
14 —.
4

So the parabola is always above y = 0. Therefore, we have that

1—322 =2z —2v + 12

—4
Q(z, T ) < 6—4v
1—-322—22p—2 2 1—32%2 —2zpu—2 2
<:>\/( 3z ZL V+V)2—16uz<6—41/— 3z zZp vV+v
1—-v 1-v
1—322 -2z —2 2
o 16z 4 26— dv) LS TV 6 2 o

1—-v
& (6v —9)2% +2u(4v — 5)z + (2v° — 9 + 130 — 6) < 0.
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For this new parabola, we have its discriminant is negative if
P2 (5 —4v)? —12(3 — 2v)%(v? —=3v +2) <0
S (1-v)26-w)?-123-20)2*(r-1)(r-2)<0
< 320° — 18202 + 331y — 191 < 0.

By differentiation computation, we claim that the last equation holds when v € [0, 1]. Therefore, we
prove that the maximum @ value on the parabola ¢t: 1 — w — 322 — 2zp — 2v + wv + v? = 0 is at
most 6 — 4v. Notice that all the singular values of F is given by 9Q U F(¢). But what we have shown
and Lemma[I2] we have

Q(z,w) <6 —4v, Y(z,w) € F(1).

Therefore, we have that every points in B are regular values.

Now we show that |F~1(z,w)| = 3 for (z,w) € B. To this end, we first consider a special point:
" = (—p+ p(l —v)2 w*(1 — v)?) = F(0,w*) for some w* such that * € B. Notice that the
w-coordinate of x* tends to infinity as w* tends to infinity. Hence, w* can be arbitrarily large while
keeping x* € B, i.e., Q(x*) > 6 —4v. We show that | FF~!(z*)| = 3. Plugging 20 = —p+pu(1—v)?
and wg = w* (1 — v)? to (T3) gives

0=z +pz®—20w—1)72%22 = 3u(v —1)%2+ (v — 1> (=1 + v +w*)

1
o2t 4+ = v - 12222 +3pz — (v — 1)(-1+v+w)). (16)

The left-hand side is a continuous function and thus has a finite upper bound when z € [—1+v,1—v/].
The right-hand side is a parabola, whose symmetry axis is at —34/4. Hence, it’s global minimum is
_g,ﬂ(y 1) (= 1)1 4 v+ ),

Notice that this quantity tends to +o0o as w* tends to +oc0. Hence, for large enough w*, equation
(T6) does not have a solution on [—1 + v,1 — v]. It follows that F~!(x*) does not have any
elementin {z € [-1 +v,1 — v]} except (0, w*). By what we have shown, F'|¢(4,) and F|¢j(4,) are
bijections onto 2. Hence, F'~!(z*) have exactly one element in A, and exactly one in A,. Therefore,
|FF~1(2*)| = 3. Now consider any other point in B and a path connecting z* and that point. Since
every point in B is a regular value, by the stack of records theorem, the function |F'~1(-)] is locally
constant. (Stack of records theorem requires the domain to be compact and this can be achieved
by confining F' on w < W for some large enough W so that the image contains the path. This is
guaranteed by properness of F'.) Note the path is compact and thus |F~!(z,w)| is a constant on the

entire B and hence is 3.

Given (z,w) € B, in F~1(z,w) we already know there are exactly one point in A and exactly
one point in Ag. Hence, the third point must lie in {(z,w) € Q: |z| < 1 — v}. We define this map
by G1: B — {(z,w) € Q: |z| <1 — v} and let Ay = G1(B). By what we have shown, det JF'
vanishes nowhere on A;. Note by construction of Ay, F'| 4, (41) = B. With a similar treatment as we
used for Ay, we can show F'| 4, is proper. As B is simply connected, we have that F', when restricted
to A;, is a homeomorphism to B. As we shown above, F' is a bijection from |z| = £(1 — v) to
O). Moreover, we claim that G can be extended to {@) = 6 — 4v} in a bijective manner, as one can
choose C slightly smaller than 6 — 4v and apply the same analysis for {(z,w) € Q,|z| < 1,Q > C}
as we did for B. Hence, F', when restricted to cl(A;), is a bijection onto cl(B). Note, F'|ci(4,) is
proper and hence its inverse is continuous. Therefore, F'|¢j(4,) is a homeomorphism. This completes
the proof. O

E PROOFS FOR SECTION

In this section, we present the proofs of our main results. The key idea is to first analyze the quotient
dynamical system introduced in Appendix D} and then translate the conclusions back to the original
system.

E.1 UNREGULARIZED PROBLEM

Preliminary results are first presented in Appendix [E.1.T] and the proof of Theorem [I]is given in

Appendix
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E.1.1 PRELIMINARY RESULTS

As discussed in Appendix [D] the gradient descent dynamics are captured by the following system F':

Fl?) = 25+ pu2? — 2w+ 2
w)  \(Z2+Dw—42(z+p) )’
where 11 = yn denote the parameter of system F'. Given 1 > 0, the state space of F'is
Q= {w>2z+4}.

In the following several results, we characterize the long term behavior of orbits of F. We will
use the terms trajectory and orbit interchangeably. We say an orbit {x} } converges to a set S if
d(zk, S) — 0, where d(z, S) = inf,cg d(z, y). Unless stated otherwise, we use (', w’) to denote
F(z,w).

Proposition 14 (Long-Term Dynamics). Assume |u| < 1. Given an initial condition (zg, wp) € €,
we have that:

* Ifwg < pzo + 4, the orbit stays in {w < uz + 4} and converges to
{w = 2sgn(p)(z + p), w < 4|ul} U{z = 0}.

o Ifwg > pzo + 4, the orbit either diverges, in the sense that wy, — oo and zy, /4 0, or converges to
{z = 0} in finite steps.

o Ifwg = pzo + 4, the orbit stays in {w = uz + 4}.

Proof. Consider function AQ(z, w) = Q(F(z,w)) — Q(z, w). When wy < pizo + 4, by Lemma[12]
we have Q(zk+1,wi+1) < Q(zk,wy) for all & > 0. Hence, the trajectory stays in the region
{w < pz+ 4}. Since Q(zx, wy) is bounded from below, it converges to some finite value and
AQ(zk, wy,) converges to zero. Meanwhile, from Lemmal[12]

{AQ=0}=Z={2=0} U{w=pz+4} U{w = 2sgn(p)(z + p), w < 4|p|}.

If (21, wy) does not converges to Z, there exists £y such that for any K there exists £ > K such
that d((zx,wy), Z) > €. Note the function AQ is uniformly continuous on {w < pz + 4} C
{w < pz + 4} where the latter is compact. Hence, d((zy, wg), Z) > £¢ implies that AQ(zx, wy) >
d for some § > 0, which contradicts with the fact that AQ — 0. Therefore, (zj, wy) converges to

ZN{w < pz+4}={2=0} U{w=2sgn(p)(z + pn), w < 4|ul}.

When wg > pzo + 4, similarly, we have that Q(zx+1, wg+1) > Q(zk, wy). Hence, (zx, wy) stays in
the region {w > pz + 4} for all kK > 0. Hence, Q(zx, wy) either diverges to infinity or converges
to a finite value. If it diverges, wy, must also diverge, since the function @ confined on {w < @}
for any fixed w, is continuous and hence upper bounded. Meanwhile, z;, can not converge to zero,
since points on {z = 0} are fixed points. If Q(zj, wy) converges to some finite value C, then AQ
converges to zero and the trajectory must remain within the region {w < C'} for some C’ > 0.
Since AQ is uniformly continuous on {w < 2C"}, we have (z, wy) converges to Z, using similar
arguments as before. Hence, (2, wy) can only converges to Z N {w > uz + 4} = {z = 0}. Now
assume the convergence is in infinite steps, i.e., |z;| # 0 for all £ € N. Then the sequence |zj+1/ 2|
is well defined and converges to one. Notice that we have

2k
| :1|=|Z£+Mzk—wk+1|2|Z;§+uzk|+|wk—1\.

Since |27 4 pzx| — 0, the lower bound is dominated by |wj, — 1| which is strictly greater than one
since {w > pz 4+ 4} N{z =0} = {(0,w): w > 4}. This contradicts with the fact that |z;41 /2|
converges to one and hence the convergence must be in finite steps.

Finally, the result for the case wo = 1129 + 4 directly comes from Lemma[T2] With this, we conclude
the proof. [
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Proposition 15 (Convergence). When |u| > 1, almost all initializations does not converge to {z = 0}.
When || < 1, almost all initializations with Q(z,w) < 8 converges and almost all initializations
with Q(z,w) > 8 diverges.

Proof. First, consider [¢1| < 1. By Proposition[14] when Q(z,w) > 8, initializations either converge
to {z = 0} in finite steps or diverge. Notice that converging within finite steps means the initialization
lies in the set

UR—oF N ({z = 0}).

As the Jacobian of F has full rank almost everywhere, the above set is a null set. Hence, almost all
initializations with ) > 8 diverge. When () < 8, we have that the orbit converges to {z = 0} or
to {Q = 4|p|} = {w = 2sgn(p)(z + p),w < 4|p|}. Notice that, when w = 2sgn(u)(z + u), the
w-update is given by
2

w' = k(w) = %w(w —-2-— 2\,u|) :
When confined on w € [0,4|u|], the above map has two fixed point w = 0,w = 2|u|. It’s
easy to verify that, when |u| < 1, w = 0 is repelling, w = 2|p] is attracting, and all orbits in
this one-dimensional system converges to w = 2|u| except that with initial value w = 0. Note
w = 0 corresponds to the fixed point (—u, 0) of F. The Jacobian of F" at (—u,0) has eigenvalues
(1 + )2, (=1 + u)2. Therefore this point is a hyperbolic fixed point. By the local stable manifold
theorem and the fact that {w = —sgn(u)(z + u)} is invariant under F', we have that the basin of
attraction of (—pu, 0) can be given by

UR—oF MO N {w = —sgn(u)(z + 1)}),

for some small neighborhood O of (—p,0). Notice that this set is a null set, since the Jacobian of
F has full rank almost everywhere. Therefore, for almost all initializations with () < 8, we have
that they converge to {z = 0} or to {Q = 4|u|}, but not to (—pu,0). Since w = 2|u| attracts all
orbits except (—pu, 0) on the invariant set {Q = 4|u|}, we have that all these orbits that converge to
{Q = 4|p|} but not to (—p, 0) must converge to (0, 2|x|) € {z = 0}. Hence, almost all initializations
with Q < 8 converge to {z = 0}.

Now consider |p| > 1. We have that inf {w: (0, w) € Q} = 2|u|. Therefore, if z # 0,
|2/ /2] = |22+ pz —w+ 1| > jw—1] > 1.

This implies that converging to any global minimizer can only occurs within finite steps, which is a
measure-zero event as shown above. This completes the proof. O

Note, the above proof implies the following corollary.

Corollary 16. Consider gradient descent with step 1 in problem [@). Any global minimizer with
llul|? + |[v||* > 2/n is an unstable minimizer, i.e., it repels orbits in its neighborhood. Consequently,
initializations that converge to such as minimizer form a measure-zero set. Moreover, when |u| > 1,
i.e., n|y| > 1, all global minimizers are unstable.

Next, we analyze dynamics on the boundary {w = pz + 4}. By Proposition the boundary is
forward-invariant. Moreover, the system reduces to a one dimensional system

F(2) =224 pz? —2(pz+4)+2=2>-32, 2¢[-2,2).

Proposition 17 (Chaotic Boundary Dynamics). The system F on I = [—2, 2] is Devaney-chaotic

and has topological entropy log 3. Moreover, there exists periodic orbits with any period and thus F
is also Li-Yorke chaotic.

Proof. We first seek a simpler system which is topologically conjugate to F. Notice that F'is a
continuous map from [—2, 2] to itself. Consider ¢y(z) = z/2, which is a homeomorphism from
[—2,2] to [-1,1], and F}(z) = 423 — 3z, which is a continuous map from [—1, 1] to itself. We have
that

z 3z 23

Froto()=4(5P - S =2 - 3; — o F(2).
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Hence, I is conjugate to I;. Now consider ¢(z) = sin(F - z), which is a homeomorphism from
[-1,1] to [-1,1], and

3z+42, x € [-1,-1/3];

Fy(z) = ¢ =3z, x € (-1/3,1/3);

3z — 2, x € [1/3,1],
which is a continuous map from [—1, 1] to [—1, 1]. We have that for z € [-1,—1/3],
™
2
Similarly, one can verify that Fy 0 = 1) o F} also holds on (—=1/3,1/3) and [1/3, 1]. Hence, Fyis
topologically conjugate to I, and F' is chaotic if and only if F5 is (Elaydi, 2007, Theorem 3.9,).

Fioy(z) = 4sin3(g cz) — 3sin(g cz) = —sin(%rz) =sin(= (32 4 2)) = ¥ o Fy(2).

Note F> is a piecewise linear continuous map with slope equal to £3. Hence, the topological entropy
of F5 is equal to log 3 (De Melo and Van Strien, |2012, Corollary of Theorem 7.2,). For univariate map
on a compact interval, positive topological entropy implies Devaney-chaotic (Theorem 3.13, Elaydi,
2007). Also, topological conjugacy preserves topological entropy (Theorem 1.7, Ch.8, Robinsonl

1998). Therefore, we have F’ is Devaney chaotic and has topological entropy log 3.

We now show the existence of periodic orbit with any period. According to the Li-Yorke Theorem (Li
and Yorke, |1975), a sufficient condition is that there exists a point x such that Fj(z) < z < Fy(z) <

F3(z). Such point can be found explicitly. Consider 2 = —5/7. We have that f(z) = —1/7,
f?(x) = 3/7,and f3(x) = —5/7. This completes the proof. O

The topological entropy of the boundary dynamics provide a lower bound of the original gradient
descent dynamics.

Proposition 18. The set 819;7 is invariant under GD,,. We have that

h(GDn) > h(GDn|8D7,) > log 3.

Proof. By Lemma 0D, is invariant under GD,;. Notice that the map (u,v) = (z,w) is a
semi-conjugacy between GD,|sp, and F. Therefore, with Theorem 1.7, Chapter 8 in [Robinson
(1998) we have h(GD,|ap,) > h(F) = log 3. Since 0Dy, is an invariant subset, with Proposition
8.1.7 in|Vries (2014), we have that h(GD,)) > h(GD,|ap,, ), which completes the proof. O

In the following, we show that, the original gradient descent system is not chaotic in the sense of
Devaney when d > 2.

Proposition 19. When d > 2, the system GD,|ap, is not topological transitive.

Proof. Notice that
w+v =u—nzv—nlu+v—nzu—nIv=(1-nz—n\)(u+0).

Therefore, uy, + vy, is always parallel to ug + vo. Consider the map 7: R?% — S4=1 x §4-1:

(u,v) = <

u—+v u+v)
utoll” Jlutol/)”

For any open set A C R2¢, we have 7(4) = T(GDT]]V(A)) forall N > Since d > 2, we

0. ,
can always choose two open sets A, B C R2? small enough such that 7(A) N 7(B) = @. This
means that T(GD,{?V(A)) N T(GDfIV(B)) = @ forall N > 0. Since T(GDf]V(A) N GD%V(B)) C
T(GD%V(A)) N T(GD:;/(B)), we have the former set is also empty. Hence, GD;V(A) N GD#V(B) is
empty. Therefore, GDY is not topological transitive. This gives the claimed result. [

We proceed to show that when the initialization is near the boundary, the orbit can visit any point in
the state space.

28



Under review as a conference paper at ICLR 2026

Proposition 20. Assume |u| < 1. Given any (z*,w*) € Q and any open set O C ) such that
O N{Q(z,w) = 8} # @, there exists N > 0 and (z,w) € O such that F™ (z,w) = (z*, w*).

Proof. Asin Proposition let Go: © — cl(Ap) denote the inverse of F'[qj(4,). Let mg = (2", w*)
and my, = G§(my) for k > 1. We show that limy,_, o, my, = m* = (—2,4 — 2u). Note forall k > 1,
my, & {Q = 4|p|}. Therefore, by Lemmal[12] we know that Q(mny,) either stays at 8 or is monotonic.
Hence, as we shown in the proof of Proposition my, must converge to

Z={AQ=0}={2=0U{w=pz+4}U{w=2sgn(p)(z + p), w < 4|u|}.
Therefore, m;, must converge to the set Z N Ay. Intersecting Z with cl(Ag), we get
ZNAy={z<-1,w=pz+4}.

Notice that, when restricted to {w = pz+4}, the system F reduces to F'(2) = 233z, 2z € [-2,2].
Then Go|zna, corresponds to the branch of F~! whose image is [—2, —1]. Using the conjugacy we
provided in Proposition[I7] it’s easy to obtain that z = —2 is the unique, globally attracting fixed
point for the map Gg|zn4,- Since my, converges to Z N Ag and z = —2 is globally attracting, we
have that m;, — m™ as k — oo.

Now consider the given open set O which satisfies O N {Q = 8} is not empty. We prove that there
exists ¢ € O and n such that F"*(z) = m*. Notice that F'|;o_s is topologically conjugate to the
piece-wise linear map F}, as we shown in the proof of Proposition For Fj, the full preimage of
the two endpoint of the interval [—1, 1] is given by

2y

Ur>o{—1+ ki) = 0,1,---,3"},

which is dense in [—1, 1]. Particularly, it is clear that the preimage of —1 is dense. Therefore, there
exists € O and n such that F"(z) = m*, i.e,, x € F~"(m*). Notice {Q = 8} C cl(B), by
Proposition we have that there exists i1, -+ ,i,, € {0,1,2} such that G;, o---0G; (m*) =
. Since the comppsition of G;’s is continuous, there exists a neighborhood O of m* such thelt
Gi, ©o---0G;(0) C O. Since my, — m*, there exists ny such that m,,, = G¢*(0,w*) € O.
Taken together, we have that

Gi 0 0Gy oG (0,w*) 2 1 € O.

iny

This implies that
F™m2 () = (0,m”),

which completes the proof. O

E.1.2 PROOF OF THEOREM

Proof of Theorem[I] According to Proposition[6} any measure-zero event in system F' corresponds
to a measure-zero even in system GD,,. According to Proposition[8] the orbit of GD,, converges to
{uTv =y} if and only if the orbit of F converges to {z = 0}, and the former converges to (0, 0) if
and only the latter converges to (—y, 0). According to Proposition[15] when |1 < 1 and for almost
all initializations (z, w), the orbit converges to {z = 0} if Q(z, w) < 8. Notice that = ny and due
to the conjugacy (7)),

Q(z,w) < 8 & n([lull3 + [|vl}3) + \/UQ(\\UH% +[[0l3)? + 160y - n(uTv—y) <8

8
& (lull3 +Ilvl3) + \/(IIUII§ + [[0]3)? + 16y - (uTv — y) < .

Also, when Q(z,w) > 8 or || > 1, almost all initializations do not converge. This gives the critical
step size (3).

We now show the sensitivity to initialization. Consider any open neighborhood W C R?? such that
W N OD;, # @. Notice that the Jacobian of the map 7" drops rank if and only if {u = +v}. Also, we
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have that

8
2 2 2 2
(u,v) € OD; & |lully + [|vll; + \/(HUIIQ +ollp)? = 16y(uTv —y) = —

2 2
= 4 =n(|ully + [[v]3) + 7y’ v~ y)

1 2y/2
(s ) () e

The last equation is a quadratic form, and the eigenvalues of the coefficient matrix are n £+ %772 lyl,
each with multiplicity d. Therefore, when 7)|y| < 1, the quadratic form is positive definite and
defines a smooth ellipsoid of dimension 2d — 1. Notice that, {u = v} is the union of two linear
subspace with dimension d. Therefore, since 2d — 1 > 1 and an ellipsoid is curved everywhere, there
always exits a point § € W N 9D, \ {u = v} and a neighborhood W of 6 such that W C W and

w N {u = £v} = @. The Jacobian of T’ is full rank at all points in W, 50 by constant rank theorem,

T(W) is an open set. Meanwhile, T'(0) € T'(0D;). Hence, under the conjugacy (7), we have
T(W)N{w = pz + 4} # @. According to Proposition 20| there exists (2/,w’), (2, w") € T(W)
such that FV (2’ w') converges to (0, w*) with any w* € [2|u|,00) and FN (2", w") converges to
(—u,0), as N tends to infinity. Therefore, there exists 8,0 € W such that GD;V (0") converges to a
global minimizer with squared norm in [2|y|, c0) and GDfIV (0") converges to (0, 0). Notice that

lull® + [[oll* = 2]l - o]l > 2fuTo].
Therefore, the minimal squared norm at {uTv = y} is 2|y|. Also, notice that
fluu" —vv "% = Tr((uu” —vo ) (uu’ —vo"))
= [lull* + lol* = 2(uTv)
T
= ([l + 10l*)? = 2ul®[lo]* — 2(u'v)?
S
- 2
Hence, at any global minimizer, the imbalance is lower bounded by the squared norm. Hence, by
what we have shown, arbitrarily large imbalance can be also attained by initialization in W.

2(u " v)?2.

Finally, the result of topological entropy and the existence of periodic orbit of any period directly
come from Proposition[T§] This completes the proof. O

Lastly, we present a basic property for the unregularized scalar factorization problem: the sharpness
coincides with the squared norm at the set of global minimizers. This property has been proved by
Wang et al.| (2022).

Proposition 21 (Wang et all 2022, Theorem F.2). For the unregularized scalar factorization
problem [2), the eigenvalues of the Hessian V*L are +(uTv — y), each with multiplicity d — 1,

and L(ull® + Jo)® £ /([ull? + [[0]2)2 + 4(uTv — y)2 + 8(uT v — y)uT v). Consequently, when
u'v =y, we have that
Amax(V2L(u,v)) = Tr(V2L(u, v)) = [[ul® + [|v]]*.

E.2 REGULARIZED PROBLEM

Similar to the previous section, preliminary results are first presented in Appendix [E.2.T] and the
proofs of Theorem [3]and Theorem]is given in Appendix [E.2.2]

E.2.1 PRELIMINARY RESULTS

Unless stated otherwise, we use (z’,w’) to denote F'(z, w). We first show that when the step size is
small enough, the quotient dynamics F' is predictable.

Proposition 22 (Small step size). Assume 0 < v < 1 — |u|. For almost all (z,w) € Q, if
Q(z,w) < 8 — 4v, we have that F™ (2, w) converges to the global minimizer. If Q(z,w) < 4 — 4v,

we have that, for any (u,v) that satisfies T(u,v) = (z,w), GDf]V (u,v) converges to p~ (u,v), as
defined in Theorem|3]
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Proof. By Lemma (12| we have that Q(F” (z,w)) monotonically decreases and converges to
{AQ =0} = {Q = 4[u[}. As shown in proving Lemma|11] the w-update on {Q = 4|u|} is given
by

/

w' = k(w) = w(z —1+v - |u)?

By differentiation, when |u| > v, k(w) has two fixed points w = 0 and w = 2(|u| — v) on [0,4|u]].
In particular, w = 0 is repelling and w = 2(|u| — v) is globally attracting, i.e., attracting all orbits
on [0,4|u|] except w = 0. When |u| < v, x(w) has only one fixed point w = 0 which is globally
attracting. In either case, the attracting fixed points is the global minimizer and hence for almost all
initializations, the orbit converges to the minimizer. The measure-zero event occurs if || > v > 0
and the initializations lies on the measure-zero set (it has measure zero since the Jacobian of F' has
full rank almost everywhere):

UR=o M0 N {w = —2sgn(u) (= + m)}),
for some neighborhood O of (—p, 0). Note, this set is the basin of attraction of the saddle (—p, 0)
Without loss of generality, assume y > 0. Consider p = (u + v)/v/2 and ¢ = (u — v)/v/2. Note

that when y > A, the set of global minimizers is given by
{u=v,lulf=y -2} ={g=0lpl*=2(y = N} .

Also, notice that
V2-p = 40 = u—nzv—nlu+v—nzu—niv = (1—nz—nX\)(u+v) = (1—nz—nA\)V2-p.
Under the conjugacy (7), we have

pe =polli 25 (1 — 2z —v). (17)
Similarly,
qk = Q(]H?;é(]- + 2z —v).

o po_ B — po .
Therefore, the converged point is either (1/2(y — A) TocT 0) or (—/2(y — A) ToeT 0). Since the
global minimizer is given by {¢ = 0, [|p||> = 2(y — A)}, the former is the minimal distance solution
and the latter is the maximal distance solution. Note the change of coordinates p = (u + v)/v/2 and

q = (u —v)/+/2 is given by an orthogonal transformation which preserves distance. Therefore the
same statement holds in the wv-coordinate.

Note that,
Qz,w)=4—dv & —2uz —2(1 —v)* + (1 —v)w = 0.

Note the line intersects with 9Q at (1 — v,2(1 — v + p)) and (v — 1, —2(v — 1 + p)). Therefore we
have that for all initializations that satisfy Q(z,w) < 4 — 4v, we have |z| < 1 — v. Meanwhile, since
4 —4v < 8 — 4v, we have that the {Q) < 4 — 4v} is forward invariant by Lemma[12] i.e., |2 < 1—v
holds on the entire orbit. Therefore, when Q(z, w) < 4 — 4v, we have that 1 + z; — v > 0 for all
j > 0. It follows that, by (T7), the converged minimizer in pg-coordinate has to be (1/2(y — A) 22

Mpoll®
which is the minimal distance solution. This completes the proof.

We now proceed to show the projected boundary T'(9Dy)) is self-similar.

Proposition 23 (Self-similarity). Assume 0 < v < 1 — |u|. The boundary T(0Dy)) is self-similar
with degree three.

Proof. We use D for D; for notation simplicity. First, we prove that 7'(9D;)) = 0T (D;]). Notice
that, by Proposition[8] 7=1(T(D)) = D, i.e., D is saturated with respect to T'. Since T is continuous,
we have that 9T ~1(A) C T—1(0A) for any set A. Hence, T~ *(T(D)) = 0D C T~1(0T(D)). It
follows that, T'(dD) C 0T (D). By Proposition[22]

1= {0.0): QU 0) =l + ol + /(1012 = 16yt ) <8 - 12}
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is an open set and all points in this set converge to the global minimizer or the saddle. Hence, D
is an open set. To see this, if x € D then we have for sufficiently large N, GD,];[ (z) € T. By the

continuity of GD?Y', we have z is in an interior point of D. Now consider any point i € 0T (D). For

the sake of contradiction, assume y ¢ T(9D). Then we have T~ (y) N 9D = . Note T~} (y) is a
compact set by the properness of T'. Since D is open, there exists an open neighborhood O of T~ (y)
such that O C D or O C (D°)°. In either case, we have y € T(O) and T(O) N T(9D) = &, which
yields a contradiction. Hence y € T'(0D) and 0T (D) C T(9D). It follows that 0T (D) = T'(0D).

Next, we prove that, F'(0T (D)) = 0T(D). Now let A = T(D) for simplicity. First, note that A
satisfies F'(A) C A, F~1(A) C A by the definition of A. Consider any point z such that T'(z) € 0A.
Then any small enough neighborhood O of « is mapped a neighborhood of T'(z), which contains
apointy € A and a point z € A°. Since F~1(A) C A, F~(y) € O N A. Since F(A) C A,
F~1(z) € Ac. Therefore, we have that F~1(0A) C OA. Meanwhile, since F is surjective by
Proposition we have F o F~1(9A) = OA. It follows that

JA=FoF1(0A) Cc F(0A).

On the other side, for any y € 0A, since y € cl(A) and F is continuous, we have that T'(y) €
cl(F(A)) = cl(A). Since F~1(A) c A, T(y) ¢ A. Hence, T(y) € OA. This means that
F(0A) C OA. Therefore, F(0A) = 0A.

By proposition[22] we have that A contains {Q(z, w) < 8 — 4v}. Therefore, its boundary, 9 A, must
liein {Q > 6 — 4v}. Since F(OA) = A, by Proposition[13] we have that

8T(D;7') = Uk:(),l,ZGi (8T(D;7’)),
where G;’s are homeomorphisms. As shown in Proposition[13} G;(€2°) N G;(°) is empty whenever
i # j. Therefore, BT(D;’ ) is self-similar with degree three. This completes the proof. O

In the following, we show that D, is equal almost everywhere to a set with unbounded interior.

Proposition 24 (Unboundedness). When = 0,0 < v < 1, there exists a,b > 0 such that, for
almost all initializations that lie in {(z,w) € Q: |z| < aexp(—bw)}, the orbit converges to the
minimizer.

Proof. Let (2, w') = F(z,w). Note, when p = 0, the unique global minimizer of L corresponds to
(0,0). Letaw=1—v. Then 0 < v < 1. Assume that |z| < a exp(—bw) for some a, b > 0. We aim
to show that |2’| < aexp(—bw’). Notice that

2] = |2] - 2% — wa + o
< a® exp(—3bw) + aexp(—bw)(a? + aw).
Also, we have
w < w(z? + a?) +42%a
< (w + 4a)a? exp(—2bw) 4+ wa?.
Hence,
aexp(—bw') > [2]
< aexp ( — b((w + 4a)a® exp(—2bw) + waz)) > a® exp(—3bw) + aexp(—bw)(a? 4 aw)
<« exp ( —b(w + 4a)a® exp(—?bw)) -exp(—a’bw) > a® exp(—3bw) + exp(—bw)(a? + aw)
< exp < — b(w + 4a)a® exp(—2bw)> > a® exp((a? — 3)bw) + exp((a? — 1)bw)(a? + aw)
<1+ b(w + 4a)a® exp(—2bw) > a? exp((a® — 3)bw) + exp((a? — 1)bw)(a? + aw).
Let e
p(w) = 14 b(w + 4a)a? exp(—2bw), q(w) = a® exp((a? — 3)bw) + exp((a? — 1)bw) (a? 4 aw).
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Note that
' (w) = a®bexp(—2bw) (1 — 2b(w + 4a))
o —2bw + 1 — 8arb.

Therefore p(w) increases from (—oo, wp) for some wy € R and decreases on [wg, +00). Since
limy,— 400 p(w) = 1, we have that

r[gin )p(w) = min {p(0), 1} = min{1 + 4a®ba, 1} = 1.
we (0,400

Note also that
¢ (w) = exp((a® — 1)bw) <a2(a2 — 3)bexp(—2bw) + (a? — 1)b(a? + aw) + a)
o a?(a? — 3)bexp(—2bw) + (a? — 1)baw + (a® — 1)ba® + a.

Note, that a?(a? — 3)bexp(—2bw) < 0 always holds. When b is large enough such that (a? —
1)ba? + ais negative,(a? — 1)baw + (a? — 1)ba? + « is also negative. Hence,

max gq(w) = q(0) = a® + o?.
we[0,+00)

Since 0 < « < 1, we can always select a small enough such that g(0) < 1. Under such selection we
have that p(w) > g(w) holds for all w > 0 and hence (I8) holds. Therefore, {|z| < aexp(—bw)} is
forward invariant. Due to the exponential decay, we can always select a small enough and b large
enough such that {|z] < aexp(—bw)} C {Q(z,w) > Q(F(z,w))}, where the latter set is given in
Lemma|T2] Therefore, in this exponential cone, () monotonically decays, and the orbit converges to
the minimizer almost surely. This completes the proof. O

In the following, we show that when the initialization is near the boundary, the orbit can visit any
point in the space.

Proposition 25. Assume 0 < v < min{%,1 — |u|}. Consider arbitrary point mg = (z,w) € €L
When 11 > 0, limy 00 G (mo) = (=2 + 1,4 — 2(v + ). When i < 0, limy 00 GY (mg) =
(2—v, 442+ p)).

Proof. Let (z/,w') = F(z,w) and my = GE(mg). Consider the function E(z,w) = w + 2(z + p).
We have
E(F(z,w)) — E(z,w) =w' +2(z +p) —w —2(z + p)
(w42 @)z v — 2=+ v).
Note for (z,w) € Q, w+ 2(z + ©) > 0. When w > 2(z + u), we have that
E(F(z,w)) — E(z,w) >0 <=z < —v. (19)

We have that my, € cl(Ap) for k& > 1. Hence, the z-coordinate of my, is smaller than v — 1 for all
k> 1. Since v < 1/2, v —1 < —v. Hence, my, € {E(F(z,w)) > E(z,w)} for all k > 1. This
implies that E(my,) monotonically decreases. Since E has lower bound 0 on €2, E'(my,) converges to
some finite value F*. For contradiction, assume my, is unbounded. Note for any m4, we have the set

{E(z,w) < E(m1)} N{lz[ < M}

is bounded for any M > 0. Hence, we have the z-coordinate of m, tends to negative infinity. Note
that for sufficiently small z and (z, w) € €2, we have

w >w e dz(z+p)(—1+v) +wz + (-2 +v)v) >0
42(z + ) (1 - )
224+ (—24v)v
42(z 4+ w1~ v)
224+ (—2+v)v
= (2 + (24+v)) <22(1 —v)
=22 420 —v)z+v(2—v) >0,

=w >

<= 2(z+p) >
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which clearly holds when z is sufficiently small. Therefore, m; must lie in the region {w’ > w} for
all k > K for some finite K > 0. Note this implies that the w-coordinate of my, starts to decrease
from all £ > K. This conflicts with the fact that m;, is unbounded. Hence my, is bounded.

According to (I9), m, has to converge to
U(Ag) N {(w+2( + ) (= + v — 2)(= + ) = 0} = {(w +2(= + ) = O}.

Otherwise, assume my, C K for all k and some compact set K. The function E(F(z,w)) — E(z,w)
is uniform continuous, so if m;, does not converge to its zero set, F(my) — E(my_1) is bounded
below and F(my,) can not converge.

Note, when restricting to w = —2(z + u), the w-update is given by
w' = d(w) :w(% —1+v+p)?

Solving d(w) = w, we obtain that d has three fixed points, 0, —2(y + v) and 4 — 2(u + v). Note
when ¢ > 0, we have —2(u 4+ v) < 0. Therefore, on w > 0, d has two fixed points. Note
d0) = (-14+p+v)?2 < lasp+v < 1, and hence w = 0 is repelling under d~*. Note
d'(4—2(p+v))=5—2(u+v)>1,and hence w = 4 — 2(u + v) is attracting under . With
basic graph analyses, we have that w = 4 — 2(u + v) globally attracts all orbits under d !, except
the point w = 0. Notice that, one must have m; # (—pu,0) as my € cl(A;). Therefore, since my,
converges to w = —2(z + ), we have that my, converges to (—2 + v,4 — 2(v + p)). The case of
y < 0 can be proved via a analogous procedure. This completes the proof.

Using Proposition we show that for the gradient descent system, the converged minimizer is
unpredictable when the initialization is near the boundary.

Proposition 26. Consider {1 = (—2+v,4—2(v+u))and s = (2—v,4+2(v+v)). Fori = 1,2,
we have that US_F N (&;) has infinitely many points and US_F~N (&) C OT(Dy)). Wheny > 0,
for any open set O such that O N UX_oF~N (&) # @, there exists (2/,w'), (2", w") € O such
that, for any (u',v"), (u”,v") that satisfy T (v',v") = (', w’) and T (v ,v") = (2", w"), we have
GanN(u’7 v') converges p™ (v, v") and GDnN(u”, v") converges p~ (v, v"). When y < 0, the same
result holds for any open set O such that O NUS_ F~N (&) # @.

Proof. We present the proof for y > 0 for brevity. The case y < 0 can be proved via an analogous
procedure. We first show that USS_F~™ (¢;) has infinitely many points and U_,F V(&) C
JT(Dy)). Notice that, £, lies in the set {(z,w) € Q: w = —2(z + p)}. By Proposition this set is
invariant under F', where the w-update is given by

w’:w(%—l—ku—i—y)Q.

By differentiation, we know w = 4 — 2(u + v) is a repelling fixed point. Specifically, we claim that
on any neighborhood of 4 — 2( 4 1) there exists a point that converges to 0 and a point that diverges
to infinity. Note w converging to zero corresponds to (z,w) converging to (—u,0), and to (u,v)
converging to the saddle (0, 0). Therefore, we have §; € 9T(Dy)). Note, Q(§1) =8 — 4v > 6 — 4v.
Therefore, by Proposition , F~1(&;) can be explicitly given by Up—g 1.2Gi(&1), where Gj is a
homeomorphism for all i. Therefore,

UN_oFN(&) = {Gi, 0 Gy (€1): VE > 1,i; € {0,1,2},V5}. (20)

By the construction of G, the cardinality of this set is infinity. Also, as each GG; is a homeomorphism,
any point in this set belongs to 9T'(D;)).

Next, we show that for any open set O such that O N UF_oF V(&) # @, there exists
(Z,w"), (2", w") € O satisfy the claimed properties. Note, by (20), it suffices to prove this re-
sult for O that satisfies O 5 &;. When y < A, L has a unique minimizer (0, 0) and the result obvious
holds from Proposition Now consider y > A, in which case the set of global minimizers is given

by {g=0,|[p||> =2(y — \)}. Consider p = (u+ v)/v2 and ¢ = (u — v)//2. We have that

pe = polli =5 (1 — z; — v).
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Therefore, the orientation of p is fully determined by whether number of z; such that 1 —z; —v > 0
is even or odd. Now let m,. = (—v, 2(;—v)) denote the minimizer. Note, the boundary w = 2(z+ )
is invariant by Lemma [T 1] where the w-update is given by

w’:d(w):w(%—l—u+y)2.

Solving d(w) = 2(u — v) yields two solutions:

we =24p—vEt/ 4+ (-2—p+v)2
Note these roots are reals since ¢ — v > 0. Note on the line w = 2(z + u), 1 — v = z yields
w=2(1 —v+p). Let @« = u — v. We have that

21+ a)<2+a++/(24+a)?2 -4
Sa<vVa?+ida

<= a < 4,
which is true since 0 < v, u < 1. Similarly, we have

20+a)>2+a—+/(2+a)? -4

< a>—Va?+4a,
which is true since o > 0. Therefore, there exists mJ, m; € Q such that, F(m¥) = m* and m} €
{z>1—-v}andm; € {z,1 — v}. By Proposition 25| G{¥ (m) converges to (2 — v/, 4+ 2(v + ).
Notice that, for N > 1, GIY(m¥) € {z < 1 — v} since the image set of Gy is cl(Ag). Therefore,
the entire sequence G2’ (m}) enters {2z > 1 — v} exactly one time. Similarly, the entire sequence
GY(my) enters {2z > 1 — v} exactly zero time. Therefore, the corresponding uv-orbit converges the
maximal and minimal distance solution. This completes the proof. [

E.2.2 PROOF OF THEOREM

Proof of Theorem[3] In the quotient system F', the basin of attraction of the point (—p, 0) has measure
zero. This is because as in the proof for Proposition the basin can be given by U?VOZOF_N (on
{w = —2sgn(p)(z + p)}) for some neighborhood O of (—p,0). Since the Jacobian of F' has full
rank almost everywhere, this basin of attraction is a measure zero set. According to Proposition [6}
any measure-zero event in system F' corresponds to a measure-zero even in system GD,,. Therefore,
S, has measure zero. The projected boundary is self similar with degree three is directly given by
Proposition[23] The unboundedness is given by Proposition 24}

Finally, we prove sensitivity to initialization. Consider any open neighborhood W C R2? such that
wn B’D;' # @&. We claim that T'(W) is a neighborhood that contains an open neighborhood on
T'(0Dy)). Notice the Jacobian of the map 7" drops rank if and only if u = +v. f WN{u = +v} = &,
then by constant rank theorem, 7" is locally a projection, which gives the claim. If WN{u = tv} # @,
then without loss of generality, assume W = B((ug, ug), ). Then T'(ug, up) = (|luol|?,2||uol|?)-
We show that for any point (z/,w’) that is sufficiently close to (||ugl|?,2|luol|?), there exists a
preimage under T" in . Note, as T is surjective, assume T'(u’,v") = (2’, w’). Note whenever (2’, w')
tends to (||uol|?, 2||uol|?), we have w’ + 22’ = ||u’ +v'||? tends to 4||lug|? and w’ — 22" = ||u’ —0'||?
tends to 0. Therefore, (v, v") tends to {u = v, ||u|| = ||uo||}. Note, the map T is invariant under
rotation. Therefore, with proper rotation, (u’,v") tends to {u = v,u = up} = (uo,uo) and thus
it lies in W. When y > 0, consider the set H = T~ (US_oF N (&1)), where & is defined in
Proposition [26] By Proposition[26] H has infinitely many elements. As shown in Proposition 23]
we have T(9D;) = 9T (D})). Hence, U¥_oF N (&1) C 9T (D)) = T(9D}). Therefore, when
W N H # @, T(W) is a neighborhood that intersects with UX_, F~~ (&1). By Proposition there
exist §',0"” € W such that GD;V(Q’) converges to p*(#) and GD,]]V(G”) converges to p~ (6"). The
case of y < 0 can be proved analogously using Proposition 26| This completes the proof. O

F NON-EXISTENCE OF CONTINUOUS DYNAMICAL INVARIANT

Consider the scalar factorization problems:

min L(6) = 5w — ) + 507 %), Q1)
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where A > 0 and u, v,y € R. We show that there is no simple quantity that remains invariant during
training.

A dynamical invariant is a map defined on the parameter space of the model whose values remain
unchanged along optimization trajectories. Formally, for gradient descent applied to problem 21)), a
map I(u,v): R? — R* with k > 1 is a §-approximate invariant if | I(GD" (g, 172) —I(u,0)]| <9
holds for all N > 1 and initializations (@, v) € R2?, where || - || is a norm on R*. When § = 0, T
becomes a strict invariant. Invariants and approximate invariants have been used extensively to analyze
the optimization dynamics of gradient flow and gradient descent in non-convex optimization problems.
Particularly, for problem (T)) without regularization, the imbalance I(U,V) = UUT —VV T isa
well-known invariant of gradient flow (Du et al.l [2018)) and an approximate invariant of gradient
descent with small step sizes (Arora et al.l 2019} |Ye and Dul |2021; Xu et al.,|2023). In contrast, the
following result shows that no simple invariants exist under large step sizes.

Theorem 27 (Non-Existence of Simple Dynamical Invariants). Consider gradient descent with
step size 1 applied to problem Q1) with 0 < A < min{(1/n) — |y|,1/(2n)}. If I(u,v): R? —
R* is a continuous 5-approximate invariant, then SUP (u,0), (w0 )er2 1 (usv) — I(u',0")]| < 20
Consequently, the only continuous invariants are the constant functions.

Proof. We use the notation F, u, v, z, w as stated in the conjugacy (7). Assume [ is a continuous
d-approximate invariant. For any € > 0, there exist 6/, #” such that
110" = 16") > sup  |I(u,v) = I(u,0")] —e.
(u,v),(u’ ,v")ER?
Without loss of generality, assume y > 0. Now fix any point 8 € T—1(A—2/n,4/n—2(y+\)). Under
the conjugacy (7)), we have that T'(§) = (v—2,4—2(u+v)). Then according to Propositionfor the
regularized case and Proposition in any neighborhood O of T'(9), there exists £’,£” and N, N”
such that FN'(¢/) = T(0") and FN" (¢”) = T(9"). Using the same argument as in Appendixm
and in Appendix we have that there exists §’,0" such that T(GDQ’/ (0)) = T(¢") and

T(GD;VN(@’)) = T(0"). Next, we show that  and §” can be chosen such that GD;V/ @) =60
and GDﬁIV”(é”) = 0" To see this, notice that, for any (u,v), (s,t) € R2, (u,v) = (s,t) if and only
if T'(u,v) = T(s,t) and the two pairs, v + v and s + ¢, and, © — v and s — y, have the same sign.

Consider change of coordinate p = (u +v)/v/2 and ¢ = (u — v)/v/2. Let pp = (ug, v) denote the
orbit under GD,,. By direct computation, we have that

Di = poﬂﬁzé(l —zj — V).
Therefore, the sign of py- is fully determined by whether number of z; such that 1 — v > z; is even
or odd. We denote this number by n,,. Similarly, we have

a = qolliZy (1 + 25 — v),
and the sign of g is fully determined by whether number of z; such that z; > v — 1 is even or odd.
We denote this number by n,. Notice that we can take £ as follows

=Gy oGy (T(0)),
here m, € {0,1}, and m,, is any large enough integer. Note since the image of G lies out side
{z>1-v}, m, does not have an effect on n,. Also, since the image of G5 is contained in
{# > 1 — v}, one can always select m, from {0,1} to make n, even or odd. Meanwhile, since
the image of G is contained in {# < v — 1}, one can always select a m,, to make n,, even or odd.
Therefore, the sign of px+ and g can be arbitrary. This implies that, one can always select 6’ such
that GD,I;T / (6") = 0'. A similar statement holds for 6"

Since [ is d-invariant, we have:
11(07) = I(O")|| > 11(6") = 1(0")| =26 > sup |[[[(u,v) — I(u/,v)|| — & — 24
(u,v),(u’,v")ER?
Notice that §’, 6" can be arbitrarily close to 6. Since I is continuous at § and ¢ is arbitrary, we have
that
sup | I(u,v) — (!, v)]| < 26,
(u,v),(u’ v')ER?
which completes the proof.

36



Under review as a conference paper at ICLR 2026

G GENERAL MATRIX FACTORIZATION

We present the extensions of the results in Section[3]to general matrix factorization.

In the following, we present the extension of Theorem [I|to unregularized matrix factorization.

Theorem 28 (Unregularized Matrix Factorization). Consider gradient descent with step size 1
applied to problem (I) with A = 0 and d > d,,. Let Y = Diag(y1.- - ,ya, ). Consider the set

W= {(U,V) e R**: (u',w)) = (u',07) = (', 07) =0, Vi # j}, (22)

where u',v' denote the ith column of matrices U,V . Assume the initialization (U, V) € W. The
following holds:

* Critical Step Size: Define the critical step size

- 1 8
7*(U,V) = minmin ol
7 1 _n2 2 2 1 2 —4 1
VI a5 + 1ol + \/(||UZH2 + [10713)? = 16y: (') To* — i)

For almost all initializations (under surface measure on VW), the algorithm converges to a global
minimum if n < n*(U,V), and it does not converge to a global minimum if n > n*(U,V).
Therefore, when 1) satisfies 1||Y |2 < 1, the convergence region restricted to W, D, N W, is equal
almost everywhere (under surface measure on VW) to the following set:

7 '3 . . K - 8 )
D, = {(U»V> eEW: [lu’|l3 + [[0*13 + \/(||uz|\§ + [0 )12)2 = 16y((u)) Tvi — ;) < e Vz} .

* Sensitivity to Initialization: Fix a step size 0 that satisfies 1)||Y |2 < 1. Given arbitrary 0 € 0D;,
(here boundary is taken with respect to the subspace topology on W), ¢ > 0 and K1, Ky >
0, there exist 0',0"” 0" € B(0,¢) such that, as N tends to infinity, GD;V(G’) converges to a
global minimizer with norm larger than K1, GDT]]V(O”) converges to a global minimizer with
|UUT = VVT|p > K, and GDf]V(G”') converges to a stationary point, which is saddle point
when min{|y;|} > 0.

o Trajectory Complexity: Assume 1||Y |2 < 1. The topological entropy of the gradient descent
system GD,, satisfies h(GD,,) > log 3. Moreover, GD,, has periodic orbits of any positive integer
period.

All of the above results follow directly from Theorem [T| and Proposition [5] We remark that, for
a dynamical system F': X — X, if S C X is an invariant set, i.e., F'(S) C S, then we have
h(F) > h(F|s). This gives the result for topological entropy.

We now present the extensions of Theorem [3]and Theorem 4] to regularized matrix factorization.

Theorem 29 (Regularized Matrix Factorization). Consider gradient descent with step size 1 for

problem @). Let Y = Diag(y1.- -+ ,ya,)- Assume that 0 < X\ < min;—y ... q, {(1/n) —|yil,1/(2n)}.

Let W be defined as in (22)). Assume the initialization (U, V') € W. Consider the map T;(U,V) =

((uh) "o, ||ut]|3 + ||vt||3). Let S, denote the set of initializations (U, V') that converges to (0, 0). Let
w = Dy US,,. The following holds:

* Self-similarity: For anyi € {1,--- ,d,}, T;(9(D;, NW)) is self-similar with degree three (here
boundary is taken with respect to the subspace topology on V).

* Unboundedness: When'Y = 0, there exist constants a,b > 0 such that almost all initializations
(U, V) € W (under surface measure on W) with |(a*) "v'| < aexp(—b(||a*||3 + ||0|2)) for all
ie{l,---,dy,} converge to a global minimizer.

* Sensitivity to Initialization: Let (ul,v});>o denote the gradient descent trajectory of the pair
(ut,v?), with (uh,vl) = (a,0%). Let M; denote the set of global minimizers for the scalar
problem Li(u,v) = & (uTv —y)* + S ([ul3 + [[v]|3). Then MOW = My x - x My, where

37



Under review as a conference paper at ICLR 2026

W denotes the set of global minimizers for problem {@). We have that, for any (U, V) € D,, N\ W

and anyi € {1,--- ,d,}, as t tends to infinity, (u},v}) converges either to
P~ (up,vp) = arg min | (u,v) — (up, vp)|,
(u,v)EM;
orto o o
P (up, vp) = arg max || (u,v) — (up, vp)|1*.

(u,v)EM;
Moreover, there exist infinitely many points on 8(’D;7’ NW) (here boundary is taken with respect
10 the subspace topology on W) such that for any open set O containing such a point, there exist
i€ {l,---,d,}, (U, V'), (U", V") € O such that, as t tends to infinity, (u;’,v,") converges to

p~ (ué’/7 vé’/) and (ui’", vz’”) converges to p+ (ué’”, vé"/)

* Stable Dynamics Under Small Step Size: Consider the function

2 2 2 2
Q(u,v) = flully + [[oll; + \/(IIUHQ + [vll2)? = 16y(uTv —y).

Then the following holds for almost all initializations (U, V) € W (under surface measure on W):
Ifn < ming—1,... q, 8/(4\ + Q(a’, ")), then gradient descent converges to a global minimizer; If
N < ming—y,... g, 4/(4X + Q(u',v")), then for all i, (u},v}) converges to p~ (ufp, v§).

All of the above results follow directly from Theorem 3] Theorem[and Proposition[5] We remark that,
while the above Theorems are presented for initializations in VV, chaotic phenomena are observed
under generalization initializations. Experiments are provided in Appendix [I|

In the following, we present the proof of Proposition [3]

Proof of Proposition[3] Recall the update:
U1 = U = Va(V,"U; =Y ) =AU, Vigr = Vi = nU(U,' Vi = V) = A4
For (U¢, V;) € W, we have that
U1 = Uy — ViV, Uy + VY T — AU,

dy
=U;—n Y _vf ()" U+ VY " = nAUL.
k=1

Therefore, for j = 1,--- ,dy,
dy

J_ ke, k\T, J J J
ut+1—ut—nzvt (vf) up + ny;v;) — nAuy
k=1

=] — ol (v]) "ul 4+ nyv] —niu]

—n((0})"u] = y;)v] — .

Therefore, the one-step uj -update aligns with that in scalar factorization problem. Similarly, we
can show this holds for v’/-update. Now it suffices to verify that VV is forward invariant. Assume

(U, Vi) € W. Notice that both uz 41 and vg .1 are linear combinations of ] and v]. Then it clear that

:uj

(uiﬂ,ufﬂ) = <ui+1,vf+1> = <vtj+1,vf+1> =0

whenever j # k. This completes the proof. O

The gradient descent update map GD,, is non-invertible in general. Nevertheless, we show that the
parameter space can be partitioned into small pieces, so that confined on each piece, GD,, has a
simple behavior.

Proposition 30. Let GD,,;: R2ddy — R24dy pe the gradient descent update map for problem ().
There exists a measure-zero set KC,, C R29" that satisfies: (i) ICyy contains the critical points of GD,);

and (ii) R?" \ ICyy has finitely many connected components such that the restriction of GD,, to each
component is a covering map.
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Proof. Note GD,, is clearly a non-constant polynomial map. By Jelonek| (2002), there exists a
semi-algebraic measure-zero set S C R?*%v such that, GD,,: R**4v \ GD, *(5) — R?¥% \ Sis
a proper map. Note det JGD,, is a non-constant polynomial, so its zero locus is a semi-algebraic
measure-zero set. Let S’ = GD,,({det JGD,, = 0}) denote the set of critical values of GD,,, which
has measure-zero by Sard’s theorem and is also semi-algebraic. By Ponomarev]| (1987), the preimage
of any measure-zero set has measure zero. In particular, K,, = GD,/ LSyu GD, 1(S") is a measure-
zero and semi-algebraic set. Now consider G = GDy|gza-a,\, : R24ds \ |, — R4 \ (SUS).

Note, R2d"dy \ KC,; has finitely many connected components since K,, is semi-algebraic. Let C be
any connected component. By construction, G|¢ is a proper map between connected manifolds that
has full-rank Jacobian everywhere. To see this, let K be a compact set in R24'4 \ (S U S’). Then
K is compact in R?4% \ S and G~(K) = (F|de»dy\F,1(S))71(K) is compact. Hence, G|¢ is a
smooth covering map (see, e.g., Leel 2012)). This completes the proof. O

H EXPERIMENT DETAILS

For Figureleft panel, we consider the problem L(u,v) = (u"v — 1)% + 0.3(||ul|3 + ||v]|3) with
(u,v) € R, We randomly sampled two orthogonal unit vectors in R'°. Viewing the two vectors as
new axes, we evenly sampled 6007 initial points in the range [—4, 4]2. We then ran gradient descent
with step size 1 for 1000 iterations. The training stops if the loss is below L, + 10~ where L, is
the global minimum or if it is above 100. For Figure|l]right panel, we consider L(z,y) = (zy — 1)?
with (z,y) € R?. We evenly sampled 8007 initial points in the range [—4.5, 4.5]2. We ran gradient
descent with step size 0.2 for 6 iterations and recorded the final squared distances to the two
minimizers, m; = (1,1) and mgo = (2.9,1/2.9). Viewing the final distances as functions of the
initial point, we used the “contourf” function from the Matplotlib package (version 3.5.2) to draw the
sublevel sets of the distances. For the minimizer m,, we drew the sublevel set of [0, 0.15) to get the
preimage of GD~°(B(m1,1/0.15)). For the minimizer ms, we drew the sublevel set of [0, 0.25) to

get the preimage of GD~%(B(ms, v/0.25)).

For Figure [2| we consider L(z,y) = (zy — 1)? with (z,3) € R2. For the left panel, we evenly
sampled 8007 initial points in the range [—4.5,4.5]? and ran gradient descent with step size 0.2 for 6
iterations. To visualize the basin for unstable minimizers, note, as shown in the proof of Proposition[I5]
converging to unstable minimizers can only occur within finitely many steps. We therefore recorded
the final loss value and used the “contour” function from the Matplotlib package (version 3.5.2) to
collect points in the level set of 0 for the loss. Those points correspond to convergence to a global
minimizer within 6 or less steps. We then filtered out and visualized points that converge to an
unstable global minimizer, i.e., a minimizer with squared norm larger than 2/7 (see Corollary .

In Figure [2} to visualize the basin for the saddle (0, 0), note, as shown in the proof of Proposition
this basin can be given by U_oF' ¥ (ON{u = —sgn(y)v}) for some neighborhood of (0, 0). Then
we also recorded the final distance to the set {u = —v} and used the “contour” function from the
Matplotlib package (version 3.5.2) to collect points in the level set of 0 for the distance. Then we
filtered out the points that lie in D; (as defined in Theorem . This yield the basin associated with
the saddle. To justify this procedure, note, as shown in Proposition any point outside D;v either
converges to a minimizer within finite steps or diverges. Also note, by the analysis in Lemma [ 1}
points on {u = —sgn(y)v} either converge to the saddle or diverge. For the right panel of Figur
we evenly sampled 8002 points in [—0.9, —0.6] x [—4.55, —4.25]. We ran gradient descent with step
size 0.2 for 250 iterations. The training stops if the loss value is below 10~ or above 100.

For Figure 3] we consider L(u,v) = (uv — 0.5)2/2 + 0.1(u? + v?) where (u,v) € R2. For the left
panel, we consider the dynamical system defined by F' (see Proposition[2)) with 7 = 1, A = 0.2 and
y = 1. In the zw-space, we evenly sampled 20002 intial points in [—2.5, 3] x [0, 10] and filtered out
those in {w > 2|z|}. We applied F°° to those sampled points and filtered out initial points that lead
to loss value below L, + 107° where Ly, is the global minimum of L. Those points come from
the projected convergence region 7' (D%’ ). Then we used the “ndimage.binary_erosion” function from
the SciPy package (version 1.9.1) to find the boundary of those points. The coloring of the boundary
is based on the preimage structure of F', which is described in Proposition[I3] For the middle panel,
we evenly sampled 8007 initial points in [—4, 4]? and ran gradient descent for 100 iterations. For the
right panel, we estimated the box-counting dimension for the boundary points found in the left panel.
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We first normalized these points to fit within [0, 1]2. We then computed the number of boxes N (¢)
needed to cover all the points, with the box width ¢ ranging from 1/22 to 1/28. We then performed
linear regression on log N () versus log(1/¢).

I ADDITIONAL EXPERIMENTS

How convergence boundary and basin of saddle evolve with A In Figure[d] we illustrate how
the convergence boundary and the basin of attraction of the saddle point evolve as the regularization
parameter A increases in scalar factorization problem. As shown in the figure, and consistent with our
theoretical results, the boundary is smooth (in the almost everywhere sense) when A = 0. When A is
just above zero, the boundary is close to a smooth and bounded set, with the fractal spikes so thin
that they are barely visible. As A increases, the fractal structure becomes more pronounced, and the
spikes gradually get wider. Also, the basin of attraction of the saddle does not separate points inside
the convergence region from points outside.

A=0 A=0.01 , A=0.1 , A=05
, 2\
N\

N\ N

s >0 N s N\ s
N
¥ N N
u u u u

Figure 4: Gradient descent is applied to L(u,v) = (uv — 0.8)?/2 + 5 (u? + v?), where u,v € R
and A € {0,0.01,0.1,0.5}. Blue points represent initializations that converge to a global minimizer;
uncolored points represent initializations that do note converge. Red lines represent the basin of
attraction of the saddle point (0, 0).

Unregularized matrix factorization with general initialization In Figure[5] we ran gradient
descent for shallow matrix factorization without regularization under general initialization. We
observe that, on a random slice of the parameter space, the convergence boundary is non-smooth,
suggesting that a smooth convergence boundary is a special property of the invariant subspace V.
This also implies that, globally, the critical step size might depend intricately on the initialization.
However, sensitivity to initialization is common: on all the random slices, the converged minimizer is
unpredictable near the convergence boundary. This suggests that chaotic dynamics always exists near
the global convergence boundary.

Random Axiso
Random Axis;

Random Axis;
| i
/
Random Axis;

> a6 11 3 a5 2 a5 11 3 a5 2 a5 11 3 a5 2 a5 1 3
Random Axisg, 1 Random Axisy, Random Axis;, 1 Random Axiss, 1

Unregularized

Figure 5: Gradient descent is applied to L(U, V) = |[UTV —Y||%./2, where U,V € R>** and Y is a
diagonal matrix whose diagonal elements are randomly sampled from [0, 1]. Four randomly sampled
two-dimensional slices of the parameter space R*? are shown. The points are colored according to
the squared Frobenius norm of the converged minimizer; uncolored points represent initializations
that do not converge.

Regularized matrix factorization with general initialization In Figure[f] we ran gradient descent
for shallow matrix factorization with regularization under general initialization. We observe that in
the random slices of the parameter space, the convergence boundary exhibits fractal-like geometry,
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although it appears to be less spiky than the boundary in scalar factorization. Also, as shown in the
figure, sensitivity to initialization persist under general initialization. Together, Figure [6]and Figure 3]
suggest that chaos and unpredictability are global properties of gradient descent in shallow matrix

factorization.
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Figure 6: Gradient descent is applied to L(U, V) = [UTV =Y |%/2 + 0.25(||U||% + ||V ||%) where
U,V € R°*2 and Y = Diag(0.9,0.8). Four randomly sampled two-dimensional slices of the
parameter space R?° are shown. The points are colored according to the one coordinate value of the
converged minimizer; uncolored points represent initializations that do not converge.

Deep matrix factorization In Figure[7} we ran gradient descent in depth-three matrix factoriza-
tion under generalization initialization. For deep matrix factorization we observe that already for
the unregularized problem, the convergence boundary exhibits fractal-like structure, as fine-scale
structures emerge. We report how the squared norm of the converged minimizer depends on the
initialization, for two random slices of the parameter space. As shown in the figure, while points near
the origin converge to minimizers of small norm, sensitivity to initialization occurs in the vicinity of
the boundary. For the regularized problem, we observe that not only the convergence boundary has a
fractal-like structure, but the convergence region also becomes disconnected, with intricate connected
components. The disconnectedness can be explained by the emergence of local minimizers, which
attracts nearby trajectories, and non-strict saddles, which trap trajectories for long periods before they
escape. For a detailed discussion of the landscape geometry of regularized deep matrix factorization,
see Chen et al.| (2025). Additionally, we observe sensitivity to initialization near the convergence

boundary.
e
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Figure 7: Gradient descent is applied to L(U, V, W) = |[UVW = Y|[|%/2+ 3(|U|% + [|[V[|% +
|W]%), where U, V, W € R?*2 and Y = Diag(0.9, 0.5). The left two panels show two randomly
sampled two-dimensional slices of the parameter space R'? for the unregularized problem. Points are
colored according to the squared norm of the converged minimizer. The right two panels show the
same random slices for the regularized problem. Points are colored according to one coordinate of
the converged minimizer. In all panels, uncolored points represent initializations that do not converge
to a global minimizer.
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