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ABSTRACT

We examine gradient descent in matrix factorization and show that under large step
sizes the parameter space develops a fractal structure. We derive the exact critical
step size for convergence in scalar-vector factorization and show that near criticality
the selected minimizer depends sensitively on the initialization. Moreover, we show
that adding regularization amplifies this sensitivity, generating a fractal boundary
between initializations that converge and those that diverge. The analysis extends
to general matrix factorization with orthogonal initialization. Our findings reveal
that near-critical step sizes induce a chaotic regime of gradient descent where the
training outcome is unpredictable and there are no simple implicit biases, such as
towards balancedness, minimum norm, or flatness.

1 INTRODUCTION

Understanding the properties of gradient descent in non-convex overparametrized optimization has
been a central pursuit in modern machine learning. The step size, or learning rate, is a critical factor
determining the dynamics and convergence of gradient descent optimization. In particular, it has a
major influence on the returned solution and its generalization performance (Nar and Sastry, 2018;
Jastrzebski et al., 2020; Lewkowycz et al., 2020; Cohen et al., 2021). Large step sizes have been
associated with flat and balanced minimizers of the training objective (Wu et al., 2018; Wang et al.,
2022; Menon, 2025), sparse feature representations (Nacson et al., 2022; Andriushchenko et al.,
2023), smooth solution functions (Mulayoff and Michaeli, 2020; Nacson et al., 2023), and improved
generalization (Ba et al., 2022; Qiao et al., 2024; Sadrtdinov et al., 2024). Yet, the theoretical
understanding of large step sizes remains limited, even in simple convex settings. Our investigation is
motivated by two fundamental questions:

Given an initial parameter, what is the critical (largest) step size that allows convergence?

What kind of implicit biases are induced by gradient descent with near-critical step size?

Addressing these questions is challenging, since large step sizes can produce highly complex, non-
monotonic, and even chaotic trajectories. In particular, trajectories may not converge to stationary
points but instead enter periodic or chaotic oscillations (Chen and Bruna, 2023; Chen et al., 2024b;
Ghosh et al., 2025), or converge to a statistical distribution (Kong and Tao, 2020); trajectories that
eventually converge to a minimizer may still undergo chaotic oscillations during early training (Zhu
et al., 2023; Kreisler et al., 2023; Song and Yun, 2023); and trajectories with nearby initializations
can diverge exponentially from one another (Herrmann et al., 2022; Jiménez-González et al., 2025).
Moreover, empirically, the set of step sizes and the set of initializations leading to convergence can
form fractal structures (see, respectively, Sohl-Dickstein, 2024; Zhu et al., 2023). In this work, we
provide precise answers to the above questions in the context of matrix factorization problems with
rigorous theoretical characterizations.

We begin by examining gradient descent in a simplified problem to factor a scalar target as the
inner product of two vectors. We show that two striking phenomena emerge at near-critical step
sizes: (i) initializations in arbitrarily small sets can converge to global minimizers with arbitrarily
large norm, sharpness or imbalance, or to a saddle, indicating a lack of simple implicit biases; and
(ii) the set of initializations that converge, that is, the convergence region, has a fractal structure,
indicating that the convergence is unpredictable near the boundary (see Figure 1). Interestingly, while
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Figure 1: The training outcome of gradient descent depends sensitively on initializations near the
convergence boundary. Left: Gradient descent applied to L(u, v) = (u⊤v− 1)2 + 0.3(∥u∥22 + ∥v∥22)
with (u, v) ∈ R10. Shown is a random two-dimensional slice of R10. Gray points are initializations
leading to divergence; other points are colored by a coordinate value of the converged minimizer. The
convergence boundary has a fractal structure. Right: Gradient descent applied to L(u, v) = (uv−1)2

with (u, v) ∈ R2. Shown are a balanced minimizer p (green star), its neighborhood Op (blue disk),
and the preimage of Op under GD6 (blue region with dashed boundary). An imbalanced minimizer
(green diamond) is shown similarly, with its neighborhood and preimages depicted in orange. The
convergence boundary is smooth but the converged point is sensitive to initialization.

in the unregularized setting the convergence region is regular (in the almost everywhere sense), it
becomes fractal once regularization is introduced. Further quantifying the unpredictability of the
training outcome, we show that the topological entropy of the gradient descent system is at least
log 3. Also, we show that the fractal nature of the boundary of the convergence region is captured by
a self-similar curve whose fractal dimension is estimated as 1.249. To our knowledge, beyond the
univariate training loss setting studied by Kong and Tao (2020); Chen et al. (2024b), this is the first
rigorous characterization of chaos in gradient descent optimization.

We then extend our analysis to general matrix factorization by showing that, when the initialization
lies in a subspace defined by a set of orthogonal conditions, the gradient descent dynamics decouples
into several independent scalar factorization dynamics. Hence, all results established for scalar
factorization remain valid on this subspace. This includes the commonly used identity initialization,
as well as the training of linear residual networks (Hardt and Ma, 2017; Bartlett et al., 2018).

We further analyze the mechanisms underlying these phenomena and trace them to a folding behavior
of the update map GD(θ) = θ − η∇L(θ): the map GD sends a region C onto a superset of C in a
multi-fold covering manner. Consequently, if C contains a convergence boundary that is invariant
under GD, then the boundary exhibits self-similarity; moreover, GD is mixing on the boundary, giving
rise to the sensitivity to initialization. We show that for general neural networks with polynomial
activations GD indeed acts as a covering map on the parameter space outside a measure-zero set.

Overall, our results imply that near-critical step sizes place gradient descent in a chaotic regime
where the training outcome is unpredictable: infinitesimal perturbations on the initial conditions can
lead to substantially different outcomes. This contrasts sharply with the stable dynamics observed at
smaller step sizes. We empirically validate the presence of chaos in matrix factorization with general
initializations, deep matrix factorization, and deep ReLU networks trained on real-world datasets.

1.1 MAIN CONTRIBUTIONS

The goal of this article is to provide rigorous insights into the dynamics of gradient descent with large
step sizes in matrix factorization. Our contributions can be summarized as follows:

• We derive the exact critical step size for convergence in scalar factorization and show that the
convergence region is equal almost everywhere to a bounded and smooth domain. At critical step
sizes, we show that infinitesimal perturbations to the initialization can lead to global minimizers
with arbitrarily large norm, or to a saddle point. Moreover, for initializations randomly sampled
from arbitrarily small sets, the distribution of the sharpness at the converged minimizers has a
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support containing all possible values below 2/η, which evidences chaos at a distributional level.
Also, we show that the topological entropy of gradient descent system is at least log 3.

• We show that when using ℓ2 regularization, gradient descent selects either the minimal distance
solution or the maximal distance solution among all global minimizers. At critical step size,
infinitesimal perturbations of the initialization can switch this selection from one to the other.
Furthermore, adding ℓ2 regularization yields a fractal convergence boundary whose geometry is
captured by a self-similar shape in R2 after symmetry reduction.

• We extend these results to general matrix factorization with initializations in a subspace that includes
the identity initialization. In particular, gradient descent exhibits chaos and fractal convergence
boundary on this subspace.

• We reason that chaos arises from a folding behavior of the gradient descent update map. For
general neural networks with polynomial activations, we show that gradient descent is a covering
map on each connected component of the parameter space after removing a measure-zero set. We
empirically validate these chaotic phenomena in deep ReLU networks trained on real-world data.

1.2 RELATED WORK

Gradient Descent Dynamics Under Large Step Sizes A main line of research on large-step-size
gradient descent focuses on the non-monotonic convergence of the loss and its impact on the final
model. Key perspectives include the Edge of Stability (Cohen et al., 2021; Ma et al., 2022; Agarwala
et al., 2023; Damian et al., 2023; Ahn et al., 2022; 2023; Zhu et al., 2023; Wang et al., 2023) and the
catapult phenomenon (Lewkowycz et al., 2020; Kalra and Barkeshli, 2023; Meltzer and Liu, 2023;
Zhu et al., 2024a;b). Compared to these works, our analysis extends to even larger (near-critical)
step sizes. Another line of work shows how a large step size can enhance feature learning in one
step of gradient descent (Ba et al., 2022; Dandi et al., 2024; Moniri et al., 2025), also comparing
different parametrizations (Sonthalia et al., 2025). Similar observations about the role of the step
size in feature learning have also been made for SGD (Andriushchenko et al., 2023; Lu et al., 2024)
and pre-training (Sadrtdinov et al., 2024). Ziyin et al. (2022) observed that for a certain range of
step sizes, SGD can have undesirable behavior, such as convergence to local maxima. For linear
networks, Kreisler et al. (2023) identified a monotonically decreasing quantity (sharpness) along
the gradient descent trajectories. Wang et al. (2022) showed large step size induces an implicit bias
towards balanced minimizers in matrix factorization. Crăciun and Ghoshdastidar (2024) proved the
existence of a step size threshold above which the algorithm diverges. A similar problem is studied
by Marion and Chizat (2024). Large-step-size gradient descent has also been investigated in logistic
regression (Wu and Su, 2023; Wu et al., 2024; Meng et al., 2024), and some of the analysis has been
further extended to shallow networks (Cai et al., 2024).

Chaos in Optimization Van Den Doel and Ascher (2012) empirically observed chaos, specifically
positive finite-time Lyapunov exponents, for several variants of steepest descent methods. The
phenomenon named period-doubling bifurcation route to chaos has been widely observed in recent
literature (Kong and Tao, 2020; Chen and Bruna, 2023; Chen et al., 2024b; Meng et al., 2024;
Danovski et al., 2024; Ghosh et al., 2025). Among them, only Kong and Tao (2020); Chen et al.
(2024b) provided rigorous analyses for the chaotic dynamics. They showed the emergence of Li-Yorke
chaos, i.e., the existence of periodic orbits of arbitrary periods, for univariate training losses. In
comparison, our setting is high-dimensional. Additionally, we establish not only the existence of all
periodic orbits, but also the sensitivity of the limiting point to initialization, which is more relevant to
practical optimization, particularly the implicit bias of the optimization algorithm.

2 PRELIMINARIES

We focus on the following shallow matrix factorization problem with ℓ2 regularization:

min
θ=(U,V )

L(θ) =
1

2

∥∥U⊤V − Y
∥∥2
F
+
λ

2
(∥U∥2F + ∥V ∥2F ), (1)

where λ ≥ 0, U, V ∈ Rd×dy and the target matrix Y ∈ Rdy×dy is a diagonal matrix. The diagonality
of Y is a weak assumption that can be achieved by reparametrization. Specifically, for arbitrary
Y consider the singular value decomposition Y = PY ΣYQ

⊤
Y and the rotations U = ŨP⊤

Y and
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V = Ṽ Q⊤
Y . The objective then becomes L̃(Ũ , Ṽ ) = 1

2∥Ũ
⊤Ṽ −ΣY ∥2F + λ

2 (∥Ũ∥2F + ∥Ṽ ∥2F ), where
the target is diagonal. Moreover, the optimization dynamics in minimizing L̃(Ũ , Ṽ ) are identical to
those in minimizing L(U, V ) up to the rotation (see details in Appendix C).

Gradient optimization in problem (1) has been extensively studied, especially in small-step-size
regimes (see, e.g., Saxe et al., 2014; Arora et al., 2019; Yun et al., 2021; Du et al., 2018; Li et al.,
2021; Min et al., 2023; Chen et al., 2024a). Its landscape enjoys a favorable structure: the global
minimum is attained and every stationary point is either a global minimizer or a strict saddle (Li et al.,
2019b; Valavi et al., 2020; Zhou et al., 2022). Nevertheless, this problem retains a key complexity
typical of neural network optimization: global minimizers can differ substantially (although they
yield the same end-to-end matrix). In particular, in the unregularized case, both the parameter norm
∥U∥2F + ∥V ∥2F and the imbalance ∥UU⊤ −V V ⊤∥2F can be arbitrarily large on the set of minimizers.
This makes the problem a natural testbed for studying how hyperparameter choices affect the implicit
biases of parameter optimization algorithms. We note that other forms of regularization have also
been studied in the literature, such as ∥UU⊤ − V V ⊤∥2F (Tu et al., 2016; Ge et al., 2017).

We consider gradient descent with constant step size η to solve problem (1):

Ut+1 = Ut − ηVt(V
⊤
t Ut − Y ⊤)− ηλUt, Vt+1 = Vt − ηUt(U

⊤
t Vt − Y )− ηλVt.

We define the gradient descent update map GDη(θ) = θ − η∇L(θ) so that (Ut+1, Vt+1) =
GDη(Ut, Vt). The basin of attraction of a stationary point θ∗ of L is the set of all initializations that
converge to θ∗, {θ : limN→∞ GDN

η (θ) = θ∗}.1 The convergence region for step size η, Dη, is the
union of the basins of attraction of all global minimizers. The critical step size η∗(Ū , V̄ ) for an initial-
ization (Ū , V̄ ) is defined as η∗(Ū , V̄ ) = sup

{
η : limN→∞ GDN

η (θ) ∈ M
}

, i.e., the supremum of
the step sizes that allow convergence to a global minimizer, where M = {θ : L(θ) = minθ′ L(θ′)}
denotes the set of all global minimizers. A set S is said to be invariant under GDη if GDη(S) ⊂ S.

We introduce notions for describing fractal geometry. A fractal is typically defined as a shape that
exhibits self-similarity and fine structure at arbitrarily small scales. Formally, we say a set S ⊂ Rn is
self-similar with degree k if there exist k homeomorphisms, ϕi : S → S, i = 1, · · · , k, that satisfy (i)
S = ∪k

i=1ϕi(S) and (ii) there exists an open set O ⊂ S such that ∪k
i=1ϕi(O) ⊂ O and (ϕi(O))ki=1

are pairwise disjoint. Condition (i) states that S can be covered by k smaller copies of itself. Condition
(ii), which is known as the open set condition, ensures that those copies do not overlap much. This
definition is closely related to an Iterated Function System (IFS), a standard tool for analyzing fractals
(see, e.g., Hutchinson, 1981; Falconer, 2013). However, unlike IFS where the maps are required to be
contractive and the set S to be compact, the shapes considered in our study may be unbounded.

Finally, we introduce notions related to chaos. Although there is no universal definition of chaos,
one common characterization of chaos is the sensitivity to initialization, which is often known as
the butterfly effect. In the context of optimization, this means that infinitesimal perturbations of the
initial condition can lead to substantially different training outcomes (e.g., turning convergence into
divergence, or shifting convergence from one minimizer to another qualitatively different minimizer).
In dynamical systems, a key measure of chaos is the topological entropy. Informally, the topological
entropy h(F ) of a dynamical system F measures the exponential growth rate of the number of distinct
trajectories of F as a function of the trajectory length. We defer the formal definition to Appendix B.1.
A positive topological entropy is widely regarded as a hallmark of chaos (see, e.g., Katok et al., 1995;
Robinson, 1998; Vries, 2014). In this paper, we adopt the above notions for fractals and chaos. We
note that different definitions and settings exist, and discuss their relation to our study in Appendix A.

3 SIMPLIFIED MATRIX FACTORIZATION

In this section, we study gradient descent in the special case of problem (1) where dy = 1, i.e.,
factorizing a scalar y as the inner product of two vectors as u⊤v. This and similar scalar factorization
settings have served as canonical models for understanding large-step-size dynamics (Lewkowycz
et al., 2020; Wang et al., 2022; Kreisler et al., 2023; Ahn et al., 2023; Zhu et al., 2023; Kalra
et al., 2025). Compared to these, our analysis extends to the full spectrum of step sizes, rather than
restricting to bounded step sizes. Proofs for results in this section are in Appendix E.

1In dynamical systems the basin of attraction is often defined for attractors. Here we extend the terminology
to include all stationary points, such as saddles, for simplicity of presentation.
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3.1 CHAOS AT LARGE STEP SIZE

Consider the unregularized scalar factorization problem:

min
θ=(u,v)∈R2d

L(θ) =
1

2
(u⊤v − y)2, (2)

where u, v ∈ Rd, d ≥ 1 and y ∈ R. Problem (2) retains several key complexities of the general prob-
lem (1), including non-convexity, high-dimensionality, non-Lipschitz gradients, and an unbounded
set of global minimizers M =

{
θ : u⊤v = y

}
.

In the following result, we characterize the critical step size for problem (2) and the emergence of
chaos under critical step sizes. We use B(θ, ε) to denote the ball of radius ε centered at θ.

Theorem 1. Consider gradient descent with step size η for solving problem (2). The following holds:

• Critical Step Size: For almost all initializations (ū, v̄) ∈ R2d, the algorithm converges to a global
minimizer if η < η∗(ū, v̄) and fails to converge to any minimizer if η > η∗(ū, v̄), where the critical
step size is given by (when y = 0, we adopt the convention 1/0 = +∞):

η∗(ū, v̄) = min

 1

|y|
,

8

∥ū∥22 + ∥v̄∥22 +
√
(∥ū∥22 + ∥v̄∥22)2 − 16y(ū⊤v̄ − y)

 . (3)

Therefore, when η satisfies η|y| < 1, the convergence region Dη is equal almost everywhere to

D′
η =

{
(u, v) ∈ R2d : ∥u∥22 + ∥v∥22 +

√
(∥u∥22 + ∥v∥22)2 − 16y(u⊤v − y) < 8

η

}
.

• Sensitivity to Initialization: Fix a step size η that satisfies η|y| < 1. Let γmin =
min {∥θ∥ : θ ∈ M} be the minimal norm over all global minimizers. Given arbitrary θ ∈ ∂D′

η,
ε,K > 0 and γ ∈ [γmin,∞), there exist θ′, θ′′, θ′′′ ∈ B(θ, ε) such that, as N tends to infinity,
GDN

η (θ′) converges to a global minimizer with norm γ, GDN
η (θ′′) converges to a global minimizer

with ∥uu⊤ − vv⊤∥F > K, and GDN
η (θ′′′) converges to (0,0), which is a saddle when y ̸= 0.

• Trajectory Complexity: Assume η|y| < 1. The topological entropy of the gradient descent system
GDη satisfies h(GDη) ≥ log 3. Moreover, GDη has periodic orbits of any positive integer period.

Theorem 1 provides a necessary and sufficient convergence condition for gradient descent in prob-
lem (2). The critical step size (3) consists of two terms. The first term arises because: when η|y| > 1,
all global minimizers become unstable and only attract a measure-zero set. The second term character-
izes the full convergence region, which is equal almost everywhere to an ellipsoid D′

η (see right panel
of Figure 1). Note that this convergence result is global: it holds for all step sizes η and initializations
θ0, except for a null set in the (η, θ0)-space. In contrast, the previous work of Wang et al. (2022) only
showed convergence for step sizes in the range η < 1/(3|y|), and initializations in a strict subset of
D′

η (see Figure 7). A comparison between the proof techniques used for Theorem 1 and those used
by Wang et al. (2022) is provided in Appendix E.1.2.

By Theorem 1, gradient descent in problem (2) exhibits a strong form of sensitivity to initial condition.
Note that in problem (2), the squared norm of the parameter coincides with the loss sharpness
λmax(∇2L) at global minimizers (see Appendix E.1.2). Hence, Theorem 1 shows that at critical
step size, infinitesimal perturbations of the initialization can send the trajectory to a minimizer with
arbitrarily large norm, sharpness or imbalance, or to a saddle. This is a hallmark of unpredictability: it
is impossible to reduce the error in the prediction of the converging point by improving the precision
in the specification of the initialization. We remark that this form of reachability from an arbitrarily
small range of initial values is familiar in chaos theory, such as the Julia sets in complex systems and
the Wada basin boundaries (see, e.g., Devaney and Eckmann, 1987; Nusse and Yorke, 1996; Aguirre
et al., 2001). However, these classical frameworks depend on properties not satisfied by our setting,
such as complex differentiability or invertibility of the system map, and thus do not apply here.

Theorem 1 also quantitatively measures chaos in gradient descent in problem (2): the topological
entropy is positive and is at least log 3. Roughly speaking, the number of distinct gradient descent
trajectories of lengthN grows at a rate of 3N (further interpretation for topological entropy is provided
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Figure 2: Gradient descent applied to L(u, v) = (uv − 1)2 with (u, v) ∈ R2. Left: Blue lines
and purple lines represent the basins of attraction of unstable minimizers and of the saddle (0,0),
respectively. Right: Initializations are evenly sampled from a small set intersecting ∂D′

η (the blue
square). However, the distributions of the squared norm and imbalance of the converged minimizer
(u∗, v∗), and of the number of iterations to reach a loss below 10−8, have wide supports.

in Appendix B.1). Beyond entropy, another aspect of trajectory complexity is shown: gradient descent
admits periodic orbits of any positive integer period. This is closely related to Li-Yorke chaos and
was shown for gradient descent in univariate loss functions (Kong and Tao, 2020; Chen et al., 2024b).

While Theorem 1 identifies the convergence region up to a measure-zero set, we now provide a
complete description of the region. In Appendix E.1.1, we show that every minimizer with squared
norm larger than 2/η is Lyapunov-unstable and that the basins of attraction of unstable minimizers
and of the saddle have measure zero. By Theorem 1, these measure-zero basins intersect ∂D′

η
in arbitrarily small neighborhoods and exhibit fractal structure (see left panel of Figure 2). The
full convergence region Dη is then the union of the smooth domain D′

η and the basins of unstable
minimizers, excluding the basin of the saddle (0,0) when y ̸= 0.

The next result shows that gradient descent in problem (2) exhibits chaos even after removing the
measure-zero basins of attraction of unstable minimizers, i.e., it is chaotic at the distributional level.
Theorem 2. Under the same conditions and notations as Theorem 1 and assuming η|y| < 1, given
arbitrary θ ∈ ∂D′

η, ε > 0 and open sub-interval E ⊂ [γmin, 2/η], there exists a set of positive
measure O ⊂ B(θ, ε) such that for any θ′ ∈ O, GDN

η (θ′) converges to a solution with norm in E.

Consider initializations randomly sampled from a distribution whose support contains an arbitrarily
small neighborhood of the convergence boundary. Theorem 2 then implies that the sharpness (or
norm) of the converged minimizer must have a support containing the entire interval (γmin, 2/η) (see
right panel of Figure 2). In other words, at near-critical step size and even after discarding the basins
of unstable minimizers, the best prediction for the final sharpness is the entire interval (γmin, 2/η).

3.2 REGULARIZATION INDUCES FRACTAL CONVERGENCE BOUNDARY

Consider the scalar factorization problem with ℓ2 regularization:

min
θ=(u,v)∈R2d

L(θ) =
1

2
(u⊤v − y)2 +

λ

2
(∥u∥22 + ∥v∥22), (4)

where u, v ∈ Rd, d ≥ 1 , λ ≥ 0 and y ∈ R. The added regularization makes the set of global
minimizers a bounded set. In particular, for problem (4), M = {u = sgn(y)v, ∥u∥22 = |y|−λ} when
λ < |y| and M = {(0,0)} when λ ≥ |y|. Regularization is commonly used to mitigate unbounded
minimizers and to establish convergence results (Cabral et al., 2013; Ge et al., 2017; Li et al., 2019a).
However, and rather remarkably, we will show that for the regularized problem the global dynamics
of gradient descent becomes even more unpredictable than for the unregularized problem: not only is
the limiting point of convergent trajectories unpredictable but also the convergence itself.

The predictability of convergence depends on the geometry of the boundary of the convergence
region. Two difficulties arise in analyzing this geometry: (i) the presence of the basin of the saddle;
and (ii) the high-dimensionality of the convergence boundary. Specifically, we observe that the basin

6



Published as a conference paper at ICLR 2026

of attraction of the saddle point intricately penetrates Dη and creates topological boundaries “within”
Dη (see Figure 8). However, such boundaries are not of interest, since they do not separate points
inside Dη from points outside, i.e., both sides lie in Dη. This motivates us to instead consider the
boundary of D′′

η = Dη ∪ Sη , where Sη is the basin of the saddle. Note, the smooth domain D′
η in the

unregularized problem plays an analogous role in clarifying the geometry of convergence region.

The second difficulty is the high dimensionality of the boundary ∂D′′
η ⊂ R2d. To address this,

we identify and reduce the symmetry in ∂D′′
η . We introduce the map T : R2d → R2, T (u, v) =

(u⊤v, ∥u∥22+ ∥v∥22). The fiber of T , i.e., the preimage of a point in T (R2d), is generically a manifold
diffeomorphic to Sd−1 × Sd−1 and hence has a regular shape (see Appendix D). In the following, we
show that gradient descent dynamics are captured by their evolution across these fibers.
Proposition 3. Let (ut, vt)t≥0 denote the gradient descent trajectory in problem (4) with λ ≥ 0. Let
(zt, wt) = T (ut, vt). There exists a planar map F : R2 → R2 that only depends on η, λ, y such that
(zt+1, wt+1) = F (zt, wt) holds for all t ≥ 0. In particular, (ut, vt) converges to M if and only if
(zt, wt) converges to T (M), and it converges to (0,0) if and only if (zt, wt) converges to (0, 0).

The map F describes how the gradient descent trajectory evolves across the fibers of T . Its formulation
is given in Appendix D. By Proposition 3, all points lying in the same fiber share the same convergence
behavior. Therefore, roughly, the boundary ∂D′′

η can be constructed by attaching fibers of T to the
projected boundary T (∂D′′

η ); an example will be given below. Note, as the fibers are generically
smooth manifolds, any geometric complexity of ∂D′′

η will be captured by T (∂D′′
η ).

In the following result, we show that the convergence boundary of problem (4) has a self-similar
structure and gradient descent exhibits sensitivity to initialization near the convergence boundary.
Theorem 4. Consider gradient descent with step size η for problem (4) with 0 < λ ≤ min{(1/η)−
|y|, 1/(2η)}. Consider the map T (u, v) = (u⊤v, ∥u∥22 + ∥v∥22). Let Sη be the basin of attraction of
(0,0), which is a saddle if λ < |y|, and let D′′

η = Dη ∪ Sη . The following holds:

• Self-similarity: Sη has measure zero and T (∂D′′
η ) is self-similar with degree three.

• Unboundedness: When y = 0, there exist constants a, b > 0 such that almost all initializations
(ū, v̄) with |ū⊤v̄| < a exp(−b(∥ū∥22 + ∥v̄∥22)) converge to a global minimizer.

• Sensitivity to Initialization: For any θ ∈ Dη, the algorithm converges either to the closest global
minimizer p−(θ) = argminp∈M ∥p − θ∥2, or the farthest p+(θ) = argmaxp∈M ∥p − θ∥2.2
Moreover, there exist infinitely many points on ∂D′′

η such that for any open set O containing such a
point, there exist θ′, θ′′ ∈ O such that GDN

η (θ′) converges to p−(θ′) and GDN
η (θ′′) converges to

p+(θ′′), as N tends to infinity.

Theorem 4 indicates that the convergence boundary for problem (4), ∂D′′
η , can be constructed by

attaching fibers of T to a self-similar set T (∂D′′
η ) with degree three. T (∂D′′

η ) is displayed in the left
panel of Figure 3, and its box-counting dimension is estimated to be 1.249, as shown in the right
panel. The case of d = 1, i.e., u, v ∈ R, is shown in the middle panel of Figure 3. There, the fibers
of T generically consist of four discrete points. ∂D′′

η is then constructed by attaching four points to
T (∂D′′

η ). Hence, ∂D′′
η is simply the union of four copies of T (∂D′′

η ). The fractal boundary marks
unpredictability in convergence: given an initial point near the boundary, it is almost impossible to
determine whether the point is inside or outside the convergence region. This unpredictability is also
quantified by the box-counting dimension, as explained in Appendix B.2.

Theorem 4 shows that when y = 0, the convergence region has an unbounded interior up to a null set.
This sharply contrasts with the convergence region in the unregularized case, which coincides almost
everywhere with a bounded domain. By Theorem 4, gradient descent converges provided that the
u⊤v decays exponentially fast as a function of the squared norm ∥u∥22 + ∥v∥22. Geometrically, this
creates an outward spike in the convergence region. Then, the self-similarity replicates this spike
infinitely many times and at multiple scales, giving rise to the spiky convergence boundary observed
in Figure 3. Although Theorem 4 shows the unboundedness only for the case y = 0, we observe
qualitatively the same geometry for general targets (for an example, see left panel in Figure 1).

2When θ ∈ Dη , both minp∈M ∥p − θ∥2 and maxp∈M ∥p − θ∥2 admit unique solutions. Moreover,
p+(θ) ̸= p−(θ) when λ < |y|.
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Figure 3: Gradient descent is applied to L(u, v) = (uv−0.5)2/2+0.1(u2+ v2), where (u, v) ∈ R2.
Left: The projected convergence boundary T (∂D′′

η ) is self-similar with degree three: it is covered by
three smaller copies of itself (green, red, blue). Middle: The convergence boundary ∂D′′

η consists
of four replicates of T (∂D′′

η ), separated by gray lines. The only two minimizers are shown as a red
triangle and a blue circle. Points are colored red if they converge to the red triangle, and blue if they
converge to the blue circle. Right: The box-counting dimension of T (∂D′′

η ) is estimated as 1.249.

Fractal basin boundaries have been extensively studied in dynamical systems (see, e.g., Grebogi et al.,
1983b; McDonald et al., 1985). However, these classical approaches are either largely case-specific
or rely on properties that do not hold in our settings, for instance, invertibility of the system map. A
more detailed discussion is in Appendix A. To our knowledge, our result provides the first rigorous
characterization of a fractal convergence region in the context of machine learning optimization.

Theorem 4 also shows that, although regularization eliminates unbounded global minimizers, the
selected minimizer remains unpredictable. Specifically, while the algorithm always selects either the
minimal distance solution or the maximal distance solution, this selection becomes unpredictable
near the convergence boundary, as both choices occur in arbitrarily small sets (see middle panel
of Figure 3). This stands in contrast with gradient descent under small step sizes, which typically
exhibits a distance-minimization bias (see, e.g., Gunasekar et al., 2018; Boursier et al., 2022). Indeed,
in the following, we show that with sufficiently small step size, gradient descent in problem (4)
always selects the minimal distance solution.

Theorem 5. Under the same conditions and notations as Theorem 4 and letting Q(u, v) = ∥u∥22 +

∥v∥22 +
√
(∥u∥22 + ∥v∥22)2 − 16y(u⊤v − y), the following holds for almost all initializations (ū, v̄):

If η < 8/(4λ + Q(ū, v̄)), then gradient descent converges to a global minimizer; If η < 4/(4λ +
Q(ū, v̄)), then the particular minimizer it converges to is p−(ū, v̄).

Finally, we present another implication of the chaos in gradient descent. In Appendix F, we show
for the case d = 1, i.e., L(u, v) = 1

2 (uv − y)2 + λ
2 (u

2 + v2), u, v ∈ R, λ ≥ 0, that, any continuous
dynamical invariant must be constant. In particular, the imbalance u2 − v2, which is known to be
(approximately) preserved under gradient descent with small step sizes (Du et al., 2018; Arora et al.,
2019), fails dramatically under large step sizes. Although this result does not directly extend to the
case d ≥ 2, we anticipate that the chaos strongly constrains the form of dynamical invariants.

4 MATRIX FACTORIZATION AND BEYOND

In this section, we first extend results in Section 3 to general matrix factorization with orthogonal
initializations. We then analyze the underlying mechanism that gives rise to the chaotic phenomena,
and discuss to what extent this mechanism may extend to more general settings. Finally, we present
experiments showing chaos in a real-world machine learning setting.

4.1 MATRIX FACTORIZATION WITH ORTHOGONAL INITIALIZATIONS

Consider gradient descent in matrix factorization (1) with initializations in the following subspace:

W =
{
(U, V ) ∈ R2d·dy : ⟨ui, uj⟩ = ⟨ui, vj⟩ = ⟨vi, vj⟩ = 0, ∀i ̸= j

}
, (5)

where ui, vi denote the ith column of U, V . The subspace W includes several commonly studied
initialization schemes, such as the scaled identity initializations Ū = αId, V̄ = βId (Chou et al.,
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2024; Ghosh et al., 2025), zero-asymmetric initialization (Wu et al., 2019), and those used in training
linear residual networks (Hardt and Ma, 2017; Bartlett et al., 2018). Note that in the low-rank setting
d < dy , constraints in (5) require at least dy − d pairs of (ui, vi) to be initialized to zero.

A key observation is that results of Section 3 precisely characterize the gradient descent dynamics on
W: with initialization in W , the trajectory remains in W , and the dynamics decouple column-wise:
each pair (ui, vi) evolves independently according to the scalar factorization dynamics with target
yi, the ith diagonal entry of Y . Thus, all results in Section 3 extend verbatim, and gradient descent
exhibits chaos and a fractal convergence boundary on W (see details in Appendix G).

A full characterization of the dynamics outside W requires additional investigations, for instance,
whether W attracts or repels nearby trajectories. However, we point out that, the presence of chaos on
W already suggests that the global dynamics can be unpredictable. For instance, due to the continuity
of GDη , we expect that initializations in the vicinity of the convergence boundary in W , will inherit
the sensitivity to initial conditions, at least during the initial phase before potentially escaping W . This
phenomenon is known as transient chaos in dynamical systems (see, e.g., Tél, 1990). Experimentally,
we observe that the chaotic phenomena indeed persist for general initializations, and also in deep
matrix factorization (Appendix I). A rigorous characterization of gradient descent dynamics in these
settings is an intriguing direction that we leave for future work.

4.2 GENERAL MECHANISM BEHIND CHAOS

We now explain the mechanism giving rise to chaos in scalar factorization. For simplicity, consider
the case d = 1: L(u, v) = (uv − y)2/2 + λ(u2 + v2)/2 with (u, v) ∈ R2. In this setting, there
exists a set C ⊂ R2 such that GDη behaves as a 3-covering map from C onto GDη(C) ⊃ C. Roughly
speaking, GDη stretches and folds C to cover GDη(C) three times. Furthermore, C contains the
convergence boundary ∂Dη. The boundary satisfies GDη(∂Dη) = ∂Dη, meaning that ∂Dη can
be stretched and folded three times to cover itself, thereby exhibiting self-similarity. Additionally,
due to its folding behavior, GDη is transitive on ∂Dη, i.e., points on the boundary ∂Dη are mixed
under the iterations of GDη (via multiple stretches and folds). This mixing leads to the sensitivity to
initializations near the boundary. A visualization of these properties are provided in Figure 6.

The key ingredient above is the existence of a set C in the parameter space on which GDη acts as a
covering map. In fact, the described chaotic phenomena arise given such a set C and any invariant
subset A ⊂ C that satisfies GDη(A) = A, a condition typically satisfied by the boundary of a basin
of attraction. Then we ask: When does such a set C exist? The following result partially addresses
this for general neural networks with polynomial activation functions.

Proposition 6. Let fθ(·) be a polynomial neural network of arbitrary depth and width, parametrized
by θ ∈ Rp. Consider a loss function L(θ) =

∑m
j=1 ℓ(fθ(xj), yj) with polynomial loss ℓ and training

data (xj , yj)
m
j=1. For all η > 0 except for at most finitely many values, there exists a measure-zero

set Kη ⊂ Rp such that GDη is a covering map on any connected component of Rp \ Kη .

The proof is provided in Appendix G. We remark that, while Proposition 6 suggests a general folding
behavior of GDη, it does not address whether GDη(C) contains C and whether C contains a basin
boundary. We leave these intriguing questions for future research.

4.3 CHAOS AND FRACTALS IN NEURAL NETWORKS

We show that the chaotic phenomena persist in real-world training settings. We trained a depth-three
ReLU network on a 2-class subset of CIFAR-10 (Krizhevsky et al., 2009). In Figure 4 we consider
the mean squared error and report how the step size affects the norm and sharpness of the parameter
that is returned at the end of training. For gradient descent without momentum, two distinct regimes
of step sizes can be observed: (i) EoS regime: both the final norm and sharpness lie close to a
smooth curve, indicating predictability. In particular, the final sharpness is close to 2/η, aligning
with Cohen et al. (2021). (ii) Chaotic regime: the norm and sharpness become sensitive to the step
size, indicating chaos and unpredictability. In particular, the final sharpness spans almost all values
below 2/η, aligning with our Theorem 2. A similar phenomenon appears for gradient descent with
Polyak momentum (Polyak, 1964). However, in the small-step-size regime, the final sharpness forms
a cluster rather than aligning with (2 + 2β)/η as predicted by Cohen et al. (2021). Experiments with
cross-entropy loss are provided in Appendix J, where a similar two-regime phenomenon is observed.
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Figure 4: GD without and with momentum in training a depth-3 ReLU network on a subset of
CIFAR-10 for 5000 iterations under mean squared error. The initialization is randomly sampled
once and then kept fixed across all panels. At large step sizes, the final norm and final sharpness are
sensitive to step size. Dashed black lines show the final sharpness predicted by Cohen et al. (2021).

In Figure 5, we show how the parameter initialization of gradient descent affects the final loss
and sharpness when using weight decay. For both quantities, we observe fractal structures in the
parameter space, indicating that the training outcome is highly sensitive to the initialization. Further
experiments in Appendix J show qualitatively similar fractal patterns also appear without weight
decay. Experiment details of Figures 4 and 5 are provided in Appendix J.

Figure 5: GD with weight decay in training a depth-3 ReLU network on a subset of CIFAR-10
for 3000 iterations. Shown is a random two-dimensional slice of the parameter space. Each initial
parameter is colored by the value of the final loss and final sharpness, respectively. Left two panels:
fractal basins of global minimizers (dark blue), sub-optimal solutions (white), and a region leading to
divergence (dark red). Right two panels: the final sharpness is sensitive to the initialization, spanning
a wide range of values below 2/η. Gray points are initializations from which the algorithm diverged.

5 CONCLUSION

We offered a rigorous characterization of gradient descent with large step sizes in matrix factorization.
Our results reveal two striking phenomena: near the convergence boundary, the selection of the
minimizer is unpredictable, and adding regularization can induce a fractal convergence boundary that
makes the convergence itself unpredictable. As a driver of this complexity, we suggested a covering
map structure exhibited by the gradient descent update map on the parameter space.

Limitations Although our characterizations substantially expand the state of knowledge in non-
convex overparametrized optimization in the particular setting of matrix factorization, further research
is needed to rigorously characterize the dynamics of large-step-size gradient descent in other settings,
such as general initializations, deep matrix factorization, or neural networks with nonlinear activation
functions. We believe the contributed insights can aid in the development of such programs.

Future Directions We showed that at large step sizes there may not exist any simple algorithmic
biases, but observed that biases could still be studied in a distribution sense. Further analyzing the
properties of the distribution over global minimizers that is induced by a distribution of initializations
is an interesting direction for future work. In particular, are there cases in which the distribution is
uniform over a subset of minimizers, or cases in which it will concentrate in a predictable way?
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APPENDIX

The appendix is organized into the following sections.

• Appendix A: Relation to classical theory for chaos and fractals
• Appendix B: Measure of chaos in dynamical systems
• Appendix C: Diagonality of the target matrix
• Appendix D: Quotient dynamics of gradient descent
• Appendix E: Proofs for Section 3
• Appendix F: Non-existence of continuous dynamical invariant
• Appendix G: General matrix factorization
• Appendix H: Experiment details
• Appendix I: Additional experiments on matrix factorization
• Appendix J: Additional experiments on real-world data

A RELATION TO CLASSICAL THEORY FOR CHAOS AND FRACTALS

A.1 CHAOTIC DYNAMICAL SYSTEMS

A common definition of chaotic dynamical systems is as follows (Devaney and Eckmann, 1987).
A dynamical system F : X → X , where X is the state space, is chaotic if: (i) it is sensitive to
initialization, (ii) it is topological transitive, and (iii) periodic points are dense in X . Here, sensitivity
to initialization requires that there exists δ > 0 such that for any x ∈ X and any neighborhood of x,
there exists N > 0 and y in the neighborhood such that dist(FN (x), FN (y)) > δ. This is weaker
than the property we presented in Theorem 1 and Theorem 4: when the converged points of two
trajectories are different, the trajectories must differ by a positive difference at some time N , but not
vice versa. In Proposition 15, we show that the boundary ∂D′

η , as defined in Theorem 1, is invariant
under gradient descent. In Proposition 18, we show that when restricted to ∂D′

η , the gradient descent
system is semi-conjugate to a one-dimensional system that is precisely Devaney chaotic. However,
we show in Proposition 20 that the original gradient descent system is not Devaney chaotic when
d ≥ 2 as it fails to be topological transitive.

A system F : X → X is topological transitive if for any pair of non-empty open sets U, V , there
exists N such that FN (U) ∩ V ̸= ∅. A family of dynamical systems that exhibit transitivity is
the family of Axiom-A diffeomorphisms (Smale, 1967). These are dynamical systems where the
set of non-wandering points is hyperbolic and is equal to the closure of the set of periodic points.
A closed set Λ is hyperbolic if it is forward invariant and at each point x ∈ Λ the tangent space
of the ambient space splits as a direct sum of stable and unstable subspaces. It is known that an
Axiom-A diffeomorphism is always transitive on each of its basic sets (Bowen et al., 2008, Chapter
3). However, gradient update maps typically are not expected to satisfy this definition as they in
general are not global diffeomorphisms.

Another definition of chaotic dynamical system is by Li and Yorke (1975). They considered a
dynamical system F : X → X with X ⊂ R being an interval chaotic if F has a periodic orbit with
period three. They showed that if such a periodic orbit exists, then (i) F has periodic orbit with any
period; (ii) there exists an uncountable set S ⊂ J such that, for every p, q ∈ S with p ̸= q,

lim sup
N→∞

|FN (p)− FN (q)| > 0, lim inf
N→∞

|FN (p)− FN (q)| = 0,

and (iii) for every p ∈ S and a periodic point q ∈ J ,

lim sup
N→∞

|FN (p)− FN (q)| > 0.

In Proposition 18, we showed that the restricted system GDη|∂D′
η

is semi-conjugate to a one-
dimensional system that is Li-Yorke chaotic. In general, Devaney chaos and Li-Yorke chaos do not
imply each other. For a detailed comparison between different notions of chaotic dynamical systems,
see the work of Elaydi (2007).
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A.2 FRACTAL BASIN BOUNDARY

The fractal convergence boundary studied in this work falls into a more general notion, called a fractal
basin boundary. The seminal classification given by McDonald et al. (1985) divides fractal basin
boundaries into three categories: quasicircles, locally connected but not quasicircles, and locally
disconnected. The most regular type, quasicircle, is typical in the Julia sets of complex analytic maps.
However, as noted by McDonald et al. (1985), properties of complex analytic maps do not generalize
to real maps, and hence quasicircle is uncommon in real systems. We observe that the convergence
boundary in our study falls in the second category, locally connected but not quasicircles. This type
of boundary has been observed in several planar maps, i.e., dynamical systems defined on regions of
R2. A well-known example is the following system:

xn+1 = λxxn mod (1), yn+1 = λyyn + cos(2πxn).

The basin boundary of this system is precisely the Weierstrass curve. McDonald et al. (1985) argued
that a typical characteristic of this type of boundaries is the local stratification structure, which also
appears in the convergence region in our case (see left panel in Figure 1). To our knowledge, however,
all examples of locally connected boundaries appearing in the literature, including those presented
by McDonald et al. (1985); Hunt et al. (1999); Rosa Jr and Ott (1999), are bounded, whereas the
convergence region in our case is shown to be unbounded. Classical approaches do not apply to
our study, as most of those theoretical studies are case-specific. The last category has the most
complicated structure and, as noted by Aguirre et al. (2009), turns out to appear more commonly
in physical systems. Boundaries in this category typically exhibit a Cantor set structure. Examples
include the famous Hénon map and the horseshoe map. For a recent review of the fractal boundaries,
we refer readers to Aguirre et al. (2009).

B MEASURE OF CHAOS IN DYNAMICAL SYSTEMS

We introduce two measures of chaos in dynamical systems. In Appendix B.1 we introduce the
topological entropy of a dynamical system and, in Appendix B.2 we discuss how the fractal dimension
of the basin boundary implies unpredictability.

B.1 TOPOLOGICAL ENTROPY

Let F : X → X be a dynamical system, where X is the state space with a metric d. The idea behind
topological entropy is to measure how fast the number of “distinct” trajectories increases as the
trajectory length increases. To measure the difference between two trajectories of length N , consider

dN (x, y) = max
0≤i≤N−1

d(F i(x), F i(y)).

Then, the number of “distinct” trajectories of length N is measured by

r(N, ε) = max {|S| : dN (x, y) > ε,∀x, y ∈ S, x ̸= y} ,

where |S| is the number of elements in S. The topological entropy of F , denoted h(F ), measures the
exponential growth rate of r(N, ε) as N increases. Specifically, h(F ) is defined as follows:

h(F ) = lim
ε→0+

lim sup
N→∞

log r(N, ε)

N
.

We give an example to provide more intuition. Consider the following symbolic dynamical systems:

σ : {0, 1}∞ → {0, 1}∞ , σ(s0s1s2 · · · ) = (s1s2 · · · ).

Here the state space {0, 1}∞ denotes the set of all infinite sequence of two symbols 0 and 1, whose
metric is defined by

d((s0s1 · · · ), (s′0s′1 · · · )) =
∞∑
j=0

|sj − s′j |
2j

.

The system σ is called the full-shift on two symbols. Despite its simple definition, this system is
unpredictable and chaotic (see, e.g., Devaney and Eckmann, 1987). In particular, periodic points are
dense in the state space, and, there exists a trajectory that is dense in the state space, i.e., there is a
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single trajectory that can come arbitrarily close to any point. In terms of predictability, consider two
points s = (s0s1 · · · ), s′ = (s′0s

′
1 · · · ) that have the same firstm elements, but differ starting from the

(m+ 1)th element. By the definition of the distance, we have d(s, s′) ≤
∑∞

j=0 1/2
m+j = 1/2m+1.

However, for all N ≥ m, we have d(σN (s), σN (s)) > 1/2. Therefore, even if two initial points are
arbitrarily close to each other, one can not make any prediction on how close their trajectories will
remain in the long term. This unpredictability stems from the richness of “distinct” trajectories. In
fact, one can show that h(σ) = log 2 > 0 (see, e.g., Vries, 2014). Note, the topological entropy of
the gradient descent in matrix factorization is at least log 3 (Theorem 1).

B.2 BOX-COUNTING DIMENSION AND UNPREDICTABILITY

There have been numerous investigations discussing how a non-integer fractal dimension implies
unpredictability in dynamical systems (see, e.g., Tél, 1990; Aguirre et al., 2009). Here we provide a
brief introduction to this topic.

Recall that the box-counting dimension of a set S is defined as the following limit if it exists:

DB(S) = lim
ε→0

log(N(ε))

log(1/ε)
,

whereN(ε) is the number of boxes of side length ε needed to cover the set S. For a dynamical system
F : X → X where X ⊂ RD is the state space, let DB be the box-counting dimension of a basin
boundary and D be the topology dimension of the state space. Consider a collection of trajectories
and randomly perturb their initial points by a scale ε. Let f(ε) denote the fraction of the trajectories
that converge to a different point, i.e., whose initial point lies in a different basin of attraction after
the perturbation. Thus, f(ε) can be roughly viewed as the chance of making an error in predicting
the converged point when the precision in specifying the initial point is ε. In general, the following
scaling relation holds (Grebogi et al., 1983a):

f(ε) ∼ εD−DB ,

where D − DB is known as the uncertainty exponent. When the boundary is smooth, we have
DB = D − 1 and thus f(ε) ∼ ε, i.e., the accuracy of the prediction of the converged point is
proportional to the precision on the initial point. In contrast, when the boundary has a non-integer
dimension, we have D − 1 < DB < D and hence D − DB < 1. This implies that a substantial
increase in the precision in specifying the initial point leads to only a very small increase in the
accuracy of the prediction. This marks sensitivity to initialization and unpredictability. Note, the box-
counting dimension of the projected boundary T (∂D′′

η ) is estimated as 1.249, yielding an uncertainty
exponent 2− 1.249 = 0.751 (see Section 3.2).

C DIAGONALITY OF THE TARGET MATRIX

We show that in matrix factorization (1), one may assume without loss of generality that the target
matrix is diagonal. This simplification is a standard technique that has been widely adopted in the
literature.

Let Y = PY ΣYQ
⊤
Y be the singular value decomposition of Y , where PY , QY ∈ O(dy) and

ΣY ∈ Rdy×dy is diagonal. Consider the change of coordinates U = ŨP⊤
Y and V = Ṽ Q⊤

Y . Recall
that the U -update in minimizing L(U, V ) is given by

Ut+1 = Ut − ηVt(V
⊤
t Ut − Y ⊤)− ηλUt.

In the new coordinate, we have

Ũt+1 = Ut+1PY

= UtPY − ηVt(V
⊤
t Ut − Y ⊤)PY − ηλUtPY

= Ũt − ηṼtQ
⊤
Y (QY Ṽ

⊤
t Ũt −QY Σ

T
Y )− ηλŨt

= Ũt − ηṼt(Ṽ
⊤
t Ũt − ΣT

Y )− ηλŨt.

(6)
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On the other hand, since the Frobenius norm is invariant under left- or right-multiplication by
orthogonal matrices, the loss function in the new coordinates is given by

L̃(Ũ , Ṽ ) =
1

2
∥PY Ũ

⊤Ṽ Q⊤
Y − Y ∥2F +

λ

2
(∥ŨP⊤

Y ∥2F + ∥Ṽ Q⊤
Y ∥2F )

=
1

2
∥Ũ⊤Ṽ − ΣY ∥2F +

λ

2
(∥Ũ∥2F + ∥Ṽ ∥2F ).

Note the update iteration (6) coincides with the Ũ -update in minimizing L̃(Ũ , Ṽ ) with gradient
descent. An analogous calculation shows the same holds for the Ṽ -update. Therefore, one may
directly study the gradient descent dynamics in minimizing L̃(Ũ , Ṽ ).

D QUOTIENT DYNAMICS OF GRADIENT DESCENT

We show that the gradient descent dynamics in the scalar factorization problem can be described by a
quotient system, and we further establish key properties of this system.

Consider the map
T : R2d → R2, T (u, v) = (u⊤v − y, ∥u∥22 + ∥v∥22).

Note that this definition differs from the one introduced in Section 3.2 by a constant shift of −y,
where y ∈ R is target scalar of problem (2). This adjustment is made purely for convenience in
presenting the proof. All results stated here extend trivially to the original formulation.

We will show that the gradient descent dynamics are fully captured by their evolution across the fibers
of the map T . In other words, different initializations in the same fiber produce qualitatively identical
trajectories. This reflects an inherent symmetry of the system. The quotient system factors out this
symmetry and describes the fiber-wise dynamics. The term quotient dynamical system is borrowed
from the theory of equivariant dynamical systems (see, e.g., Golubitsky and Stewart, 2003).

D.1 QUOTIENT DYNAMICAL SYSTEM

We first introduce two properties of the map T : (i) the preimage of any measure-zero set has measure
zero and (ii) the fiber of T is generically a smooth manifold.
Proposition 7. The preimage of any measure-zero set under the map T is a measure-zero set.

Proof. By Ponomarev (1987), it suffices to show the map T is a submersion almost everywhere, i.e.,
the Jacobian of T has rank two almost everywhere. Notice that

JT (u, v) =

(
v u
2u 2v

)
.

Hence, rank(JT ) < 2 if and only if there exists c ̸= 0 such that cv = 2u and cu = 2v. This gives
c2v = 2cu = 4v, and hence, c = ±2 or v = 0. The set {v = 0} has zero measure. When c = ±2,
we have u = ±v which also yields measure-zero set. This completes the proof.

Proposition 8. For almost all (z, w) ∈ T (R2d) =
{
(z, w) ∈ R2 : w ≥ 2|z + y|

}
, T−1(z, w) is

diffeomorphic to Sd−1 × Sd−1.

Proof. Notice that

∥u+ v∥22 = w + 2(z + y), ∥u− v∥22 = w − 2(z + y).

Consider the linear bijection p = u+ v and q = u− v. It follows that

T−1(z, w) =
{
(p, q) : ∥p∥22 = w + 2(z + y), ∥q∥22 = w − 2(z + y)

}
.

Thus, the fiber is diffeomorphic to Sd−1 × Sd−1 whenever w ± 2(z + y) ̸= 0. Note this only fails at
a measure-zero set, which completes the proof.

Next, we prove Proposition 3. In the terminology of dynamical systems, this result shows that the
gradient descent system GDη is semi-conjugate to a planar system f under the map T .
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Proposition 9 (Proposition 3). Let (ut, vt)t≥0 denote the gradient descent trajectory in problem (4)
with λ ≥ 0. Let (zt, wt) = T (ut, vt). Consider the map f : R2 → R2 defined by

f

(
z
w

)
=

(
η2z3 + η2yz2 + ((1− ηλ)2 − ηw + η2λw)z + yη2λ2 − 2yηλ

((1− ηλ)2 + η2z2)w − 4ηz(1− ηλ)(z + y)

)
. (7)

We have that (zt+1, wt+1) = f(zt, wt) holds for all t ≥ 0. In particular, (ut, vt) converges to M if
and only if (zt, wt) converges to T (M), and it converges to (0,0) if and only if (zt, wt) converges
to (−y, 0).

Proof. To ease the notation, let (z, w) = (zt, wt) and (z′, w′) = (zt+1, wt+1) for arbitrary t. We
have that

z′ = (u′)⊤v′ − y

= (u− ηzv − ηλu)⊤(v − ηzu− ηλv)− y

= z − ηzw − 2ηλu⊤v + η2z2u⊤v + η2λzw + η2λ2u⊤v

= z − ηzw − 2ηλ(z + y) + η2z2(z + y) + η2λzw + η2λ2(z + y)

= η2z3 + η2yz2 + ((1− ηλ)2 − ηw + η2λw)z + yη2λ2 − 2yηλ.

Also, we have that

w′ = ∥u′∥2 + ∥v′∥2

= (u− ηzv − ηλu)⊤(u− ηzv − ηλu) + (v − ηzu− ηλv)⊤(v − ηzu− ηλv)

= ((1− ηλ)2 + η2z2)w − 4ηz(1− ηλ)(z + y).

Note that, the loss function solely depends on u⊤v − y and ∥u∥22 + ∥v∥22. Thus (ut, vt) converges
to M if and only if (zt, wt) converges to T (M). Also, note that, T (u, v) = (−y, 0) if and only
if u = v = 0. Thus (ut, vt) converges to (0,0) if and only if (zt, wt) converges to (−y, 0). This
completes the proof.

To further simplify the analysis, we consider the change of coordinates ϕ(z, w) = (ηz, ηw). Note
that, under the map ϕ(z, w) = (ηz, ηw), the system f , as defined in (7), is topologically conjugate to

F

(
z
w

)
= ϕ ◦ f ◦ ϕ−1

(
z
w

)
=

(
z3 + ηyz2 + ((1− ηλ)2 − w + ηλw)z + yη3λ2 − 2yη2λ

((1− ηλ)2 + z2)w − 4z(1− ηλ)(z + ηy)

)
=

(
z3 + µz2 + ((1− ν)2 − w + νw)z + ν2µ− 2µν

((1− ν)2 + z2)w − 4z(1− ν)(z + µ)

)
,

(8)
where we let µ = ηy and ν = ηλ. With Cauchy-Schwartz inequality, it is straightforward to verify
that the state space of F is

Ω =
{
(z, w) ∈ R2 : w ≥ 2|z + µ|

}
.

The system F has two parameters, µ and ν, whereas f has three, η, y, λ. Therefore, we instead study
the system F . Note, trajectories of F and those of f only differ by a scale. Thus all results for F
extend trivially to f .

D.2 PROPERTIES OF THE QUOTIENT DYNAMICS

We show that the map F , as defined in (8), is a proper map, i.e., the preimage of any compact set is
compact.
Proposition 10 (Properness). When 0 ≤ ν < 1− |µ|, the map F is proper on Ω.

Proof. Consider ∥(zk, wk)∥ → ∞ for a sequence of points (zk, wk). Let (z′k, w
′
k) = F (zk, wk).

Assume (z′k, w
′
k) stays bounded. Since (zk, wk) is unbounded and Ω is a cone, one must have

wk → ∞. Notice that

w′
k = ((1− ν)2 + z2k)wk − 4zk(1− ν)(zk + µ).
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To make w′
k bounded, zk has to be unbounded. However, as wk ≥ 2|zk + µ|,

w′
k ≥ ((1− ν)2 + z2k)wk − 4|zk| · |zk + µ| · |1− ν|
≥ ((1− ν)2 + z2k)wk − 2|zk| · wk · |1− ν|
≥ wk(|zk| − (1− ν))2.

Since wk, |zk| are unbounded, w′
k has to be unbounded, which yields a contradiction. This completes

the proof.

Consider the function Q defined as follows

Q : Ω → R, Q(z, w) = w +
√
w2 − 16µz.

We will frequently use Q as a Lyapunov-like function to study the dynamics of F .

In the following result, we describe the level set structure of the function Q.

Lemma 11 (Level-set structure). Consider Q(z, w) = w +
√
w2 − 16µz. Then, Q(z, w) ≥ 4|µ|

for all (z, w) ∈ Ω. Moreover, we have that

• If r = 4|µ|, then for all (z, w) ∈ Ω, Q(z, w) = r if and only if w = 2sgn(µ)(z+µ) and w ≤ 4|µ|;
Q(z, w) > r holds for all other points.

• If r > 4|µ|, then for all (z, w) ∈ Ω, Q(z, w) is less than, equal to, larger than r if and only if
−16µz − r2 + 2rw is less than, equal to, larger than 0, respectively.

Proof. When w ≥ 2|z + µ|,

w2 − 16µz ≥ 4(z + µ)2 − 16µz = 4(z − µ)2 ≥ 0.

Therefore, Q is well-defined in Ω.

When µ = 0, we have that Q(z, w) = 2w. The claimed results clearly hold. In the sequel, consider
µ ̸= 0. Let r = Q(z, w) = w +

√
w2 − 16µz and s = w −

√
w2 − 16µz. Then we have

z = (rs)/(16µ) and w = (r + s)/2. Notice that

r2 − s2 = (r + s)(r − s) = 2w · 2
√
w2 − 16µz ≥ 0.

Since w ≥ 2|z + µ|, we have w2 ≥ 4(z + µ)2 and hence

(
r + s

2
)2 ≥ 4(

rs

16µ
+ µ)2

⇔ (r2 − 16µ2)(s2 − 16µ2) ≤ 0

⇔ r ≥ 4|µ|, |s| ≤ 4|µ|.

(9)

We have that for (z, w) ∈ Ω,

w +
√
w2 − 16µz = 4|µ|

⇔
√
w2 − 16µz = 4|µ| − w

⇔ w2 − 16µz = (4|µ| − w)2, w ≤ 4|µ|
⇔ w = 2sgn(µ)(z + µ), w ≤ 4|µ|.

Therefore,
{Q(z, w) = 4|µ|} = {w = 2sgn(µ)(z + µ), w ≤ 4|µ|} ⊂ ∂Ω,

and {Q(z, w) > 4|µ|} = Ω \ {Q(z, w) = 4|µ|}.

Now we consider r > 4|µ|. When w = 2(z + µ), we have

−16µz − r2 + 2rw = 0 ⇔ w =
r + 4µ

2
.

22



Published as a conference paper at ICLR 2026

When w = −2(z + µ), we have

−16µz − r2 + 2rw = 0 ⇔ w =
r − 4µ

2
.

Therefore, the line −16µz − r2 + 2rw = 0 intersect ∂Ω at two points, whose w coordinates
are r±4µ

2 . Since r > 4|µ|, we have that r±4µ
2 < r always holds. This implies that, for all

(z, w) ∈ Ω ∩
{
−16µz − r2 + 2rw ≤ 0

}
, we have r − w > 0. Thus, we have that for (z, w) ∈ Ω

and r > 4|µ|,

w +
√
w2 − 16µz < r

⇔
√
w2 − 16µz < r − w

⇔ w2 − 16µz < (r − w)2

⇔ − 16µz − r2 + 2rw < 0.

The above clearly holds when < is changed to = or >. This completes the proof.

We identify three invariant sets of the quotient system F . A set S ⊂ Ω is said to be an invariant set
under F if F (S) ⊂ S.
Lemma 12 (Invariant boundary). The boundary ∂Ω consists of two lines: {w = 2(z + µ), w ≥ 0}
and {w = −2(z + µ), w ≥ 0}. Each of the lines is an invariant set of F . Meanwhile, when 0 ≤ ν <
1− |µ|, the set {Q = 4|µ|} is invariant under F .

Proof. Let (z′, w′) = F (z, w). By direct computation, we have that

w′ − 2(z′ + µ) = (w − 2(z + µ))(1 + z − ν)2,

w′ + 2(z′ + µ) = (w + 2(z + µ))(−1 + z + ν)2.
(10)

It follows that if (z, w) ∈ ∂Ω = {w = ±2(z + µ)}, F (z, w) ∈ ∂Ω.

According to Lemma 11, {Q = 4|µ|} = {w = 2sgn(µ)(z + µ), w ∈ [0, 4|µ|]}. When w =
2sgn(µ)(z + µ), we have that the w-update is given by

w′ = w

((
sgn(µ)

w

2
− µ

)2

+ (1− ν)
2

)
− 2w

(
sgn(µ)

w

2
− µ

)
(1− ν)

= w(
w

2
− 1 + ν − |µ|)2

≜ κ(w).

We will analyze the image set of κ([0, 4|µ|]). Clearly, the minimum of κ([0, 4|µ|]) is κ(0) = 0.
Let A = −1 + ν − |µ|. We have that κ′(w) = 0 if w = −2A or w = −2A/3. Notice that when
0 ≤ ν < 1− |µ|, we have 4|µ| ≤ −2A. Therefore, the maximum of κ([0, 4|µ|]) is either κ(4|µ|) or
κ(−2A/3). When 4|µ| > −2A/3, we have (1− ν)/5 < |µ| ≤ 1− ν. Notice that

κ(
−2A

3
) =

8(1− ν + |µ|)3

27
.

Viewing κ(−2A
3 ) as a cubic function of |µ|, we have that, as 1 − ν > 0, κ(−2A

3 ) is convex on
(1−ν)/5 < |µ| ≤ 1−ν. Therefore, to show κ(−2A

3 ) < 4|µ| for (1−ν)/5 < |µ| ≤ 1−ν, it suffices
to show this holds when µ = (1− ν)/5 and µ = 1− ν. Notice that

8

27
((1− ν) +

1− ν

5
)3 ≤ 4 · 1− ν

5
⇔ (1− ν)2 ≤ 25 · 27

2 · 63
≈ 1.56,

and that
8

27
(1− ν + 1− ν)3 < 4(1− ν) ⇔ (1− ν)2 ≤ 27

16
,

which are all satisfied. Therefore, κ(−2A/3) ≤ 4|µ| when 4|µ| > −2A/3. Meanwhile, we have

κ(4|µ|) = 4|µ|(|µ| − 1 + ν)2.

Since ν < 1 − |µ|, we have that −1 < |µ| − 1 + ν < 0 and that κ(4|µ|) ≤ 4|µ|. Therefore, the
image set of κ([0, 4|µ|]) is contained [0, 4|µ|]. This means that the set {Q = 4|µ|} is invariant under
F , which completes the proof.
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In the sequel, we present two important properties of the map F , which will be used in the proof of
our main results. In the following result, we identify the region on which a single update of F leads
to a decrease, or an increase in the value of Q.
Lemma 13 (Monotonicity region). Assume 0 ≤ ν < 1 − |µ|. When ν = 0, we have that, for
(z, w) ∈ Ω: (i) Q(F (z, w)) = Q(z, w) if and only if (z, w) lies in the set

Z ≜ {w = µz + 4} ∪ {z = 0} ∪ {w = 2sgn(µ)(z + µ), w ≤ 4|µ|} ;

and (ii) If (z, w) /∈ Z, we have
(
Q(F (z, w))−Q(z, w)

)
· (w − µz − 4) > 0.

When ν > 0, we have that, for (z, w) ∈ Ω, (i) Q(F (z, w)) ≤ Q(z, w) if and only if (z, w) lies in the
set

{z2 ≤ −ν2 + 2ν} ∪
{
w < −µ(z

2 − 2ν + ν2)

z(ν − 1)
− 4z2(ν − 1)

ν2 − 2ν + z2
, z2 > −ν2 + 2ν

}
,

which contains {Q(z, w) < 8− 4ν}; and (ii) Q(F (z, w)) = Q(z, w) if and only if (z, w) lies in the
set

Z ≜ {Q(z, w) = 4|µ|} ∪
{
w = −µ(z

2 − 2ν + ν2)

z(ν − 1)
− 4z2(ν − 1)

ν2 − 2ν + z2
, z2 > −ν2 + 2ν

}
.

Proof. Let (z′, w′) = F (z, w). Assume that µ > 0. Note the case of µ < 0 can be proved
via an analogous procedure. Let r = Q(z, w) and let s = w −

√
w2 − 16µz. When r = 4|µ|,

we have that Q(F (z, w)) = Q(z, w) always holds, by Lemma 12. Consider r > 4|µ|. Using
Lemma 11, we have that the sign of Q(z′, w′) − Q(z, w) is the same as that of the inner product
between the vector pointing from (z, w) to (z′, w′) and the normal vector (−8µ,Q(z, w)) of the line
−16µz −Q(z, w)2 + 2Q(z, w)w = 0, which is given by

(−8µ)(z′ − z) +Q(z, w)(w′ − w)

= − 8µ(z3 + µz2 + (ν2 − 2ν − w + νw)z + ν2µ− 2µν)+

Q(z, w)((ν2 − 2ν + z2)w − 4z(1− ν)(z + µ))

∝ µ2(r2 − 16µ2)(r2s2 + 8rs2(−1 + ν) + 256µ2(−2 + ν)ν)

∝ r2s2 + 8νrs2 − 8rs2 + 256µ2ν2 − 512µ2ν.

(11)

When ν = 0, the above is equal to s2r(r − 8). By noticing that r > 4|µ| > 0, that the sign of r − 8
is the same as that of w − µz − 4 by Lemma 11, and that s = 0 if and only if z = 0, we have all the
results for ν = 0.

When ν > 0, (11) has the same sign as

2µ(z2 + ν2 − 2ν)− (1− ν)z(w −
√
w2 − 16µz).

We have that for (z, w) ∈ Ω,

{2µ(z2 + ν2 − 2ν)− (1− ν)z(w −
√
w2 − 16µz) ≤ 0}

={z2 ≤ −ν2 + 2ν} ∪
{
w < −µ(z

2 − 2ν + ν2)

z(ν − 1)
− 4z2(ν − 1)

ν2 − 2ν + z2
, z2 > −ν2 + 2ν

}
,

and

{2µ(z2 + ν2 − 2ν)− (1− ν)z(w −
√
w2 − 16µz) = 0}

=

{
w = −µ(z

2 − 2ν + ν2)

z(ν − 1)
− 4z2(ν − 1)

ν2 − 2ν + z2
, z2 > −ν2 + 2ν

}
,

Next, we show that {Q < 8− 4ν} is contained in the above set. Notice that 8 > 4(|µ|+ ν) always
holds when 0 ≤ ν < 1− |µ|. So 8− 4ν > 4|µ| and, by Lemma 11, the level set {Q = 8− 4ν} is on
the line

w =
8µ

8− 4ν
z +

8− 4ν

2
.
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Then it suffices to show that when z2 > −ν2 + 2ν, the following holds

−µ(z
2 − 2ν + ν2)

z(ν − 1)
− 4z2(ν − 1)

ν2 − 2ν + z2
− (

8µ

8− 4ν
z +

8− 4ν

2
) ≥ 0. (12)

By direct computation, we have that the level set {Q = 8− 4ν} intersects ∂Ω at z = ±(2 − ν).
Hence, by the cone structure of Ω, we have z2 < (2− ν)2 if Q < 8− 4ν. Therefore, multiplying
z(z2+ν2−2ν) to both sides of the above inequality and assuming z > 0, we have that the inequality
is equivalent to

ν

(ν − 2)(ν − 1)
· (−z2 + (2− ν)2) · (−µz2 + (4− 6ν + 2ν2)z − µ(−2ν + ν2)) ≥ 0

⇔ (−z2 + (2− ν)2) · (−µz2 + (4− 6ν + 2ν2)z − µ(−2ν + ν2)) ≥ 0

⇔ − µz2 + (4− 6ν + 2ν2)z − µ(−2ν + ν2)) ≥ 0.

(13)

The symmetry axis of the parabola is (ν − 1)(ν − 2)/µ > 0. Since 1− ν > µ, the symmetry axis
lies in (2− ν,+∞). Notice that

− µz2 + (4− 6ν + 2ν2)z − µ(−2ν + ν2)|z=√
−ν2+2ν ≥ 0

⇔ 2(1− ν)
√
−ν2 + 2ν ≥ 0,

which is satisfied. Therefore, (13) holds and (12) holds. The case of z < 0 can be proved with a
similar procedure. Thus, we have that {Q < 8− 4ν} is inside the set {Q(z, w) ≥ Q(F (z, w))}.

Finally, when µ = 0, we have that Q(z, w) = 2w. We have that

Q(F (z, w))−Q(z, w) = w(z2 + (1− ν)2)− 4z2(1− ν)− w

= 4z2(−1 + ν) + w(z2 − 2ν + ν2).

It is straightforward to verify that the claimed results hold for this case. This completes the proof.

In the following result, we characterize the preimage map of F , which in general is a multi-valued
map.

Proposition 14 (Preimage structure). Assume 0 ≤ ν < 1− |µ|. Consider the sets
B = {(z, w) ∈ Ωo : Q(z, w) > 6− 4ν}
A0 = {(z, w) ∈ Ωo : z < ν − 1}
A2 = {(z, w) ∈ Ωo : z > 1− ν} .

The restrictions F |cl(A0), F |cl(A2) are homeomorphisms onto Ω. Moreover, there exists homeo-
morphisms G0 : Ω → cl(A0), G1 : cl(B) → G1(cl(B)) ⊂ {(z, w) ∈ Ω: |z| ≤ 1− ν} , G2 : Ω →
cl(A2) such that F ◦Gi is an identity map on the domain of Gi for i = 0, 1, 2.

Proof. Notice that the critical points of F lie in the set{
det JF (z, w) = −(1 + z − ν)(−1 + z + ν)(1− w − 3z2 − 2zµ− 2ν + wν + ν2) = 0

}
. (14)

Since |µ| < 1− ν, the bottom tip of Ω, (−µ, 0), lies in (ν − 1, 1− ν). Therefore, A0 is bounded by
w = −2(z + µ) and z = ν − 1. Notice that the parabola 1− w − 3z2 − 2zµ− 2ν + wν + ν2 = 0
intersects w = −2(z + µ) at z = (−2µ− 1 + ν)/3 and we have

(−2µ− 1 + ν)/3 > ν − 1 ⇔ µ+ ν < 1,

which is satisfied by assumption. Therefore, det JF vanishes nowhere on A0.

We next show that F (A0) = Ωo. For an arbitrary (z0, w0) ∈ Ωo, (z, w) ∈ F−1(z0, w0) if (z, w)
solves the following system{

z3 + µz2 + ((1− ν)2 − w + νw)z + ν2µ− 2µν = z0
((1− ν)2 + z2)w − 4z(1− ν)(z + µ)) = w0.

(15)
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For z ̸= 0, solving (15) is equivalent to solving

w =
z3 + µz2 + (1− ν)2z + ν2µ− 2µν − z0

(1− ν)z
=

4z(1− ν)(z + µ) + w0

z2 + (1− ν)2
,

which is equivalent to solving the following quintic equation

p(z) = z5 + µz4 − 2(ν − 1)2z3 + ((−2ν2 + 4ν − 3)µ− z0)z
2

+ (ν − 1)(ν3 − 3ν2 + 3ν + w0 − 1)z + (ν − 1)2(µν(ν − 2)− z0) = 0.
(16)

Notice that p(−∞) = −∞ and p(−1 + ν) = (ν − 1)2(w0 − 2(z0 + µ)) > 0. Hence, p has at least
one root in (−∞,−1 + ν). By Lemma 12, in particular, by (10), we have that, when viewing F as a
map on R2:

F−1(∂Ω) = ∂Ω ∪ {z = ±(1− ν)} , and F−1(Ω) ⊂ Ω.

Therefore, the above root of p corresponds to one preimage in A0. This means that F (A0) = Ω◦.

For any compact set K ⊂ Ωo. Note K is also compact in Ω. Since F is proper by Proposition 10,
F−1(K) is compact. Since K ∩ ∂Ω = ∅ and ∂(Ω) ⊃ F (∂A0), we have F−1(K) ∩ ∂A0 = ∅.
Therefore, (F |A0)

−1(K) = F−1(K) ∩A0 = F−1(K) ∩ cl(A0), which is a closed in F−1(K). As
a closed subset of a compact space is compact, we have (F |A0

)−1(K) is compact. Hence, F |A0
is a

proper map. Since Ωo is simply-connected, by Hadamard Inverse Function theorem, we have that
F |A0

is a homeomorphism from A0 to Ωo.

We now show that F maps ∂A0 bijectively to ∂Ω. Since A0 ⊂ cl(A0), we have that F (A0) =
Ωo ⊂ F (cl(A0)). Since cl(A0) is compact, therefore, F |cl(A0) : cl(A0) → Ω is proper, and hence
is closed (see, e.g., Lee, 2000, Theorem 4.95). Therefore, F (cl(A0)) is a closed set that contains
Ωo. Hence, cl(Ωo) = Ω ⊂ F (cl(A0)). Since F (A0) = Ωo, we have ∂Ω ⊂ F (∂A0), which means
F |∂A0

is onto ∂Ω. We next show it is also injective. By Lemma 12, we know F maps {z = ν − 1}
to {w = 2(z + µ)} and maps {w = −2(z + µ)} to itself. When z = ν − 1, the w-update under F is
given by

w′ = w((1− ν)2 + (−1 + ν)2)− 4(1− ν)(−1 + ν)(−1 + µ+ ν),

which is linear in w. Therefore, F |z=1−ν must be an injection. When w = −2(z + µ), the w-update
under F is given by

w′ = w(
w

2
− 1 + µ+ ν)2.

As a function w, w′ have two critical points, w = 2(1 − µ − ν) and w = 2
3 (1 − µ − ν). Notice

that z = ν − 1 intersects ∂Ω at (ν − 1, 2(1 − µ − ν)). Then when (z, w) ∈ cl(A0), we have
w ≥ 2(1− µ− ν). Since 1− µ− ν > 0, we have that the above w′ is monotonic with w. Therefore,
F |cl(A0) is an injection. It follows that, F |∂A0 is a bijection to ∂Ω and F |cl(A0) is a bijection to Ω.
Since F |cl(A0) is a closed map, its inverse is continuous. Therefore, F |cl(A0) is a homeomorphism.
The proof for A2 is similar and thus is omitted.

Finally, we analyze the behavior of F , as a map onto B. We show that every points in B are regular
values. Note that,

6− 4ν − 1− 3z2 − 2zµ− 2ν + ν2

1− ν
> 0

⇔ 3z2 + 2µz + (3ν2 − 8ν + 5) > 0.

(17)

For this parabola of z, we have

(2µ)2 − 4 · 3(3ν2 − 8ν + 5) < 0

⇔ |µ|2 < 3(3ν − 5)(ν − 1)

⇐ (1− ν)2 < −3(3ν − 5)(1− ν)

⇐ ν <
7

4
.

26



Published as a conference paper at ICLR 2026

Therefore, we have that (17) holds and that

Q(z,
1− 3z2 − 2zµ− 2ν + ν2

1− ν
) < 6− 4ν

⇔
√
(
1− 3z2 − 2zµ− 2ν + ν2

1− ν
)2 − 16µz < 6− 4ν − 1− 3z2 − 2zµ− 2ν + ν2

1− ν

⇔ − 16µz + 2(6− 4ν) · 1− 3z2 − 2zµ− 2ν + ν2

1− ν
− (6− 4ν)2 < 0

⇔ (6ν − 9)z2 + 2µ(4ν − 5)z + (2ν3 − 9ν2 + 13ν − 6) < 0.

For this new parabola of z, we have its discriminant is negative if

µ2(5− 4ν)2 − 12(3− 2ν)2(ν2 − 3ν + 2) < 0

⇔ (1− ν)2(5− 4ν)2 − 12(3− 2ν)2(ν − 1)(ν − 2) < 0

⇔ 32ν3 − 182ν2 + 331ν − 191 < 0.

By differentiation computation, we claim that the last equation holds when ν ∈ [0, 1]. Therefore, we
prove that the maximum Q value on the parabola ι : 1− w − 3z2 − 2zµ− 2ν + wν + ν2 = 0 is at
most 6− 4ν. Notice that all the critical values of F is given by ∂Ω ∪ F (ι). But what we have shown
and Lemma 13, we have

Q(z, w) ≤ 6− 4ν, ∀(z, w) ∈ F (ι).

Therefore, we have that every points in B are regular values.

Now we show that |F−1(z, w)| = 3 for (z, w) ∈ B. To this end, we first consider a special point:
x∗ = (−µ + µ(1 − ν)2, w∗(1 − ν)2) = F (0, w∗) for some w∗ such that x∗ ∈ B. Notice that the
w-coordinate of x∗ tends to infinity as w∗ tends to infinity. Hence, w∗ can be arbitrarily large while
keeping x∗ ∈ B, i.e.,Q(x∗) > 6−4ν. We show that |F−1(x∗)| = 3. Plugging z0 = −µ+µ(1−ν)2
and w0 = w∗(1− ν)2 to (16) gives

0 = z4 + µz3 − 2(ν − 1)2z2 − 3µ(ν − 1)2z + (ν − 1)3(−1 + ν + w∗)

⇔ z4 + µz3 = (ν − 1)2(2z2 + 3µz − (ν − 1)(−1 + ν + w∗)).
(18)

The left-hand side is a continuous function and thus has a finite upper bound when z ∈ [−1+ν, 1−ν].
The right-hand side is a parabola, whose symmetry axis is at −3µ/4. Hence, it’s global minimum is

−9

8
µ2(ν − 1)2 − (ν − 1)3(−1 + ν + w∗).

Notice that this quantity tends to +∞ as w∗ tends to +∞. Hence, for large enough w∗, equation
(18) does not have a solution on [−1 + ν, 1 − ν]. It follows that F−1(x∗) does not have any
element in {z ∈ [−1 + ν, 1− ν]} except (0, w∗). By what we have shown, F |cl(A0) and F |cl(A2) are
bijections onto Ω. Hence, F−1(x∗) have exactly one element in A0 and exactly one in A2. Therefore,
|F−1(x∗)| = 3. Now consider any other point in B and a path connecting x∗ and that point. Since
every point in B is a regular value, by the stack of records theorem, the function |F−1(·)| is locally
constant. (Stack of records theorem requires the domain to be compact and this can be achieved
by confining F on w ≤ W for some large enough W so that the image contains the path. This is
guaranteed by properness of F .) Note the path is compact and thus |F−1(z, w)| is a constant on the
entire B and hence is 3.

Given (z, w) ∈ B, in F−1(z, w) we already know there are exactly one point in A0 and exactly
one point in A2. Hence, the third point must lie in {(z, w) ∈ Ω: |z| < 1− ν}. We define this map
by G1 : B → {(z, w) ∈ Ω: |z| < 1 − ν} and let A1 = G1(B). By what we have shown, det JF
vanishes nowhere onA1. Note by construction ofA1, F |A1(A1) = B. With a similar treatment as we
used for A0, we can show F |A1 is proper. As B is simply connected, we have that F , when restricted
to A1, is a homeomorphism to B. As we shown above, F is a bijection from |z| = ±(1 − ν) to
∂Ω. Moreover, we claim that G1 can be extended to {Q = 6− 4ν} in a bijective manner, as one can
choose C slightly smaller than 6− 4ν and apply the same analysis for {(z, w) ∈ Ω, |z| < 1, Q > C}
as we did for B. Hence, F , when restricted to cl(A1), is a bijection onto cl(B). Note, F |cl(A1) is
proper and hence its inverse is continuous. Therefore, F |cl(A1) is a homeomorphism. This completes
the proof.
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E PROOFS FOR SECTION 3

In this section, we present the proofs of our main results. The key idea is to first analyze the quotient
dynamical system introduced in Appendix D, and then translate the conclusions back to the original
gradient descent system.

E.1 UNREGULARIZED PROBLEM

Preliminary results are first presented in Appendix E.1.1, and the proof of Theorem 1 is given in
Appendix E.1.2.

E.1.1 PRELIMINARY RESULTS

As discussed in Appendix D, the gradient descent system GDη is semi-conjugate to the following
system F :

F

(
z
w

)
=

(
z3 + µz2 − zw + z

(z2 + 1)w − 4z(z + µ)

)
,

where µ = yη denote the parameter of the system and the state space of F is

Ω = {w ≥ 2|z + µ|}.

In the following several results, we characterize the long term behavior of the orbits of F . We will
use the terms trajectory and orbit interchangeably. We say an orbit {zk, wk} converges to a set S
if d((zk, wk), S) → 0, where d(x, S) = infy∈S d(x, y). Unless stated otherwise, we use (z′, w′) to
denote F (z, w).

Proposition 15 (Long-Term Dynamics). Assume |µ| ≤ 1. Given an initial condition (z0, w0) ∈ Ω,
we have that:

• If w0 < µz0 + 4, the orbit stays in {w < µz + 4} and converges to

{w = 2sgn(µ)(z + µ), w ≤ 4|µ|} ∪ {z = 0}.

• If w0 > µz0 + 4, the orbit either diverges, in the sense that wk → ∞, or converges to {z = 0} in
finite steps.

• If w0 = µz0 + 4, the orbit stays in {w = µz + 4}.

Proof. Consider the function ∆Q(z, w) = Q(F (z, w)) − Q(z, w). Let (zk, wk) = F k(z0, w0)
for k ≥ 1. When w0 < µz0 + 4, by Lemma 13, we have Q(zk+1, wk+1) ≤ Q(zk, wk) for all
k ≥ 0. Hence, the trajectory stays in the region {Q < 8} = {w < µz + 4}. Since Q(zk, wk) is
monotonic and is non-negative, it converges to some finite value and ∆Q(zk, wk) converges to zero.
By Lemma 13, we have that

{∆Q = 0} = Z = {z = 0} ∪ {w = µz + 4} ∪ {w = 2sgn(µ)(z + µ), w ≤ 4|µ|} .

If (zk, wk) does not converges to Z, there exists ε0 such that for any K there exists k > K
such that d((zk, wk), Z) ≥ ε0. Note that, the function ∆Q, when restricted to the compact set
{w ≤ µz + 4: d((z, w), Z) ≥ ε0}, is non-positive and continuous. Thus, it obtains its maximal
value and the maximum is strictly negative. Hence, d((zk, wk), Z) ≥ ε0 implies that ∆Q(zk, wk) <
−δ for some δ > 0, which contradicts the fact that ∆Q→ 0. Therefore, (zk, wk) converges to

Z ∩ {w < µz + 4} = {z = 0} ∪ {w = 2sgn(µ)(z + µ), w ≤ 4|µ|} .

When w0 > µz0 + 4, similarly, we have that Q(zk+1, wk+1) ≥ Q(zk, wk). Hence, (zk, wk) stays in
the region {w > µz + 4} for all k ≥ 0. Hence, Q(zk, wk) either diverges to infinity or converges to
a finite value. If it diverges, wk must also diverge, since the function Q, when restricted to {w ≤ w̄}
for any fixed w̄, is continuous and hence is upper bounded. If Q(zk, wk) converges to some finite
value, then ∆Q converges to zero and the trajectory must remain within the compact region {w ≤ C}
for some C > 0. Using arguments similar to those above, we have that (zk, wk) must converge to

28



Published as a conference paper at ICLR 2026

Z ∩ {w > µz + 4} = {z = 0}. Now assume the convergence is in infinite steps, i.e., |zk| ≠ 0 for all
k ∈ N. Then the sequence |zk+1/zk| is well defined and converges to one. Notice that we have

|zk+1

zk
| = |z2k + µzk − wk + 1| ≥

∣∣|z2k + µzk| − |wk − 1|
∣∣ . (19)

Note as zk → 0, the above lower bound is dominated by |wk − 1|. Since {w > µz + 4} ∩ {z =
0} = {(0, w) : w ≥ 4}, | zk+1

zk
| is lower bounded by 1 + δ for some δ > 0. This contradicts the fact

that |zk+1/zk| converges to one. Hence, the convergence must occur within finite steps.

Finally, the result for the case w0 = µz0 + 4 directly comes from Lemma 13. This completes the
proof.

Proposition 16 (Convergence). When |µ| > 1, almost all initializations does not converge to {z = 0}.
When |µ| < 1, almost all initializations with Q(z, w) < 8 converges and almost all initializations
with Q(z, w) > 8 diverges.

Proof. Consider |µ| < 1. By Proposition 15, when Q(z, w) > 8, initializations either converge
to {z = 0} in finite steps or diverge. Notice that converging within finite steps means that the
initialization lies in the set

∪∞
N=0F

−N ({z = 0}).
As the Jacobian of F has full rank almost everywhere, the above set is a measure-zero set (Ponomarev,
1987). Hence, almost all initializations with Q > 8 diverge.

When Q < 8, by Proposition 15, we have that the orbit converges to {z = 0} or to {Q = 4|µ|} =
{w = 2sgn(µ)(z + µ), w ≤ 4|µ|}. Notice that, when w = 2sgn(µ)(z + µ), the w-update under F
is given by

w′ = κ(w) =
1

4
w
(
w − 2− 2|µ|

)2

. (20)

Consider κ as a one-dimensional dynamical system defined on [0, 4|µ|]. For this one-dimensional
system, it is straight forward to obtain that, there are two fixed points: w = 0 and w = 2|µ|, and also
that, when |µ| < 1, all orbits converge to w = 2|µ| except the one with initial value w = 0. Note that
w = 0 corresponds to the fixed point (−µ, 0) of F . The Jacobian of F at (−µ, 0) has eigenvalues
(1 + µ)2, (−1 + µ)2. Therefore, (−µ, 0) is a hyperbolic fixed point. By the local stable manifold
theorem and the fact that {w = −sgn(µ)(z + µ)} is invariant under F , we have that the basin of
attraction of (−µ, 0) can be given by

B(−µ, 0) = ∪∞
N=0F

−N (O ∩ {w = −sgn(µ)(z + µ)}),
for some small neighborhoodO of (−µ, 0). This set is a measure-zero set, since the Jacobian of F has
full rank almost everywhere. Therefore, for all initializations lies in {Q(z, w) < 8} \B(−µ, 0), the
orbit converges to {z = 0} or, to {Q = 4|µ|} \ {(−µ, 0)}. Consider any fixed initialization (z0, w0)
in the second case. Since (−µ, 0) is a hyperbolic fixed point, the orbit does not have an accumulation
point in some neighborhood of (−µ, 0). Therefore, the omega-limit set ω(z0, w0) ⊂ {Q = 4|µ|} \
{(−µ, 0)}. The omega-limit set is non-empty, as the orbit is always bounded. Note, for any
m ∈ ω(z0, w0), we have that FN (m) → (0,−2|µ|) as N tends to infinity, as explained above. Since
the omega-limit set is forward invariant under F and closed, we have that (0,−2|µ|) ∈ ω(z0, w0). It
follows that the orbit visits an arbitrarily small neighborhood O of (0,−2|µ|) at some time k. Take
the neighborhood as O = {|Q(z, w)− 4|µ|| < ε, |z| < ε}. Notice that

|zk+1

zk
| = |z2k + µzk − wk + 1| ≤ |z2k + µzk|+ |wk − 1|.

Since |z2 + µz| + |w − 1| → |2|µ| − 1| as (z, w) → (0, 2|µ|), and |2|µ| − 1| < 1, we can choose
ε small enough such that | zk+1

zk
| < 1 − δ for some δ > 0. Therefore, |zk+1| < |zk|. Meanwhile,

note that the Q value monotonically decreases as the orbit is in {Q < 8}. Hence, for all j ≥ k,
(zj , wj) ∈ O and | zj+1

zj
| < 1 − δ. It follows that zj → 0 and the orbit converges to {z = 0}.

Therefore, we have that almost all initializations with Q < 8 converge to {z = 0}.

Finally, consider |µ| > 1. Since 2|µ| = 2sgn(µ)(0+µ), we have that inf {w : (0, w) ∈ Ω} = 2|µ| >
2. Using arguments similar to those in Proposition 15, in particular in (19), we have that converging
to any global minimizer must occur within finite steps. As shown above, those initializations form a
measure-zero set. This completes the proof.
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From the proofs of the preceding two propositions, we obtain the following corollary.
Corollary 17. Consider gradient descent with step η in problem (2). Any global minimizer with
∥u∥2 + ∥v∥2 ≥ 2/η is an unstable minimizer, i.e., it repels orbits in its neighborhood. Consequently,
initializations that converge to such a minimizer form a measure-zero set. Moreover, when |µ| > 1,
i.e., η|y| > 1, all global minimizers are unstable.

Next, we analyze dynamics on the invariant set {Q(z, w) = 8} = {w = µz+4}. Observe that when
restricted to this set, F reduces to the following one-dimensional system:

F̃ (z) = z3 + µz2 − z(µz + 4) + z = z3 − 3z, z ∈ [−2, 2].

The following result shows that F̃ is a chaotic dynamical system.

Proposition 18 (Chaotic Boundary Dynamics). Assume |µ| < 1. The system F̃ on I = [−2, 2] is
Devaney chaotic and has topological entropy log 3. Moreover, there exists periodic orbits with any
period and thus F̃ is also Li-Yorke chaotic.

Proof. We first seek a simpler system which is topologically conjugate to F̃ . Notice that F̃ is a
continuous map from [−2, 2] to itself. Consider ψ0(z) = z/2, which is a homeomorphism from
[−2, 2] to [−1, 1], and F̃1(z) = 4z3 − 3z, which is a continuous map from [−1, 1] to itself. We have
that

F̃1 ◦ ψ0(z) = 4(
z

2
)3 − 3z

2
=
z3

2
− 3z

2
= ψ0 ◦ F̃ (z).

Hence, F̃ is conjugate to F̃1. Now consider ψ(z) = sin(π2 · z), which is a homeomorphism from
[−1, 1] to [−1, 1], and

F̃2(z) =


3z + 2, x ∈ [−1,−1/3];

−3z, x ∈ (−1/3, 1/3);

3z − 2, x ∈ [1/3, 1],

which is a continuous map from [−1, 1] to [−1, 1]. We have that for z ∈ [−1,−1/3],

F̃1 ◦ ψ(z) = 4 sin3(
π

2
· z)− 3 sin(

π

2
· z) = − sin(

3π

2
z) = sin(

π

2
(3z + 2)) = ψ ◦ F̃2(z).

Similarly, one can verify that F̃1 ◦ ψ = ψ ◦ F̃2 also holds on (−1/3, 1/3) and [1/3, 1]. Hence, F̃2 is
topologically conjugate to F̃ .

Note F̃2 is a piecewise linear continuous map with slope equal to ±3. Hence, the topological entropy
of F̃2 is equal to log 3 (De Melo and Van Strien, 2012, Corollary of Theorem 7.2). For a univariate
map on a compact interval, positive topological entropy implies Devaney chaotic (Elaydi, 2007,
Theorem 3.13). Due to the conjugacy, we have that F̃ is also Devaney chaotic. Also, conjugacy
preserves topological entropy (Robinson, 1998, Theorem 1.7, Ch.8). Therefore, h(F̃ ) = log 3.

We now show the existence of periodic orbit with any period. According to the Li-Yorke Theorem (Li
and Yorke, 1975), a sufficient condition is that there exists a point x such that F̃ 3

2 (x) ≤ x < F̃2(x) <

F̃ 2
2 (x). Consider x = −5/7. We have that F̃2(x) = −1/7, F̃ 2

2 (x) = 3/7, and F̃ 3
2 (x) = −5/7. Due

to the conjugacy, F̃ also has periodic orbit with any period and is Li-Yorke chaotic. This completes
the proof.

We translate Proposition 18 to the original gradient system GDη .
Proposition 19. Assume |µ| < 1. We have that h(GDη) ≥ h(GDη|∂D′

η
) ≥ log 3, and GDη admits

periodic orbits with any period.

Proof. By Lemma 13, ∂D′
η is invariant under GDη. Since the map T (u, v) = (z, w) is a semi-

conjugacy between GDη|∂D′
η

and F̃ , we have that h(GDη|∂D′
η
) ≥ h(F̃ ) = log 3 (see, e.g., Robinson,

1998, Theorem 1.7, Ch 8), where the equality comes from Proposition 18. Meanwhile, since ∂D′
η is

an invariant subset of R2d, we have that h(GDη) ≥ h(GDη|∂D′
η
) (see, e.g., Vries, 2014, Proposition

8.1.7).
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Next, we show the existence of all periodic orbits. As shown in Proposition 18, F̃ is conjugate to F̃2:

F̃2(z) =


3z + 2, x ∈ I0 = [−1,−1/3];

−3z, x ∈ I1 = (−1/3, 1/3);

3z − 2, x ∈ I2 = [1/3, 1].

(21)

Note F̃2 is a piecewise linear map defined on [−1, 1], with each piece mapping onto the whole interval
[−1, 1]. With classical analyses in symbolic dynamics (see, e.g., Devaney and Eckmann, 1987, Ch
1.7), we have that F̃2, when restricted to [−1, 1]− {x ∈ [−1, 1] : F̃N

2 (x) ̸= ±1,∀N}, is conjugate
to the shift operator σ, defined on the following set

{s ∈ {0, 1, 2}N : s is not eventually constant in 0 or 2},

such that σ(s) = σ(s0s1s2 · · · ) = (s1s2 · · · ). The conjugacy is given by the map ζ:

ζ(x) = (s0s1 · · · ), sj = l if F̃ j
2 (x) ∈ Il,

where l ∈ {0, 1, 2} and Il is defined in (21).

Now we construct periodic orbits (uk, vk)k≥0 with periodicity K for arbitrary K. Consider
T (uk, vk) = (zk, wk). Consider new coordinates in uv-space, given by (u + v, u − v), which
preserves all dynamical behaviors of GDη . Notice that

uk+1 + vk+1 = uk − ηzkvk + vk − ηzkuk = (1− ηzk)(uk + vk),

uk+1 − vk+1 = uk − ηzkvk − vk + ηzkuk = (1 + ηzk)(uk − vk).
(22)

It follows that, during training uk + vk and uk − vk must lie in the one-dimensional space spanned
by u0 + v0 and u0 − v0, respectively. Meanwhile, as shown in Proposition 8, if T (u′, v′) = T (u, v),
then ∥u′ + v′∥ = ∥u + v∥ and ∥u′ − v′∥ = ∥u − v∥. Also, it is clear that if T (u′, v′) ̸= T (u, v),
(u′, v′) ̸= (u, v). Therefore, whenever (zk, wk)k≥0 is a K-orbit and,

# {k ∈ {0, · · · ,K − 1} : 1− ηzk < 0} , # {k ∈ {0, · · · ,K − 1} : 1 + ηzk < 0}

are two even numbers, where #S is the number of elements in the set S, we have that (uk, vk)k≥0 is
a K-orbit. Notice that, under the conjugacy between F̃ and F̃2, these two numbers correspond to the
numbers of visits of the F̃2-orbit to I2 and I0, i.e., the number of 2’s and 0’s appearing in the symbol
s. For K = 2, take (z0, w0) = (−2, 4− 2µ). Notice that (−2, 4− 2µ) is a fixed point under F , and
that, 1− ηz0 − ηλ > 0 but 1 + ηz0 − ηλ < 0. Therefore, (uk, vk)k≥0 is a 2-orbit. For K = 3, take
(z0, w0) be the element corresponding to (001 001 · · · ), which is a 3-orbit in the symbolic system.
As there are two 0’s and zero 2’s, (uk, vk)k≥0 is a 3-orbit. For K = 4, take (z0, w0) be the element
corresponding to (0011 0011 · · · ), and we have that (uk, vk)k≥0 is a 4-orbit. For K = 2N + 1,
take (z0, w0) corresponding to the repetition of 2N 0’s and one 1; for K = 2N + 2, take (z0, w0)
corresponding to the repetition of 2N 0’s and two 1’s. By this, we have that GDη admits all periodic
orbits, which completes the proof.

In the following, we show that, the original gradient descent system is not chaotic in the sense of
Devaney when d ≥ 2.

Proposition 20. Assume that η|y| < 1 and d ≥ 2. The system GDη|∂D′
η

is not topological transitive.

Proof. Let (uk, vk)k≥0 be an orbit under GDη. Consider new coordinates pk = uk + vk and
qk = uk − vk for k ≥ 0. Recall (22) and notice that zk = u⊤k vk − y = −y + (∥pk∥2 − ∥qk∥2)/4.
Thus, (pk, qk) evolves autonomously. Since (u, v) 7→ (p, q) is a homeomorphism, the uv-system is
topological transitive if and only if the pq-system is.

Notice that, if 4 = η(∥u∥22 + ∥v∥22)− η2y(u⊤v − y), we have that

4 ≥ η(∥u∥22 + ∥v∥22)− η2|y|
∥u∥22 + ∥v∥22

2
= η(1− η|y|

2
)(∥u∥22 + ∥v∥22),
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where we used that |u⊤v| ≤ (∥u∥22 + ∥v∥22)/2. Since η|y| < 1, we have that ∥u∥22 + ∥v∥22 < 8/η.
Therefore,

(u, v) ∈ ∂D′
η ⇔ ∥u∥22 + ∥v∥22 +

√
(∥u∥22 + ∥v∥22)2 − 16y(u⊤v − y) =

8

η

⇔ 4 = η(∥u∥22 + ∥v∥22)− η2y(u⊤v − y)

⇔ (u⊤ v⊤)

(
ηId −η2y/2 · Id

−η2y/2 · Id ηId

)(
u
v

)
= 4− η2y2.

(23)

The last equation is a quadratic form and the eigenvalues of the coefficient matrix are η ± 1
2η

2y, each
with multiplicity d. Therefore, when η|y| < 1, the quadratic form is positive definite and defines a
smooth ellipsoid of dimension 2d − 1. Notice that (u, v) 7→ (p, q) = (u + v, u − v) is a bijective
linear transformation. Thus, ∂D′

η is still an ellipsoid in pq-coordinates.

Now fix any (p0, q0) ∈ ∂D′
η and an open neighborhoodU = Up×Uq of (p0, q0) where p0 ∈ Up ⊂ Rd

and q0 ∈ Uq ⊂ Rd. According to (22), we have that

∪∞
k=0GDk

η(U) ⊂ C ≜ {cp : p ∈ Up, c ∈ R} × {dq : q ∈ Uq, d ∈ R} ⊂ R2d.

Clearly, when d ≥ 2 and U is small enough such that (0,0) /∈ U , C is not dense in R2d and there
exists an open set V such that V ∩ ∂D′

η ̸= ∅ and C ∩ V = ∅. Therefore, GDη|∂D′
η

is not transitive
in pq-coordinates. This completes the proof.

We proceed to show that when the initialization is near the boundary, the orbit can visit any point in
the state space.
Proposition 21. Assume |µ| < 1. Given any (z∗, w∗) ∈ Ω and any open set O ⊂ Ω such that
O ∩ {Q(z, w) = 8} ≠ ∅, there exists N ≥ 0 and (z, w) ∈ O such that FN (z, w) = (z∗, w∗).

Proof. As in Proposition 14, let G0 : Ω → cl(A0) denote the inverse of F |cl(A0). Let m0 = (z∗, w∗)

and mk = Gk
0(m0) for k ≥ 1. We first show that limk→∞mk = m∗ = (−2, 4 − 2µ). Note for

all k ≥ 1, mk /∈ {Q = 4|µ|}. Therefore, by Lemma 13, we know that Q(mk) either stays at 8 or
monotonically approaches 8. Hence, as we shown in the proof of Proposition 15, mk must converge
to the compact set

Z = {∆Q = 0} = {z = 0} ∪ {w = µz + 4} ∪ {w = 2sgn(µ)(z + µ), w ≤ 4|µ|} .

As G0(Ω) ⊂ cl(A0), mk must converge to the set

Z ∩ cl(A0) = {z ≤ −1, w = µz + 4} .

It follows that the omega-limit set ω(m0) ⊂ Z∩cl(A0). Notice that, when restricted to {w = µz+4},
the system F reduces to F̃ (z) = z3−3z, z ∈ [−2, 2]. ThenG0|Z∩cl(A0) corresponds to the branch
of F̃−1 whose image is [−2,−1]. Using the conjugacy between F̃ and F̃2 as shown in Proposition 18,
it’s clear that all orbits under G0|Z∩cl(A0) converge to z = −2. Therefore, for any q ∈ ω(m0),
GN

0 (q) → (−2, 4 − 2µ) as N → ∞. Since the omega-limit set is invariant and closed, we have
that (−2, 4 − 2µ) ∈ ω(m0), which implies that mk visits an arbitrarily small neighborhood of
(−2, 4 − 2µ). Note, the eigenvalues of JF (−2, 4 − 2µ) are 9 and 5 − 2µ. Hence, (−2, 4 − 2µ)
attracts all orbits of G0 in some neighborhood of itself. Hence, mk → m∗ as k → ∞.

Now consider any open set O that satisfies O ∩ {Q = 8} = O ∩ {w = µz + 4} is not empty. We
show that there exists x ∈ O and n such that Fn(x) = m∗. Recall that F |{Q=8} is topologically
conjugate to the piece-wise linear map F̃2 as shown in Proposition 18. For F̃2, we have that

∪∞
N=0F̃

−N
2 ({±1}) = ∪k≥0{−1 +

2j

3k
: j = 0, 1, · · · , 3k},

which is dense in [−1, 1]. By symmetry arguments, we have that the preimage of −1 is dense.
Therefore, using the conjugacy, we have that there exists x ∈ O and n such that x ∈ F−n(m∗), i.e.,
Fn(x) = m∗. Notice {Q = 8} ⊂ cl(B), by Proposition 14, we have that there exists i1, · · · , in1

∈
{0, 1, 2} such that Gin1

◦ · · · ◦ Gi1(m
∗) = x. Since the composition of Gi’s is continuous, there
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exists a neighborhood Õ of m∗ such that Gin1
◦ · · · ◦Gi1(Õ) ⊂ O. Since mk → m∗, there exists n2

such that mn2 = Gn2
0 (m0) ∈ Õ. Taken together, we have that

Gin1
◦ · · · ◦Gi1 ◦G

n2
0 (m0) ≜ m̂ ∈ O.

By the definitions of Gi’s as in Proposition 14, it follows that

Fn1+n2(m̂) = m0,

which completes the proof.

E.1.2 PROOF OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. According to Proposition 7, any measure-zero event in system F corresponds
to a measure-zero event in system GDη . According to Proposition 9, the orbit of GDη converges to{
u⊤v = y

}
if and only if the orbit of F converges to {z = 0}, and the former converges to (0,0) if

and only the latter converges to (−y, 0). According to Proposition 16, when |µ| < 1 and for almost
all initializations (z, w), the orbit converges to {z = 0} if Q(z, w) < 8. Notice that µ = ηy and due
to the conjugacy (8),

Q(z, w) < 8 ⇔ η(∥u∥22 + ∥v∥22) +
√
η2(∥u∥22 + ∥v∥22)2 − 16ηy · η(u⊤v − y) < 8

⇔ ∥u∥22 + ∥v∥22 +
√

(∥u∥22 + ∥v∥22)2 − 16y · (u⊤v − y) <
8

η
.

Also, by Proposition 16, when Q(z, w) > 8 or |µ| > 1, almost all initializations do not converge.
This gives the critical step size (3).

We now show the sensitivity to initialization. Consider any open neighborhood W ⊂ R2d such that
W ∩ ∂D′

η ̸= ∅. Notice that the Jacobian of the map T drops rank if and only if {u = ±v}. Also,
as shown in (23), ∂D′

η defines a smooth ellipsoid of dimension 2d − 1. Notice that, {u = ±v} is
the union of two linear subspace with dimension d. Therefore, since 2d − 1 ≥ d and an ellipsoid
is curved everywhere, there always exists a point θ̄ ∈ W ∩ ∂D′

η \ {u = ±v} and a neighborhood
W̄ of θ̄ such that W̄ ⊂W and W̄ ∩ {u = ±v} = ∅. The Jacobian of T is full rank at all points in
W̄ , so by constant rank theorem, T (W̄ ) is an open set. Meanwhile, T (θ̄) ∈ T (∂D′

η). Hence, under
the conjugacy (8), we have T (W̄ ) ∩ {w = µz + 4} ̸= ∅. According to Proposition 21, there exists
(z′, w′), (z′′, w′′) ∈ T (W̄ ) such that FN (z′, w′) converges to (0, w∗) with any w∗ ∈ [2|µ|,∞) and
FN (z′′, w′′) converges to (−µ, 0), asN tends to infinity. Therefore, there exists θ′, θ′′ ∈W such that
GDN

η (θ′) converges to a global minimizer with squared norm in [2|y|,∞) and GDN
η (θ′′) converges

to (0,0). Notice that
∥u∥2 + ∥v∥2 ≥ 2∥u∥ · ∥v∥ ≥ 2|u⊤v|.

Therefore, the minimal squared norm at
{
u⊤v = y

}
is 2|y|. Also, notice that

∥uu⊤ − vv⊤∥2F = Tr((uu⊤ − vv⊤)(uu⊤ − vv⊤))

= ∥u∥4 + ∥v∥4 − 2(u⊤v)2

= (∥u∥2 + ∥v∥2)2 − 2∥u∥2∥v∥2 − 2(u⊤v)2

≥ (∥u∥2 + ∥v∥2)2

2
− 2(u⊤v)2.

Hence, at any global minimizer, the imbalance is lower bounded by the squared norm. Hence, by
what we have shown, arbitrarily large imbalance can be also attained by initializations in W̄ .

Finally, the lower bound for the topological entropy and the existence of periodic orbit of any period
directly come from Proposition 19. This completes the proof.

Next, we present a basic property for the unregularized scalar factorization problem: the sharpness
coincides with the squared norm at the set of global minimizers. This has been proved by Wang et al.
(2022). Below we restate their results.
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Proposition 22 (Wang et al., 2022, Theorem F.2). For the unregularized scalar factorization
problem (2), the eigenvalues of the Hessian ∇2L are ±(u⊤v − y), each with multiplicity d − 1,
and 1

2 (∥u∥
2 + ∥v∥2 ±

√
(∥u∥2 + ∥v∥2)2 + 4(u⊤v − y)2 + 8(u⊤v − y)u⊤v). Consequently, when

u⊤v = y, we have that

λmax(∇2L(u, v)) = Tr(∇2L(u, v)) = ∥u∥2 + ∥v∥2.

Proof of Theorem 2. Assume E = (e, e′) ⊂ [γmin, 2/η]. Let E′ = (eη, e′η). We first prove that, in
the F -system, there exists a positive-measure set of initializations that converge to {(0, w) : w ∈ E′}.
Notice that

|zk+1

zk
| = |z2k + µzk − wk + 1| ≤ 1 (24)

is equivalent to
wk ≥ z2k + µzk, and wk ≤ z2k + µzk + 2.

Notice that (i) the convex parabola w = z2 + µz + 2 intersects the w-axis at (0, 2), (ii) the level
set {Q(z, w) = c} are straight lines intersecting the w-axis at (0, c/2). Therefore, there exists
δ ∈ (0, 1), C ∈ (4|µ|, 4) such that all points in

T = {(z, w) ∈ Ω: |z| < δ,Q(z, w) < C}

satisfies |zk+1/zk| < γ for some constant γ ∈ (0, 1). Notice that, this holds for all sufficiently small
δ and thus we fix γ. For (zk, wk) ∈ T we have that |zk+1| < δ. Meanwhile, since Q(zk+1, wk+1) ≤
Q(zk, wk) by Lemma 13, we have that (zk+1, wk+1) ∈ T . It follows that if the initialization (z0, w0)
is in T , the entire trajectory remains within T . Hence, we have that |zk| ≤ |z0|γk for all k ≥ 0, and
that

|wk+1 − wk| = |z2k(wk − 4)− 4zkµ| ≤ |zk|2|wk − 4|+ 4|µ||zk| ≤ C1|zk|
where C1 is independent of δ. We have that,

|w∞ − w0| ≤ C1

∞∑
k=0

|zk| ≤
C1δ

1− γ
.

Hence, |w∞ − w0| → 0 as δ → 0. Then, there must exist a sufficiently small sub-interval E′′ ⊂ E′

and a sufficiently small δ such that, for all initializations in

A = {(z, w) ∈ Ω: |z| < δ, |w| ∈ E′′} ,

which is a positive-measure set, the trajectory converges to {(0, w) : w ∈ E′}.

Consider any open neighborhood W ⊂ R2d such that W ∩ ∂D′
η ̸= ∅. As shown in the above proof

of Theorem 1, there always exits a point θ̄ ∈W ∩ ∂D′
η \ {u = ±v} and a neighborhood W̄ of θ̄ such

that W̄ ⊂W , T has full rank on W̄ , and T (W̄ ) is an open set satisfying T (W̄ )∩{w = µz + 4} ≠ ∅.
According to Proposition 21, there exists (z′, w′) ∈ T (W̄ ) such that FN (z′, w′) ∈ A. By continuity
of FN , there exists a neighbor A′ of (z′, w′) satisfying A′ ⊂ T (W̄ ) and FN (A′) ⊂ A. Since
T |W̄ : W̄ → T (W̄ ) is continuous, T |−1

W̄
(A′) is open in W̄ and has positive measure. By the

conjugacy (8) and what we have shown, for all points in T |−1
W̄

(A′), the final norm lies in E. This
completes the proof.

Lastly, we discuss the technical novelties in the proof of Theorem 1, in comparison with the techniques
of Wang et al. (2022). While their analysis is also based on a careful study of the gradient descent
system, it is restricted to a specific subset of the parameter space. In comparison, our approach is built
on a global analysis of the system. The key ingredients are: (i) we identified an equivariance symmetry
in GDη and the corresponding quotient dynamical system defined by the map F (Proposition 9); (ii)
we analyzed all the branches of the inverse map F−1 (which is a multi-valued map) and carefully
studied the inverse dynamics defined by F−1 (Proposition 14 and Proposition 21); (iii) we used
symbolic dynamics to show that GDη , when restricted to the convergence boundary, is semi-conjugate
to a Devaney chaotic system (Proposition 18) and that GDη admits periodic orbits with any period
(Proposition 19).
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E.2 REGULARIZED PROBLEM

Similar to the previous section, preliminary results are first presented in Appendix E.2.1, and the
proofs of Theorem 4 and Theorem 5 is given in Appendix E.2.2.

E.2.1 PRELIMINARY RESULTS

Unless stated otherwise, we use (z′, w′) to denote F (z, w). We first show that when the step size is
small enough, the quotient dynamics F is predictable.
Proposition 23. Assume 0 < ν < 1− |µ|. For almost all (z, w) ∈ Ω, if Q(z, w) < 8− 4ν, we have
that FN (z, w) converges to T (M) as N → ∞. If Q(z, w) < 4 − 4ν, for any (u, v) that satisfies
T (u, v) = (z, w), GDN

η (u, v) converges to p−(u, v), as defined in Theorem 4, as N → ∞.

Proof. By Lemma 13, we have that Q(FN (z, w)) monotonically decreases. Since Q(FN (z, w))
is non-negative, it converges to some finite value. It follows that FN (z, w) converges to
{∆Q = 0} ∩ {Q < 8− 4ν}, which is equal to {Q = 4|µ|} according to Lemma 13. Note
{Q = 4|µ|} = {w = 2sgn(µ)(z + µ), w ≤ 4|µ|} by Lemma 11. The w-update under F on
{Q = 4|µ|} is given by

w′ = κ(w) = w(
w

2
− 1 + v − |µ|)2.

When |µ| > ν, κ(w) has two fixed points on [0, 4|µ|]: w = 0 andw = 2(|µ|−ν). It is straight forward
to obtain that w = 2(|µ| − ν) attracts all orbits on [0, 4|µ|] except the one with initial value w = 0.
Note w = 0 corresponds to the saddle (−µ, 0), where the Jacobian of F has eigenvalues: (1+µ−ν)2
and (−1 + µ+ ν)2. Hence, (−µ, 0) is a hyperbolic fixed point of F . Note also that, w = 2(|µ| − ν)
corresponds to (−sgn(µ)ν, 2(|µ| − ν)), which is the only element of T (M). The Jacobian of F at
this point has eigenvalues: (−1 + 2ν)2, and 1− 2|µ|+ 2ν. Hence, (−sgn(µ)ν, 2(|µ| − ν)) attracts
nearby orbits. Then with the omega-limit set arguments similar to those in the proof of Proposition 16,
we have that, for all initializations that do not lie in the basin of attraction of (−µ, 0):

∪∞
N=0F

−N (O ∩ {w = −2sgn(µ)(z + µ)}),
where O is a neighborhood of (−µ, 0), the orbit converges to T (M). The above basin has measure-
zero since the Jacobian of F has full rank almost everywhere. Therefore, for almost all initializations
with Q(z, w) < 8− 4ν, the orbit converges to T (M). When |µ| ≤ ν, κ(w) has only one fixed point
w = 0, which attracts all orbits [0, 4|µ|]. Note in this case, (−µ, 0) attracts nearby orbits, since both
eigenvalues of JF have norm smaller than one. Then, with the omega-limit set arguments, we have
that for all initializations with Q(z, w) < 8− 4ν, the orbit converges to T (M).

Next, we identify the converged point under GDη when Q < 4 − 4ν. Without loss of generality,
assume y ≥ 0. Let (zk, wk)k≥0 be the orbit and T (uk, vk) = (zk, wk). Consider new coordinates
p = (u+ v)/

√
2 and q = (u− v)/

√
2. Note that when y > λ, the set of global minimizers is given

by {
u = v, ∥u∥22 = y − λ

}
=

{
q = 0, ∥p∥2 = 2(y − λ)

}
.

Notice that
√
2 · pk+1 = uk+1 + vk+1 = uk − ηzkvk − ηλuk + vk − ηzkuk − ηλvk

= (1− ηzk − ηλ)(uk + vk) = (1− ηzk − ηλ)
√
2 · pk.

Under the conjugacy (8), we have

pk = p0Π
k−1
j=0 (1− zj − ν). (25)

Therefore, the converged point is either (
√

2(y − λ) p0

∥p0∥ , 0) or (−
√

2(y − λ) p0

∥p0∥ , 0). Since the
global minimizer is given by

{
q = 0, ∥p∥2 = 2(y − λ)

}
, the former point is the minimal distance

solution and the latter point is the maximal distance solution, under the pq-coordinates. Note the
change of coordinates p = (u+v)/

√
2 and q = (u−v)/

√
2 is given by an orthogonal transformation

which preserves distance. Therefore the same statement holds in the uv-coordinates.

Note that,

Q(z, w) = 4− 4ν ⇔ −2µz − 2(1− ν)2 + (1− ν)w = 0.
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The above line intersects with ∂Ω at (1−ν, 2(1−ν+µ)) and (ν−1,−2(ν−1+µ)). Therefore, for all
initializations that satisfyQ(z, w) < 4−4ν, we have |z| < 1−ν. Meanwhile, since 4−4ν < 8−4ν,
we have that the {Q < 4−4ν} is forward invariant by Lemma 13, i.e., |z| < 1−ν holds on the entire
orbit. This implies that, when Q(z0, w0) < 4− 4ν, we have that 1± zj − ν > 0 for all j ≥ 0. By
(25), the converged minimizer in pq-coordinate has to be (

√
2(y − λ) p0

∥p0∥ , 0), which is the minimal
distance solution. This completes the proof.

We now proceed to show the projected boundary T (∂D′′
η ) is self-similar.

Proposition 24 (Self-similarity). Assume 0 < ν < 1− |µ|. The boundary T (∂D′′
η ) is self-similar

with degree three.

Proof. We use D for D′′
η for notation simplicity. First, we prove that T (∂D) = ∂T (D). Notice that,

by Proposition 9, orbit under GDη converges to M or to the saddle if and only if the corresponding
orbit under F converges to T (M) or to (−µ, 0), respectively. This implies that T−1(T (D)) = D
and T (Dc) = T (D)c. Since T is continuous, we have that ∂T−1(T (D)) = ∂D ⊂ T−1(∂T (D)).
Hence, T (∂D) ⊂ ∂T (D).

For the other direction, consider any point y /∈ T (∂D). Then we have T−1(y) ∩ ∂D = ∅. Note
T−1(y) is connected and compact by Proposition 8. Thus, there exists an open neighborhood O of
T−1(y) such that O ⊂ D or O ⊂ Dc. Hence, T (O) ⊂ T (D) or T (O) ⊂ T (Dc) = T (D)c. We
claim that for any y′ that is sufficiently close to y, y′ ∈ T (O). Notice that, if y /∈ ∂Ω, we have that
T−1(y)∩{u = ±v} = ∅. Thus, JT is non-singular at T−1(y) and, by constant rank theorem, T (O)
contains a neighborhood of y, which gives the claim. If y ∈ ∂Ω, without loss of generality, assume
that y = (w0

2 − µ,w0) for some w0 ≥ 0. Then F−1(y) =
{
u = v, ∥u∥2 = w0/2

}
. Consider any

(u′, v′) ∈ T−1(y′). As shown in the proof of Proposition 8, when ∥y′ − y∥ tends to zero, ∥u′ − v′∥2
must tend to 0 and ∥u′ + v′∥2 to 2w0. This implies that (u′, v′) tends to F−1(y). Thus, if y′ is
sufficiently close to y, we have T−1(y) ⊂ O and thus y′ ∈ T (O). Now, given that T (O) ⊂ T (D) or
T (O) ⊂ T (D)c, we have y /∈ ∂T (D). Hence, ∂T (D) ⊂ T (∂D) and ∂T (D) = T (∂D).

Next, we prove that F (∂T (D)) = ∂T (D). Let A = T (D). Notice that, by Proposition 23,
{Q(z, w) < 8− 4ν} is an attracting neighborhood of T (M) ∪ {(µ, 0)}. Thus, the corresponding
basin of attraction, A, is an open set due to the continuity of F . It follows that ∂A ⊂ Ac ⊂
{Q ≥ 8− 4ν}. Now consider any point x ∈ F−1(∂A). We claim that a small enough neighborhood
O of x is mapped to a neighborhood of F (x). Note the claim holds trivially if x is a regular point
of F . Assume that det JF (x) = 0 and recall that the critical points of F is given in (14). Since
F (x) ∈ ∂A ⊂ Ac and F−1(Ac) ⊂ Ac, we have that x ∈ Ac ⊂ {Q ≥ 8− 4ν}. Hence, as we shown
in the proof of Proposition 14, x ∈ ∂A0 or x ∈ ∂A2, and the claim holds according to Proposition 14.
Now, since F (x) ∈ ∂A, F (O) contains a point y ∈ A and a point z ∈ Ac. By the previous claim,
F−1(y) ∩ O ̸= ∅ and F−1(z) ∩ O ̸= ∅. As F−1(A) ⊂ A and F−1(Ac) ⊂ Ac, x ∈ ∂A and
F−1(∂A) ⊂ ∂A. Since F is surjective by Proposition 14, we have F ◦ F−1(∂A) = ∂A. It follows
that

∂A = F ◦ F−1(∂A) ⊂ F (∂A).

For the other direction, note that for any y ∈ ∂A, since y ∈ cl(A) and F is continuous, we have that
F (y) ∈ cl(F (A)) ⊂ cl(A). Therefore, y ∈ cl(A)\Ao = cl(A)\A. Since F−1(A) ⊂ A, F (y) /∈ A.
Then we have that F (y) ∈ cl(A) \A = ∂A and F (∂A) ⊂ ∂A. Therefore, F (∂A) = ∂A.

Since F (∂A) = ∂A and ∂A ⊂ {Q ≥ 8− 4ν}, Proposition 14 gives that

∂T (D′′
η ) = ∪k=0,1,2Gi(∂T (D′′

η )),

where Gi’s are homeomorphisms. As shown in Proposition 14, Gi(Ω
o)∩Gj(Ω

o) is empty whenever
i ̸= j. Therefore, T (∂D′′

η ) is self-similar with degree three. This completes the proof.

In the following, we show that Dη has an unbounded interior, up to a measure-zero set.

Proposition 25 (Unboundedness). When µ = 0, 0 ≤ ν < 1, there exists a, b > 0 such that, for
almost all initializations that lie in {(z, w) ∈ Ω: |z| < a exp(−bw)}, the orbit converges to the
minimizer.
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Proof. Let (z′, w′) = F (z, w). Note, when µ = 0, the unique global minimizer of L corresponds to
(0, 0). Let α = 1− ν. Then 0 < α < 1. Assume that |z| < a exp(−bw) for some a, b > 0. We aim
to show that |z′| < a exp(−bw′). Notice that

|z′| = |z3 + (α2 − αw)z|
= |z|3 + (α2 + αw)|z|
≤ a3 exp(−3bw) + a exp(−bw)(α2 + αw).

Also, we have

w′ = w(z2 + α2)− 4z2α

≤ (w + 4α)a2 exp(−2bw) + wα2.

Note a exp(−bw′) decreases as w′ increases. Then,

a exp(−bw′) > |z′|

⇐ a exp
(
− b

(
(w + 4α)a2 exp(−2bw) + wα2

))
> a3 exp(−3bw) + a exp(−bw)(α2 + αw)

⇐ exp
(
− b(w + 4α)a2 exp(−2bw)

)
· exp(−α2bw) > a2 exp(−3bw) + exp(−bw)(α2 + αw)

⇐ exp
(
− b(w + 4α)a2 exp(−2bw)

)
> a2 exp((α2 − 3)bw) + exp((α2 − 1)bw)(α2 + αw)

⇐ 1− b(w + 4α)a2 exp(−2bw) > a2 exp((α2 − 3)bw) + exp((α2 − 1)bw)(α2 + αw).
(26)

Let

p(w) = 1−b(w+4α)a2 exp(−2bw), q(w) = a2 exp((α2−3)bw)+exp((α2−1)bw)(α2+αw).

Note that

p′(w) = −a2b exp(−2bw)
(
1− 2b(w + 4α)

)
∝ 2bw − 1 + 8αb.

Therefore p(w) decreases from (−∞, w0) and increases on [w0,+∞), where w0 = (1− 8αb)/(2b).
Let b > 1/(8α). Then we have that

min
w∈[0,+∞)

p(w) = p(0) = 1− 4αa2b.

Note also that

q′(w) = exp((α2 − 1)bw)
(
a2(α2 − 3)b exp(−2bw) + (α2 − 1)b(α2 + αw) + α

)
∝ a2(α2 − 3)b exp(−2bw) + (α2 − 1)bαw + (α2 − 1)bα2 + α

∝ a2(α2 − 3)b exp(−2bw) +
(
(α2 − 1)αw + (α2 − 1)α2

)
b+ α.

Note, that a2(α2 − 3)b exp(−2bw) < 0 always holds. Also, since (α2 − 1)αw + (α2 − 1)α2 ≤ 0
when w ≥ 0, we can choose b sufficiently large so that q′(w) < 0 holds on [0,+∞). Then

max
w∈[0,+∞)

q(w) = q(0) = a2 + α2.

Now fix b. Note 1 − 4αa2b → 1 and a2 + α2 → α2 as a → 0. We can always select a small
enough such that q(0) < p(0). Then we have that p(w) > q(w) holds for all w ≥ 0 and hence (26)
holds. Therefore, the set {|z| < a exp(−bw)} is forward invariant under F . Due to the exponential
decay, we can always select a small enough and b large enough such that {|z| < a exp(−bw)} ⊂
{Q(z, w) > Q(F (z, w))}, where the latter set is given in Lemma 13. Therefore, in this exponential
cone, Q decreases monotonically. Then using similar arguments to those in Proposition 23, we have
that all almost all initializations in this cone converge to the minimizer. This completes the proof.

In the following, we show that when the initialization is near the boundary, the orbit can visit any
point in the space.
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Proposition 26. Assume 0 ≤ ν < min{ 1
2 , 1 − |µ|}. Consider arbitrary point m0 = (z, w) ∈ Ω.

When µ ≥ 0, limN→∞GN
0 (m0) = (−2 + ν, 4 − 2(ν + µ)). When µ < 0, limN→∞GN

2 (m0) =
(2− ν, 4 + 2(µ− ν)).

Proof. We prove the case µ ≥ 0. Note that the case of µ < 0 can be proved via analogous procedures.
Let (z′, w′) = F (z, w) andmk = Gk

0(m0) for k ≥ 1. Consider the functionE(z, w) = w+2(z+µ).
We have

E(F (z, w))− E(z, w) =w′ + 2(z′ + µ)− w − 2(z + µ)

=(w + 2(z + µ))(z + ν − 2)(z + ν).
(27)

Note for (z, w) ∈ Ω, w + 2(z + µ) ≥ 0. Also, 2− ν > 0 > −ν. Then for w > 2(z + µ), we have
that

E(F (z, w))− E(z, w) > 0 ⇐ z < −ν.
We have that mk ∈ cl(A0) for k ≥ 1. Hence, the z-coordinate of mk is smaller than ν − 1 for all
k ≥ 1. Since ν < 1/2, ν − 1 < −ν. Hence, mk ∈ {E(F (z, w)) > E(z, w)} for all k ≥ 1. Note
(mk)k≥0 is a backward orbit. Thus, E(mk) monotonically decreases. Since E is lower bounded by 0
on Ω, E(mk) converges to some finite value E∗. For contradiction, assume mk is unbounded. Note
that, given arbitrary m1 ∈ cl(A0), the set

{E(z, w) ≤ E(m1)} ∩ {|z| < M}

is bounded for any M > 0. Hence, we have the z-coordinate of mk tends to negative infinity. Note
that for sufficiently small negative z and (z, w) ∈ Ω, we have

w′ > w ⇔ 4z(z + µ)(−1 + ν) + w(z2 + (−2 + ν)ν) > 0

⇐ w >
4z(z + µ)(1− ν)

z2 + (−2 + ν)ν

⇐ −2(z + µ) >
4z(z + µ)(1− ν)

z2 + (−2 + ν)ν

⇐ −(z2 + (−2 + ν)ν) < 2z(1− ν)

⇐ z2 + 2(1− ν)z + ν(2− ν) > 0,

which clearly holds as z tends to −∞. Therefore, mk must lie in the region {w′ > w} for all k ≥ K
for some finite K > 0. Note this implies that the w-coordinate of mk starts to decrease from all
k ≥ K. This conflicts the fact that mk is unbounded, as Ω ∩ {w < C} is bounded for any C > 0.
Hence, mk is bounded.

According to (27), mk must converge to

cl(A0) ∩ {(w + 2(z + µ))(z + ν − 2)(z + ν) = 0} = cl(A0) ∩ {(w + 2(z + µ) = 0}.

Otherwise, assume mk ⊂ K for all k and some compact set K. The function E(F (z, w))−E(z, w)
is continuous, so if mk does not converge to its zero level set, E(mk)−E(mk−1) is bounded below
and E(mk) can not converge.

Note, when restricting to {w = −2(z + µ)}, the w-update under F is given by

w′ = κ(w) = w(
w

2
− 1 + ν + µ)2, w ≥ 0.

Solving κ(w) = w, we obtain that κ has two fixed points on w ≥ 0: w = 0 and w = 4− 2(µ+ ν). It
is straight forward to obtain that all backward orbits of κ converges to w = 4− 2(µ+ ν) except the
one initialized at w = 0. Meanwhile, note that w = 4−2(µ+ν) corresponds to (ν−2, 4−2(µ+ν)).
The eigenvalues of the Jacobian of F at this point are: 5 − 2µ − 2ν, (−3 + 2ν)2. Therefore, the
backward orbits of F , i.e., forward orbits of G0, are locally attracted by (ν − 2, 4− 2(µ+ ν)). Then,
using omega-limit set arguments similar to those in the proof of Proposition 16, we have that mk

converges to (−2 + ν, 4− 2(ν + µ)). This completes the proof.

Using Proposition 26, we show that for the gradient descent system, the converged minimizer is
unpredictable when the initialization is near the boundary.
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Proposition 27. Assume 0 ≤ ν < min{ 1
2 , 1 − |µ|}. Consider ξ1 = (−2 + ν, 4 − 2(ν + µ)) and

ξ2 = (2− ν, 4+2(µ− ν)). For i = 1, 2, we have that ∪∞
N=0F

−N (ξi) has infinitely many points and
∪∞
N=0F

−N (ξi) ⊂ T (∂D′′
η ). When y ≥ 0, for any open set O such that O ∩ (∪∞

N=0F
−N (ξ1)) ̸= ∅,

there exists (z′, w′), (z′′, w′′) ∈ O such that, for any (u′, v′), (u′′, v′′) that satisfy T (u′, v′) =

(z′, w′) and T (u′′, v′′) = (z′′, w′′), we have GDN
η (u′, v′) converges to p+(u′, v′) and GDN

η (u′′, v′′)

converges to p−(u′′, v′′). When y < 0, the same result holds for any open set O such that O ∩
(∪∞

N=0F
−N (ξ2)) ̸= ∅.

Proof. We prove the case y ≥ 0. Note that the case of y < 0 can be proved via analogous procedures.
We first show that ∪∞

N=0F
−N (ξi) has infinitely many points and ∪∞

N=0F
−N (ξi) ⊂ ∂T (D′′

η ). Notice
that, ξ1 lies in the set {(z, w) ∈ Ω: w = −2(z + µ)}. By Proposition 12, this set is invariant under
F , where the w-update under F is given by

w′ = κ(w) = w(
w

2
− 1 + µ+ ν)2.

By analyzing the one-dimensional cubic map κ, it is straight forward to obtain that, asN → ∞, for all
w with w < 4− 2(µ+ ν), κN (w) → 0 and, for all w with w > 4− 2(µ+ ν), κN (w) → +∞. Note
that w converging to zero corresponds to zw-orbit converging to (−µ, 0) and uv-orbit converging to
the (0,0). Therefore, we have ξ1 ∈ ∂T (D′′

η ) = T (∂D′′
η ), where the equality was shown in the proof

of Proposition 24. Note, Q(ξ1) = 8− 4ν > 6− 4ν. Therefore, by Proposition 14, Therefore,

∪∞
N=0F

−N (ξ1) = {Gi1 ◦ · · · ◦Gik(ξ1) : ∀k ≥ 1, ij ∈ {0, 1, 2} ,∀j} , (28)

where Gi’s are homeomorphisms. By the construction of Gi, the cardinality of this set is infinity.
Also, as each Gi is a homeomorphism, any point in this set belongs to T (∂D′′

η ).

Next, we show that for any open set O such that O ∩ ∪∞
N=0F

−N (ξ1) ̸= ∅, there exists
(z′, w′), (z′′, w′′) ∈ O satisfying the claimed properties. When y ≤ λ, L has a unique mini-
mizer (0,0) and the result holds according to Proposition 26. Now consider y > λ. Let (uk, vk)k≥0

be a gradient descent orbit that converges to a global minimizer, and (zk, wk) = T (uk, vk). As we
shown in the proof of Proposition 23, the converged minimizer is the minimal distance solution if

ζ(z0, w0) = # {j ≥ 0: 1− zj − ν < 0}

is an even number; and the converged minimizer is the maximal distance solution if the above is an
odd number.

Letm∗ = (−ν, 2(µ−ν)), so that {m∗} = T (M). Assume thatO ∋ {Gi1 ◦ · · · ◦Gik(ξ1)} for some
fixed i1, · · · , ik. By the continuity of Gi1 ◦ · · · ◦Gik(ξ1), there exists a neighborhood Õ ∋ ξ1 such
that Gi1 ◦ · · · ◦Gik(ξ1)(Õ) ⊂ O. By Proposition 26, there exists N ′ > 0 such that GN ′

0 (Ω) ⊂ Õ.
Then we have that

(z′, w′) ≜ Gi1 ◦ · · · ◦Gik ◦GN ′

0 (m∗) ∈ O

and
(z′′, w′′) ≜ Gi1 ◦ · · · ◦Gik ◦GN ′

0 ◦G2(m∗) ∈ O.

By construction, F k+N ′
(z′, w′) = m∗ and F k+N ′+1(z′′, w′′) = m∗. Then it suffices to that one of

ζ(z′, w′) and ζ(z′′, w′′) is odd and the other is even. To see this, notice that {w = −2(z + µ)} is
forward-invariant. Then, as m∗ /∈ {w = −2(z + µ)}, the orbit starting from (z′, w′) and from
(z′′, w′′) can not visit {w = −2(z + µ)}. Therefore, by noticing that G0(Ω) ⊂ {z < 1− ν},
G1(Ω \ {w = −2(z + µ)}) ⊂ {z < 1− ν}, G2(Ω \ {w = −2(z + µ)}) ⊂ {z > 1− ν}, and
m∗ ∈ {z < 1− ν}, we have that

ζ(z′, w′) = # {1 ≤ j ≤ k : ij = 2} , ζ(z′′, w′′) = # {1 ≤ j ≤ k : ij = 2}+ 1.

This completes the proof.

E.2.2 PROOFS OF THEOREM 4 AND THEOREM 5

Proof of Theorem 4. By Proposition 9, Sη = T−1(T (Sη)), and T (Sη) is the basin of attraction of
the point (−µ, 0) for system F . As shown in the proof of Proposition 23, T (Sη) has measure zero.
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By Proposition 7, Sη also has measure zero. The projected boundary T (D′′
η ) is self similar with

degree three by Proposition 24. The unboundedness is given by Proposition 25.

When y ≥ 0, consider the set H = T−1(∪∞
N=0F

−N (ξ1)), where ξ1 is defined in Proposition 27.
By Proposition 27 and since T is surjective, H has infinitely many elements. By Proposition 9,
T−1(T (∂D′′

η )) = ∂D′′
η . By Proposition 27, ∪∞

N=0F
−N (ξ1) ⊂ T (∂D′′

η ). Together, we have that
H = T−1(∪∞

N=0F
−N (ξ1)) ⊂ ∂D′′

η .

Consider any open neighborhoodW ⊂ R2d such thatW ∩H ̸= ∅. We will show that T (W ) contains
an open neighborhood O such that O ∩ (∪∞

N=0F
−N (ξ1)) ̸= ∅. Notice the Jacobian of the map T

drops rank if and only if u = ±v. If W ∩{u = ±v} = ∅, then by constant rank theorem, T is locally
a projection, which gives the claim. If W ∩ {u = ±v} ≠ ∅, then, without loss of generality, assume
W = B((u0, u0), δ). Then T (u0, u0) = (∥u0∥2, 2∥u0∥2). We show that for any point (z′, w′) ∈ Ω
that is sufficiently close to (∥u0∥2, 2∥u0∥2), there exists a preimage under T in W . Note, as T
is surjective, there exists (u′, v′) such that T (u′, v′) = (z′, w′). Note whenever (z′, w′) tends to
(∥u0∥2, 2∥u0∥2), we have w′ + 2z′ = ∥u′ + v′∥2 tends to 4∥u0∥2 and w′ − 2z′ = ∥u′ − v′∥2 tends
to 0. Therefore, (u′, v′) tends to {u = v, ∥u∥ = ∥u0∥}. Note, the map T is invariant under rotation.
Therefore, with proper rotation, we can select (u′, v′) such that, as (z′, w′) tends to (∥u0∥2, 2∥u0∥2),
it tends to {u = v, u = u0} = (u0, u0). Thus, such (u′, v′) lies in W . This gives the claim.

Finally, by Proposition 27, there exist θ′, θ′′ ∈ W such that GDN
η (θ′) converges to p+(θ′) and

GDN
η (θ′′) converges to p−(θ′). The case of y < 0 can be proved analogously using Proposition 27.

This completes the proof.

Proof of Theorem 5. The results directly come from Proposition 9 and Proposition 23.

F NON-EXISTENCE OF CONTINUOUS DYNAMICAL INVARIANT

Consider the scalar factorization problems:

min
θ=(u,v)

L(θ) =
1

2
(uv − y)2 +

λ

2
(u2 + v2), (29)

where λ ≥ 0 and u, v, y ∈ R. We show that there is no simple quantity that remains invariant during
training.

A dynamical invariant is a map defined on the parameter space of the model whose values remain
unchanged along optimization trajectories. Formally, for gradient descent applied to problem (29), a
map I(u, v) : R2 → Rk with k ≥ 1 is a δ-approximate invariant if ∥I(GDN

η (ū, v̄))− I(ū, v̄)∥ ≤ δ

holds for all N ≥ 1 and initializations (ū, v̄) ∈ R2d, where ∥ · ∥ is a norm on Rk. When δ = 0, I
becomes a strict invariant. Invariants and approximate invariants have been used extensively to analyze
the optimization dynamics of gradient flow and gradient descent in non-convex optimization problems.
Particularly, for problem (1) without regularization, the imbalance I(U, V ) = UU⊤ − V V ⊤ is a
well-known invariant of gradient flow (Du et al., 2018) and an approximate invariant of gradient
descent with small step sizes (Arora et al., 2019; Ye and Du, 2021; Xu et al., 2023). In contrast, the
following result shows that no simple invariants exist under large step sizes.

Theorem 28 (Non-Existence of Simple Dynamical Invariants). Consider gradient descent with
step size η applied to problem (29) with 0 ≤ λ < min{(1/η) − |y|, 1/(2η)}. If I(u, v) : R2 →
Rk is a continuous δ-approximate invariant, then sup(u,v),(u′,v′)∈R2 ∥I(u, v) − I(u′, v′)∥ ≤ 2δ.
Consequently, the only continuous invariants are the constant functions.

Proof. We use the notation F, µ, ν, z, w as stated in the conjugacy (8). Assume I is a continuous
δ-approximate invariant. For any ε > 0, there exist θ′, θ′′ such that

∥I(θ′)− I(θ′′)∥ > sup
(u,v),(u′,v′)∈R2

∥I(u, v)− I(u′, v′)∥ − ε.

Without loss of generality, assume y ≥ 0. Now fix any point θ ∈ T−1(λ − 2/η, 4/η − 2(y + λ)).
Under the conjugacy (8), we have that T (θ) = (ν−2, 4−2(µ+ν)). Then according to Proposition 26
for the regularized case and Proposition 21 for the unregularized case, in any neighborhood O of
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T (θ), there exists ξ′, ξ′′ and N ′, N ′′ such that FN ′
(ξ′) = T (θ′) and FN ′′

(ξ′′) = T (θ′′). Using
similar arguments as those in Appendix E.2.2 and in Appendix E.1.2, we have that there exists
θ̄′, θ̄′′ such that T (GDN ′

η (θ̄′)) = T (θ′) and T (GDN ′′

η (θ̄′′)) = T (θ′′). Next, we show that θ̄′ and
θ̄′′ can be chosen such that GDN ′

η (θ̄′) = θ′ and GDN ′′

η (θ̄′′) = θ′′. To see this, notice that, for any
(u, v), (s, t) ∈ R2, (u, v) = (s, t) if and only if T (u, v) = T (s, t) and, the two pairs, u+ v and s+ t,
and, u− v and s− t, have the same sign. Consider the change of coordinates p = (u+ v)/

√
2 and

q = (u− v)/
√
2. Let (uk, vk)k≥0 denote an orbit under GDη . By direct computation, we have that

pk = p0Π
k−1
j=0 (1− zj − ν).

Therefore, the sign of pN ′ is fully determined by whether

np = # {j ∈ {0, · · · , N ′ − 1} : 1− ν < zj}

is even or odd. Similarly, we have

qk = q0Π
k−1
j=0 (1 + zj − ν),

and the sign of qN ′ is fully determined by whether

nq = # {j ∈ {0, · · · , N ′ − 1} : 1− ν > zj}

is even or odd. Notice that we can take ξ′ as follows

ξ′ = G
mq

0 ◦Gmp

2 (T (θ′)),

where G0 and G2 are defined as in Proposition 14, and mp ∈ {0, 1}, and mq is a sufficiently large
number. Since the image of G0 lies out side {z > 1− ν}, increasing mq does not affect np. Also,
since the image of G2 is contained in {z > 1− ν}, one can always select mp from {0, 1} to make
np even or odd as needed. Now fix mp. Since the image of G0 is contained in {z < ν − 1}, one can
always select a sufficiently large mq to make nq even or odd as needed. Consequently, by appropriate
choices of mp and mq, the signs of pN ′ and qN ′ can be made arbitrary. This implies that, one can
always select θ̄′ such that GDN ′

η (θ̄′) = θ′. A similar statement holds for θ̄′′.

Since I is δ-invariant, we have:

∥I(θ̄′)− I(θ̄′′)∥ > ∥I(θ′)− I(θ′′)∥ − 2δ > sup
(u,v),(u′,v′)∈R2

∥I(u, v)− I(u′, v′)∥ − ε− 2δ.

Notice that θ̄′, θ̄′′ can be arbitrarily close to θ. Since I is continuous at θ and ε is arbitrary, we have
that

sup
(u,v),(u′,v′)∈R2

∥I(u, v)− I(u′, v′)∥ ≤ 2δ,

which completes the proof.

G GENERAL MATRIX FACTORIZATION

We present the extensions of the results in Section 3 to general matrix factorization.

In the following, we present the extension of Theorem 1 to unregularized matrix factorization.
Theorem 29 (Unregularized Matrix Factorization). Consider gradient descent with step size η
applied to problem (1) with λ = 0 and d ≥ dy . Let Y = Diag(y1. · · · , ydy

). Consider the set

W =
{
(U, V ) ∈ R2d·dy : ⟨ui, uj⟩ = ⟨ui, vj⟩ = ⟨vi, vj⟩ = 0, ∀i ̸= j

}
, (30)

where ui, vi denote the ith column of matrices U, V . Assume the initialization (Ū , V̄ ) ∈ W . The
following holds:

• Critical Step Size: Define the critical step size

η∗(Ū , V̄ ) = min
i

min

 1

|yi|
,

8

∥ūi∥22 + ∥v̄i∥22 +
√
(∥ūi∥22 + ∥v̄i∥22)2 − 16yi((ūi)⊤v̄i − yi)

 .
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For almost all initializations (under surface measure on W), the algorithm converges to a global
minimum if η < η∗(Ū , V̄ ), and it does not converge to a global minimum if η > η∗(Ū , V̄ ).
Therefore, when η satisfies η∥Y ∥2 < 1, the convergence region restricted to W , Dη ∩W , is equal
almost everywhere (under surface measure on W) to the following set:

D′
η =

{
(U, V ) ∈ W : ∥ui∥22 + ∥vi∥22 +

√
(∥ui∥22 + ∥vi∥22)2 − 16y((ui)⊤vi − yi) <

8

η
, ∀i

}
.

• Sensitivity to Initialization: Fix a step size η that satisfies η∥Y ∥2 < 1. Given arbitrary θ ∈ ∂D′
η

(here boundary is taken with respect to the subspace topology on W), ε > 0 and K1,K2 >
0, there exist θ′, θ′′, θ′′′ ∈ B(θ, ε) such that, as N tends to infinity, GDN

η (θ′) converges to a
global minimizer with norm larger than K1, GDN

η (θ′′) converges to a global minimizer with
∥UU⊤ − V V ⊤∥F > K2, and GDN

η (θ′′′) converges to a stationary point, which is saddle point
when min{|yi|} > 0.

• Trajectory Complexity: Assume η∥Y ∥2 < 1. The topological entropy of the gradient descent
system GDη satisfies h(GDη) ≥ log 3. Moreover, GDη has periodic orbits of any positive integer
period.

All of the above results follow directly from Theorem 1 and Proposition 31. We remark that, for
a dynamical system F : X → X , if S ⊂ X is an invariant set, i.e., F (S) ⊂ S, then we have
h(F ) ≥ h(F |S). This gives the result for topological entropy.

We now present the extensions of Theorem 4 and Theorem 5 to regularized matrix factorization.
Theorem 30 (Regularized Matrix Factorization). Consider gradient descent with step size η for
problem (4). Let Y = Diag(y1. · · · , ydy ). Assume that 0 < λ ≤ mini=1,··· ,dy{(1/η)−|yi|, 1/(2η)}.
Let W be defined as in (30). Assume the initialization (Ū , V̄ ) ∈ W . Consider the map Ti(U, V ) =
((ui)⊤vi, ∥ui∥22 + ∥vi∥22). Let Sη denote the set of initializations (U, V ) that converges to (0,0). Let
D′′

η = Dη ∪ Sη . The following holds:

• Self-similarity: For any i ∈ {1, · · · , dy}, Ti(∂(D′′
η ∩W)) is self-similar with degree three (here

boundary is taken with respect to the subspace topology on W).

• Unboundedness: When Y = 0, there exist constants a, b > 0 such that almost all initializations
(Ū , V̄ ) ∈ W (under surface measure on W) with |(ūi)⊤v̄i| < a exp(−b(∥ūi∥22 + ∥v̄i∥22)) for all
i ∈ {1, · · · , dy} converge to a global minimizer.

• Sensitivity to Initialization: Let (uit, v
i
t)t≥0 denote the gradient descent trajectory of the pair

(ui, vi), with (ui0, v
i
0) = (ūi, v̄i). Let Mi denote the set of global minimizers for the scalar

problem Li(u, v) =
1
2 (u

⊤v− yi)
2 + λ

2 (∥u∥
2
2 + ∥v∥22). Then M∩W = M1 × · · · ×Mdy

, where
W denotes the set of global minimizers for problem (4). We have that, for any (U, V ) ∈ Dη ∩W
and any i ∈ {1, · · · , dy}, as t tends to infinity, (uit, v

i
t) converges either to

p−(ui0, v
i
0) = arg min

(u,v)∈Mi

∥(u, v)− (ui0, v
i
0)∥2,

or to
p+(ui0, v

i
0) = arg max

(u,v)∈Mi

∥(u, v)− (ui0, v
i
0)∥2.

Moreover, there exist infinitely many points on ∂(D′′
η ∩W) (here boundary is taken with respect

to the subspace topology on W) such that for any open set O containing such a point, there exist
i ∈ {1, · · · , dy}, (U ′, V ′), (U ′′, V ′′) ∈ O such that, as t tends to infinity, (ui,′t , v

i,′
t ) converges to

p−(ui,′0 , v
i,′
0 ) and (ui,′′t , vi,′′t ) converges to p+(ui,′′0 , vi,′′0 ).

• Stable Dynamics Under Small Step Size: Consider the function

Q(u, v) = ∥u∥22 + ∥v∥22 +
√
(∥u∥22 + ∥v∥22)2 − 16y(u⊤v − y).

Then the following holds for almost all initializations (Ū , V̄ ) ∈ W (under surface measure on W):
If η < mini=1,··· ,dy

8/(4λ+Q(ūi, v̄i)), then gradient descent converges to a global minimizer; If
η < mini=1,··· ,dy 4/(4λ+Q(ūi, v̄i)), then for all i, (uit, v

i
t) converges to p−(ui0, v

i
0).
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All of the above results follow directly from Theorem 4, Theorem 5 and Proposition 31. We remark
that, while the above Theorems are presented for initializations in W , chaotic phenomena are observed
under generalization initializations. Experiments are provided in Appendix I.

Proposition 31. Consider gradient descent with step size η for problem (1) with d ≥ dy. Consider
the set W =

{
(U, V ) ∈ R2d·dy : ⟨ui, uj⟩ = ⟨ui, vj⟩ = ⟨vi, vj⟩ = 0, ∀i ̸= j

}
, where ui, vi denote

the ith column of matrices U, V . The set W is forward-invariant, i.e., GDη(W) ⊂ W . Moreover,
if the initialization (Ū , V̄ ) ∈ W , then for i = 1, · · · , r, the trajectory of the columns (ui, vi) is
identical to the trajectory of gradient descent applied to the scalar factorization problem Li(u, v) =
1
2 (u

⊤v − yi)
2 + λ

2 (∥u∥
2
2 + ∥v∥22), with step size η and initialization (ūi, v̄i).

Proof of Proposition 31. Recall the update:

Ut+1 = Ut − ηVt(V
⊤
t Ut − Y ⊤)− ηλUt, Vt+1 = Vt − ηUt(U

⊤
t Vt − Y )− ηλVt.

For (Ut, Vt) ∈ W , we have that

Ut+1 = Ut − ηVtV
⊤
t Ut + ηVtY

⊤ − ηλUt

= Ut − η

dy∑
k=1

vkt (v
k
t )

⊤ · Ut + ηVtY
⊤ − ηλUt.

Therefore, for j = 1, · · · , dy ,

ujt+1 = ujt − η

dy∑
k=1

vkt (v
k
t )

⊤ujt + ηyjv
j
t − ηλujt

= ujt − ηvjt (v
j
t )

⊤ujt + ηyjv
j
t − ηλujt

= ujt − η
(
(vjt )

⊤ujt − yj
)
vjt − ηλujt .

Therefore, the one-step uj-update aligns with that in scalar factorization problem. Similarly, we
can show this holds for vj-update. Now it suffices to verify that W is forward invariant. Assume
(Ut, Vt) ∈ W . Notice that both ujt+1 and vjt+1 are linear combinations of ujt and vjt . Then it clear that

⟨ujt+1, u
k
t+1⟩ = ⟨ujt+1, v

k
t+1⟩ = ⟨vjt+1, v

k
t+1⟩ = 0

whenever j ̸= k. This completes the proof.

The gradient descent update map GDη is non-invertible in general. Nevertheless, we show that the
parameter space can be partitioned into small pieces, so that when restricted to each piece, GDη has
a simple behavior.

Proof of Proposition 6. For notational simplicity, we let G = GDη. Under the assumptions, G
is a map with polynomial coordinates and det JG is a polynomial. Then either det JG is the
zero function or it has a measure-zero zero locus. To reject the first case, it suffices to have that
det JG(0) = det(I − η∇2L(0)) ̸= 0. Note ∇2L(0) is a fixed positive semi-definite matrix. Then
if η is not the inverse of one of the eigenvalues of ∇2L(0), we have det JG(0) ̸= 0. Therefore, for
all η > 0 except for finitely many values, det JG has a measure-zero zero locus. For such η, G is a
non-constant map. By Jelonek (2002), there exists a semi-algebraic, measure-zero set S ⊂ Rp such
that, G|Rp\G−1(S) : Rp \G−1(S) → Rp \S is a proper map. Let S′ = G({det JG = 0}) denote the
set of critical values of G. Then S′ has measure zero by Sard’s theorem and is also semi-algebraic.
Since det JG is non-zero almost everywhere, by Ponomarev (1987), Kη = G−1(S) ∪G−1(S′) is a
measure-zero set. Since Kη is semi-algebraic, Rp \ Kη has finitely many connected components. Fix
a connected component C. For any compact set K ⊂ G(C), since K ∩ S = ∅, (G|Rp\G−1(S))

−1(K)

is compact. Meanwhile, since ∂C ⊂ G−1(S) ∪ G−1(S′) and K ∩ (S ∪ S′) = ∅, (G|C)−1(K) =
(G|Rp\G−1(S))

−1(K) ∩ cl(C) is compact. Therefore, G|C is a proper map between connected
manifolds that has full-rank Jacobian everywhere. Hence, G|C is a smooth covering map (see,
e.g., Lee, 2012). This completes the proof.
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H EXPERIMENT DETAILS

For Figure 1 left panel, we consider the problem L(u, v) = (u⊤v − 1)2 + 0.3(∥u∥22 + ∥v∥22) with
(u, v) ∈ R10. We randomly sampled two orthogonal unit vectors in R10. Viewing the two vectors as
new axes, we evenly sampled 6002 initial points in the range [−4, 4]2. We then ran gradient descent
with step size 1 for 1000 iterations. The training stops if the loss is below Lmin+10−6, where Lmin is
the global minimum or if it is above 100. For Figure 1 right panel, we consider L(u, v) = (uv − 1)2

with (u, v) ∈ R2. We evenly sampled 8002 initial points in the range [−4.5, 4.5]2. We ran gradient
descent with step size 0.2 for 6 iterations and recorded the final squared distances to the two
minimizers, m1 = (1, 1) and m2 = (2.9, 1/2.9). Viewing the final distances as functions of the
initial point, we used the “contourf” function from the Matplotlib package (version 3.5.2) to draw the
sublevel sets of the distances. For the minimizer m1, we drew the sublevel set of [0, 0.15) to get the
preimage of GD−6(B(m1,

√
0.15)). For the minimizer m2, we drew the sublevel set of [0, 0.25) to

get the preimage of GD−6(B(m2,
√
0.25)).

For Figure 2, we consider L(u, v) = (uv − 1)2 with (u, v) ∈ R2. For the left panel, we evenly
sampled 8002 initial points in the range [−4.5, 4.5]2 and ran gradient descent with step size 0.2 for 6
iterations. To visualize the basin for unstable minimizers, note, as shown in Corollary 17, converging
to unstable minimizers can only occur within finitely many steps. We therefore recorded the final
loss value and used the “contour” function from the Matplotlib package (version 3.5.2) to collect
points in the level set of 0 for the loss. Those points correspond to convergence to a global minimizer
within 6 or less steps. We then filtered out and visualized points that converge to an unstable global
minimizer, i.e., a minimizer with squared norm larger than 2/η (see Corollary 17).

In Figure 2, to visualize the basin for the saddle (0,0), note, as shown in the proof of Proposition 16,
this basin can be given by ∪∞

N=0F
−N (O∩{u = −sgn(y)v}) for some neighborhood of (0,0). Then

we also recorded the final distance to the set {u = −v} and used the “contour” function from the
Matplotlib package (version 3.5.2) to collect points in the level set of 0 for the distance. Then we
filtered out the points that lie in D′

η (as defined in Theorem 1). This yield the basin associated with
the saddle. To justify this procedure, note, as shown in Proposition 15, any point outside D′

η either
converges to a minimizer within finite steps or diverges. Also note, by the analysis in Lemma 12,
points on {u = −sgn(y)v} either converge to the saddle or diverge. For the right panel of Figure 2,
we evenly sampled 8002 points in [−0.9,−0.6]× [−4.55,−4.25]. We ran gradient descent with step
size 0.2 for 250 iterations. The training stops if the loss value is below 10−8 or above 100.

For Figure 3, we consider L(u, v) = (uv − 0.5)2/2 + 0.1(u2 + v2) where (u, v) ∈ R2. For the left
panel, we consider the dynamical system defined by F (see Proposition 3) with η = 1, λ = 0.2 and
y = 1. In the zw-space, we evenly sampled 20002 initial points in [−2.5, 3]× [0, 10] and filtered out
those in {w ≥ 2|z|}. We applied F 200 to those sampled points and filtered out initial points that lead
to loss value below Lmin + 10−5 where Lmin is the global minimum of L. Those points come from
the projected convergence region T (D′′

η ). Then we used the “ndimage.binary_erosion” function from
the SciPy package (version 1.9.1) to find the boundary of those points. The coloring of the boundary
is based on the preimage structure of F , which is described in Proposition 14. For the middle panel,
we evenly sampled 8002 initial points in [−4, 4]2 and ran gradient descent for 100 iterations. For the
right panel, we estimated the box-counting dimension for the boundary points found in the left panel.
We first normalized these points to fit within [0, 1]2. We then computed the number of boxes N(ϵ)
needed to cover all the points, with the box width ε ranging from 1/22 to 1/28. We then performed
linear regression on logN(ε) versus log(1/ε).

I ADDITIONAL EXPERIMENTS ON MATRIX FACTORIZATION

The folding behavior of GD in scalar factorization In Figure 6, we illustrate the folding behavior
of the map GDη in L(u, v) = (uv − 1)2/2 with (u, v) ∈ R2 and η = 0.2. The map GDη is a
3-covering map from the light blue region C in the left panel to the light orange region GDη(C) in the
middle panel. Notice that C ⊂ GDη(C) and C contains the convergence boundary (black ellipsoid).
The right panel shows that GDη is transitive on the boundary: the trajectory of an initialization on
this boundary appears to wander along it in a seemingly random manner. For theoretical justifications
of these behaviors, see Proposition 14 and Proposition 18.
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Figure 6: Folding behavior of the map GDη in L(u, v) = (uv− 1)2/2 with (u, v) ∈ R2 and η = 0.2.
In all panels, the black ellipsoid is the convergence boundary and the green hyperbola the set of
global minimizers. The orange line in the middle panel is the set Crit, which consists of all critical
values of GDη . The blue lines in the left panel are the set GD−1

η (Crit), i.e., the preimage of critical
values. The map GDη is a 3-covering map from the light blue region in the left panel to the light
orange region in the middle panel. The right panel shows the training trajectory for an initialization
on the convergence boundary.

Comparison with Wang et al. (2022) Figure 7 provides a visual comparison between our Theo-
rem 1 and Wang et al. (2022, Theorem 3.1), for the objective L(u, v) = (uv−y)2/2 with (u, v) ∈ R2.
Recall that the convergence condition provided in the work of Wang et al. (2022) is:

η < η∗1(ū, v̄) = min
{ 1

3|y|
,

4

∥ū∥2 + ∥v̄∥2 + 4|y|
}
. (31)

The left penal of Figure 7 shows the case η = 1, y = 0.3. Here, the first condition in (31) is satisfied.
As shown, initializations satisfying the second condition η < 4/(u2 + v2 + 4|y|) form a strict
subset of the convergence region D′

η in Theorem 1. The right panel shows the case η = 1, y = 0.9.
Note that this setting falls outside the analysis of Wang et al. (2022), as η > 1/(3|y|). Meanwhile,
initializations satisfying η < 4/(u2 + v2 + 4|y|) form an even smaller subset of D′

η .

Figure 7: Comparison between Theorem 1 and Wang et al. (2022, Theorem 3.1). Gradient descent
with step size η = 1 is applied to L(u, v) = (uv − y)2/2 with (u, v) ∈ R2. In both panels, the light
blue region is the convergence region D′

η described in Theorem 1, and the red region is the set of
initializations satisfying η < 4/(u2 + v2 + 4|y|), a conditions required by Wang et al. (2022).

How convergence boundary and basin of saddle evolve with λ In Figure 8, we illustrate how
the convergence boundary and the basin of attraction of the saddle point evolve as the regularization
parameter λ increases in the scalar factorization problem. As shown in the figure, and consistent
with our theoretical results, the convergence boundary is smooth (in the almost everywhere sense)
when λ = 0. When λ is just above zero, the boundary is close to a smooth and bounded set, with the
fractal spikes so thin that they are barely visible. As λ increases, the fractal structure becomes more
pronounced, and the spikes gradually get wider. Also, the basin of attraction of the saddle does not
separate points inside the convergence region from points outside.
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Figure 8: Gradient descent is applied to L(u, v) = (uv − 0.8)2/2 + λ
2 (u

2 + v2), where u, v ∈ R
and λ ∈ {0, 0.01, 0.1, 0.5}. Blue points represent initializations that converge to a global minimizer;
uncolored points represent initializations that do note converge. Red lines represent the basin of
attraction of the saddle point (0, 0).

Unregularized matrix factorization with general initialization In Figure 9, we ran gradient
descent for shallow matrix factorization without regularization under general initialization. We
observe that, on a random slice of the parameter space, the convergence boundary is non-smooth,
suggesting that a smooth convergence boundary is a special property of the invariant subspace W .
This also implies that, globally, the critical step size might depend intricately on the initialization.
However, sensitivity to initialization is common: on all the random slices, the converged minimizer is
unpredictable near the convergence boundary. This suggests that chaotic dynamics always exists near
the global convergence boundary.

Unregularized

Figure 9: Gradient descent is applied to L(U, V ) = ∥U⊤V −Y ∥2F /2, where U, V ∈ R5×4 and Y is a
diagonal matrix whose diagonal elements are randomly sampled from [0, 1]. Four randomly sampled
two-dimensional slices of the parameter space R40 are shown. The points are colored according to
the squared Frobenius norm of the converged minimizer; uncolored points represent initializations
that do not converge.

Regularized matrix factorization with general initialization In Figure 10, we ran gradient
descent for shallow matrix factorization with regularization under general initialization. We observe
that in the random slices of the parameter space, the convergence boundary exhibits fractal-like
geometry, although it appears to be less spiky than the boundary in scalar factorization. Also, as
shown in the figure, sensitivity to initialization persist under general initialization. Together, Figure 10
and Figure 9 suggest that chaos and unpredictability are global properties of gradient descent in
shallow matrix factorization.

Deep matrix factorization In Figure 11, we ran gradient descent in depth-three matrix factoriza-
tion under generalization initialization. For deep matrix factorization we observe that already for
the unregularized problem, the convergence boundary exhibits fractal-like structure, as fine-scale
structures emerge. We report how the squared norm of the converged minimizer depends on the
initialization, for two random slices of the parameter space. As shown in the figure, while points near
the origin converge to minimizers of small norm, sensitivity to initialization occurs in the vicinity of
the boundary. For the regularized problem, we observe that not only the convergence boundary has a
fractal-like structure, but the convergence region also becomes disconnected, with intricate connected
components. The disconnectedness can be explained by the emergence of local minimizers, which
attracts nearby trajectories, and non-strict saddles, which trap trajectories for long periods before they
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Regularized

Figure 10: Gradient descent is applied to L(U, V ) = ∥U⊤V − Y ∥2F /2 + 0.25(∥U∥2F + ∥V ∥2F )
where U, V ∈ R5×2 and Y = Diag(0.9, 0.8). Four randomly sampled two-dimensional slices of the
parameter space R20 are shown. The points are colored according to the one coordinate value of the
converged minimizer; uncolored points represent initializations that do not converge.

escape. For a detailed discussion of the landscape geometry of regularized deep matrix factorization,
see the work of Chen et al. (2025). Additionally, we observe sensitivity to initialization near the
convergence boundary.

Unregularized Regularized

Figure 11: Gradient descent is applied to L(U, V,W ) = ∥UVW − Y ∥2F /2 + λ
2 (∥U∥2F + ∥V ∥2F +

∥W∥2F ), where U, V,W ∈ R2×2 and Y = Diag(0.9, 0.5). The left two panels show two randomly
sampled two-dimensional slices of the parameter space R12 for the unregularized problem. Points are
colored according to the squared norm of the converged minimizer. The right two panels show the
same random slices for the regularized problem. Points are colored according to one coordinate of
the converged minimizer. In all panels, uncolored points represent initializations that do not converge
to a global minimizer.

J ADDITIONAL EXPERIMENTS ON REAL-WORLD DATA

Chaotic regime vs. small-step-size regime In Figures 4 and 12, we considered a 2-class subset
of CIFAR-10, each containing 25 randomly sampled images. We trained a neural networks with
two hidden layers, each with 100 neurons, for 5000 epochs. Whenever Polyak momentum is used,
β is set as 0.9. For mean-squared error, the training stops if the training loss is below 10−6 or is
above 104; For cross-entropy, the training stops if the training loss is below 10−2 or is above 104.
The results for cross entropy are shown in Figure 12. Note when the cross-entropy is employed, the
final sharpness is lower than the 2/η curve, which aligns with the observations of Cohen et al. (2021).
We also clearly observe two distinct step-size regimes, associated with EoS and Chaos, respectively,
similar to what we had seen for the mean squared error in Figure 4.

Fractal structure in parameter space In Figures 5 and 13, we considered a 2-class subset of
CIFAR-10, each containing 25 randomly sampled images. We trained a neural networks with two
hidden layers, each with 25 neurons, for 3000 epochs under mean squared error. The weight decay
parameter for Figures 5 and 13 is set as 10−3 and 0, respectively. The step size is set as η = 0.05.
We randomly sampled two orthogonal unit vectors in the parameter space and kept them fixed as
the coordinate axes for the random slice. On that slice, we evenly sampled 300× 300 points from
[32, 42]× [16, 24] (with respect to the random axes) and used them as initializations. The training
stops if the training loss is below 5 × 10−4 or is above 104. Notice that in Figure 13, the fractal
structures are qualitatively similar to those in Figure 5.
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Figure 12: GD without or with momentum in training a depth-3 ReLU network on a subset of
CIFAR-10 for 5000 iterations using the cross-entropy loss. The initialization is randomly sampled
once and then kept fixed across all panels. At large step sizes, the final norm and final sharpness are
highly sensitive to the step size.

Figure 13: GD without weight decay in training a depth-3 ReLU network on a subset of CIFAR-10
for 3000 iterations. Shown is a random two-dimensional slice of the parameter space. Each point is a
parameter initialization, colored according to the final value of the loss (left) and sharpness (right).
Gray points are initializations from which the algorithm diverges.

48


	Introduction
	Main Contributions
	Related Work

	Preliminaries
	Simplified Matrix Factorization
	Chaos at Large Step Size
	Regularization Induces Fractal Convergence Boundary

	Matrix Factorization and Beyond
	Matrix Factorization with Orthogonal Initializations
	General Mechanism Behind Chaos
	Chaos and Fractals in Neural Networks

	Conclusion
	Relation to classical theory for chaos and fractals
	Chaotic dynamical systems
	Fractal basin boundary

	Measure of chaos in dynamical systems
	Topological entropy
	Box-counting dimension and unpredictability

	Diagonality of the target matrix
	Quotient dynamics of gradient descent
	Quotient dynamical system
	Properties of the quotient dynamics

	Proofs for Section 3
	Unregularized problem
	Preliminary results
	Proof of Theorem 1 and Theorem 2

	Regularized problem
	Preliminary results
	Proofs of Theorem 4 and Theorem 5


	Non-existence of continuous dynamical invariant
	General matrix factorization
	Experiment details
	Additional experiments on matrix factorization
	Additional experiments on real-world data

