
Teaching BERT to Wait: Balancing Accuracy and Latency for
Streaming Disfluency Detection

Anonymous ACL submission

Abstract

In modern interactive speech-based systems001
speech is consumed and transcribed incre-002
mentally prior to having disfluencies removed.003
While this post-processing step is crucial for004
producing clean transcripts and high perfor-005
mance on downstream tasks (e.g. machine006
translation), most current state-of-the-art NLP007
models such as the Transformer operate non-008
incrementally, potentially causing unaccept-009
able delays for the user. In this work we pro-010
pose a streaming BERT-based sequence tag-011
ging model that, combined with a novel train-012
ing objective, is capable of detecting disfluen-013
cies in real-time - thereby balancing accuracy014
and latency. This is accomplished by training015
the model to decide whether to immediately016
output a prediction for the current input or to017
wait for further context, in essence learning to018
dynamically size the lookahead window. Our019
results demonstrate that our model produces020
comparably accurate predictions and does so021
sooner than our baselines, with lower flicker.022
Furthermore, the model attains state-of-the-art023
latency and stability scores when compared024
with recent work on incremental disfluency de-025
tection.026

1 Introduction027

Many modern Natural Language Understanding028

(NLU) applications (e.g. transcribers, digital voice029

assistants, and chatbots) use streaming Automatic030

Speech Recognition (ASR) systems that incremen-031

tally consume speech, offering real-time transcrip-032

tion and predictions with minimal delay. How-033

ever, these systems are often challenged by the034

presence of disfluencies, which are unintentional035

speech disruptions such as “um”, “no I meant”, and036

“I I I I think,” that occur naturally in spontaneous037

speech. Disfluencies not only hurt the readability038

of ASR transcripts, but also erode model perfor-039

mance on downstream tasks, such as machine trans-040

lation (Hassan et al., 2014) and question answering041

(Gupta et al., 2021). Indeed, even state-of-the-art 042

models such as BERT (Devlin et al., 2019) and 043

T5 (Raffel et al., 2020) exhibit significant drops in 044

performance (as much as 28 and 20 F1 points, re- 045

spectively) on the SQuAD-v2 question-answering 046

benchmark (Rajpurkar et al., 2018) when disfluen- 047

cies are inserted into the questions (Gupta et al., 048

2021). Past work has shown that a prohibitively 049

large amount of data is needed to train an end-to- 050

end dialogue model that is robust to the presence of 051

disfluencies (Shalyminov et al., 2017). As a result, 052

modern ASR pipelines typically contain a sepa- 053

rate post-processing step that detects and removes 054

disfluencies from the transcript, which has been 055

shown to perform better than end-to-end ASR mod- 056

els that generate fluent text from disfluent speech 057

(Jamshid Lou and Johnson, 2020). 058

Shriberg et al. (1997) introduced the following 059

disfluency schema components that are widely used 060

in disfluency detection research: the reparandum 061

(spoken segment intended to be removed), the in- 062

terruption point marked as "+“, the repair (spoken 063

segment that comes as a replacement to the reparan- 064

dum, of which the first word is known as the repair 065

onset), and the interregnum (material that appears 066

between the reparandum and repair). An example 067

of this annotation schema is shown in Figure 1. 068

Usually disfluency detection task involves identi- 069

fying (often times with the purpose of removing) 070

the reparandum portion of the disfluency. One of 071

the most popular approaches that targets disfluency 072

detection is the usage of sequence tagging mod- 073

els such as fine-tuned BERT (Bach and Huang, 074

2019; Rohanian and Hough, 2021) or LSTM (Zay- 075

ats et al., 2016; Rohanian and Hough, 2020). 076

Another challenge in disfluency detection is the 077

fact that most interactive speech- or text-based ap- 078

plications consume input incrementally, producing 079

predictions one word at a time, rather than in en- 080

tire sentences. However, recent state-of-the-art pre- 081

trained language models such as BERT have largely 082

1

A uh flight [to Boston︸ ︷︷ ︸
reparandum

+ {uh I mean︸ ︷︷ ︸
interregnum

} to︸︷︷︸
repair onset

Denver

︸ ︷︷ ︸
repair

] on Friday

Figure 1: An example of disfluency annotation.

been designed for non-incremental processing and083

are trained only to output predictions on complete084

input utterances. Using a non-incremental model in085

an interactive setting produces undesirable delays,086

since downstream applications must wait for the087

user to finish their entire utterance before making088

any decisions.089

To address the goal of streaming disfluency090

detection, recent work has focused on adapting091

non-incremental models for streaming settings.092

Madureira and Schlangen (2020) demonstrated that093

BERT-based models can adequately process in-094

cremental input for a variety of sequence tagging095

tasks when trained on partial sequences, although096

performance on full sequences suffers. Roha-097

nian and Hough (2021) applied both the truncated098

training and prophecy generation strategies from099

(Madureira and Schlangen, 2020) to a BERTLARGE100

model, achieving state-of-the-art performance on101

streaming metrics among incremental systems. No-102

tably, both these approaches employ the delay strat-103

egy of a fixed lookahead window - a short amount104

of right context that the model can “peek” at when105

making its prediction on the current token (Buß106

and Schlangen, 2011). Although a larger looka-107

head window can boost accuracy and stability, it108

also incurs extra delay (by definition).109

In the task of incremental disfluency detection,110

a lookahead window is likely most useful for111

reparanda, since it is often nearly impossible to112

identify a reparandum without knowing whether it113

is followed by an interregnum or repair. However,114

this extra right context may be much less informa-115

tive for fluent tokens. Guided by this insight, we116

extend the past research by training a BERT-based117

model to dynamically decide how much lookahead118

context to use. For each new input token that the119

model consumes, the model can choose to either120

immediately output a label for that token or to121

wait for further input before making its prediction.122

We also design a novel training objective that ac-123

counts for both the cross-entropy and latency costs124

incurred by delaying inference.125

In our experiments we explore the trade-offs be-126

tween accuracy, latency, and output stability for 127

both partial and complete results. To our knowl- 128

edge, this is the first work to adapt the BERT archi- 129

tecture and training objective to balance accuracy 130

and latency in a streaming sequence tagging task. 131

The contributions of our paper are as follows: 132

first, we propose a new model architecture and 133

training objective for streaming sequence tagging 134

tasks. This method involves fine-tuning a pre- 135

trained BERT model to decide when to immedi- 136

ately output predictions and when to wait for fur- 137

ther input– temporarily abstaining from producing 138

a prediction. Secondly, we show that this model 139

achieves high accuracy in incremental settings with 140

state-of-the-art latency and stability, all with a 141

model architecture that is ∼ 35 times smaller than 142

BERTBASE (Zhao et al., 2021). We demonstrate 143

that the model continues to perform competitively 144

in non-incremental settings when compared to its 145

non-incremental counterparts. Finally, our analyses 146

show that our streaming model learns to wait the 147

most when it encounters an interregnum or reparan- 148

dum, and the least for fluent or edit terms. 149

2 Related Work 150

Although disfluency detection itself is a well- 151

studied task, only a handful of past work has ex- 152

plored disfluency detection in an online setting - 153

that is, consuming the input a single token at a 154

time and outputting predictions on the partial in- 155

put as early as possible. Among the neural ap- 156

proaches, Hough and Schlangen (2015) were the 157

first to demonstrate competitive performance of 158

recurrent neural networks (RNNs) on incremental 159

disfluency detection by applying an Elman RNN 160

paired with a Markov decoder that jointly opti- 161

mized the probability of the output tag over the past 162

inputs and outputs. Hough and Schlangen (2017) 163

built upon this by jointly training LSTMs on both 164

utterance segmentation and disfluency detection, 165

demonstrating that jointly training on the two tasks 166

yielded higher accuracy and lower latency on both 167

tasks than training on either task alone. This was 168

followed by a number of other works that also suc- 169

2

Figure 2: The architecture of our streaming BERT model. The disfluency classification head outputs predictions
of fluent (f) or disfluent (d) for each token, whereas the wait classification head outputs predictions of predict (p)
or wait (w) for each token. Given a partial input, we find the first token with a wait prediction and output only the
tokens before it with fluent predictions.

cessfully paired incremental disfluency detection170

with other tasks, such as language modeling (Sha-171

lyminov et al., 2018) and POS tagging Rohanian172

and Hough (2020).173

More recently, large pre-trained transformer ar-174

chitectures have demonstrated incredible success175

on sequence labeling tasks (Vaswani et al., 2017).176

Although the original transformer architecture was177

not designed for streaming input, Chen et al. (2020)178

proposed the controllable time-delay transformer179

instead, which combines a fast decoding strategy180

with a modified self-attention mechanism that at-181

tends only to future inputs in a fixed lookahead182

window.183

The closest work to ours is that of Rohanian and184

Hough (2021), in which the authors fine-tuned a185

pre-trained BERTLARGE model via add-M train-186

ing, which feeds the model successive prefixes of187

lengths N +M,N + 2M, · · · for each full-length188

training example. Their best-performing model189

also made use of a prophecy decoding strategy,190

in which a GPT-2 (Radford et al., 2019) model191

predicted the missing right context of each par-192

tial input. The BERT model then made its pre-193

dictions based on the complete extrapolated se-194

quence, POS tags, and word timings. Unlike their195

work, we aim to train a more lightweight small196

vocabulary 12 × 128 BERT model that is more197

suitable for on-device settings, does not require198

a separate prophecy generation model, and uses199

only disfluency-annotated training data. We also200

train our model on successive prefixes of the input201

(with N = 1,M = 1) but modify both the archi-202

tecture and training objective in order to balance 203

the competing objectives of accuracy and latency. 204

3 Training a Streaming BERT Model 205

In this section we describe the architectural 206

changes, new training objective, and training 207

scheme that we use to adapt a (non-incremental) 208

BERT model for streaming sequence tagging tasks. 209

Specifically, we modify the model to enable it to 210

either immediately produce a prediction for a given 211

token or to decide to wait for further input. These 212

changes include a novel training objective that bal- 213

ances the cost between accuracy and latency – pre- 214

venting the model from the extremes of either re- 215

lying too much on waiting for further input or on 216

speedily making predictions at the cost of accuracy. 217

We train this model using a restart-incremental 218

training procedure described in Section 3.2. 219

3.1 Model Design 220

Streaming settings force models to make trade-offs 221

between accuracy and latency. More accurate pre- 222

dictions can be obtained by providing longer right 223

context at the cost of incurring additional latency. 224

However, since most tokens are not disfluent, a 225

model may not require the right context in order 226

to accurately classify fluent tokens. Rather than 227

using a fixed lookahead window, we train a BERT 228

model to jointly classify tokens and simultaneously 229

choose the lookahead window size dynamically at 230

each token. 231

Our proposed model architecture consists of a 232

pre-trained BERT model with two separate token 233

3

classification heads added on top, as shown in Fig-234

ure 2. Each classification head consists of a linear235

layer applied to the hidden layer outputs of the236

BERT model. The first classification head, the237

disfluency classifier, is trained to classify whether238

each token is disfluent or not. The second clas-239

sification head (the wait classifier) is trained to240

classify whether the model should wait for further241

input (temporarily abstain from predicting) or im-242

mediately output a prediction for the given token.243

In effect, the wait classifier decides how large of244

a lookahead window the model needs to make its245

prediction on the current input. At inference time,246

we only output tokens that lie to the left of the first247

token for which the model outputs a wait predic-248

tion and that are predicted to be fluent. This avoids249

potentially producing disjoint output in the case250

where the model produces predictions of wait fol-251

lowed by predict, making the output more clear for252

the user’s display.253

We also adapt the training objective such that254

it accounts for both the accuracy and latency of255

the model’s outputs on each successive prefix. Let256

(x, y) be the pair of input sequence and target out-257

put sequence with prefixes x1, x2, · · · , x|x| and258

y1, y2, · · · , y|x|, respectively where |x| is the length259

of the full sentence. We also denote f(x) as the260

output logits of the disfluency classifier, g(x) as261

the output logits of the wait classifier, σ(·) as the262

softmax function, and H(·, ·) as the cross-entropy263

loss. Then the traditional cross-entropy loss on the264

full input and target sequences is265

`FULL(x, y) = H(σ(f(x)), y) (1)266

However, for each prefix we wish to only compute267

the cross-entropy loss on the tokens to the left of268

the first token for which the model outputs a wait269

prediction. To accomplish this, we devise a binary270

mask that zeros out the loss on the tokens to the271

right of and including the first wait prediction:272

m(σ(g(xi)) = (m1, · · · ,m|xi|) (2)273

where274

mj =

{
1 if j < k

0 otherwise
(3)275

k = argmin
j
{j|σ(g(xi)j) > 0.5} (4)276

where g(xi)j is the j-th element of vector g(xi).277

We then apply this mask to the cross-entropy loss278

for each prefix of example x to obtain prefix loss: 279

`PREFIX(x, y) =

|x|−1∑
i=1

m(σ(g(xi)))◦H(σ(f(xi)), yi)

(5) 280

where we abuse notation here by denoting 281

H(σ(f(xi)), yi) as the vector for which the j- 282

th element corresponds to the cross-entropy of 283

(σ(f(xi))j , yi,j) and ◦ is element-wise multiplica- 284

tion. Lastly, we define a latency cost that scales 285

with both the probability of abstaining from clas- 286

sifying the j-th token in the i-th prefix (σ(g(xi)j)) 287

and with the expected wait time, as measured by 288

number of tokens, incurred by abstaining starting 289

from token j in prefix xi: 290

`LATENCY(x) =

|x|−1∑
i=1

i∑
j=1

(i− j)σ(g(xi)j) (6) 291

Putting these together, the total loss for a single 292

example (x, y) is: 293

`(x, y) = `FULL(x, y) + γ`PREFIX(x, y) 294

+ λ`LATENCY(x) (7) 295

with hyperparameters γ and λ controlling the rel- 296

ative strengths of the prefix and latency costs, re- 297

spectively. We also include the cross-entropy loss 298

on the full sequences (`FULL) in addition to the pre- 299

fix losses (`PREFIX) because we wish for the model 300

to maintain its ability to make predictions on full 301

sequences. Since g(x) does not appear anywhere 302

in `FULL, the model is effectively forced to make 303

predictions once it receives the full utterance. 304

Similarly, the `LATENCY term is essential because 305

without it, the model could achieve minimal loss by 306

always waiting (e.g. σ(g(xi)j) = 1 for all prefixes 307

i and time steps j), and only learning to classify dis- 308

fluent tokens after receiving the full sequence. This 309

is equivalent to the non-incremental classification 310

loss. If we instead set σ(g(xi)j) = 0 for all i, j 311

(the case where the model never waits), the result- 312

ing loss is equivalent to the learning objective for 313

strongly incremental training (see Section 3.2). In 314

essence, our training objective is a generalization 315

of the strongly incremental objective. 316

3.2 Restart-Incremental Training 317

Although BERT models are typically fine-tuned 318

using complete pre-segmented sequences, an in- 319

cremental model must process partial inputs at in- 320

ference time, resulting in a distributional shift be- 321

tween the complete utterances typically seen in 322

4

training datasets and the partial utterances seen at323

inference time. A simple solution is to fine-tune324

BERT both on complete and partial inputs, a train-325

ing scheme known as restart incrementality (Ka-326

hardipraja et al., 2021). By providing successively327

extended prefixes of a given utterance to the model328

and computing the loss on the model outputs for329

each prefix, we can mimic the streaming data that330

the model would encounter in real time. In all of331

our experiments, each successive prefix adds a sin-332

gle word to the previous prefix, a setting known333

as strongly incremental (Shalyminov et al., 2018).334

Although this approach requires re-computation335

of the model outputs for each successive prefix,336

this also enables the model to correct its previous337

predictions, or to switch between waiting and pre-338

dicting when it receives helpful right context. In-339

corporating prefixes during training in incremental340

disfluency detection has been previously explored341

by Rohanian and Hough (2021). This serves as a342

strong baseline in our experiments.343

4 Experimental Setup344

We fine-tune all models on the Switchboard dataset345

(Godfrey et al., 1992), a transcribed English multi-346

speaker conversational corpus that is commonly347

used for ASR research. We specifically use the ver-348

sion from the Linguistic Data Corpus’s Treebank-3349

(Marcus et al., 1999) distribution, which addition-350

ally contains disfluency annotations and a stan-351

dard train/dev/test split (Charniak and Johnson,352

2001). We follow Rocholl et al. (2021), training353

our models to classify both the reparanda and in-354

terregna as disfluent for future removal in a final355

post-processed transcript.356

4.1 Baselines357

All of our experiments use small distilled BERT358

models, specifically a small vocabulary BERT359

model (Zhao et al., 2021) (BERTSV) with 12 hid-360

den layers of size 128 that is pre-trained on English361

Wikipedia and BookCorpus (Zhu et al., 2015). The362

details of our hyperparameter tuning can be found363

in the Appendix (Section A).364

We use small models for two reasons: 1) fine-365

tuning a model on all given prefixes of each training366

example is resource intensive, and 2) many stream-367

ing natural language understanding applications368

run entirely on mobile devices which precludes369

the use of large models. Previous work on small370

non-incremental BERT-based models used for dis-371

fluency detection (Rocholl et al., 2021) showed 372

significant improvement in memory and latency 373

without compromising task performance. The core 374

BERTSV model is a distilled version of BERTBASE 375

with smaller vocabulary and reduced hidden layer 376

dimensions (Zhao et al., 2021). Due to its smaller 377

vocabulary size (5K versus 30K tokens), the model 378

has only about 3.1M parameters, as compared to 379

BERTBASE’s approximately 108.9M parameters, 380

achieving around 80% latency reduction. 381

In order to isolate the effects of training with 382

restart incrementality (Section 3.2) versus the im- 383

provements derived directly from incorporating 384

our new training objective, we also evaluate two 385

other models: 1) a non-incremental BERTSV model 386

trained in the usual way, on full sequences; and 2) 387

a BERTSV model trained with restart incremen- 388

tality - i.e., on all prefixes of every training ex- 389

ample (which we will refer to as “all prefixes” in 390

following tables). For each of these baseline mod- 391

els we also follow Rohanian and Hough (2021) 392

and Kahardipraja et al. (2021) by evaluating with 393

different fixed lookahead (LA) window sizes of 394

LA = 0, 1, 2. 395

4.2 Incremental Evaluation 396

Accuracy alone is not a sufficient measure of suc- 397

cess to robustly evaluate a streaming model. Since 398

a streaming model is meant to operate in real time, 399

it should return output as soon as possible after it 400

receives new input. As such, we also need to evalu- 401

ate it with respect to latency – i.e. the number of 402

new tokens a model must consume before produc- 403

ing a prediction for the current token. Furthermore, 404

streaming models are often designed to be capable 405

of retroactively changing their predictions on pre- 406

vious tokens as new input arrives. This introduces 407

the risk of output “jitter” or “flicker” – where the 408

output changes dramatically as new input is con- 409

sumed, and necessitates evaluating for stability as 410

well. To capture all of these important dimensions 411

of streaming model performance we evaluate the 412

models using the following streaming metrics: 413

• Streaming F1: An accuracy metric scored in 414

the same way as the typical F1 score, albeit we 415

score the predictions for a single token over 416

the course of multiple time steps separately as 417

if they were predictions for separate tokens. 418

• Edit Overhead (EO) (Buß and Schlangen, 419

2011): A stability metric that measures the 420

5

Model Training Scheme Incremental Final output
F1 ↑ P ↑ R ↑ EO ↓ TTD ↓ AWT ↓ F1 ↑

BERTSV Full sequences 0.76 0.74 0.78 0.31 1.46 0.00 0.89
BERTSV All prefixes 0.76 0.73 0.78 0.32 1.37 0.00 0.89
Streaming BERTSV All prefixes 0.83 0.92 0.75 0.09 2.32 0.21 0.88
Models with lookahead ≥ 1

BERTSV (LA = 1) Full sequences 0.83 0.85 0.80 0.10 1.41 1.00 0.89
BERTSV (LA = 2) Full sequences 0.85 0.89 0.82 0.05 1.06 2.00 0.89
BERTSV (LA = 1) All prefixes 0.82 0.85 0.80 0.12 1.33 1.00 0.89
BERTSV (LA = 2) All prefixes 0.85 0.89 0.82 0.06 1.01 2.00 0.89

Table 1: Comparison of incremental performance on the Switchboard validation set of non-incremental small-
vocab BERT models (BERTSV) against that of a streaming small-vocab BERT model (streaming BERTSV). In the
lower half of the table we also list the evaluation results of non-incremental BERTSV models with fixed lookahead
(LA) window sizes of 1 and 2 tokens. Note that for the non-incremental models the lookahead window size is
equivalent to the average waiting time (AWT). The arrows near each metric represent the desirable direction of the
result: ↑ means the higher the performance the better and ↓ is the reverse.

average number of unnecessary edits, normal-421

ized by utterance length.422

• Time-to-detection (TTD) (Hough and423

Schlangen, 2017): A latency metric that is424

only computed on disfluent tokens that are425

classified correctly. It is the average amount426

of time (in number of tokens consumed) that427

the model requires before first detecting a428

disfluency. As mentioned earlier, we include429

both reparanda and interregna as disfluencies.430

• Average waiting time (AWT): The average431

amount of time (in number of tokens con-432

sumed) that the model waits for further input433

before making a prediction on a given token.434

For models with a fixed lookahead window,435

this is equivalent to the lookahead window436

size. For the streaming model, this is equiva-437

lent to the average lookahead window size.438

• First time to detection (FTD) (Zwarts et al.,439

2010; Rohanian and Hough, 2021): Similar440

to to the TDD metric described above with441

the main difference being that the latency (in442

number of words) is calculated starting from443

the onset of a gold standard repair.444

5 Results445

In this section we present a summary of both the446

non-incremental and incremental performance of447

our streaming model against that the baselines.448

We also present an analysis of the types of errors449

and average amount of waiting time the streaming450

model incurs.451

5.1 Incremental Performance 452

Table 1 shows both the incremental and non- 453

incremental evaluation metrics. Our proposed 454

streaming BERTSV model achieved a 9% increase1 455

in streaming F1 over both of the baselines (with 456

lookahead = 0), as well as a 71% and 72% decrease 457

in edit overhead compared to the non-streaming 458

models trained on full sequences and all prefixes, 459

respectively. Despite being trained with a differ- 460

ent architecture and loss objective, the streaming 461

model does not sacrifice its non-incremental per- 462

formance, yielding a final output F1 score that is 463

only one point less than its non-streaming coun- 464

terparts. Generally speaking, when the streaming 465

model does output a prediction, it classifies tokens 466

as disfluent less often than the non-streaming mod- 467

els with zero LA window, achieving much higher 468

precision (P) and marginally lower recall (R), re- 469

sulting in a model that "flickers“ less frequently. 470

However, this does contribute to a higher time- 471

to-detection score, since the streaming model is 472

generally less aggressive but more precise with 473

outputting disfluent predictions than the baseline 474

models. 475

Effect of lookahead window size We also 476

evaluated the performance of the non-streaming 477

baseline models with fixed lookahead window sizes 478

of 1 and 2 tokens, as shown in the lower half of 479

Table 1. In line with what has been reported in 480

past work (Madureira and Schlangen, 2020; Buß 481

1All percentages mentioned in this section are computed as
a percentage of the original number, rather than as a difference
in percentage points.

6

Time
step

Model outputs

3
Input: “I think [the real,”
Output: “I think the real”

4
Input: “I think [the real, + the”
Output: “I think the <WAIT>”

5
Input: “I think [the real, + the princi-
pal]”
Output: “I think <DIS> <DIS> the
principal”

Table 2: Example of the model’s outputs at each time
step. (For brevity, we excerpt only a segment of the sen-
tence that contains disfluencies.) A <WAIT> symbol
indicates that the model decided to stop making predic-
tions for the rest of the input sequence and to wait for
further input instead. A <DIS> symbol indicates that
the corresponding input token was given a classifica-
tion of disfluent and therefore not included in the final
edited output. For clarity we provide disfluency annota-
tions in the form [Reparandum, + Repair], but
these are not actually provided to the model as input.

Type of disfluency Average wait time
Repair 0.74
Fluent 0.15
Interregnum 1.06
Reparandum 0.76
Edit 0.14
Repair onset 0.46

Table 3: The streaming model’s average waiting time
(in number of tokens) for each type of token (as cate-
gorized in Marcus et al. (1999)) encountered in each
prefix fed to the model for the Switchboard validation
set. For a more fine-grained analysis, we separate the
repair onset (the first word in the repair phrase) from
the rest of the words in the repair. The category “Edit”
consists of all edit terms that are not interregna (i.e. not
inside of a repair structure).

and Schlangen, 2011), the size of the lookahead482

window scales directly with the accuracy and sta-483

bility and inversely with the latency of the model.484

However, the streaming model has comparable485

streaming F1 and edit overhead scores as the non-486

streaming models with lookahead window size of487

1, even though the streaming model has an average488

wait time (or average lookahead window size) of489

only 0.21 tokens. This indicates that the streaming490

model is able to correctly classify tokens sooner491

and with more stability than the baseline models492

that have lookahead window size of 1. However,493

the baseline models that have lookahead window494

size of 2 are able to achieve higher F1, lower edit 495

overhead, and lower time-to-detection than the 496

streaming model. 497

The utility of dynamic lookahead The re- 498

sults in Table 1 also reveal some insights into which 499

parts of the model design and training scheme are 500

more important for streaming performance and ef- 501

ficiency. Merely training a non-streaming model 502

on prefixes of the training examples appears to 503

have minimal effect on F1, precision, and recall, 504

but does somewhat improve the time-to-detection 505

score. We hypothesize that this is largely the re- 506

sult of training on a data distribution that more 507

closely resembles the test distribution. Adding the 508

extra wait classifier head and latency cost term in 509

the training objective yields the greatest improve- 510

ments in both precision and stability, as seen in 511

the differences in F1, P , and EO values between 512

the BERTSV model trained on all prefixes and the 513

streaming BERTSV model. 514

When to wait Since the streaming model can 515

abstain from outputting predictions for arbitrarily 516

long suffixes of the input, it incurs waiting time - an 517

average of 0.21 tokens more than the non-streaming 518

models with 0 lookahead. Table 3 shows that the 519

streaming model abstains the most when encounter- 520

ing interregna and reparanda, waiting for approx- 521

imately 1.06 and 0.76 more tokens, respectively. 522

Given that it is easier to identify a disfluency once 523

the entire reparandum and interregnum have been 524

observed, it follows that the model’s predictions 525

may be more uncertain for reparanda and inter- 526

regna upon first consumption, thus incurring the 527

highest average waiting times. An example of the 528

model’s incremental outputs for a disfluency struc- 529

ture is shown in Table 2. For correctly classified 530

disfluent tokens, the streaming model also has a 531

higher time-to-detection score, likely because the 532

non-incremental models are more aggressive in pre- 533

dicting disfluent labels (while making more errors) 534

than the streaming model. 535

5.2 Error Analysis 536

Figure 3 shows an error analysis on the models’ 537

predictions. We computed the percentage of the 538

time that the streaming model misclassified a token, 539

counting each incidence of the token across each 540

time step separately. All models achieved the low- 541

est misclassification rates on fluent and edit tokens, 542

and the highest misclassification rates on reparanda 543

tokens. For tokens that were fluent, edit terms, or 544

7

Model Training Scheme Incremental metrics
EO↓ FTD↓

BERTLARGE (Rohanian and Hough, 2021) All prefixes 0.60 0.31
BERTSV Full sequences 0.30 0.79
BERTSV All prefixes 0.32 0.84
Streaming BERTSV All prefixes 0.09 0.11

Table 4: A comparison of the EO and FTD metrics of our baselines (BERTSV trained on full sequences and all
prefixes), our streaming BERTSV model, and Rohanian and Hough (2021)’s incrementalized BERTLARGE model
on the Switchboard test set. The arrows near each metric represent the desirable direction of the result – for both
of the metrics, lower numbers are more desirable.

Figure 3: Token-wise misclassification rates for each
type of disfluency annotation (as categorized in Mar-
cus et al. (1999)) across all three evaluated models on
the Switchboard validation set. If the model abstained
from making a prediction on a particular token, we did
not count this as an error.

part of a repair or repair onset, the streaming model545

achieved significantly lower misclassification rates546

than the baselines. However, all three models per-547

formed comparably on interregna and reparanda.548

Since we measure misclassification rate on every549

token at every time step, the high misclassification550

rates on reparanda are expected as it is often not fea-551

sible to detect a reparandum until an interregnum552

or repair onset has been seen.553

Accuracy versus latency In comparison to554

the baseline models with 0 lookahead, the stream-555

ing model makes the largest tradeoffs in accuracy556

versus latency for repair onsets and repairs, as557

shown by Figure 3 and Table 3. While the stream-558

ing model incurs average additional wait times of559

0.74 and 0.46 tokens for repairs and repair on-560

sets respectively, its misclassification rates are also561

approximately 85% and 82% less than the base-562

line models on repairs and repair onsets respec-563

tively. In addition, Table 1 demonstrates that the564

streaming model still achieves comparable F1 and 565

greater stability (lower EO) in comparison to the 566

non-streaming baselines with lookahead 1, despite 567

having an average wait time that is 79% shorter. 568

5.3 Comparison with Competitor Baselines 569

As shown in Table 4, in comparison with the 570

BERTLARGE-based prophecy decoding model pro- 571

posed in Rohanian and Hough (2021), our stream- 572

ing model achieves state-of-the-art stability (85% 573

decrease in EO) and latency (65% decrease in 574

FTD)2, despite having far fewer parameters. 575

6 Conclusion and Future Work 576

We have introduced a streaming BERT-based Trans- 577

former model that is capable of balancing accuracy 578

with latency by simultaneously making token-level 579

disfluency predictions and dynamically deciding 580

how large of a lookahead window to use. Our 581

approach improves both streaming accuracy and 582

output stability on an incremental disfluency de- 583

tection task. Furthermore, it incurs very low aver- 584

age latency in comparison with non-incremental 585

BERT models of the same size. Lastly, our model 586

requires minimal lookahead beyond disfluent re- 587

gions and achieves state-of-the-art edit overhead 588

and first-time-to-detection scores compared to past 589

work (Rohanian and Hough, 2021). 590

While the main focus of this paper has been on 591

developing a fast, accurate, and stable streaming 592

model for disfluency detection, our approach is gen- 593

eral enough to be used in other incremental tagging 594

models of linguistic phenomena that benefit from 595

the right context for optimal accuracy. In future 596

work we are interested in applying this approach to 597

tasks such as real-time punctuation prediction and 598

incremental parsing. 599

2In addition to shorter word-level latency metrics presented
in the results, the runtime latency of the BERTSV model is 80%
lower than that of BERTBASE (Rocholl et al., 2021).

8

References600

Nguyen Bach and Fei Huang. 2019. Noisy BiLSTM-601
based models for disfluency detection. In Proceed-602
ings of Interspeech 2019, pages 4230–4234.603

Timo Baumann Okko Buß and David Schlangen. 2011.604
Evaluation and optimisation of incremental proces-605
sors. Dialogue & Discourse, 2(1):113–141.606

Eugene Charniak and Mark Johnson. 2001. Edit detec-607
tion and parsing for transcribed speech. In Second608
Meeting of the North American Chapter of the Asso-609
ciation for Computational Linguistics.610

Qian Chen, Mengzhe Chen, Bo Li, and Wen Wang.611
2020. Controllable time-delay transformer for real-612
time punctuation prediction and disfluency detection.613
In ICASSP 2020 - 2020 IEEE International Confer-614
ence on Acoustics, Speech and Signal Processing615
(ICASSP), pages 8069–8073.616

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and617
Kristina Toutanova. 2019. BERT: Pre-training of618
deep bidirectional transformers for language under-619
standing. In Proceedings of the 2019 Conference620
of the North American Chapter of the Association621
for Computational Linguistics: Human Language622
Technologies, Volume 1 (Long and Short Papers),623
pages 4171–4186, Minneapolis, Minnesota. Associ-624
ation for Computational Linguistics.625

J.J. Godfrey, E.C. Holliman, and J. McDaniel. 1992.626
Switchboard: telephone speech corpus for research627
and development. In [Proceedings] ICASSP-92:628
1992 IEEE International Conference on Acoustics,629
Speech, and Signal Processing, volume 1, pages630
517–520 vol.1.631

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,632
Greg Kochanski, John Karro, and D. Sculley. 2017.633
Google vizier: A service for black-box optimiza-634
tion. In Proceedings of the 23rd ACM SIGKDD635
International Conference on Knowledge Discovery636
and Data Mining, KDD ’17, page 1487–1495, New637
York, NY, USA. Association for Computing Machin-638
ery.639

Aditya Gupta, Jiacheng Xu, Shyam Upadhyay, Diyi640
Yang, and Manaal Faruqui. 2021. Disfl-QA: A641
benchmark dataset for understanding disfluencies in642
question answering. In Findings of the Association643
for Computational Linguistics: ACL-IJCNLP 2021,644
pages 3309–3319, Online. Association for Computa-645
tional Linguistics.646

Hany Hassan, Lee Schwartz, Dilek Hakkani-Tür, and647
Gokhan Tur. 2014. Segmentation and disfluency648
removal for conversational speech translation. In649
Fifteenth Annual Conference of the International650
Speech Communication Association.651

Julian Hough and David Schlangen. 2015. Recurrent652
Neural Networks for Incremental Disfluency Detec-653
tion. In Interspeech 2015, pages 849–853.654

Julian Hough and David Schlangen. 2017. Joint, incre- 655
mental disfluency detection and utterance segmenta- 656
tion from speech. In Proceedings of the 15th Con- 657
ference of the European Chapter of the Association 658
for Computational Linguistics: Volume 1, Long Pa- 659
pers, pages 326–336, Valencia, Spain. Association 660
for Computational Linguistics. 661

Paria Jamshid Lou and Mark Johnson. 2020. End-to- 662
end speech recognition and disfluency removal. In 663
Findings of the Association for Computational Lin- 664
guistics: EMNLP 2020, pages 2051–2061, Online. 665
Association for Computational Linguistics. 666

Patrick Kahardipraja, Brielen Madureira, and David 667
Schlangen. 2021. Towards incremental transform- 668
ers: An empirical analysis of transformer models for 669
incremental nlu. 670

Brielen Madureira and David Schlangen. 2020. In- 671
cremental processing in the age of non-incremental 672
encoders: An empirical assessment of bidirectional 673
models for incremental NLU. In Proceedings of 674
the 2020 Conference on Empirical Methods in Natu- 675
ral Language Processing (EMNLP), pages 357–374, 676
Online. Association for Computational Linguistics. 677

Mitchell P. Marcus, Beatrice Santorini, Mary Ann 678
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3. 679

Alec Radford, Jeff Wu, Rewon Child, David Luan, 680
Dario Amodei, and Ilya Sutskever. 2019. Language 681
models are unsupervised multitask learners. 682

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 683
ine Lee, Sharan Narang, Michael Matena, Yanqi 684
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring 685
the limits of transfer learning with a unified text-to- 686
text transformer. Journal of Machine Learning Re- 687
search, 21(140):1–67. 688

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. 689
Know what you don’t know: Unanswerable ques- 690
tions for SQuAD. In Proceedings of the 56th An- 691
nual Meeting of the Association for Computational 692
Linguistics (Volume 2: Short Papers), pages 784– 693
789, Melbourne, Australia. Association for Compu- 694
tational Linguistics. 695

Johann C. Rocholl, Vicky Zayats, Daniel D. Walker, 696
Noah B. Murad, Aaron Schneider, and Daniel J. 697
Liebling. 2021. Disfluency Detection with Unla- 698
beled Data and Small BERT Models. In Proc. In- 699
terspeech 2021, pages 766–770. 700

Morteza Rohanian and Julian Hough. 2020. Re- 701
framing incremental deep language models for di- 702
alogue processing with multi-task learning. In 703
Proceedings of the 28th International Confer- 704
ence on Computational Linguistics, pages 497–507, 705
Barcelona, Spain (Online). International Committee 706
on Computational Linguistics. 707

Morteza Rohanian and Julian Hough. 2021. Best of 708
both worlds: Making high accuracy non-incremental 709
transformer-based disfluency detection incremental. 710

9

https://doi.org/10.21437/Interspeech.2019-1336
https://doi.org/10.21437/Interspeech.2019-1336
https://doi.org/10.21437/Interspeech.2019-1336
https://doi.org/10.5087/dad.2011.106
https://doi.org/10.5087/dad.2011.106
https://doi.org/10.5087/dad.2011.106
https://aclanthology.org/N01-1016
https://aclanthology.org/N01-1016
https://aclanthology.org/N01-1016
https://doi.org/10.1109/ICASSP40776.2020.9053159
https://doi.org/10.1109/ICASSP40776.2020.9053159
https://doi.org/10.1109/ICASSP40776.2020.9053159
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.18653/v1/2021.findings-acl.293
https://doi.org/10.18653/v1/2021.findings-acl.293
https://doi.org/10.18653/v1/2021.findings-acl.293
https://doi.org/10.18653/v1/2021.findings-acl.293
https://doi.org/10.18653/v1/2021.findings-acl.293
https://aclanthology.org/E17-1031
https://aclanthology.org/E17-1031
https://aclanthology.org/E17-1031
https://aclanthology.org/E17-1031
https://aclanthology.org/E17-1031
https://doi.org/10.18653/v1/2020.findings-emnlp.186
https://doi.org/10.18653/v1/2020.findings-emnlp.186
https://doi.org/10.18653/v1/2020.findings-emnlp.186
http://arxiv.org/abs/2109.07364
http://arxiv.org/abs/2109.07364
http://arxiv.org/abs/2109.07364
http://arxiv.org/abs/2109.07364
http://arxiv.org/abs/2109.07364
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.35111/GQ1X-J780
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.21437/Interspeech.2021-351
https://doi.org/10.21437/Interspeech.2021-351
https://doi.org/10.21437/Interspeech.2021-351
https://doi.org/10.18653/v1/2020.coling-main.43
https://doi.org/10.18653/v1/2020.coling-main.43
https://doi.org/10.18653/v1/2020.coling-main.43
https://doi.org/10.18653/v1/2020.coling-main.43
https://doi.org/10.18653/v1/2020.coling-main.43
https://doi.org/10.18653/v1/2021.acl-long.286
https://doi.org/10.18653/v1/2021.acl-long.286
https://doi.org/10.18653/v1/2021.acl-long.286
https://doi.org/10.18653/v1/2021.acl-long.286
https://doi.org/10.18653/v1/2021.acl-long.286

In Proceedings of the 59th Annual Meeting of the711
Association for Computational Linguistics and the712
11th International Joint Conference on Natural Lan-713
guage Processing (Volume 1: Long Papers), pages714
3693–3703, Online. Association for Computational715
Linguistics.716

Igor Shalyminov, Arash Eshghi, and Oliver Lemon.717
2017. Challenging neural dialogue models with nat-718
ural data: Memory networks fail on incremental phe-719
nomena. In Proceedings of the 21st Workshop on the720
Semantics and Pragmatics of Dialogue - Full Papers,721
Saarbrücken, Germany. SEMDIAL.722

Igor Shalyminov, Arash Eshghi, and Oliver Lemon.723
2018. Multi-task learning for domain-general spo-724
ken disfluency detection in dialogue systems. In725
Proceedings of the 22nd Workshop on the Semantics726
and Pragmatics of Dialogue - Full Papers, Aix-en-727
Provence, France. SEMDIAL.728

Elizabeth Shriberg, Rebecca Bates, and Andreas Stol-729
cke. 1997. A prosody only decision-tree model for730
disfluency detection. In Fifth European Conference731
on Speech Communication and Technology.732

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob733
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz734
Kaiser, and Illia Polosukhin. 2017. Attention is all735
you need. In Advances in Neural Information Pro-736
cessing Systems, volume 30. Curran Associates, Inc.737

Vicky Zayats, Mari Ostendorf, and Hannaneh Ha-738
jishirzi. 2016. Disfluency detection using a bidirec-739
tional LSTM. CoRR, abs/1604.03209.740

Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny741
Zhou. 2021. Extremely small BERT models from742
mixed-vocabulary training. In Proceedings of the743
16th Conference of the European Chapter of the744
Association for Computational Linguistics: Main745
Volume, pages 2753–2759, Online. Association for746
Computational Linguistics.747

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-748
dinov, Raquel Urtasun, Antonio Torralba, and Sanja749
Fidler. 2015. Aligning books and movies: Towards750
story-like visual explanations by watching movies751
and reading books. In Proceedings of the IEEE In-752
ternational Conference on Computer Vision (ICCV).753

Simon Zwarts, Mark Johnson, and Robert Dale. 2010.754
Detecting speech repairs incrementally using a noisy755
channel approach. In Proceedings of the 23rd Inter-756
national Conference on Computational Linguistics757
(Coling 2010), pages 1371–1378, Beijing, China.758
Coling 2010 Organizing Committee.759

10

http://semdial.org/anthology/Z17-Shalyminov_semdial_0016.pdf
http://semdial.org/anthology/Z17-Shalyminov_semdial_0016.pdf
http://semdial.org/anthology/Z17-Shalyminov_semdial_0016.pdf
http://semdial.org/anthology/Z17-Shalyminov_semdial_0016.pdf
http://semdial.org/anthology/Z17-Shalyminov_semdial_0016.pdf
http://semdial.org/anthology/Z18-Shalyminov_semdial_0008.pdf
http://semdial.org/anthology/Z18-Shalyminov_semdial_0008.pdf
http://semdial.org/anthology/Z18-Shalyminov_semdial_0008.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1604.03209
http://arxiv.org/abs/1604.03209
http://arxiv.org/abs/1604.03209
https://aclanthology.org/2021.eacl-main.238
https://aclanthology.org/2021.eacl-main.238
https://aclanthology.org/2021.eacl-main.238
https://aclanthology.org/C10-1154
https://aclanthology.org/C10-1154
https://aclanthology.org/C10-1154

A Appendix760

A.1 Hyperparameter Tuning761

We fine-tuned all model hyperparameters using762

Vizier (Golovin et al., 2017), a black-box optimiza-763

tion system, using performance on the Switchboard764

validation set as our objective. The searched ranges765

for each hyperparameter were learning rate ∈766

[1×10−5, 1×10−1], number of training epochs ∈767

[12, 20], λ ∈ [1×10−8, 1×10−6], γ ∈ [1, 10]. For768

most experiments we ran 30 trials total, with 10769

evaluations in parallel. Each individual trial (one770

set of hyper-parameters) ran on a single NVIDIA771

P100 GPU. Experimental run time varied from772

about 13 to 24 hours, depending mostly on the773

number of epochs. For each model variant we774

present only the results from the configuration with775

the highest streaming F1 score on the Switchboard776

validation dataset. Our best performing streaming777

model used parameter values of λ = 1.5 × 10−7,778

learning rate 1.2 × 10−4, γ = 1.9, training batch779

size 8, and 12 epochs.780

11

