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Abstract

We give an algorithm for learning O(log n) juntas in polynomial-time with respect
to Markov Random Fields (MRFs) in a smoothed analysis framework where only
the external field has been randomly perturbed. This is a broad generalization1 of
the work of Kalai and Teng, who gave an algorithm that succeeded with respect
to smoothed product distributions (i.e., MRFs whose dependency graph has no
edges). Our algorithm has two phases: (1) an unsupervised structure learning
phase and (2) a greedy supervised learning algorithm. This is the first example
where algorithms for learning the structure of undirected graphical models have
downstream applications to supervised learning.

1 Introduction

A function f : {0, 1}n → {0, 1} is a k-junta if it depends only on k of the n input coordinates. The
junta learning problem, introduced by Blum and Langley [Blu94, BL97] in 1994, is as follows: given
random samples labeled by an unknown k-junta, output a classifier that closely approximates the
k-junta. The problem of learning k-juntas is one of the most well-studied problems in computational
learning theory over the last three decades. It is considered a notoriously difficult challenge to learn
juntas with runtime and sample complexity no(k) and has important applications in pseudorandomness
and cryptography (e.g., [ABW10])

The problem of learning juntas highlights the difficulty of designing learning algorithms that can
succeed in the presence of a large number of irrelevant features (i.e., the n− k irrelevant coordinates).
Most prior work has focused on learning juntas when the marginal distribution is uniform over the
hypercube. Observe that a brute force search over all subsets of k variables is possible in time O(

(
n
k

)
).

In the search for faster algorithms, [MOS04, Val12] gave algorithms that run in time approximately
n0.7k, n0.6k respectively when given uniform random examples. There is evidence to suggest that
a runtime of nΩ(k) is unavoidable, as there is a lower bound of

(
n
k

)
in the statistical query (SQ)

framework of Kearns [Kea93] and also cryptographic lower bounds [ABW10]. It is a major open
problem to find an algorithm for this problem with run time and sample complexity no(k).

1.1 Beyond the Worst Case: Smooth Product Distributions

To bypass the above hardness results, learning juntas has been studied in the smoothed analysis
framework of Spielman and Teng [ST04]. In particular, Kalai and Teng [KT08] introduced the notion
of a (c, σ)-smooth product distribution, which is a product distribution with mean vector of the
form µ = µ̄+∆ where µ̄ ∈ [−c, c]n is adversarially chosen and ∆ is randomly sampled from the
uniform distribution on [−σ, σ]n. Under these smoothed distributions (with high probability over the
smoothing), they showed that it is possible to learn depth k decision trees in time poly(2k, n)2.

1the generalization is in the distributional assumption, Kalai and Teng’s result also gives a polynomial time
learning algorithm for log-depth decision trees.

2A similar statement for juntas was also observed in [MOS04], see Fact 15
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The main takeaway from their result is that if the marginal distribution is a slightly perturbed version
of the uniform distribution, the task of junta learning becomes easy. This suggests that the lower
bound for learning juntas is extremely brittle and that juntas are efficiently learnable over most
product distributions.

A major drawback of all the aforementioned results is that they require the marginal distribution to be
product. It is not clear how realistic this assumption is, as most real world data has interdependencies
between variables. In [KST09], the authors asked if the smoothed analysis paradigm could be
extended beyond product distributions.

We answer this question positively, and our main contribution is an efficient algorithm for learning
O(log n) juntas with respect to Markov Random Fields (MRFs) with O(log n)-degree dependency
graphs and smoothed external fields. This is a broad generalization of the Kalai et al. result, as
(smoothed) product distributions correspond to trivial MRFs where the underlying dependency graph
has no edges.

1.2 Beyond Products: Markov Random Fields

The class of distributions we study are undirected graphical models, also known as Markov Random
Fields. These models– most famously the Ising model– have played a central role in probabilistic
modeling and statistical physics.
Definition 1.1 (Undirected Graphical Model). An undirected graphical model D with dependency
graph G is a probability distribution over {0, 1}n such that for X ∼ D, Xi is conditionally indepen-
dent of the remaining coordinates of X when the conditioning is on {Xj | (i, j) is an edge in G}.

By the Hammersley-Clifford Theorem [CH71], every distribution satisfying the above property (with
the additional assumption that the density is positive everywhere) has a density function of the
following form:

Pr
X∼D

[X = x] ∝ exp

 ∑
S∈C(G)

ψS(x)

 = exp (ψ(x)) (1)

where t ∈ [n], C(G) is the set of cliques of G and ψS are functions that only depend on the
coordinates of x in S. Any distribution of the above form is called a Markov Random Field. The
factorization ψ of D is a polynomial of degree at most d where d is the degree of G. The famous
Ising model corresponds to the case when the degree of ψ is two. The linear part of the polynomial ψ
is called the external field.

As mentioned above, these distributions strictly generalize product distributions. A product distribu-
tion is a graphical model where the graph contains only isolated vertices. The uniform distribution
corresponds to an MRF with factorization ψ = 0. An arbitrary product distribution corresponds to an
MRF with a linear function as the factorization.

Note that again, a brute force algorithm running in time O(
(
n
k

)
) exists for learning juntas over MRF

distributions. The question we investigate is if runtimes of the form poly(2k, n) are possible for
perturbed versions of these distributions. We show that this is indeed the case for the following notion
of (λ, σ)-smooth MRFs where the external field of an adversarially chosen MRF is perturbed.
Definition 1.2 ((σ, λ)-smooth MRF). Let λ ∈ R and σ ∈ (0, 1/2). A Markov random field D is a
(σ, λ)-smooth MRF if the factorization polynomial of D, denoted by ψ is of the form

ψ(x) := ψ̄(x) +

n∑
i=1

∆ixi

where ∆i = log(1 + αi) for iid αi ∼ Unif([−σ, σ]) and
∥∥∂iψ̄∥∥1 ≤ λ for all i ∈ [n].

In the above definition, ψ̄ is the factorization of the adversarially chosen MRF and the upper bound
on the norm of its derivatives is a standard assumption. This can be interpreted as a multiplicative
perturbation of the density function as we have that

Pr
X∼D

[X = x] ∝ Pr
X∼D̄

[X = x]
∏
i∈[n]

(1 + αixi)
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where D̄ is the MRF with factorization ψ̄. We note that we only perturb the external field (as
compared to perturbing all coefficients) of the adversarially chosen factorization polynomial in this
model. We show that this mild perturbation is sufficient for efficient learnability. We also note that the
bound

∥∥∂iψ̄∥∥1 ≤ λ is a natural non-degeneracy condition and is a generalization of the condition of
p-biasedness (see Claim 2.4) which prior work [KT08, KST09, BDM20] assume for smooth product
distributions. Markov random fields with such a bound on derivatives are sometimes referred to
as bounded width models and are exactly the class of MRFs for which efficient structure learning
(dependency graph recovery) results are possible [Bre15, KM17, HKM17, VMLC16, SW12].

1.3 Our Results

We now state our theorem on junta learning over smooth Markov random fields.

Theorem 1.3. Let D be a labelled distribution such that the marginal distribution is a (λ, σ)-smooth
MRF with a known dependency graph G of degree at most d and the labelling function is a k-junta.
Then, Algorithm 2 run with N = Ω(poly(log n, exp(λ(d+ k)), 2d+k, σ−k, 1/δ)) samples from D,
graph G and appropriately chosen threshold will run in time at most poly(n,N) and learn the junta
exactly, with probability at least 1 − δ over the samples and smoothing of D. In particular, for
d, k ≤ O(log n) and λ, σ = O(1), the algorithm runs in polynomial time.

This addresses an open question raised in [KST09] about extending their smoothed analysis frame-
work beyond product distributions.

Remark 1.4. In the setting where the dependency graph G is not known, one can first recover G
using existing structure learners for bounded-degree MRFs [KM17, HKM17] and then apply our
algorithm. The sample complexity and run-time of these algorithms are poly(nt, 2λ), where t is the
degree of the factorization polynomial of the MRF. This preprocessing is required only once and can
be reused across multiple supervised learning tasks with respect to the same distribution. We note
that to the best of our knowledge, this is the first example where algorithms for structure learning
graphical models have downstream applications to supervised learning.

Remark 1.5. Our result is also tolerant to random classification noise as the underlying algorithm
falls in the Statistical Query (SQ) framework [Kea93].

1.4 Related Work

Learning and Testing Juntas The problem of learning juntas was introduced by Blum and Langley
[Blu94, BL97] in 1994. The first non-trivial algorithm for learning over the uniform distribution
was given by Mossel, O’Donnell, and Servedio [MOS04] who improved the naive

(
n
k

)
runtime from

exhaustive search to roughly n0.7k. This run-time was improved by Valiant [Val12] to approximately
n0.6k. The nΩ(k) runtime is widely believed to be optimal for uniform distribution learning, as there
are statistical query and cryptographic lower bounds [Kea93, ABW10]. Another well studied problem
related to juntas is that of junta testing. Here, the goal is to identify if an input function is a junta, or
far from one, where the algorithm is given query access. The first algorithm was given by Parnas,
Ron and Samorodnitsky [PRS01] where they give an algorithm for dictator (1-junta) testing. The
first algorithm for k-junta testing was given by Fischer et al. [FKR+04] and later improved to almost
optimal query complexity by Blais [Bla08, Bla09].

Smoothed Analysis and Learning The study of smoothed analysis of algorithms was initiated
by Spielman and Teng [ST04] to theoretically study the empirical success of the Simplex algorithm
which has exponential worst case run time. Their framework has subsequently been applied to
various settings to analyze the good average case performance of various algorithms which have
intractable worst case performance. Applying this framework to learning theory, Kalai and Teng
[KT08] gave a polynomial time algorithm for PAC learning O(log n)-depth decision trees over
smoothed product distributions. Kalai, Samorodnitsky and Teng [KST09] extended the idea to
polynomial time algorithms for PAC learning DNFs and agnostically learning decision trees with
random examples. Brutzkus, Daniely and Malach [BDM20] proved that the empirically successful
ID3 algorithm efficiently learns juntas over these distributions. More recent work applying the
framework of smoothed analysis to learning theory include [HRS20, HRS22, CKK+24].
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Learning from Random Walk Examples A complementary beyond worst case model for super-
vised learning is that of learning from random walk samples. This was introduced by Bshouty et
al. [BMOS03] where they give a polynomial time algorithm for PAC learning DNFs when given
correlated samples corresponding to consecutive steps of an appropriate random walk over the cube
whose stationary distribution is uniform. An algorithm for agnostic O(log n)-juntas in polynomial
time over the same model was given by Jackson and Wimmer [JW09]. This framework was further
generalized to MRFs by Kanade and Mossel [KM15] where they give a polynomial time algorithm
for learning O(log n)-juntas but require correlated samples from a rapidly mixing Gibbs random
walk whose stationary distribution is an MRF. We note that our algorithm requires only i.i.d. samples
from the underlying MRF.

Learning Markov Random Fields Starting with the work of Chow and Liu [CL68] on learning
tree Ising models, the problem of learning graphical models has been studied extensively [WLR06,
AKN06, BMS08, NBSS10, TR14]. Bresler [Bre15] obtained the first efficient structure learning
algorithm for Ising models over bounded degree graphs, although with suboptimal sample complexity.
This algorithm was generalized to higher order MRFs by Hamilton, Koehler and Moitra [HKM17].
Vuffray et al. [VMLC16] gave the first algorithm for learning Ising models with near-optimal sample
complexity but with suboptimal runtime. Klivans and Meka [KM17] gave the first algorithm that
achieves both near-optimal runtime and sample complexity. Other recent related works on structure
learning MRFs in various settings include [WSD19, GKK19, PSBR20, MMS21, DKSS21, DDDK21,
BGPV21, GMM24, CK24].

2 Preliminaries

Definition 2.1 (k-junta). A function f : {0, 1}n → 0, 1 is said to be a k-junta if there exists a function
g : {0, 1}k → {0, 1} and a set S ⊆ [n] with |S| = k such that f(x) := g(xS).

Given a graph G, we use NG(i) to denote the neighbours of i in G. Given a distribution D with
random variable x ∼ D, we use Ex∼D[.] to denote expectations over these variables. We drop the
distribution and random variable from the subscript when it is clear from context. Similarly, given a
set S, we use ES [.] to denote the expectation over the uniform distribution on the set S.

A useful property that we require is that of δ-unbiasedness.

Definition 2.2 (Unbiased distributions). Let δ ∈ [0, 1]. A distribution D is said to be δ-unbiased if
for all b ∈ {0, 1}, i ∈ [n] and x ∈ {0, 1}n−1, it holds that

Pr
X∼D

[Xi = b | X−i = x] ≥ δ

Fact 2.3. Let D be an MRF with factorization polynomial ψ. Then, for i ∈ [n] and x ∈ {0, 1}n−1, it
holds that PrX∼D[Xi = 1 | X−i = x] = σ(∂iψ(x)).

It is easy to see that the MRFs we consider in this paper are sufficiently unbiased (proof in Ap-
pendix A).

Claim 2.4. Let D be a (σ, λ)-smooth MRF for λ ∈ R and σ ∈ (0, 1/2). Then, it holds that D is
exp(−λ)

4 -unbiased.

The following is a useful consequence of the unbiasedness property (proof in Appendix A).

Lemma 2.5. Let δ ∈ (0, 1). Let D be a δ-unbiased distribution. Then, for any sets S, T ⊆ [n] such
that S ∩ T = ϕ and any y ∈ {0, 1}|S|, z ∈ {0, 1}|t|, it holds that PrX∼D[XT = t | XS = s] ≥ δ|T |

3 Algorithm and Analysis

Throughout this section, let f be the ground truth junta that depends on k bits. Let Dx denote the
marginal distribution. The joint distribution over features and labels, denoted by D, is a distribution
on {0, 1}n × {0, 1}, where (x, y) drawn from D is obtained by sampling x from Dx and setting
y = f(x).
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3.1 Prior Work: Learning over Smooth Product Distributions

Before describing our algorithm for learning juntas over smooth MRFs, we first discuss the prior work
on learning juntas over smooth product distributions [KT08, MOS04, BDM20] and explain how their
algorithms work. LetDx be a product distribution with E[xi] = µi+∆i for all i where ∆i is uniform
in [−σ, σ]. They first define the quantity I(i) as I(i) := |E(x,y)∼D[yxi]−E(x,y)∼D[y]Ex∼Dx [xi]| for
any index i ∈ [n]. Observe that f can always be uniquely expressed as f(x) = xi ·gi(x−i)+hi(x−i)
where gi and hi depend on at most k − 1 variables. Also, xi is a relevant variable if and only if gi is
non-zero. They showed that

I(i) = |E[yxi]− E[y]E[xi]| =
∣∣E[xi]E[f(x) | xi = 1]− E[f(x)]E[xi]

∣∣
=

∣∣E[xi]∣∣ · ∣∣E[gi(x−i) | x1 = 1] · (1− E
D
[xi]) + E[hi(x−i) | xi = 1]− E[hi(x−i)]

∣∣
=

∣∣E[xi](1− E[xi]) · E[gi(x−i)]
∣∣= |E[xi](1− E[xi])| · |gi((µ+∆)−i)| . (2)

The first three equalities follow from the fact that f(x) = xi · gi(x−i) + hi(x−i). The penultimate
equality uses the fact that xi is independent from x−i and hence E[hi(x−i) | xi = 1] = E[hi(x−i)].
The last equality follows from treating the function gi as a polynomial of degree at most k − 1 and
using the product nature of the distribution to conclude that E[

∏
i∈S xi] =

∏
i∈S(µi +∆i). Thus, to

lower bound I(i), it suffices to lower bound gi((µ +∆)−i)). Clearly, we have that I(i) = 0 for i
that is not relevant as gi is the zero polynomial. For relevant i, they used the following lemma from
[KT08] on anticoncentration of polynomials to show that I(i) ≥ δ2(σ)2k with probability at least
1− δ (for more details, see the proof of Lemma 11 in [BDM20]).

Lemma 3.1 (Lemma 4 from [KST09]). Let c, σ ∈ R. Let p : Rn → R be degree ℓ multilinear
polynomial p(x) :=

∑
|S|≤ℓ p̂(S)

∏
i∈S xi. Suppose there exists a set S with |S| = ℓ and |p̂(S)| ≥ c.

Then. for iid xi ∼ Unif([−σ, σ]), it holds that

Pr
X∼Unif([−σ,σ]n)

[|p(X)| ≤ cσℓ · ϵ] ≤ 2ℓ
√
ϵ.

Since I(i) is sufficiently large for relevant indices, by taking empirical estimates of this statistic from
poly((2/σ)k) samples, one can find the relevant variables. Then, given the set of k relevant variables,
even a brute force algorithm (constructing a truth table for all 2k possible combinations) has sample
complexity and runtime that only scales with poly(n, (2/σ)k).

3.2 Learning Over Smooth MRFs: Our Techniques

The product structure was crucial in the previous subsection for two main reasons. First, it was used
to argue that E[gi(x−i)] is a polynomial in µ + ∆. Second, the independence of xi and x−i was
essential in showing that I(i) = 0 for irrelevant indices. The former was important to guarantee non
trivial correlation for relevant indices, while the latter was essential for distinguishing relevant from
irrelevant variables.

We now try to extend this approach beyond products. Henceforth, the marginal distribution Dx that
we consider is a (σ, λ)-smooth MRF (Definition 1.2) with factorization ψ. By our definition of smooth
MRFs, we will show with additional technical work that the first property (E[gi] is a polynomial in
perturbations) from earlier is still qualitatively true when we move beyond product distributions. In
contrast, the second (I(i) = 0 for irrelevant variables) is more fundamentally tied to product structure
and does not extend to general distributions. Non-product distributions inherently allow correlations
between variables, so an index that is irrelevant to a junta may still exhibit non-trivial correlation with
the label. As a result, any algorithm that selects variables purely based on their correlation with the
labels risks including irrelevant variables. To address this, we must go beyond the correlation statistic
I(i).

Before we can go further, we need some additional notation. A restriction is a string ρ ∈ {0, 1, ∗}n.
Let supp(ρ) denote the support of the restriction defined as supp(ρ) = {i ∈ [n] | ρi ̸= ∗}. The
size of a restriction ρ denoted by |ρ| is the size of the set supp(ρ). Given a distribution D on
{0, 1}n and a restriction ρ, the restricted distribution Dρ is obtained by conditioning D on the event
{Xi = ρi, for all i ∈ supp(ρ) }. Similarly, given a set S ⊆ {0, 1}n and a restriction ρ ∈ {0, 1, ∗},
we use Sρ to denote the set Sρ := {x ∈ S | xi = ρi, for all j ∈ supp(ρ)}. Given a function
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f : {0, 1}n → {0, 1} and a restriction ρ ∈ {0, 1, ∗}n, the restricted function fρ is defined as
fρ(x) := f(xρ).

To go past the correlation statistic and design an algorithm for learning over MRFs, we use a key
structural property of MRFs: the Markov property. Recall from Definition 1.1 that the variables xi
and x−i are conditionally independent when conditioned on xj∈NG(i) where G is the dependency
graph of the MRF. This property motivates the statistic of measuring correlation between xi and y
after conditioning by the neighbors of i. Formally, for i ∈ [n] and restricting ρ ∈ {0, 1, ∗}n with
supp(ρ) = NG(i), we define the statistic I(i, ρ) as I(i, ρ) :=

∣∣EDρ
[yxi]− EDρ

[y]EDρ
[xi]

∣∣ where
Dρ is the joint distribution conditioned on the event that xsupp(ρ) = ρsupp(ρ). Let R be the set of
relevant variables for f . We show the following properties for the statistic I(i, ρ):

1. for all i /∈ R, for all restrictions ρ with supp(ρ) = NG(i), it holds that I(i, ρ) = 0
(Claim 3.3),

2. for all i ∈ R, with probability 1− γ over the smoothing of Dx, there exists a restriction ρ
with supp(ρ) = NG(i) such that |I(i, ρ)| ≥ γ2 ·

(
(σ exp(−λ)/16)k+2

)
(Claim 3.4).

The first claim follows almost immediately from the Markov property. The second claim requires
more technical work as the MRF density is quite complicated when compared to the product example
sketched in Section 3.1. The proofs of these claims are in Section 3.3. Once we show these claims, the
rest of the algorithm is almost immediate: we estimate these statistics empirically for all indices and
all restrictions of their neighborhoods and pick the indices for which the statistic is large (Algorithm 1).
We note that sampling from these conditional distributions (using straightforward rejection sampling)
costs us an exp(λd) factor in the sample complexity (where d is the max degree of the dependency
graph).

Algorithm 1: FindRelevantVariables(S,G, τ)
1 Input: Sample set S ⊆ {0, 1}n × {0, 1}, Dependency Graph G, Threshold τ
2 Rel← ϕ
3 for i ∈ [n] do
4 for ρ ∈ {0, 1, ∗}n such that supp(ρ) = NG(i) do
5 IS(i, ρ)←

∣∣ESρ
[yxi]− ESρ

[y]ESρ
[xi]

∣∣
6 if |IS(i, ρ)| > τ then
7 Rel← Rel ∪ {i}
8 end
9 end

10 end
11 Return: Rel

Algorithm 2: LearnJunta(S,G, τ)
1 Input: Sample set S ⊆ {0, 1}n × {0, 1}, Dependency Graph G, threshold τ
2 Rel←FindRelevantVariables(S,G, τ)
3 Find Empirical Risk Minimizer f̂ out of all functions that only depend on Rel

4 Return: f̂

Finally, we run a brute force learner on these indices (Algorithm 2). This is where we use the fact that
these distributions are unbiased (Claim 2.4 and Lemma 2.5). More specifically, the brute-force learner
requires O(exp(λk)) samples (owing to unbiasedness) to see all possible fixings of the relevant
indices. This implies our main theorem (proof in Appendix B). Note that the final hypothesis we
output is exact and has zero error with high probability.

Theorem 3.2. Let D be a labelled distribution over {0, 1}n×{0, 1} such that Dx is a (λ, σ)-smooth
MRF with dependency graph G of degree at most d and the labelling function is a k-junta. Then,
Algorithm 2 run withN = Ω(poly(log n, exp(λ(d+k)), 2d+k, σ−k, 1/δ)) samples fromD, graphG
and appropriately chosen threshold τ will output a hypothesis f̂ such that E(x,y)∼D[f̂(x) ̸= y] = 0
with probability at least 1− δ over the samples and smoothing of D.
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3.3 Proofs

We now prove the two claims (Claim 3.3 and Claim 3.4). Recall that for each i ∈ [n], we have that
f(x) = xi · gi(x−i) + hi(x−i). For any ρ ∈ {0, 1, ∗}n with supp(ρ) = NG(i), we have that∣∣ E
Dρ

[yxi]− E
Dρ

[y] E
Dρ

[xi]
∣∣ = ∣∣ E

Dρ

[xi] E
Dρ

[f(x) | xi = 1]− E
Dρ

[f(x)] E
Dρ

[xi]
∣∣

=
∣∣ E
Dρ

[xi]
∣∣ · ∣∣ E

Dρ

[gi(x−i) | x1 = 1] · (1− E
Dρ

[xi]) + E
Dρ

[hi(x−i) | xi = 1]− E
Dρ

[hi(x−i)]
∣∣ .

We now use the Markov property. We have that for (x, y) ∼ Dρ with supp(ρ) = NG(i), it holds that
xi and x−i are independent. Thus, we have that EDρ

[hi(x−i) | xi = 1] = EDρ
[hi(x−i)]. Thus, we

obtain that
|I(i, ρ)| =

∣∣ E
Dρ

[xi] · (1− E
Dρ

[xi])
∣∣ · ∣∣ E

Dρ

[gi(x−i) | x1 = 1]
∣∣ = ∣∣ E

Dρ

[xi] · (1− E
Dρ

[xi])
∣∣ · ∣∣ E

Dρ

[gi(x−i)]
∣∣

(3)

Recall that for indices i not relevant to f , we have that gi = 0. Thus, we obtain the following claim.
Claim 3.3. Let i ∈ [n] be such that f does not depend on index i. For any restriction ρ with
supp(ρ) = NG(i), it holds that I(i, ρ) = 0.

We are now ready to prove that for every relevant index i, there is a restriction ρ of its neighbours such
that |I(i, ρ)| is sufficiently large. The first observation is that it suffices to bound EDρ [gi(x−i)] as the
distribution Dx is unbiased. After this the proof has two main parts. First, we show by writing out
the densities and using appropriate algebraic manipulations that this quantity is lower bounded by a
polynomial in the smoothing variables. Finally we use polynomial anticoncentration from Lemma 3.1
to complete the proof.
Claim 3.4. Let i ∈ [n] be such that f depends on index i. Then, there exists a restriction ρ with
supp(ρ) = NG(i) such that |I(i, ρ)| ≥ γ2 · (σ exp(−λ)/16)k+2) with probability at least 1−γ over
the smoothing of Dx.

Proof. First, from Claim 2.4, it holds that Dx is exp(−λ)
4 -unbiased. Since i /∈ supp(ρ), Lemma 2.5

implies that

min(E
Dρ

[xi], 1− E
Dρ

[xi]) ≥
exp(−λ)

4
. (4)

Thus, it suffices to lower bound EDρ [gi(x−i)]. Since xi is relevant, there must exist a restriction ρwith
supp(ρ) = NG(i) such that the function (gi)ρ is not the zero function (otherwise f(x) = hi(x−i) is
not dependent on xi). We consider such a restriction ρ.

Recall that f(x) = xi · gi(x−i) + hi(x−i). Since f is a function on k variables, both gi and hi are
polynomials such that any non-zero coefficient in both these functions is at least 2−k in magnitude.
Thus, we have that |gi(x)| ≠ 0 =⇒ |gi(x)| ≥ 2−k.

Let R be the set of relevant variables of f . Let Ri be R \ {i}. If Ri \NG(i) = ϕ, then it holds that
(gi)ρ is a constant function with magnitude greater than 2−k. Thus, combining with Equations (3)
and (4), we have that |EDρ [yxi] − EDρ [y]EDρ [xi]| ≥ 2−k · exp(−2λ)

16 . Thus, it only remains to
consider the case where Ri \NG(i) ̸= ϕ. Let Ti = Ri \NG(i). Observe that

(gi)ρ(x) =
∑

z∈{0,1}|Ti|

1{xTi
= z} · h(z) (5)

where h(z) = 0 or |h(z)| ≥ 2−k.

Since the marginal Dx is (λ, σ)-smooth, Dx has the factorization ψ(x) = ψ̄(x) +
∑n

i=1 ∆ixi
where |∂iψ̄(x)| ≤ λ and ∆i = log(1 + αi) for iid αi ∼ Unif([−σ, σ]). Let Di be the MRF with
factorization ψi(x) = ψ(x)−

∑
j∈Ti

∆jxj . We have that

E
Dρ

[gi(x−i)] =
∑

z∈{0,1}|Ti|

Pr
Dρ

[xTi = z] · h(z)

=
∑

z∈{0,1}|Ti|

PrDρ
[xTi

= z]

Pr(Di)ρ [xTi
= z]

· Pr
(Di)ρ

[xTi = z] · h(z) (6)
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We now derive an expression for the density ratio. Note that the distribution (Di)ρ does not depend
on ∆Ti , by definition. Let Qi denote the set NG(i) ∪ Ti. For ease of notation, assume that the
elements for NG(i) come before Ti. Let wρ := ρNG(i) be the string of fixed variables of ρ. We have
that

PrDρ
[xTi

= z]

Pr(Di)ρ [xTi = z]
=

∑
xQi

=(wρ,z)
exp(ψ(x))∑

xNG(i)=wρ
exp(ψ(x))

·

∑
xNG(i)=wρ

exp(ψi(x))∑
xQi

=(wρ,z)
exp(ψi(x))

= exp(
∑
j∈Ti

∆jzj) ·

∑
xNG(i)=wρ

exp(ψi(x))∑
xNG(i)=wρ

exp(ψ(x))
(7)

The first equality follows from the expression of the densities of Dx and Di. The second inequality
follows from the fact that ψi(x) = ψ(x) −

∑
j∈Ti

∆jxj . Note that the second term in the last
expression does not depend on z. We give a lower bound on this term .

∑
xNG(i)=wρ

exp(ψi(x))∑
xNG(i)=wρ

exp(ψ(x))
≥ min

xNG(i)=wρ

exp(ψi(x)− ψ(x))

≥ min
xNG(i)=wρ

exp(−
∑
j∈Ti

∆jxj) ≥ 2−k. (8)

The first inequality follows from the mediant inequality. The second follows from the definition of ψi

and the last follows from the facts that (1) exp(∆j) ≤ (1 + σ) ≤ 2, and (2) |Ti| ≤ k.

Now, combining Equations (6) to (8), we obtain that

| E
Dρ

[gi(x−i)]| =
∣∣∣ ∑
z∈{0,1}|Ti|

exp(
∑
j∈Ti

∆jzj) ·

∑
xNG(i)=wρ

exp(ψi(x))∑
xNG(i)=wρ

exp(ψ(x))
· Pr
(Di)ρ

[xTi
= z] · h(z)

∣∣∣
=

∣∣∣∑xNG(i)=wρ
exp(ψi(x))∑

xNG(i)=wρ
exp(ψ(x))

∣∣∣ · ∣∣∣ ∑
z∈{0,1}|Ti|

exp(
∑
j∈Ti

∆jzj) · Pr
(Di)ρ

[xTi
= z] · h(z)

∣∣∣
≥ 2−k ·

∣∣∣ ∑
z∈{0,1}|Ti|

exp(
∑
j∈Ti

∆jzj) · Pr
(Di)ρ

[xTi
= z] · h(z)

∣∣∣ (9)

Define h̄ to be the function h̄(z) := Pr(Di)ρ [xTi
= z] · h(z). Note that h̄ does not depend on ∆Ti

by
definition of Di. Combining the fact that h(z) = 0 or |h(z)| ≥ 2−k and Lemma 2.5, we observe that
h̄(z) = 0 or |h̄(z)| ≥ 2−k · exp(−λ|Ti|)

4|Ti|
≥ exp(−λk)

8k
.

Recall that ∆i = log(1 + αi) for iid αi ∼ Unif([−σ, σ]). We obtain that with probability at least
1− γ over the choice of α ∼ Unif([−σ, σ]n), it holds that

| E
Dρ

[gi(x−i)]| ≥ 2−k ·
∣∣∣ ∑
z∈{0,1}|Ti|

∏
j∈Ti

(1 + αizi) · h̄(z)
∣∣∣ ≥ γ2 · (exp(−λ)σ/16)k

The first inequality follows from the way ∆ is sampled. The second inequality follows from
Lemma 3.1 using the facts that (1) the expression on its left hand side is a multilinear polynomial in
α of degree at most k with maximal coefficient equal to |h̄(z)| ≥ exp(−λk)

8k
for some z, and (2) αi

are sampled iid and uniformly from [−σ, σ].
Thus, combining everything together, we obtain that for any relevant variable i, with probability
1− γ over the smooth marginal, there exists a restriction ρ ∈ {0, 1, ∗}n such that supp(ρ) = NG(i)
and it holds that

| E
Dρ

[yxi]− E
Dρ

[y] E
Dρ

[xi]| ≥ γ2 · (exp(−λ)σ/16)k+2.
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4 Open Questions

A natural open question is that of learning decision trees over smoothed Markov Random Fields.
Recall that Kalai and Teng [KT08] gave a polynomial time learning algorithm for log n-depth decision
trees over smooth product distributions. Theorem 3.2 implies polytime learnability for O(log log n)-
decision trees (as every depth k decision tree is a 2k-junta), however it is still open how to get all the
way to depth O(log n). Even more ambitiously, one might ask how to learn polynomial size decision
trees or poly-size DNFs over smoothed MRFs. Note that there are polynomial time algorithms that
learn these classes over smoothed product distributions [KST09].

Finally, an interesting question is if one can avoid the explicit structure learning step in the algorithm.
Is there a way to learn juntas over smoothed MRF’s without learning the full structure of the
distribution?
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A Omitted Proofs from Section 2

Claim A.1. Let λ ∈ R. Let D be an MRF with factorization polynomial ψ such that for all i ∈ [n], it
holds that ∥∂iψ∥1 ≤ λ. Then, D is exp(−λ)

2 -unbiased.

Proof. From, Fact 2.3, we have that for all i ∈ [n] and x ∈ {0, 1}n−1, it holds that PrX∼D[Xi = 1 |
X−i = x] = σ(∂iψ(x)) ≥ (1/2) · exp(−λ). Similarly, it holds that PrX∼D[Xi = 0 | X−i = x] =
1− σ(∂iψ(x)) ≥ (1/2) · exp(−λ)

Proof of Lemma 2.5. From the definition of conditional probability, for any i ∈ [n], set R ∈ [n],
b ∈ {0, 1} and r ∈ {0, 1}|R|, it holds that

Pr
X∼D

[Xi = b | XR = r] =
∑

q∈{0,1}n−1−|R|

Pr
X∼D

[Xi = b | X−i = (r, q)] · Pr
X∼D

[X−i = (r, q) | XR = r]

≥ δ (10)

where the first equality follows from expanding the probability and the second inequality follows
from the fact that D is δ-unbiased. In the first inequality, we assumed for ease of notation that the
elements of R occur before the elements of [n] \ (R ∪ {i}).
Without loss of generality, assume that T = [|T |]. Then, we have that

Pr
X∼D

[XT = t | XS = s] =
∏

i∈[|T |]

Pr
X∼D

[Xi = ti | X[i−1] = t[i−1], XS = s] ≥ δ|T |

where the last inequality follows from Equation (10).

Finally, we show that the smooth MRFs we consider in this paper are unbiased.

Proof of Claim 2.4. Let the factorization of D be ψ(x) = ψ̄(x) +
∑n

i=1 ∆ixi. We have that

Pr
X∼D

[Xi = 1 | X−i = x] = σ(∂iψ(x)) =
exp(∂iψ(x))

1 + exp(∂iψ(x))
≥ exp(−|∂iψ(x)|)

2

≥ exp(−|∂iψ̄(x)|) exp(−|∆i|)
2

≥ exp(−λ) ·min(exp(−∆i), exp(∆i))

2

≥ exp(−λ)(1− σ)
2

≥ exp(−λ)
4

where we used the definition of (σ, λ)-smooth MRF in the last three inequalities.

B Proofs from Section 3.3

We show that with high probability over the smoothing of the distribution, Algorithm 1 run on a
sufficiently large number of samples will find all the variables participating in the junta.
Theorem B.1. LetD be a labelled distribution over {0, 1}n×{0, 1} such thatDx is a (λ, σ)-smooth
MRF with dependency graph G of degree at most d and the labelling function is a k-junta. Then,
Algorithm 1 run with N = Ω(poly(log n, exp(λ(d+ k)), 2d+k, σ−k, 1/δ) samples from D, graph G
and appropriately chosen threshold τ will find the relevant variables of f with probability at least
1− δ over the samples and smoothing of D.

Proof. We choose the thresholds τ such that 2τ = (δ/(k2d))2 · (σ exp(−λ)/16)k+2. Let f be the
k-junta generating the labels. Fix a variable i ∈ [n]. We analyze the quantity from Algorithm 1.
Recall from Claim 3.4 that with probability 1− δ/2 over the smoothing of Dx, for all coordinates
i that are relevant to f , there exists a restriction ρ with supp(ρ) = NG(i) such that |I(i, ρ)| ≥ 2τ .
Moreover, from Claim 3.3, we have that I(i, ρ) = 0 for any i that is not relevant. Since |NG(i)| ≤ d,
for all i ∈ [n], the total number of restrictions enumerated in Algorithm 1 is at most 2d for each i.
Thus, taking a union bound over all relevant variables and restrictions of their neighbours, Claim 3.4
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implies that with probability at least 1− δ/2 over the smoothing of Dx, it holds that for all i ∈ [n]
that are relevant, there exists a restriction ρ with supp(ρ) = NG(i) such that

|I(i, ρ)| ≥ δ2 · (σ exp(−λ)/16)k+2/(k2d) = 2τ. (11)

We use concentration of measure to bound the number of samples N = |S| required such that
with probability 1 − δ/2 over S ∼ D⊗N , it holds that |IS(i, ρ) − I(i, ρ)| ≤ τ for all i ∈ [n] and
restrictions ρ with supp(ρ) = NG(i). We prove the following claim.

Claim B.2. Let i ∈ [n] and ρ ∈ {0, 1, ∗}n with |supp(ρ)| ≤ d. Then for N ≥ Ω((1/τ2) ·
poly(2d, exp(λd)) · log(1/γ)), it holds that |IS(i, ρ)− I(i, ρ)| ≤ τ with probability at least 1− γ
over S ∼ D⊗N .

Proof. Let T = supp(ρ) and wρ = ρT . From Lemma 2.5, it holds that PrX∼Dx [XT = wρ] ≥
(exp(−λ)/4)d. Thus, for N ≥ poly(2d, exp(λd)) · log(1/γ), Hoeffding’s inequality implies that
with probability 1 − γ over S ∼ D⊗N , we have that |Sρ| ≥ N · (exp(−λ)/8)d. Observe that the
distribution of the set Sρ is identical to a sample fromDρ of size Nρ = |Sρ|. Again, from Hoeffding’s
inequality, choosing Nρ ≥ Ω((1/τ2) · log(1/γ)), it holds that (1) |ESρ

[xi]− EDρ
[xi]| ≤ τ/10, (2)

|ESρ
[y]− EDρ

[y]| ≤ τ/10 and (3) |ESρ
[yxi]− EDρ

[yxi]| ≤ τ/10 with probability 1− δ over Sρ.
Combining these three inequalities, we obtain that |IS(i, ρ) − I(i, ρ)| < τ with probability 1 − δ
over Sρ. Choosing N ≥ Ω((1/τ2) · poly(2d, exp(λd)) · log(1/γ)) is sufficient for Nρ to be large
enough with high probability.

Setting γ = δ/(2n2d) in the above claim and taking a union bound over all indices and their
corresponding restrictions, we obtain that for N ≥ Ω(poly(log n, exp(λ(d+ k)), 2d+k, σ−k, 1/δ)),
with probability at least 1− δ over the smoothing of Dx and the sample S ∼ D⊗N , for all i ∈ [n]
and restrictions ρ such that supp(ρ) = NG(i), it holds that |I(i, ρ) − IS(i, ρ)| < τ . In the case of
this event, Algorithm 1 succesfully finds all the relevant variables.

Finally, we give the complete proof of the main theorem.

Proof of Theorem 3.2. From Theorem B.1, we have that Algorithm 2 run with appropriate parameters
succeeds in finding the relevant variables with probability at least 1− δ/2. Now, using a standard
concentration arguments (similar to Claim B.2) and taking a union bound over all fixings of the
relevant variables, we have that S contains a sample consistent with each assignment of the relevant
variables. Thus, the ERM hypothesis f̂ will necessarily agree with the true labelling function f on all
inputs. Note that computing the ERM is trivial in this case as the subset of the sample containing the
different assignments of the relevant variables immediately yields the truth table of the function.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We give proofs for all claims made in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss extensively the assumptions needed for our results to hold. We
also have formal statements with proofs.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide complete proofs for all the statements that we make.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: Our paper is theoretical, there are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper is theoretical. The paper has no experiments and hence no code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: Our paper is theoretical. We have no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Paper is theoretical. No experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Paper is theoretical. No experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read the code and our work conforms.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper is purely theoretical. We see no negative applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is theoretical. We release no data/models.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper uses no existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We release no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper involves no crowdsourcing/research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper is theoretical and uses no human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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