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ABSTRACT

Existing adaptation techniques typically require architectural modifications or
added parameters, leading to high computational costs and complexity. We intro-
duce Attention Projection Layer Adaptation (APLA), a simple approach to adapt
vision transformers (ViTs) without altering the architecture or adding parameters.
Through a systematic analysis, we find that the layer immediately after the attention
mechanism is crucial for adaptation. By updating only this projection layer, or
even just a random subset of this layer’s weights, APLA achieves state-of-the-art
performance while reducing GPU memory usage by up to 52.63% and training
time by up to 43.0%, with no extra cost at inference. Across 46 datasets covering a
variety of tasks including scene classification, medical imaging, satellite imaging,
and fine-grained classification, APLA consistently outperforms 17 other leading
adaptation methods, including full fine-tuning, on classification, segmentation, and

detection tasks.

1 INTRODUCTION

The primary objective of model adaptation is to
enable models to generalize to new tasks with
minimal data and computational cost. The most
successful approaches accomplish this by in-
jecting new parameters or layers into frozen
foundation models |Lian et al.| (2022); (Chen
et al.[(2022); Jia et al.| (2022); [Hu et al.| (2021).
This process often requires complex heuristics
— such as gradient sensitivity analyses He et al.
(2023); IZhang et al.| (2024)) and neural architec-
ture searches |Zhang et al.|(2022)—to determine
the optimal locations to inject parameters. Fur-
thermore, the addition of new parameters can
introduce significant overhead. Aiming at bet-
ter efficiency, a handful of methods attempt to
adapt the existing structure of the model without
adding parameters Zhang et al.| (2024); Zaken
et al.|(2021), but these methods underperform
compared to parameter-adding techniques. This
raises a critical question: is it possible to achieve
competitive adaptation using only a model’s ex-
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Figure 1: APLA achieves state-of-the-art for ViT
adaption. It yields better performance for a given
GPU memory budget during training compared to
full fine-tuning and leading adaptation methods.
Similar savings are observed at inference (see Ap-
pendix [B).

isting architecture? We propose that the answer is yes —and that the key is to better leverage the

model’s inherent architecture.

We systematically investigate which existing components of a Vision Transformer (ViT) foundation
model are most essential for adaptation in a departure from traditional parameter-adding approaches.
Our analysis reveals that the projection layer immediately following the multi-head self-attention
(MSA) mechanism plays a uniquely critical role. Then, inspired by low-rank approximation tech-
niques |[Hu et al.| (2021)); Jie & Deng|(2023)), which demonstrate that updates to a full weight matrix
can often be effectively represented with lower-dimensional matrices, we explore whether updating
the entire projection layer is necessary. We find that modifying only a random subset of this layer’s
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parameters is sufficient to maintain — or even surpass — performance, while further reducing compu-
tational costs. This result suggests that additional parameters used to learn a low-rank approximation
of the updates may be unnecessary, opening the door for simpler, more efficient adaptation strategies.

In this work, we introduce Attention Projection Layer Adaptation (APLA), a novel state-of-the-art
approach for efficient adaptation of ViTs that requires no additional parameters. Our key contributions
are as follows:

¢ Identification of a critical ViT component: Through systematic experimentation, we
identify the projection layer immediately following the attention mechanism as the most
essential component for adaptation, offering a targeted approach to ViT tuning essential to
APLA which can also improve other adaptation techniques.

* Low-rank subset update for efficient adaptation: Building on this insight, we introduce a
low-rank adaptation technique that updates only a random subset of the projection layer’s
weights, achieving higher performance with even lower computational costs.

» Simplified adaptation with no extra parameters: Our method achieves SOTA results
without introducing any new parameters, and eliminates the need for costly heuristics to
determine where to inject new parameters or adapt existing ones.

* Validated across scales and diverse applications: We validate APLA on 46 datasets across
various tasks and model sizes, demonstrating its consistent superiority over 17 adaptation
methods. In most cases, APLA performs better than full fine-tuning while also achieving up
to 52.63% in GPU memory savings and a 43.0% reduction in training time.

Together, these contributions establish APLA as a new standard for efficient and accessible ViT
adaptation. Our code for reproducing these experiments will be publicly available upon publication.

2 RELATED WORK

Foundation models [Bommasani et al.|(2021) have transformed computer vision, but as these models
grow larger Dehghani et al.[(2023);/Oquab et al.|(2023)); Ilharco et al.|(2021), their fine-tuning requires
high memory and computational resources. The traditional pretrain, then fine-tune paradigm Cui
et al.| (2018); Mustafa et al.|(2021); Liu et al.|(2021)); [Zheng et al.|(2021) has driven the field for years,
but is becoming unfeasible for many applications due to these increasing costs. Recent advancements
in model size Dehghani et al.|(2023)); |Oquab et al.| (2023)); Ilharco et al.|(2021) have only increased
these challenges, making full fine-tuning unfeasible for many applications.

In response, efficient adaptation methods have emerged, allowing practitioners with fewer resources
to leverage large foundation models by introducing only a small set of new parameters, often called
parameter-efficient fine-tuning (PEFT). These methods reduce overhead, making large models more
deployable in limited-resource settings.

Adapter-based methods introduce compact, lightweight modules into specific layers, enabling task-
specific adaptation by tuning only the adapter parameters while keeping the base model largely frozen.
Originally developed for NLP, Adapters Houlsby et al.|(2019) place bottleneck modules sequentially
after each multi-head attention and MLP block [Vaswani| (2017)). AdaptFormer|Chen et al.| (2022])
extends this for vision transformers, placing adapters in parallel with the MLP blocks rather than
sequentially. More recent methods refine adapter designs for greater efficiency. ARC Dong et al.
(2024a)) uses a similar bottleneck operation but introduces parameter-sharing. SPT-Adapter He et al.
(2023)) identifies and adapts only the most impactful layers based on gradient magnitudes. SSF|Lian
et al.| (2022) appends learnable scaling and shifting transformations to modulate features after each
ViT layer, while Consolidator Hao et al.|(2023)) adds grouped connected layers that capture richer
information through channel-wise input groups. Adapter-based methods provide flexible, efficient
model adaptation with fewer parameters than full fine-tuning. However, they increase inference
costs, require careful initialization |Steitz & Roth| (2024)); Houlsby et al.|(2019)), and their placement
often relies on heuristics [Chen et al.[ (2022) or gradient-based selection He et al.[ (2023)), adding
computational overhead and potentially leading to suboptimal configurations.

Low-rank-based methods leverage the low-rank structure in adaptation updates, enabling efficient
adaptation through low-rank matrices. LoRA Hu et al.| (2021} pioneered this approach by adding
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low-rank matrices alongside original weights in attention blocks. SPT-LoRA He et al.|(2023) builds
on LoRA by selectively applying low-rank updates to layers with the largest gradient magnitudes.
FacT Jie & Deng|(2023)) and RLRR |Dong et al.[(2024b)) decompose updates into factors, applying
these across all ViT layers. While low-rank methods reduce adaptation costs, they insert additional
parameters similarly to adapters.

Prompt-based methods introduce learnable tokens to guide adaptation without modifying core model
parameters. VPT Jia et al.| (2022} adds tokens to the input of each transformer block, and E2VPT
Han et al.|(2023)) incorporates auxiliary tokens into attention layers as well. Though prompt-based
methods avoid changing internal parameters, they can increase inference costs due to the added
tokens. NOAH |Zhang et al.|(2022) combines prompts with adapters and LoRA modules, using neural
architecture search to optimize placement.

Parameter-selective tuning is an approach used by a handful of methods most closely related to
APLA, that focus on adapting models by tuning only a subset of their existing parameters. GPS
Zhang et al|(2024) selects parameters for tuning based on their gradient magnitudes, targeting the
most error-inducing parameters during adaptation. BitFitZaken et al.|(2021) takes a simpler approach,
updating only the bias parameters. While these methods can be computationally efficient and easy to
implement, they face challenges in identifying an optimal subset of parameters, which is reflected in
their comparatively poor performance. APLA addresses this by identifying and targeting a critical
layer for adaptation in ViTs, achieving state-of-the-art performance.

3 METHODS

Inspired by methods that tune a subset of network weights and approaches that use low-rank updates,
we ask, “Can we combine the strengths of both?” To this end, we identify the most impactful ViT
components for adaptation and propose a simple method that updates a low-rank subset of existing
weights.

3.1 INVESTIGATING ADAPTABILITY OF VIT COMPONENTS

A ViT is composed of multiple learnable components. To identify the most impactful ones for
adapting the model to downstream tasks, we first review the different ViT components, grouped by
their function (Figure2).

Starting with an input image x, a patchifying stem tiles and reshapes it into NV flattened patches. Each
patch undergoes a linear transformation in the embedding layer Wx with positional embeddings
Pos,,,n € {1,..., N} added to capture spatial information and a classification token [CLS] appended
to create the initial embeddings zy. These embeddings are passed through L transformer blocks,
each containing LayerScale (LS) [Touvron et al.[(2021), LayerNorm (LN) Bal (2016), multi-head
self-attention (MSA), and multi-layer perceptron (MLP) modules. The final representation is typically
derived from the [CLS] token of the Lth block, which is then processed by classification head Weq
to produce the prediction g.

In the MSA block, self-attention is computed for the input tokens using the learnable matrices W,

Wk,, and Wy, where i € {1,..., h} corresponds to h parallel self-attention heads, allowing each
head to learn distinct contextual relationships. The self-attention output for each head is given by:
iWo,) (zinWrk,)T
head; = softmax <(z Q) (ZinWi,) ) (zinWv,) (1
Vdp

where dj, is the dimensionality of the Query, Key, and Value vectors for each self-attention head.
The outputs from each head; are concatenated, and a projection layer W re-weights the combined
features to form the final output of the MSA block.

Zout = |head;;heads; . .. ;head,|Wo 2)

This output is then processed by an MLP block, consisting of two fully connected layers, Wr¢, and
Wrc,, with a non-linearity in between.

To identify the most essential component for adaptation, we conducted an empirical investigation
by selectively tuning each of the components described above, one at a time (Figure[2)) along with
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the final classification head W4, while keeping the rest of the network frozen. We found that
tuning only the projection layer Wo—positioned directly after the self-attention operation in the
MSA block—yields the best performance, even surpassing full fine-tuning. Details of this study are

provided in Section[5.1]

3.2 LOW-RANK ADAPTATION THROUGH PARTIAL GRADIENTS

Low-rank adaptation methods leverage the in-
sight that the difference between initial and

adapted values of a full-rank matrix can be §_, §»§ =
closely approximated by a low-rank matrix B — =88 'Qé el £ 2 £ 2
5 = S| [S]|8 S 3
Wapprox ~ Wﬁnal - VVinity rank(Wapprox) S d =i ‘i _’ Y‘:a) E’ 3: (g>~ E t{é
B -5 3\ &9 ||E 3
where W, and Wi, are the layer’s learnable B— é &2 2
matrix before and after adaptation, and d is the B w | GEB i

full rank. Prior works (e.g. Hu et al.| (2021); Jie
& Deng|(2023)) approximate this difference by
adding low-rank matrices to ViT layers, with the
rank 7 := rank(Wpprox) set as a hyperparame-
ter.

In contrast, we propose a simpler low-rank adap-
tation by computing gradients on a randomly
selected subset of columns, which achieves sub-
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Figure 2: Investigating adaptation performance
of individual ViT components. We evaluate the
adaptation effectiveness of each ViT component in
isolation across various downstream tasks, report-
ing the average performance. Results show that
the attention output projection layer (W), located
immediately after the attention mechanism, is the
most effective for adaptation. See Section[5.1]and
Table [T] for detailed results.

3)

where the brackets denote indexing with
{1,425+, Jr} C {1,2,...,d}, representing
randomly selected trainable column indices,
where r controls the rank of the update, reaching full rank when r = d.

m=12,...,r

3.3 ATTENTION PROJECTION LAYER ADAPTATION (APLA)

Foundation models already encode a rich set of features, and we hypothesize that adapting to new
tasks can be achieved by selectively re-weighting these features to fit the target task. Therefore, our
approach to efficient model adaptation focuses on identifying impactful layers and computing partial
gradients on a randomly selected subset of output features (matrix columns).

The projection layer Wy, is an ideal target for adaptation as it plays a central role in re-weighting fea-
tures from the attention mechanism across all the heads. Therefore, we propose Attention Projection
Layer Adaptation (APLA), which tunes a randomly selected subset of columns in the Wlo matrices in
each transformer block, while keeping the rest of the ViT backbone frozen. Specifically, we tune only
a subset of column vectors of the W(l) matrices and the final classification head Wieq:

SAPLA = {W(lj [Zajrln]a W(% [Z,j?n], ceey W(I)J [Zajrlrlt]a Wpred} (4)

For each transformer block | < L, we independently sample a distinct subset of column indices
{3,435, ...,y € {1,2,...,d} given a global rank hyperparameter » < d, chosen once at the
beginning of training.

APLA is easy to implement, computationally efficient, requires no new parameters, and introduces
no additional inference latency, making it highly practical.
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4 EXPERIMENTAL SETUP

We benchmark APLA against 21 adaptation
methods on 46 datasets across 4 tasks, using
3 foundation models. For our main model types,
we use Vision Transformers (ViTs) Dosovitskiy
(2020) and Swin Transformers [Liu et al. (2021)
at varying capacities, unless stated otherwise.
Below, we provide an overview of our experi-
mental setup. Additional details are available in

Appendix [A]

Adaptation methods We evaluate APLA
against various adaptation methods, beginning
with traditional approaches: full fine-tuning
(FINETUNE) and training only an appended lin-
ear layer (LINEAR). We further compare against
MLP-k and PARTIAL-k. In MLP-k, a k-layer
MLP is appended to the model, and only this
block is trained, while PARTIAL-% tunes the last
k blocks of the model. We set k = 3 for MLP-k
and k = 1 for PARTIAL-k, in line with J1a et al.

Table 1: The importance of ViT components for
adaptation. We evaluate how tuning each ViT
component in isolation affects performance, while
keeping the rest of the model frozen. We re-
port classification performance, with the best and
second best results highlighted; this notation is
used in subsequent tables.

Birds
83.9
85.1

Cars
89.9
89.6

Average
833

[CLS] token
positional embeddings
Embedding layer W g

LayerNorm 83.7 91.5 94.6 79.0 872
LayerScale 85.5 91.2 93.9 75.4 86.5
W, weight matrix 85.5 91.8 94.6 85.1 89.3
W g weight matrix 85.8 91.8 94.5 83.8 89.0
Wy, weight matrix 85.8 93.2 95.3 86.9 90.3
‘W o weight matrix 86.5 94.0 96.0 88.2 91.2

MSA block

WFCI weight matrix
Wg Cq weight matrix
MLP block

Full Finetuning

(2022). To benchmark efficient adaptation, we

compare against 17 recent methods: BITFIT|Za}

ken et al.[(2021) , ADAPTER [Houlsby et al.[(2019), ADAPTFORMER |Chen et al.| (2022), VPT-shallow
and VPT-deeplJia et al[(2022), E°VPT Han et al.| (2023), SSF Lian et al.[(2022), LORA [Hu et al.
(2021)), SPT-adapter and SPT-LoRa He et al.|(2023), NOAH Zhang et al.|(2022), FACT-TK and
FACT-TT Jie & Deng|(2023), CONSOLIDATOR |Hao et al.|(2023)) ARC Dong et al.|(2024a), GPS
Zhang et al.|(2024) and RLRR Dong et al.| (2024b).

Datasets and tasks We benchmark APLA
across 46 datasets, covering a diverse set of
object categories and tasks. Starting with 21
generic image classification tasks, we cover su-
perordinate object recognition, fine-grained clas-
sification, scene recognition, satellite imagery,
and medical image analysis using the follow-
ing datasets: CUB-200-2011|Wah et al.|(2011)),
NABirds|Van Horn et al.| (2015)), Birdsnap Berg
et al.| (2014), Stanford Dogs Khosla et al.|(2011])), StanfordCars |[Krause et al.| (2013)), Aircraft Maji
et al. (2013)), Caltech-256 |Griffin et al.| (2007)), Caltech-101 [Fei-Fei et al.| (2006), CIFAR-100 and
CIFAR-10 Krizhevsky et al.| (2009), Oxford-III Pet [Parkhi et al.|(2012), DTD |Cimpoi et al.|(2014),
MIT Indoor|Quattoni & Torralbal(2009), SUN397 Xiao et al.[(2010)), AID Xia et al.|(2017), RSSCN7
Cheng et al.|(2017), ISIC2019 Tschandl et al.|(2018)); [Codella et al.| (2018); Combalia et al.[(2019),
APTOS2019|Karthik|(2019), DDSM |Lee et al.|(2017)), Colorectal Kather et al.[(2016)), and Pneumonia
Kermany et al.| (2018)).

Table 2: Comparing parameter-selection strategies
for APLA.

& g\ o NN R o
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Q‘b\' Czy or

88.1
87.8
87.8
88.0

783
785
78.6
783

953
95.6
955
95.7

974
977
97.8
98.0

95.9
96.1
96.0
96.1

97.2
96.7
97.0
97.2

92.0
92.1
92.1
922

Largest gradients

Largest activations
Largest weight magnitude
Random (APLA)

For semantic & instance segmentation and object detection we use ADE20K Zhou et al.| (2019
2017) and MS COCO [Lin et al.| (2014). To test in low-data settings, we use VTAB-1k|Zhai et al.
(2019), a collection of 19 classification tasks with only 1,000 training examples each—representing
challenging yet realistic scenarios for model adaptation. For out-of-distribution (OOD) evaluation,
we use ImageNet, ImageNet-A [Hendrycks et al.| (2021b), ImageNet-C Hendrycks & Dietterich
(2019)), and ImageNet-R |Hendrycks et al.|(2021a)), which introduce various domain shifts, including
corruptions, perturbations, and adversarial examples. We use the standard evaluation metric for each
dataset.

Foundation models To assess the impact of the foundation model type and pretraining strategy,
we compare models trained on IMAGENET-21K Deng et al.| (2009) using supervised learning,
OPENCLIP [lharco et al.[(2021)) trained with semi-supervision, and DINOV 2 |0Oquab et al.| (2023)),
pre-trained using self-supervision. We utilize DINOV 2 unless stated otherwise.
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Table 3: Main results comparing adaptation methods on image classification for ViT-B Dosovitskiy
(2020)) pre-trained with DINOV 2 |Oquab et al.|(2023)). The best and second best results are highlighted
for each task.

Fine-grained General Scene Satellite Medical

z “ g o

= H 2 © = o )

a = | =] B = I <

s 5 2 58 ¢ ., 9 5 8 ==& I 5 o 2 & z £, B

g EEE EF 2 0§ 05 o2 2 % $ E 2 9 5 % g 8 s 3 2 &% =

g < € 5 & 3 3 S £ D g g 5 £ £ =

8 %2 ¢ 5 5 258 £ 2 EE £ E 5 g 5 8 e 25 g5 & <2 B B %

© Z m a5 » < < O U T T & a < = B < < @ < 2 < A 0 & < =
FINETUNE 88.9 852 787 86.0 94.4 87.5 868 93.9 97.3 924 98.7 947 81.9 93.1 87.8 756 81.7 954 73.3 844 877 90.8 955 97.8 994 942 89.7
LINEAR 89.1 86.6 79.4 87.6 88.4 76.5 846 949 97.0 839 98.0 95.8 81.1 92.6 889 76.4 827 912 77.1 842 553 904 89.4 940 979 854 86.9
MLP 89.1 86.4 789 87.8 88.3 77.7 847 944 97.5 892 984 96.0 80.9 927 88.6 762 824 91.6 764 84.0 719 90.7 934 958 979 89.9 88.0
PARTIAL 88.8 86.5 78.6 87.4 88.1 76.6 843 949 969 89.0 98.0 96.0 80.6 92.6 88.5 763 824 909 77.7 843 56.1 90.6 89.5 942 97.6 856 86.8
BITFIT 89.4 87.9 80.7 87.8 92.5 832 869 952 97.6 93.1 99.3 957 82.2 939 893 77.7 835 952 83.5 894 79.0 90.1 964 97.2 99.1 924 90.1
ADAPTER 89.6 88.4 80.0 87.8 93.5 86.1 87.6 950 97.6 93.5 99.3 959 81.8 939 89.5 77.9 837 950 84.2 89.6 843 89.6 96.1 98.0 985 933 90.6

ADAPTFORMER 89.7 88.4 80.5 88.1 93.1 854 87.5 956 98.1 932 993 959 828 942 899 78.1 840 954 853 904 856 90.8 97.3 974 98.6 93.9 90.9
VPT-sHALLOW 88.8 86.7 79.1 87.4 90.6 732 843 95.1 972 924 99.1 96.0 80.4 934 894 76.6 830 91.6 704 81.0 76.5 893 962 964 98.7 91.4 88.1
VPT-DEEP 89.1 873 79.9 87.2 91.5 81.7 86.1 953 97.8 92.7 99.1 95.7 80.5 93.5 90.0 77.0 835 944 78.0 862 79.6 91.0 96.2 97.6 988 92.6 89.5

E2VPT 88.3 86.6 79.7 87.4 912 81.0 857 945 969 92.7 99.2 954 79.6 93.1 887 763 825 937 72.7 83.2 809 90.6 96.2 96.8 98.6 92.6 88.9
SSF 89.4 88.1 80.5 87.7 92.7 83.7 87.0 953 97.8 932 99.2 95.7 82.1 939 889 774 832 953 826 89.0 80.7 90.5 964 972 99.0 92.8 90.2
LORA 88.7 87.5 79.3 86.3 934 86.4 869 943 97.1 93.0 99.0 94.0 80.4 93.0 885 76.4 825 954 814 884 865 91.1 95.1 974 989 938 90.0

SPT-ADAPTER 89.4 88.1 80.6 87.7 93.1 86.2 87.5 95.;} 97.5 93.1 99.2 958 827 940 89.5 78.1 838 95.6 84.7 902 821 90.4 96.1 972 99.0 93.0 90.6

SPT-LORA 89.2 879 80.6 87.5 92.8 863 87.4 958 97.7 92.6 992 957 823 939 89.9 77.7 83.8 954 842 898 822 893 962 974 99.1 928 904

FACT-TK 88.8 87.8 80.5 87.5 93.0 854 872 953 97.6 928 99.2 955 81.5 937 889 774 832 954 799 87.7 85.1 915 963 972 979 936 902
FACT-TT 88.8 87.6 79.7 87.1 929 843 867 949 97.5 924 992 955 81.7 935 894 77.1 833 945 80.6 87.6 815 90.9 97.0 974 986 93.1 899
CONSOLIDATOR 89.7 87.4 81.5 87.1 93.0 83.4 87.0 945 973 92.7 99.0 958 81.8 935 89.5 77.0 833 94.6 78.0 863 819 91.1 969 962 99.4 93.1 89.9
ARC 89.4 882 80.7 88.1 92.6 84.1 87.2 958 97.8 929 99.2 96.0 828 94.1 89.8 78.2 84.0 956 862 909 825 90.7 97.3 97.0 988 933 90.7
GPS 89.1 86.4 80.7 86.6 94.7 855 872 948 97.6 94.0 99.3 944 779 930 884 769 827 949 61.6 783 877 90.8 96.7 974 993 944 893
RLRR 889 879 80.8 87.6 924 837 869 952 974 93.1 99.2 958 82.0 938 89.5 77.6 83.6 950 81.2 8.1 817 904 963 96.6 98.6 92.7 90.0
APLA 89.6 83.0 81.9 88.5 94.0 86.7 88.1 957 98.0 934 99.3 96.1 83.0 943 90.4 783 844 96.0 86.2 91.1 882 92.1 97.2 984 99.5 951 915

Implementation details To ensure fair comparison, we closely follow the implementations in |Jia
et al.[(2022); |Dong et al.| (2024a3b); Jie & Deng|(2023)); [Han et al.| (2023); |Chen et al.| (2022); |Hu
et al.| (2021). For each dataset, we use the official protocol and standard train/val/test splits when
available Zhai et al.[(2019) or the splits provided by |Jia et al.|(2022). Models are trained with AdamW
Loshchilov & Hutter| (2017) for 100 epochs, using a cosine decay learning rate schedule with a
10-epoch warm-up. Hyperparameters are selected via grid search on the validation set. Additional
details regarding the experimental setup can be found in Appendix [A]

5 EXPERIMENTS AND RESULTS

We begin by evaluating the choice of APLA ’s core components, focusing first on identifying the
most crucial layer for adaptation—the projection layer Wo—and how to select which parameters to
tune within it. We then benchmark APLA against several other methods on standard classification,
detection, and segmentation tasks, including low-data settings and out-of-distribution datasets. Ad-
ditionally, we assess APLA across various model capacities, architectures, and foundation models.
Finally, we evaluate its computational efficiency and explore how other adaptation techniques can
benefit from our findings on the importance of the projection layer Wo.

5.1 CHOOSING APLA’S COMPONENTS

Identifying which component to tune Previous work suggests that certain types of layers play a
larger role in transfer learning Yosinski et al.| (2014); |Sharif Razavian et al.|(2014); Neyshabur et al.
(2020); Matsoukas et al.[(2022); Konuk et al.| (2024). To identify the optimal components for APLA,
we systematically investigate the effect of tuning different ViT components individually, keeping all
other layers frozen.

TableT]and Figure [2] present results across four mainstream datasets representing diverse domains,
tasks, and data availabilities. We find that tuning the projection layer Wy yields the best performance,
even outperforming full-network fine-tuning. The clear advantage of W over other ViT components
leads us to adopt it as the default layer to tune in APLA.

Identifying which parameters to tune Motivated by the effectiveness of low-rank adaptation
methods, we explore strategies to economize APLA by selecting specific parameters in W for
adaptation. We evaluate various strategies, including selecting columns with the largest gradients,
activations, and weight magnitudes, as well as selecting the columns randomly.
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We report our findings in Table[2] Surprisingly, tuning a random subset of columns in Wy performs
on par with more sophisticated selection methods. This suggests that, within the projection layer W,
the specific choice of tunable columns is less critical. For APLA we choose the random selection
approach because it may better utilize feature redundancy across attention heads and achieves a slight
advantage in performance without added computational cost.

5.2 BENCHMARKING APLA

Mainstream classification tasks We benchmark APLA against other methods across 21 diverse
image classification tasks, including superordinate classification, fine-grained classification, scene
recognition, satellite imagery, and medical image analysis. Table[3|presents the results. On average,
APLA outperforms all other methods, showing a 0.6% improvement over the second-best method,
ADAPTFORMER. It ranks as the top or second-best method on 18 out of 21 datasets, consistently
demonstrating strong performance across different classification tasks.

APLA in low-data settings Foundation Table 4: Low-data settings. We benchmark

model adaptation is especially valuable in low- on VTAB-1k which contains 19 low-data tasks
data scenarios, where reusing pretrained fea- grouped across three domains.

tures is essential, as randomly initialized mod-
els tend to underperform |Dosovitskiy| (2020); — SwinB
Kolesnikov et al.| (2020); Matsoukas et al.
(2023). We evaluate APLA in this regime us-

Natrl. Spec. Struc. Average Natrl. Spec. Struc. Average

) g FINETUNE 759 834 476 690 790 862 597 750
ing the VTAB-1k benchmark, which includes 19

: LINEAR 689 772 269 517 735 808 335 626

da}tasets, each Wlth only 17_000 samples. We use  ;p 678 728 306 571 736 752 357 6LS

ViT-B and Swin-B pretrained on IMAGENET- PartiaL 69.4 785 342 607 731 8L7 350 633

21K and report average performance across BirFir 733 783 441 652 742 801 424 656

ADAPTER 790 841 585 739  8L7 873 612 767

three domains: natgral, specialized, and struc- 2700 o6 ssa s mao o oo™
tured. As shown in Table [Z_[l, APLA outper- VPT-suaLLow 768 797 470 678 799 825 378 667

. . VPT-DEEP 785 824 550 720 768 845 534 716
forms all other methods, achieving at leas't a  ypp 800 844 574 739 833 850 574 752
1% improvement across these domains. Visu- SsF 816 866 590 757 - - -

. . o LORA 79.5 84.6 605 74.8 81.7 872 60.1 76.3
alizations |[Van der Maaten & Hinton| (2008) of  sprapsperer 20 858 614 764 830 873 621 775

the [CLS] embeddings of different adaptation SPT-LoRA 819 859 613 764 831 874 604 772

. . . NOAH 80.2 849 613 75.5 - - - -

methods from these experiments are provided in  consoLbator 824 863 609 765 - - -

3 1 1 FACT-TK 80.6 853 60.7 75.5 - - - -
Flgure B] m the Appendlx' FACT-TT 80.6 850 605 75.3 83.1 869 62.1 714
ARC 81.8 87.0 614 76.7 79.0 86.6 599 752
Out-of-distribution robustness While APLA %8¢ BT B2 08 I8 813 867 30 BT

has shown strong performance across various — —

APLA 84.6 885 627 78.6 844 878 659 794

settings, its robustness under domain shifts and
adversarial examples remains to be assessed. Us-
ing a foundation model pre-trained on ImageNet-21K, tuned on ImageNet-1K with various adaptation
methods, we evaluate on ImageNet-A Hendrycks et al.|(2021b), ImageNet-R [Hendrycks et al.| (2021a)),
and ImageNet-C |Hendrycks & Dietterich| (2019).

As shown in Table @ APLA outperforms Table 5: OOD robustness. We assess robustness to
OOD data by adapting on ImageNet-1K and testing

other methods overall, achieving an 8.6% im-
on ImageNet-A, ImageNet-R, and ImageNet-C.

provement in mean corruption error (mCE) on
ImageNet-C. Notably, APLA and most other
adaptation methods outperform full fine-tuning

ImageNet-1K ImageNet-A ImageNet-R ImageNet-C

5 . . Acc. (1) Acc. (1) Acc. (1) mCE ()

across all OOD datasets, highlighting the po- ———— o s - s
tential of efficient adaptation methods for OOD  Tixear 82.0 339 52.9 369
tasks ADAPTER 82.7 422 54.1 427
: BITFIT 82.7 42.1 559 41.9
VPT-sHALLOW 82.1 30.9 53.7 46.9

Segmentation & Detection Tasks We eval- o pree 22? Zg(‘) 222 ol
uate APLA on semantic segmentation, object gps 83.9 46.1 57.0 2.0
APLA 84.0 46.9 555 329

detection, and instance segmentation. For se-
mantic segmentation, we use SETR-PUP [Zheng
et al.[(2021) with a ViT-Large backbone pre-trained on IMAGENET-21K, reporting mean Intersection
over Union (mloU) for single-scale (SS) and multi-scale (MS) evaluations on ADE20K, as in|Jia et al.
(2022); He et al.| (2023).
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Table 7: Impact of pre-training strategy. ViT-B Table 8: Impact of model capacity. Results
pre-trained with IMAGENET-21K and OPENCLIP, are averaged across NABirds, StanfordCars,
then adapted to various tasks. AID, and ISIC2019 using DINOV 2 models.
Detailed results are in Appendix

IMAGENET-21K OPENCLIP
Birds Cars AID ISIC Average Birds Cars AID ISIC Average ViT-$ ViT-B ViT-L ViT-g
FINETUNE 827 84.5 917 84.0 857  79.0 94.7 956 849 88.6 FINETUNE 86.2 907 921 926
LINEAR 759 513 810 512 649 737 945 950 542 79.4 EEEAR ;g; 22’2 zg';’ g;g
MLP 773 549 812 617 688  73.6 93.8 950 687 82.8 5 5 g0 ere o
PARTIAL 778 662 811 466 679 738 944 952 549 79.6 ARTIAL : - > -
BITFIT 842 79.4 90.5 73.0 818  79.2 950 958 727 857 i‘TF” 3‘7‘3 ggz g?g g;g
ADAPTER 84.3 68.6 90.0 80.6 809 792 950 952 839 883 A“A"T;R 879 0 o1 o
ADAPTFORMER 78.8 83.1 90.1 81.2 833  80.0 950 95.5 824 882 VE?PT ORMER s 264 o83 850
VPT-SHALLOW 78.8 68.7 859 650 74.6 738 947 951 546 79.6 VPT';”ALLOW 810 et 2 002 015
VPT-DEEP 842 83.6 89.0 748 829  73.6 945 951 546 795 ) L-DEEP : : - :
E2VPT 84.6 82.8 88.4 78.6 83.6 777 951 959 73.6 85.6 IS‘ZS;’PT gjg gg; g?‘g gig
SSF 857 892 90.9 784 86.1  79.9 949 957 76.1 86.7 LoRA st o0 o o
LORA 856 832 91.0 835 858  79.0 94.1 950 832 87.8 ngA s 597 5o o
SPT-ADAPTER 833 862 90.8 757 840 760 94.8 954 764 85.7 SPT’LDQPATER e 06 003 2ot
SPT-LORA 834 873 90.0 762 842 759 949 95.1 774 858 b %;’K NN 003 o1 00
FACT-TK 80.3 84.0 91.1 793 837 792 949 950 80.7 87.5 FACT'TT bea oo o ore
FACT-TT 79.2 824 909 777 826  78.5 949 954 772 865 A’}fc' %o 207 ol ol
ARC 857 895 90.8 79.2 863  79.5 951 95.1 79.0 87.2 SLRR ora 203 ol's 03
RLRR 853 904 91.1 77.5 86.1  80.0 949 958 79.5 87.6 - 3 : 3
APLA 852 905 94.3 849 887  79.1 952 959 855 889 APLA 88.0 91.6 929 934

For object detection and instance segmenta- Table 6: Segmentation and detection. Results
tion, we use Mask R-CNN |He et al| (2017) for ADE20K semantic segmentation (SETR-PUP
with a Swin-Tiny backbone pre-trained on IM- [Zheng et al| (2021)) with a ViT-Large backbone)
AGENET-1K, following|Lian et al.| (2022);[Liu] and COCO object detection & instance segmenta-
et al.[(2021), and report mean Average Precision tion (Mask R-CNN [He et al.l (2017) with a Swin-
(AP) for bounding box (APPP) and mask (AP™) Tiny backbone).

predictions on MS COCO [Lin et al.|(2014). Ad-

ditional details are in Appendix [Al As shown ADE20K €oco
in Table [6] APLA surpasses all other adapta- mioU (S8) mioU (MS) APPP APBR APRE AP™ APLY AP
1 1 1 BITFIT 434 453 33.7 57.8 350 327 547 339
tion me'thods, with partlcularly strong results for B o 434 3BT WS 3500 27 ST 39
semantic Segmentatlon_ SSF 45.6 474 349 589 361 335 558 347
LORA 439 459 37.1 60.9 395 352 577 372
. . ADAPTER 44.4 46.6 376 6l 402 356 582 378
Different foundation model types and capac- Apaprrormer 443 462 350 590 369 338 560 356
age .1 SPT-A| 452 472 - - - - - -
ities. We evaluate APLA ’s versatility across  sprrora — 4sa 415 - - - T
foundation model training strategies, capacities, apra 453 95 381 618 409 359 587 379

and architectures, using both supervised IMA -
GENET-21K and semi-supervised OPENCLIP ViT-B models, as well as Swin transformers [Liu
et al.|(2021). To assess scalability, we test ViT models of varying sizes (ViT-S, ViT-B, ViT-L, and
ViT-g). As shown in Tables 4] [7} and[§] APLA consistently outperforms other methods regardless of
pretraining, model size, or architecture, maintaining strong performance.

Applying other adaptation methods on Wy In Section [5.1] we showed that W is the most
impactful component to adapt—surpassing full fine-tuning—and in Section |5.2| we show that, when
targeted in APLA, it outperforms other adaptation methods. We now explore what happens if other
adaptation methods are applied to W . Do they improve performance when targeted to this layer?
Does the low-rank adaptation strategy we propose for APLA prevail against other adaptation methods
that target the same layer? Using ViT-B pretrained with DINOV2, we apply LORA Hu et al.| (2021,
FACT |Jie & Deng|(2023)), and ADAPTFORMER |Chen et al.[(2022) on Wy and compare on Birds,
Cars, AID, ISIC, and VTAB-1k.

Table[I0]in the Appendix shows that applying other adaptation methods to Wy generally improves
performance, solidifying the importance of the Wy, layer. Critically, APLA still outperforms other
leading approaches when they are applied to Wo, suggesting there is an advantage to our simple
low-rank adaptation strategy using random partial gradients.

Computational cost We analyze the computational costs of adaptation methods by measuring
GPU memory footprint, parameter count, and throughput during training and inference in Appendix
APLA demonstrates significant efficiency improvements, reducing memory usage and boosting
training throughput, with no extra inference cost. Figure [I| further illustrates that APLA’s memory
savings increase with model size, even surpassing BitFit, which tunes only bias parameters. Figure
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M]in the Appendix reports parameter count, showing that APLA appears more costly than many
methods according to this metric. However, as noted by prior work |Dehghani et al.| (2021); |Cai
et al.| (2020), parameter count is misleading in assessing computational efficiency. In practice, APLA
remains the most efficient method, consistently outperforming others in GPU memory usage and
throughput during both training and inference. Further, Appendix shows that APLA maintains
near-constant efficiency as the rank r increases, unlike other low-rank methods.

6 DISCUSSION

APLA establishes a new state-of-the-art for efficient model adaptation across a wide range of classi-
fication, segmentation, and detection tasks, showing resilience in low-data and out-of-distribution
scenarios. It achieved top performance across model types, capacities, and pretraining methods
— a level of versatility that no other adaptation method maintained across such varied conditions.
Moreover, APLA excels in computational efficiency, significantly reducing memory and processing
requirements.

APLA offers several practical advantages in addition to its exceptional performance. It is simple
to implement, requiring no architectural changes or added parameters which may be sensitive to
initialization. It eliminates the need to search for which parameters to update. APLA’s simplicity
makes it easy to work with. APLA also supports flexible layer adaptation, allowing partial or full layer
updates depending on the need, all with minimal computational overhead. Finally, as demonstrated
in Section[5.2] APLA’s core insights can be used to enhance other adaptation methods, e.g. applying
ADAPTFORMER solely on W, gives a 1% boost in performance.

What makes APLA so effective? Although we don’t have a definitive answer, we offer two possible
explanations. One is the targeting of Wy . Foundation models encode a rich set of features robust
to various tasks. However, each task benefits from a unique composition of these features, making
feature re-weighting essential. This is precisely the role of Wy, which re-weights the contribution of
features across all attention heads. Figure [2]reveals that other top-performing ViT components serve
similar functions: Wy, re-weights the attention output within each head, while W operates across
all heads. Given this, one might expect Wrc, and Wrc, in the MLP block to play a more critical
role, but they are positioned further downstream, with Wy and normalization layers modifying the
features before they reach the MLP block.

A second explanation for APLA’s effectiveness lies in the simplicity of its low-rank adaptation
using randomly selected gradient updates. Other approaches to use heuristics to select parameters,
e.g. based on large weights, activations, or gradients may be suboptimal for foundation models, which
are highly over-parameterized and exhibit feature redundancy. Selection based on large gradients
or weights may not capture the most relevant features, could bias adaptation toward redundant or
overly specific features, and lead to overfitting. By re-weighting a broader range of features, random
selection makes APLA equally or even more effective in contexts of high feature redundancy, as
shown in Table[2l

Limitations & future work While our experiments are extensive, certain aspects remain unex-
plored. Our study focuses on identifying the single most important ViT component for adaptation
rather than multiple components. An exhaustive search would be computationally prohibitive, and
a constrained search, resembling a NAS, may yield undesirable task-specific combinations |Zhang
et al.[(2022). We also did not examine how the choice of  might vary with data availability or
information density; richer data may support a larger r and enhance adaptability. Lastly, APLA ’s
susceptibility to catastrophic forgetting remains untested —unlike adapter-based methods, which can
be stored separately, APLA directly modifies the foundation model, potentially impacting retention
of prior knowledge.

7 CONCLUSION

We introduced APLA, a simple yet effective method for adapting ViTs by tuning only a randomly
selected subset of projection layer columns. Extensive experiments show that APLA achieves state-
of-the-art performance while reducing computational costs, making it highly practical. Our results
highlight that in over-parameterized models, efficiency doesn’t require added complexity — a simple
targeted re-weighting of existing features can be even more powerful.
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Appendix

We provide additional experimental details and results.

* [A]includes additional experimental details.

- In Section[A.T|we provide implementation details for classification tasks.
- In[A.2]we provide experimental details for semantic segmentation tasks.
- In we provide experimental details for object detection and instance segmentation
tasks.
* Section [B]includes additional experimental results.

- In[B.T] we show the result of applying other low-rank methods on Wo.
In[B.2) we report additional results as the model’s capacity increases, including both
classification performance and computational cost.

- In[B.3] we report additional results on the computational costs of APLA and other
adaptation methods during training and inference.

In We examine the effect of rank r on computational requirements for different
low-rank methods when applied solely to Wy during training.

- In we investigate the impact of applying APLA to an increasing number of ViT
blocks.

— In[B.6 we discuss the best 7 values for APLA.

- In[B.7]we visualize and discuss the quality of output features produced by different
adaptation methods.

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 IMAGE CLASSIFICATION

To ensure fair comparison against other adaptation methods, we closely follow the implementations
in|Jia et al.[(2022); Dong et al.| (2024 aib); Jie & Deng|(2023)); |[Han et al.[(2023));|Chen et al.| (2022);
Hu et al.|(2021)). For each dataset in the general classification tasks, either the official train/val/test
splits were used, or we used the splits from Jia et al.|(2022)). For VTAB, the train/val/test splits are
provided. Similar to|Jia et al.[|(2022), we adopt standard image augmentations, including random
resized crop to 224 x 224, random horizontal flip, and normalization with mean and std. For VTAB,
we resize all images to 224 x 224. All models were developed in PyTorch |Paszke et al.| (2019)
and trained on Nvidia A100 GPUs using AdamW [Loshchilov & Hutter| (2017) optimizer. Unless
stated otherwise, models were trained for 100 epochs using a cosine decay learning rate schedule
with a 10-epoch warm-up, following previous works [Jia et al.[(2022)); Dong et al.| (2024a:b)); Jie &
Deng| (2023)); Han et al.|(2023)). We perform grid-search to determine the hyper-parameters using the
validation set of each dataset. We also perform a grid search to determine the appropriate r value
in APLA for each dataset. For ViT-S, we search over r € {8,16, 128, 256, 384}. For ViT-B, we
search over r € {8, 16,128,512, 768}. For ViT-L, we search over r € {8,16,128,512,1024}. For
ViT-g, we search over r € {8, 16,128,1024, 1536}.

A.2 SEMANTIC SEGMENTATION

For semantic segmentation we follow Jia et al.|(2022); [He et al.|(2023)) and conduct experiments on
the ADE20K dataset|Zhou et al.|(2019; 2017) using the SETR-PUP framework [Zheng et al.| (2021)
with a ViT-Large |Dosovitskiy| (2020) model pre-trained on IMAGENET-21K Deng et al.| (2009).
We report mean Intersection over Union (mlIoU) scores for both single-scale (SS) and multi-scale
(MS), following Jia et al.|(2022); |He et al.|(2023). Our implementation uses the mmsegmentation
Contributors| (2020) library. We merely apply APLA on the default models of the library. All training
configurations are kept unchanged.
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Figure 3: Performance vs. compute cost. We compare each method’s performance against GPU
memory (left) and latency (right) during training across different model capacities.
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Figure 4: Computational costs. We report memory footprint and latency of various adaptation
methods during training (top) and inference (middle) for ViT-B with a batch size of 64. Additionally,
we provide the number of tunable parameter count for each method (bottom), averaged across all the
datasets.

A.3 OBIJECT DETECTION & INSTANCE SEGMENTATION

For object detection and instance segmentation tasks we follow|Lian et al.|(2022);Liu et al.| (2021) and
conduct experiments on the MS COCO dataset|Lin et al. using the Mask R-CNN framework
He et al| (2017) with a Swin-Tiny 2021) model pre-trained on IMAGENET-1K
et al 1b We report mean Average Precision (AP) for both bounding boxes (AP®P) and masks
(AP™) across multiple IoU thresholds and individual thresholds, following|Lin et al.| (2014); Lian|

et al](2022); Liu et al| (2021). Our implementation uses the mmdetection|Chen et al.| (2019) library.

We merely apply APLA on the default models of the library. All training configurations are kept
unchanged.
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Table 9: Classification performance across different model sizes. The best and second best results
are highlighted.

ViT-S ViT-B ViT-L ViT-g

Birds Cars AID ISIC  Average Birds Cars AID ISIC  Average Birds Cars AID ISIC  Average Birds Cars AID ISIC  Average
FINETUNE 775 919 91.7 83.8 86.2 852 944 954 87.7 90.7 882 949 959 89.2 92.1 90.0 952 96.5 88.8 92.6
LINEAR 81.3 83.1 885 51.5 76.1 86.6 88.4 912 553 80.4 89.1 89.8 93.4 62.1 83.6 90.2 91.0 93.6 67.3 85.5
MLP 80.6 83.1 88.8 7I.1 80.9 86.4 883 91.6 71.9 84.6 88.9 89.9 929 73.0 86.2 89.9 91.0 93.1 77.1 87.8
PARTIAL 81.1 83.1 88.3 50.6 75.8 86.5 88.1 90.9 56.1 80.4 89.1 89.8 933 62.0 83.6 90.3 91.0 93.6 65.7 85.2
BITFIT 83.1 89.7 93.1 73.2 84.8 87.9 92.5 952 79.0 88.7 90.4 93.8 95.8 80.1 90.0 90.8 94.5 959 858 91.8
ADAPTER 83.2 91.3 93.3 838 87.9 88.4 935 950 84.3 90.3 90.4 94.8 95.8 86.4 91.9 91.1 95.1 96.3 86.8 923
ADAPTFORMER 83.6 90.6 92.8 81.9 872 88.4 93.1 954 85.6 90.6 90.8 942 95.8 86.0 91.7 91.5 949 96.0 889 92.8
VPT-SHALLOW 81.7 86.3 91.3 72.0 82.8 86.7 90.6 91.6 76.5 86.4 89.0 91.6 93.0 79.7 88.3 89.8 92.1 95.1 78.7 88.9
VPT-DEEP 80.1 86.8 92.5 76.7 84.0 87.3 91.5 944 79.6 88.2 89.1 934 957 82.6 90.2 91.1 945 962 859 91.9
E’VPT 80.0 87.6 91.9 77.3 84.2 86.6 91.2 93.7 80.9 88.1 89.5 93.8 95.8 84.3 90.9 912 945 959 853 91.7
SSF 81.7 89.5 92.7 749 84.7 88.1 92.7 953 80.7 89.2 90.6 94.0 959 835 91.0 91.0 945 959 86.3 91.9
LORA 80.8 91.0 93.3 83.2 87.1 87.9 934 954 86.5 90.8 89.9 948 959 87.9 92.1 89.8 94.8 96.7 88.9 92.6
SPT-ADAPTER 83.0 91.0 93.3 81.4 872 88.1 93.1 95.6 82.1 89.7 90.6 93.4 95.6 80.5 90.0 90.7 932 95.0 79.0 89.5
SPT-LORA 828 91.1 932 832 87.6 87.9 92.8 954 82.2 89.6 89.6 93.8 955 82.9 90.5 90.3 935 952 78.5 89.4
FACT-TK 825 90.6 929 81.7 86.9 87.8 93.0 954 85.1 90.3 90.6 94.5 96.3 84.4 915 91.6 95.1 96.1 853 92.0
FACT-TT 823 89.7 91.6 78.0 854 87.6 92.9 945 81.5 89.1 90.5 94.6 96.3 83.7 91.3 91.4 947 96.0 84.1 916
ARC 829 89.4 932 785 86.0 88.2 92.6 95.6 82.5 89.7 90.6 943 95.5 83.9 91.1 915 947 95.7 855 919
RLRR 824 895 933 72.2 84.4 87.9 924 950 81.7 89.3 90.6 94.0 95.7 86.7 91.8 91.6 94.6 95.7 87.2 923
APLA 824 914 935 845 88.0 88.0 94.0 96.0 88.2 91.6 90.6 95.1 96.5 89.2 92.9 91.7 954 96.8 89.5 934

Table 10: Applying other adaptation methods on Wo. Competing methods are applied to W,
isolating the effect of APLA’s low-rank adaptation strategy. Notably, LORA and ADAPTFORMER
would be improved if they were placed at I rather than their default locations.

Method Adaptation Birds Cars AID  ISIC  Natrl. Spec. Struc. Average

LORA Default 875 934 954 865 834 865 631 782
On Wo 877 935 951 879 837 816 626 783

ADAPTE Default 884 931 954 856 840 872 598 773
© OnWo 884 936 953 871 842 872 616 78.1

FACT Default 878 930 954 851 847 874 645 79.1
On Wo 880 938 953 865 844 872  63.8 788

APLA On Wo 880 940 960 882 850 882 639 79.4

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 APPLYING OTHER ADAPTATION METHODS ON Wy

We evaluate LORA Hu et al.|(2021)), FACT Jie & Deng|(2023)), and ADAPTFORMER |Chen et al.|(2022)
on Wy using ViT-B pretrained with DINOV2, and compare results across Birds, Cars, AID, ISIC,
and VTAB-1k. Table[I0]shows that adapting W with these methods improves their performance
compared to their original location, reinforcing the critical role of this Wy. APLA consistently
outperforms them, highlighting the effectiveness of our simple low-rank strategy with random partial
gradients.

B.2 DETAILED RESULTS OF DIFFERENT MODEL SCALES

To examine if APLA scales well with model size, we utilize ViT models of varying sizes (ViT-S,
ViT-B, ViT-L, and ViT-g), pre-trained with DINOV2 |Oquab et al.| (2023). Table @ in the main
text shows the average results of different adaptation methods across model scales, while Table
[0 provides detailed per-dataset results. APLA appears to benefit from increased model capacity,
performing exceptionally well with larger models. We further present a performance-efficiency
trade-off comparison in terms of GPU memory consumption and latency during training across
different model sizes in Figure[3] As the model size increases, APLA outperforms all other methods
both in terms of predictive performance and costs during training.

B.3 COMPUTATIONAL COSTS OF ADAPTATION METHODS

We analyze the computational costs of adaptation methods by measuring GPU memory footprint
and latency during training and inference. Results are shown in Figure 4] During training, APLA is
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Figure 5: Computational requirements of different adaptation methods during training for varying r
values. For LORA and FacT, r denotes the rank, for APLA the number of tuned columns, and for
AdaptFormer, the size of the bottleneck dimension.

the most efficient method in terms of GPU memory usage and latency and does not add any extra
costs during inference. While APLA appears to tune more parameters than other adaptation methods,
one should note that parameter count alone does not necessarily reflect the true computational costs.
This inconsistency has been previously emphasized by other studies [Dehghani et al.| (2021)); [Cai et al.
(2020)

B.4 COMPUTATIONAL COSTS OF LOW-RANK ADAPTATION METHODS WHEN INCREASING r

In Table [10] in the main text, we investigated the impact of applying other low-rank adaptation
methods on Wy, isolating the impact of the low-rank adaptation strategy. Using the same setup,
here we analyze their computational costs with respect to the choice of rank r, considering GPU
memory and latency during training. As shown in Figure [5] APLA is the only method that only
minimally impacts memory and latency during, whereas other methods are affected to a larger extent
as r grows (e.g. FACT). Essentially, for any given rank r, APLA outperforms all other low-rank
adaptation methods in terms of efficiency, requiring less GPU memory and enabling faster training.
This advantage is due to APLA’s more efficient low-rank strategy and its avoidance of introducing
additional trainable parameters. This provides APLA a distinct advantage, allowing the rank to be
freely adjusted for optimal results without any extra computational concerns.

B.5 APLA ON INCREASING NUMBER OF VIT BLOCKS

We investigate the impact of applying APLA to increasing number of ViT blocks, when starting from
the first layer and moving towards the last layers (“Bottom — Top”) and the opposite direction (“Top
— Bottom™), and present the results in Figure[6] Applying APLA to more blocks monotonically
improves performance. As expected, applying APLA to later transformer blocks leads to greater
performance improvements than applying it to the early ViT layers.

B.6 THE EFFECT OF CHOICE OF r

In APLA, the hyperparameter 7 is used to specify how many columns of the weight matrix Wy, are
tuned. In Figure[7} we present the selected values of r for general classification tasks (left), datasets
with limited data (middle), and all datasets together (right).
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Figure 6: Classification performance when applying APLA to an increasing number of attention
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Figure 7: Selected r values across different datasets. We report the optimal r values, determined
by grid searches, for general classification tasks (left), datasets with limited data (middle), and all
datasets (right).

B.7 FEATURE VISUALIZATION

As a last sanity check, we evaluate the quality of learned representations when using APLA and
compare them with those obtained from other adaptation methods, similarly to|Jia et al.|(2022); Lian
et al.| (2022)); Chen et al.[(2022). In Figure [8| we use t-SNE |Van der Maaten & Hinton| (2008)) to
visualize the final representations derived from the [CLS] token of the last ViT block for various
datasets from VTAB. Similar to other adaptation methods, APLA generates well-separated clusters
for different classes, with data points from the same class positioned closely together.
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