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ABSTRACT

Existing adaptation techniques typically require architectural modifications or
added parameters, leading to high computational costs and complexity. We intro-
duce Attention Projection Layer Adaptation (APLA), a simple approach to adapt
vision transformers (ViTs) without altering the architecture or adding parameters.
Through a systematic analysis, we find that the layer immediately after the attention
mechanism is crucial for adaptation. By updating only this projection layer, or
even just a random subset of this layer’s weights, APLA achieves state-of-the-art
performance while reducing GPU memory usage by up to 52.63% and training
time by up to 43.0%, with no extra cost at inference. Across 46 datasets covering a
variety of tasks including scene classification, medical imaging, satellite imaging,
and fine-grained classification, APLA consistently outperforms 17 other leading
adaptation methods, including full fine-tuning, on classification, segmentation, and
detection tasks.

1 INTRODUCTION
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Figure 1: APLA achieves state-of-the-art for ViT
adaption. It yields better performance for a given
GPU memory budget during training compared to
full fine-tuning and leading adaptation methods.
Similar savings are observed at inference (see Ap-
pendix B).

The primary objective of model adaptation is to
enable models to generalize to new tasks with
minimal data and computational cost. The most
successful approaches accomplish this by in-
jecting new parameters or layers into frozen
foundation models Lian et al. (2022); Chen
et al. (2022); Jia et al. (2022); Hu et al. (2021).
This process often requires complex heuristics
– such as gradient sensitivity analyses He et al.
(2023); Zhang et al. (2024) and neural architec-
ture searches Zhang et al. (2022)—to determine
the optimal locations to inject parameters. Fur-
thermore, the addition of new parameters can
introduce significant overhead. Aiming at bet-
ter efficiency, a handful of methods attempt to
adapt the existing structure of the model without
adding parameters Zhang et al. (2024); Zaken
et al. (2021), but these methods underperform
compared to parameter-adding techniques. This
raises a critical question: is it possible to achieve
competitive adaptation using only a model’s ex-
isting architecture? We propose that the answer is yes – and that the key is to better leverage the
model’s inherent architecture.

We systematically investigate which existing components of a Vision Transformer (ViT) foundation
model are most essential for adaptation in a departure from traditional parameter-adding approaches.
Our analysis reveals that the projection layer immediately following the multi-head self-attention
(MSA) mechanism plays a uniquely critical role. Then, inspired by low-rank approximation tech-
niques Hu et al. (2021); Jie & Deng (2023), which demonstrate that updates to a full weight matrix
can often be effectively represented with lower-dimensional matrices, we explore whether updating
the entire projection layer is necessary. We find that modifying only a random subset of this layer’s
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parameters is sufficient to maintain – or even surpass – performance, while further reducing compu-
tational costs. This result suggests that additional parameters used to learn a low-rank approximation
of the updates may be unnecessary, opening the door for simpler, more efficient adaptation strategies.

In this work, we introduce Attention Projection Layer Adaptation (APLA), a novel state-of-the-art
approach for efficient adaptation of ViTs that requires no additional parameters. Our key contributions
are as follows:

• Identification of a critical ViT component: Through systematic experimentation, we
identify the projection layer immediately following the attention mechanism as the most
essential component for adaptation, offering a targeted approach to ViT tuning essential to
APLA which can also improve other adaptation techniques.

• Low-rank subset update for efficient adaptation: Building on this insight, we introduce a
low-rank adaptation technique that updates only a random subset of the projection layer’s
weights, achieving higher performance with even lower computational costs.

• Simplified adaptation with no extra parameters: Our method achieves SOTA results
without introducing any new parameters, and eliminates the need for costly heuristics to
determine where to inject new parameters or adapt existing ones.

• Validated across scales and diverse applications: We validate APLA on 46 datasets across
various tasks and model sizes, demonstrating its consistent superiority over 17 adaptation
methods. In most cases, APLA performs better than full fine-tuning while also achieving up
to 52.63% in GPU memory savings and a 43.0% reduction in training time.

Together, these contributions establish APLA as a new standard for efficient and accessible ViT
adaptation. Our code for reproducing these experiments will be publicly available upon publication.

2 RELATED WORK

Foundation models Bommasani et al. (2021) have transformed computer vision, but as these models
grow larger Dehghani et al. (2023); Oquab et al. (2023); Ilharco et al. (2021), their fine-tuning requires
high memory and computational resources. The traditional pretrain, then fine-tune paradigm Cui
et al. (2018); Mustafa et al. (2021); Liu et al. (2021); Zheng et al. (2021) has driven the field for years,
but is becoming unfeasible for many applications due to these increasing costs. Recent advancements
in model size Dehghani et al. (2023); Oquab et al. (2023); Ilharco et al. (2021) have only increased
these challenges, making full fine-tuning unfeasible for many applications.

In response, efficient adaptation methods have emerged, allowing practitioners with fewer resources
to leverage large foundation models by introducing only a small set of new parameters, often called
parameter-efficient fine-tuning (PEFT). These methods reduce overhead, making large models more
deployable in limited-resource settings.

Adapter-based methods introduce compact, lightweight modules into specific layers, enabling task-
specific adaptation by tuning only the adapter parameters while keeping the base model largely frozen.
Originally developed for NLP, Adapters Houlsby et al. (2019) place bottleneck modules sequentially
after each multi-head attention and MLP block Vaswani (2017). AdaptFormer Chen et al. (2022)
extends this for vision transformers, placing adapters in parallel with the MLP blocks rather than
sequentially. More recent methods refine adapter designs for greater efficiency. ARC Dong et al.
(2024a) uses a similar bottleneck operation but introduces parameter-sharing. SPT-Adapter He et al.
(2023) identifies and adapts only the most impactful layers based on gradient magnitudes. SSF Lian
et al. (2022) appends learnable scaling and shifting transformations to modulate features after each
ViT layer, while Consolidator Hao et al. (2023) adds grouped connected layers that capture richer
information through channel-wise input groups. Adapter-based methods provide flexible, efficient
model adaptation with fewer parameters than full fine-tuning. However, they increase inference
costs, require careful initialization Steitz & Roth (2024); Houlsby et al. (2019), and their placement
often relies on heuristics Chen et al. (2022) or gradient-based selection He et al. (2023), adding
computational overhead and potentially leading to suboptimal configurations.

Low-rank-based methods leverage the low-rank structure in adaptation updates, enabling efficient
adaptation through low-rank matrices. LoRA Hu et al. (2021) pioneered this approach by adding
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low-rank matrices alongside original weights in attention blocks. SPT-LoRA He et al. (2023) builds
on LoRA by selectively applying low-rank updates to layers with the largest gradient magnitudes.
FacT Jie & Deng (2023) and RLRR Dong et al. (2024b) decompose updates into factors, applying
these across all ViT layers. While low-rank methods reduce adaptation costs, they insert additional
parameters similarly to adapters.

Prompt-based methods introduce learnable tokens to guide adaptation without modifying core model
parameters. VPT Jia et al. (2022) adds tokens to the input of each transformer block, and E2VPT
Han et al. (2023) incorporates auxiliary tokens into attention layers as well. Though prompt-based
methods avoid changing internal parameters, they can increase inference costs due to the added
tokens. NOAH Zhang et al. (2022) combines prompts with adapters and LoRA modules, using neural
architecture search to optimize placement.

Parameter-selective tuning is an approach used by a handful of methods most closely related to
APLA, that focus on adapting models by tuning only a subset of their existing parameters. GPS
Zhang et al. (2024) selects parameters for tuning based on their gradient magnitudes, targeting the
most error-inducing parameters during adaptation. BitFit Zaken et al. (2021) takes a simpler approach,
updating only the bias parameters. While these methods can be computationally efficient and easy to
implement, they face challenges in identifying an optimal subset of parameters, which is reflected in
their comparatively poor performance. APLA addresses this by identifying and targeting a critical
layer for adaptation in ViTs, achieving state-of-the-art performance.

3 METHODS

Inspired by methods that tune a subset of network weights and approaches that use low-rank updates,
we ask, “Can we combine the strengths of both?” To this end, we identify the most impactful ViT
components for adaptation and propose a simple method that updates a low-rank subset of existing
weights.

3.1 INVESTIGATING ADAPTABILITY OF VIT COMPONENTS

A ViT is composed of multiple learnable components. To identify the most impactful ones for
adapting the model to downstream tasks, we first review the different ViT components, grouped by
their function (Figure 2).

Starting with an input image x, a patchifying stem tiles and reshapes it into N flattened patches. Each
patch undergoes a linear transformation in the embedding layer WE with positional embeddings
Posn, n ∈ {1, . . . , N} added to capture spatial information and a classification token [CLS] appended
to create the initial embeddings z0. These embeddings are passed through L transformer blocks,
each containing LayerScale (LS) Touvron et al. (2021), LayerNorm (LN) Ba (2016), multi-head
self-attention (MSA), and multi-layer perceptron (MLP) modules. The final representation is typically
derived from the [CLS] token of the Lth block, which is then processed by classification head Wpred
to produce the prediction ŷ.

In the MSA block, self-attention is computed for the input tokens using the learnable matrices WQi
,

WKi
, and WVi

, where i ∈ {1, . . . , h} corresponds to h parallel self-attention heads, allowing each
head to learn distinct contextual relationships. The self-attention output for each head is given by:

headi = softmax
(
(zinWQi

)(zinWKi
)T√

dh

)
(zinWVi) (1)

where dh is the dimensionality of the Query, Key, and Value vectors for each self-attention head.
The outputs from each headi are concatenated, and a projection layer WO re-weights the combined
features to form the final output of the MSA block.

zout = [head1; head2; . . . ; headh]WO (2)

This output is then processed by an MLP block, consisting of two fully connected layers, WFC1
and

WFC2
, with a non-linearity in between.

To identify the most essential component for adaptation, we conducted an empirical investigation
by selectively tuning each of the components described above, one at a time (Figure 2) along with
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the final classification head Wpred, while keeping the rest of the network frozen. We found that
tuning only the projection layer WO—positioned directly after the self-attention operation in the
MSA block—yields the best performance, even surpassing full fine-tuning. Details of this study are
provided in Section 5.1.

3.2 LOW-RANK ADAPTATION THROUGH PARTIAL GRADIENTS
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Figure 2: Investigating adaptation performance
of individual ViT components. We evaluate the
adaptation effectiveness of each ViT component in
isolation across various downstream tasks, report-
ing the average performance. Results show that
the attention output projection layer (WO), located
immediately after the attention mechanism, is the
most effective for adaptation. See Section 5.1 and
Table 1 for detailed results.

Low-rank adaptation methods leverage the in-
sight that the difference between initial and
adapted values of a full-rank matrix can be
closely approximated by a low-rank matrix

Wapprox ≈ Wfinal −Winit, rank(Wapprox) ≤ d

where Winit and Wfinal are the layer’s learnable
matrix before and after adaptation, and d is the
full rank. Prior works (e.g. Hu et al. (2021); Jie
& Deng (2023)) approximate this difference by
adding low-rank matrices to ViT layers, with the
rank r := rank(Wapprox) set as a hyperparame-
ter.

In contrast, we propose a simpler low-rank adap-
tation by computing gradients on a randomly
selected subset of columns, which achieves sub-
stantial computational savings and retains the
benefits of low-rank updates without adding pa-
rameters or altering the model’s architecture.

Specifically, given a parameter matrix W ∈
Rd×d, we partition it into a trainable sub-matrix
Wt ∈ Rd×r where gradients are computed dur-
ing training, and a frozen sub-matrix Wf ∈
Rd×(d−r), which remains unchanged.

Wt = W [i, jm] m = 1, 2, . . . , r (3)

where the brackets denote indexing with
{j1, j2, . . . , jr} ⊆ {1, 2, . . . , d}, representing
randomly selected trainable column indices,
where r controls the rank of the update, reaching full rank when r = d.

3.3 ATTENTION PROJECTION LAYER ADAPTATION (APLA)

Foundation models already encode a rich set of features, and we hypothesize that adapting to new
tasks can be achieved by selectively re-weighting these features to fit the target task. Therefore, our
approach to efficient model adaptation focuses on identifying impactful layers and computing partial
gradients on a randomly selected subset of output features (matrix columns).

The projection layer WO is an ideal target for adaptation as it plays a central role in re-weighting fea-
tures from the attention mechanism across all the heads. Therefore, we propose Attention Projection
Layer Adaptation (APLA), which tunes a randomly selected subset of columns in the W l

O matrices in
each transformer block, while keeping the rest of the ViT backbone frozen. Specifically, we tune only
a subset of column vectors of the W l

O matrices and the final classification head Wpred:

SAPLA = {W 1
O[i, j

1
m],W 2

O[i, j
2
m], . . .,WL

O [i, jLm],Wpred} (4)

For each transformer block l ≤ L, we independently sample a distinct subset of column indices
{jl1, jl2, . . . , jlr} ⊆ {1, 2, . . . , d} given a global rank hyperparameter r ≤ d, chosen once at the
beginning of training.

APLA is easy to implement, computationally efficient, requires no new parameters, and introduces
no additional inference latency, making it highly practical.

4
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4 EXPERIMENTAL SETUP

Table 1: The importance of ViT components for
adaptation. We evaluate how tuning each ViT
component in isolation affects performance, while
keeping the rest of the model frozen. We re-
port classification performance, with the best and
second best results highlighted; this notation is
used in subsequent tables.

Birds Cars AID ISIC Average
[CLS] token 83.9 89.9 92.9 66.4 83.3
positional embeddings 85.1 89.6 92.9 61.4 82.3
Embedding layer WE 85.7 88.2 87.9 45.1 76.7

LayerNorm 83.7 91.5 94.6 79.0 87.2
LayerScale 85.5 91.2 93.9 75.4 86.5

WQ weight matrix 85.5 91.8 94.6 85.1 89.3
WK weight matrix 85.8 91.8 94.5 83.8 89.0
WV weight matrix 85.8 93.2 95.3 86.9 90.3
WO weight matrix 86.5 94.0 96.0 88.2 91.2
MSA block 85.0 93.8 94.7 86.5 90.0

WFC1
weight matrix 84.7 93.5 95.0 86.9 90.0

WFC2
weight matrix 84.6 93.4 94.7 87.7 90.1

MLP block 82.4 93.6 94.3 86.4 89.2

Full Finetuning 85.2 94.4 95.4 87.7 90.7

We benchmark APLA against 21 adaptation
methods on 46 datasets across 4 tasks, using
3 foundation models. For our main model types,
we use Vision Transformers (ViTs) Dosovitskiy
(2020) and Swin Transformers Liu et al. (2021)
at varying capacities, unless stated otherwise.
Below, we provide an overview of our experi-
mental setup. Additional details are available in
Appendix A.

Adaptation methods We evaluate APLA
against various adaptation methods, beginning
with traditional approaches: full fine-tuning
(FINETUNE) and training only an appended lin-
ear layer (LINEAR). We further compare against
MLP-k and PARTIAL-k. In MLP-k, a k-layer
MLP is appended to the model, and only this
block is trained, while PARTIAL-k tunes the last
k blocks of the model. We set k = 3 for MLP-k
and k = 1 for PARTIAL-k, in line with Jia et al.
(2022). To benchmark efficient adaptation, we
compare against 17 recent methods: BITFIT Za-
ken et al. (2021) , ADAPTER Houlsby et al. (2019), ADAPTFORMER Chen et al. (2022), VPT-shallow
and VPT-deep Jia et al. (2022), E2VPT Han et al. (2023), SSF Lian et al. (2022), LORA Hu et al.
(2021), SPT-adapter and SPT-LoRa He et al. (2023), NOAH Zhang et al. (2022), FACT-TK and
FACT-TT Jie & Deng (2023), CONSOLIDATOR Hao et al. (2023) ARC Dong et al. (2024a), GPS
Zhang et al. (2024) and RLRR Dong et al. (2024b).

Table 2: Comparing parameter-selection strategies
for APLA.

NABird
s

SUN397

Cal-
256

Cal-
101

Oxf.-P
et

DDSM
Avera

ge

Largest gradients 88.1 78.3 95.3 97.4 95.9 97.2 92.0
Largest activations 87.8 78.5 95.6 97.7 96.1 96.7 92.1
Largest weight magnitude 87.8 78.6 95.5 97.8 96.0 97.0 92.1
Random (APLA) 88.0 78.3 95.7 98.0 96.1 97.2 92.2

Datasets and tasks We benchmark APLA
across 46 datasets, covering a diverse set of
object categories and tasks. Starting with 21
generic image classification tasks, we cover su-
perordinate object recognition, fine-grained clas-
sification, scene recognition, satellite imagery,
and medical image analysis using the follow-
ing datasets: CUB-200-2011 Wah et al. (2011),
NABirds Van Horn et al. (2015), Birdsnap Berg
et al. (2014), Stanford Dogs Khosla et al. (2011), StanfordCars Krause et al. (2013), Aircraft Maji
et al. (2013), Caltech-256 Griffin et al. (2007), Caltech-101 Fei-Fei et al. (2006), CIFAR-100 and
CIFAR-10 Krizhevsky et al. (2009), Oxford-III Pet Parkhi et al. (2012), DTD Cimpoi et al. (2014),
MIT Indoor Quattoni & Torralba (2009), SUN397 Xiao et al. (2010)), AID Xia et al. (2017), RSSCN7
Cheng et al. (2017), ISIC2019 Tschandl et al. (2018); Codella et al. (2018); Combalia et al. (2019),
APTOS2019 Karthik (2019), DDSM Lee et al. (2017), Colorectal Kather et al. (2016), and Pneumonia
Kermany et al. (2018).

For semantic & instance segmentation and object detection we use ADE20K Zhou et al. (2019;
2017) and MS COCO Lin et al. (2014). To test in low-data settings, we use VTAB-1k Zhai et al.
(2019), a collection of 19 classification tasks with only 1,000 training examples each—representing
challenging yet realistic scenarios for model adaptation. For out-of-distribution (OOD) evaluation,
we use ImageNet, ImageNet-A Hendrycks et al. (2021b), ImageNet-C Hendrycks & Dietterich
(2019), and ImageNet-R Hendrycks et al. (2021a), which introduce various domain shifts, including
corruptions, perturbations, and adversarial examples. We use the standard evaluation metric for each
dataset.

Foundation models To assess the impact of the foundation model type and pretraining strategy,
we compare models trained on IMAGENET-21K Deng et al. (2009) using supervised learning,
OPENCLIP Ilharco et al. (2021) trained with semi-supervision, and DINOV2 Oquab et al. (2023),
pre-trained using self-supervision. We utilize DINOV2 unless stated otherwise.
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Table 3: Main results comparing adaptation methods on image classification for ViT-B Dosovitskiy
(2020) pre-trained with DINOV2 Oquab et al. (2023). The best and second best results are highlighted
for each task.
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FINETUNE 88.9 85.2 78.7 86.0 94.4 87.5 86.8 93.9 97.3 92.4 98.7 94.7 81.9 93.1 87.8 75.6 81.7 95.4 73.3 84.4 87.7 90.8 95.5 97.8 99.4 94.2 89.7

LINEAR 89.1 86.6 79.4 87.6 88.4 76.5 84.6 94.9 97.0 88.9 98.0 95.8 81.1 92.6 88.9 76.4 82.7 91.2 77.1 84.2 55.3 90.4 89.4 94.0 97.9 85.4 86.9
MLP 89.1 86.4 78.9 87.8 88.3 77.7 84.7 94.4 97.5 89.2 98.4 96.0 80.9 92.7 88.6 76.2 82.4 91.6 76.4 84.0 71.9 90.7 93.4 95.8 97.9 89.9 88.0
PARTIAL 88.8 86.5 78.6 87.4 88.1 76.6 84.3 94.9 96.9 89.0 98.0 96.0 80.6 92.6 88.5 76.3 82.4 90.9 77.7 84.3 56.1 90.6 89.5 94.2 97.6 85.6 86.8

BITFIT 89.4 87.9 80.7 87.8 92.5 83.2 86.9 95.2 97.6 93.1 99.3 95.7 82.2 93.9 89.3 77.7 83.5 95.2 83.5 89.4 79.0 90.1 96.4 97.2 99.1 92.4 90.1
ADAPTER 89.6 88.4 80.0 87.8 93.5 86.1 87.6 95.0 97.6 93.5 99.3 95.9 81.8 93.9 89.5 77.9 83.7 95.0 84.2 89.6 84.3 89.6 96.1 98.0 98.5 93.3 90.6
ADAPTFORMER 89.7 88.4 80.5 88.1 93.1 85.4 87.5 95.6 98.1 93.2 99.3 95.9 82.8 94.2 89.9 78.1 84.0 95.4 85.3 90.4 85.6 90.8 97.3 97.4 98.6 93.9 90.9
VPT-SHALLOW 88.8 86.7 79.1 87.4 90.6 73.2 84.3 95.1 97.2 92.4 99.1 96.0 80.4 93.4 89.4 76.6 83.0 91.6 70.4 81.0 76.5 89.3 96.2 96.4 98.7 91.4 88.1
VPT-DEEP 89.1 87.3 79.9 87.2 91.5 81.7 86.1 95.3 97.8 92.7 99.1 95.7 80.5 93.5 90.0 77.0 83.5 94.4 78.0 86.2 79.6 91.0 96.2 97.6 98.8 92.6 89.5
E2 VPT 88.3 86.6 79.7 87.4 91.2 81.0 85.7 94.5 96.9 92.7 99.2 95.4 79.6 93.1 88.7 76.3 82.5 93.7 72.7 83.2 80.9 90.6 96.2 96.8 98.6 92.6 88.9
SSF 89.4 88.1 80.5 87.7 92.7 83.7 87.0 95.3 97.8 93.2 99.2 95.7 82.1 93.9 88.9 77.4 83.2 95.3 82.6 89.0 80.7 90.5 96.4 97.2 99.0 92.8 90.2
LORA 88.7 87.5 79.3 86.3 93.4 86.4 86.9 94.3 97.1 93.0 99.0 94.0 80.4 93.0 88.5 76.4 82.5 95.4 81.4 88.4 86.5 91.1 95.1 97.4 98.9 93.8 90.0
SPT-ADAPTER 89.4 88.1 80.6 87.7 93.1 86.2 87.5 95.8 97.5 93.1 99.2 95.8 82.7 94.0 89.5 78.1 83.8 95.6 84.7 90.2 82.1 90.4 96.1 97.2 99.0 93.0 90.6
SPT-LORA 89.2 87.9 80.6 87.5 92.8 86.3 87.4 95.8 97.7 92.6 99.2 95.7 82.3 93.9 89.9 77.7 83.8 95.4 84.2 89.8 82.2 89.3 96.2 97.4 99.1 92.8 90.4
FACT-TK 88.8 87.8 80.5 87.5 93.0 85.4 87.2 95.3 97.6 92.8 99.2 95.5 81.5 93.7 88.9 77.4 83.2 95.4 79.9 87.7 85.1 91.5 96.3 97.2 97.9 93.6 90.2
FACT-TT 88.8 87.6 79.7 87.1 92.9 84.3 86.7 94.9 97.5 92.4 99.2 95.5 81.7 93.5 89.4 77.1 83.3 94.5 80.6 87.6 81.5 90.9 97.0 97.4 98.6 93.1 89.9
CONSOLIDATOR 89.7 87.4 81.5 87.1 93.0 83.4 87.0 94.5 97.3 92.7 99.0 95.8 81.8 93.5 89.5 77.0 83.3 94.6 78.0 86.3 81.9 91.1 96.9 96.2 99.4 93.1 89.9
ARC 89.4 88.2 80.7 88.1 92.6 84.1 87.2 95.8 97.8 92.9 99.2 96.0 82.8 94.1 89.8 78.2 84.0 95.6 86.2 90.9 82.5 90.7 97.3 97.0 98.8 93.3 90.7
GPS 89.1 86.4 80.7 86.6 94.7 85.5 87.2 94.8 97.6 94.0 99.3 94.4 77.9 93.0 88.4 76.9 82.7 94.9 61.6 78.3 87.7 90.8 96.7 97.4 99.3 94.4 89.3
RLRR 88.9 87.9 80.8 87.6 92.4 83.7 86.9 95.2 97.4 93.1 99.2 95.8 82.0 93.8 89.5 77.6 83.6 95.0 81.2 88.1 81.7 90.4 96.3 96.6 98.6 92.7 90.0

APLA 89.6 88.0 81.9 88.5 94.0 86.7 88.1 95.7 98.0 93.4 99.3 96.1 83.0 94.3 90.4 78.3 84.4 96.0 86.2 91.1 88.2 92.1 97.2 98.4 99.5 95.1 91.5

Implementation details To ensure fair comparison, we closely follow the implementations in Jia
et al. (2022); Dong et al. (2024a;b); Jie & Deng (2023); Han et al. (2023); Chen et al. (2022); Hu
et al. (2021). For each dataset, we use the official protocol and standard train/val/test splits when
available Zhai et al. (2019) or the splits provided by Jia et al. (2022). Models are trained with AdamW
Loshchilov & Hutter (2017) for 100 epochs, using a cosine decay learning rate schedule with a
10-epoch warm-up. Hyperparameters are selected via grid search on the validation set. Additional
details regarding the experimental setup can be found in Appendix A.

5 EXPERIMENTS AND RESULTS

We begin by evaluating the choice of APLA ’s core components, focusing first on identifying the
most crucial layer for adaptation—the projection layer WO—and how to select which parameters to
tune within it. We then benchmark APLA against several other methods on standard classification,
detection, and segmentation tasks, including low-data settings and out-of-distribution datasets. Ad-
ditionally, we assess APLA across various model capacities, architectures, and foundation models.
Finally, we evaluate its computational efficiency and explore how other adaptation techniques can
benefit from our findings on the importance of the projection layer WO.

5.1 CHOOSING APLA’S COMPONENTS

Identifying which component to tune Previous work suggests that certain types of layers play a
larger role in transfer learning Yosinski et al. (2014); Sharif Razavian et al. (2014); Neyshabur et al.
(2020); Matsoukas et al. (2022); Konuk et al. (2024). To identify the optimal components for APLA,
we systematically investigate the effect of tuning different ViT components individually, keeping all
other layers frozen.

Table 1 and Figure 2 present results across four mainstream datasets representing diverse domains,
tasks, and data availabilities. We find that tuning the projection layer WO yields the best performance,
even outperforming full-network fine-tuning. The clear advantage of WO over other ViT components
leads us to adopt it as the default layer to tune in APLA.

Identifying which parameters to tune Motivated by the effectiveness of low-rank adaptation
methods, we explore strategies to economize APLA by selecting specific parameters in WO for
adaptation. We evaluate various strategies, including selecting columns with the largest gradients,
activations, and weight magnitudes, as well as selecting the columns randomly.
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We report our findings in Table 2. Surprisingly, tuning a random subset of columns in WO performs
on par with more sophisticated selection methods. This suggests that, within the projection layer WO,
the specific choice of tunable columns is less critical. For APLA we choose the random selection
approach because it may better utilize feature redundancy across attention heads and achieves a slight
advantage in performance without added computational cost.

5.2 BENCHMARKING APLA

Mainstream classification tasks We benchmark APLA against other methods across 21 diverse
image classification tasks, including superordinate classification, fine-grained classification, scene
recognition, satellite imagery, and medical image analysis. Table 3 presents the results. On average,
APLA outperforms all other methods, showing a 0.6% improvement over the second-best method,
ADAPTFORMER. It ranks as the top or second-best method on 18 out of 21 datasets, consistently
demonstrating strong performance across different classification tasks.

Table 4: Low-data settings. We benchmark
on VTAB-1k which contains 19 low-data tasks
grouped across three domains.

ViT-B Swin-B

Natrl. Spec. Struc. Average Natrl. Spec. Struc. Average

FINETUNE 75.9 83.4 47.6 69.0 79.1 86.2 59.7 75.0

LINEAR 68.9 77.2 26.9 57.7 73.5 80.8 33.5 62.6
MLP 67.8 72.8 30.6 57.1 73.6 75.2 35.7 61.5
PARTIAL 69.4 78.5 34.2 60.7 73.1 81.7 35.0 63.3

BITFIT 73.3 78.3 44.1 65.2 74.2 80.1 42.4 65.6
ADAPTER 79.0 84.1 58.5 73.9 81.7 87.3 61.2 76.7
ADAPTFORMER 80.6 85.4 58.8 74.9 – – – –
VPT-SHALLOW 76.8 79.7 47.0 67.8 79.9 82.5 37.8 66.7
VPT-DEEP 78.5 82.4 55.0 72.0 76.8 84.5 53.4 71.6
E2 VPT 80.0 84.4 57.4 73.9 83.3 85.0 57.4 75.2
SSF 81.6 86.6 59.0 75.7 – – – –
LORA 79.5 84.6 60.5 74.8 81.7 87.2 60.1 76.3
SPT-ADAPTER 82.0 85.8 61.4 76.4 83.0 87.3 62.1 77.5
SPT-LORA 81.9 85.9 61.3 76.4 83.1 87.4 60.4 77.2
NOAH 80.2 84.9 61.3 75.5 – – – –
CONSOLIDATOR 82.4 86.3 60.9 76.5 – – – –
FACT-TK 80.6 85.3 60.7 75.5 – – – –
FACT-TT 80.6 85.0 60.5 75.3 83.1 86.9 62.1 77.4
ARC 81.8 87.0 61.4 76.7 79.0 86.6 59.9 75.2
RLRR 83.7 87.3 61.8 77.6 81.3 86.7 59.0 75.7
GPS 83.7 86.8 61.9 77.5 – – – –

APLA 84.6 88.5 62.7 78.6 84.4 87.8 65.9 79.4

APLA in low-data settings Foundation
model adaptation is especially valuable in low-
data scenarios, where reusing pretrained fea-
tures is essential, as randomly initialized mod-
els tend to underperform Dosovitskiy (2020);
Kolesnikov et al. (2020); Matsoukas et al.
(2023). We evaluate APLA in this regime us-
ing the VTAB-1k benchmark, which includes 19
datasets, each with only 1,000 samples. We use
ViT-B and Swin-B pretrained on IMAGENET-
21K and report average performance across
three domains: natural, specialized, and struc-
tured. As shown in Table 4, APLA outper-
forms all other methods, achieving at least a
1% improvement across these domains. Visu-
alizations Van der Maaten & Hinton (2008) of
the [CLS] embeddings of different adaptation
methods from these experiments are provided in
Figure 8 in the Appendix.

Out-of-distribution robustness While APLA
has shown strong performance across various
settings, its robustness under domain shifts and
adversarial examples remains to be assessed. Us-
ing a foundation model pre-trained on ImageNet-21K, tuned on ImageNet-1K with various adaptation
methods, we evaluate on ImageNet-A Hendrycks et al. (2021b), ImageNet-R Hendrycks et al. (2021a),
and ImageNet-C Hendrycks & Dietterich (2019).

Table 5: OOD robustness. We assess robustness to
OOD data by adapting on ImageNet-1K and testing
on ImageNet-A, ImageNet-R, and ImageNet-C.

ImageNet-1K ImageNet-A ImageNet-R ImageNet-C
Acc. (↑) Acc. (↑) Acc. (↑) mCE (↓)

FINETUNE 83.6 34.5 51.3 46.5
LINEAR 82.0 33.9 52.9 46.9
ADAPTER 82.7 42.2 54.1 42.7
BITFIT 82.7 42.1 55.9 41.9
VPT-SHALLOW 82.1 30.9 53.7 46.9
VPT-DEEP 82.5 39.1 53.5 43.1
SSF 83.1 45.9 56.8 41.5
GPS 83.9 46.1 57.0 42.0
APLA 84.0 46.9 55.5 32.9

As shown in Table 5, APLA outperforms
other methods overall, achieving an 8.6% im-
provement in mean corruption error (mCE) on
ImageNet-C. Notably, APLA and most other
adaptation methods outperform full fine-tuning
across all OOD datasets, highlighting the po-
tential of efficient adaptation methods for OOD
tasks.

Segmentation & Detection Tasks We eval-
uate APLA on semantic segmentation, object
detection, and instance segmentation. For se-
mantic segmentation, we use SETR-PUP Zheng
et al. (2021) with a ViT-Large backbone pre-trained on IMAGENET-21K, reporting mean Intersection
over Union (mIoU) for single-scale (SS) and multi-scale (MS) evaluations on ADE20K, as in Jia et al.
(2022); He et al. (2023).
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Table 7: Impact of pre-training strategy. ViT-B
pre-trained with IMAGENET-21K and OPENCLIP,
then adapted to various tasks.

IMAGENET-21K OPENCLIP

Birds Cars AID ISIC Average Birds Cars AID ISIC Average

FINETUNE 82.7 84.5 91.7 84.0 85.7 79.0 94.7 95.6 84.9 88.6

LINEAR 75.9 51.3 81.0 51.2 64.9 73.7 94.5 95.0 54.2 79.4
MLP 77.3 54.9 81.2 61.7 68.8 73.6 93.8 95.0 68.7 82.8
PARTIAL 77.8 66.2 81.1 46.6 67.9 73.8 94.4 95.2 54.9 79.6

BITFIT 84.2 79.4 90.5 73.0 81.8 79.2 95.0 95.8 72.7 85.7
ADAPTER 84.3 68.6 90.0 80.6 80.9 79.2 95.0 95.2 83.9 88.3
ADAPTFORMER 78.8 83.1 90.1 81.2 83.3 80.0 95.0 95.5 82.4 88.2
VPT-SHALLOW 78.8 68.7 85.9 65.0 74.6 73.8 94.7 95.1 54.6 79.6
VPT-DEEP 84.2 83.6 89.0 74.8 82.9 73.6 94.5 95.1 54.6 79.5
E2 VPT 84.6 82.8 88.4 78.6 83.6 77.7 95.1 95.9 73.6 85.6
SSF 85.7 89.2 90.9 78.4 86.1 79.9 94.9 95.7 76.1 86.7
LORA 85.6 83.2 91.0 83.5 85.8 79.0 94.1 95.0 83.2 87.8
SPT-ADAPTER 83.3 86.2 90.8 75.7 84.0 76.0 94.8 95.4 76.4 85.7
SPT-LORA 83.4 87.3 90.0 76.2 84.2 75.9 94.9 95.1 77.4 85.8
FACT-TK 80.3 84.0 91.1 79.3 83.7 79.2 94.9 95.0 80.7 87.5
FACT-TT 79.2 82.4 90.9 77.7 82.6 78.5 94.9 95.4 77.2 86.5
ARC 85.7 89.5 90.8 79.2 86.3 79.5 95.1 95.1 79.0 87.2
RLRR 85.3 90.4 91.1 77.5 86.1 80.0 94.9 95.8 79.5 87.6

APLA 85.2 90.5 94.3 84.9 88.7 79.1 95.2 95.9 85.5 88.9

Table 8: Impact of model capacity. Results
are averaged across NABirds, StanfordCars,
AID, and ISIC2019 using DINOV2 models.
Detailed results are in Appendix B.2.

ViT-S ViT-B ViT-L ViT-g

FINETUNE 86.2 90.7 92.1 92.6

LINEAR 76.1 80.4 83.6 85.5
MLP 80.9 84.6 86.2 87.8
PARTIAL 75.8 80.4 83.6 85.2

BITFIT 84.8 88.7 90.0 91.8
ADAPTER 87.9 90.3 91.9 92.3
ADAPTFORMER 87.2 90.6 91.7 92.8
VPT-SHALLOW 82.8 86.4 88.3 88.9
VPT-DEEP 84.0 88.2 90.2 91.9
E2 VPT 84.2 88.1 90.9 91.7
SSF 84.7 89.2 91.0 91.9
LORA 87.1 90.8 92.1 92.6
SPT-ADAPTER 87.2 89.7 90.0 89.5
SPT-LORA 87.6 89.6 90.5 89.4
FACT-TK 86.9 90.3 91.5 92.0
FACT-TT 85.4 89.1 91.3 91.6
ARC 86.0 89.7 91.1 91.9
RLRR 84.4 89.3 91.8 92.3

APLA 88.0 91.6 92.9 93.4

Table 6: Segmentation and detection. Results
for ADE20K semantic segmentation (SETR-PUP
Zheng et al. (2021) with a ViT-Large backbone)
and COCO object detection & instance segmenta-
tion (Mask R-CNN He et al. (2017) with a Swin-
Tiny backbone).

ADE20K COCO

mIoU (SS) mIoU (MS) APbb APbb
50 APbb

75 APm APm
50 APm

75

BITFIT 43.4 45.3 33.7 57.8 35.0 32.7 54.7 33.9
VPT-DEEP 42.1 44.1 33.8 57.6 35.3 32.5 54.5 33.9
SSF 45.6 47.4 34.9 58.9 36.1 33.5 55.8 34.7
LORA 43.9 45.9 37.1 60.9 39.5 35.2 57.7 37.2
ADAPTER 44.4 46.6 37.6 61.1 40.2 35.6 58.2 37.8
ADAPTFORMER 44.3 46.2 35.1 59.1 36.9 33.8 56.0 35.6
SPT-ADAPTER 45.2 47.2 – – – – – –
SPT-LORA 45.4 47.5 – – – – – –

APLA 48.3 49.5 38.1 61.8 40.9 35.9 58.7 37.9

For object detection and instance segmenta-
tion, we use Mask R-CNN He et al. (2017)
with a Swin-Tiny backbone pre-trained on IM-
AGENET-1K, following Lian et al. (2022); Liu
et al. (2021), and report mean Average Precision
(AP) for bounding box (APbb) and mask (APm)
predictions on MS COCO Lin et al. (2014). Ad-
ditional details are in Appendix A. As shown
in Table 6, APLA surpasses all other adapta-
tion methods, with particularly strong results for
semantic segmentation.

Different foundation model types and capac-
ities. We evaluate APLA ’s versatility across
foundation model training strategies, capacities,
and architectures, using both supervised IMA-
GENET-21K and semi-supervised OPENCLIP ViT-B models, as well as Swin transformers Liu
et al. (2021). To assess scalability, we test ViT models of varying sizes (ViT-S, ViT-B, ViT-L, and
ViT-g). As shown in Tables 4, 7, and 8, APLA consistently outperforms other methods regardless of
pretraining, model size, or architecture, maintaining strong performance.

Applying other adaptation methods on WO In Section 5.1 we showed that WO is the most
impactful component to adapt—surpassing full fine-tuning—and in Section 5.2 we show that, when
targeted in APLA, it outperforms other adaptation methods. We now explore what happens if other
adaptation methods are applied to WO. Do they improve performance when targeted to this layer?
Does the low-rank adaptation strategy we propose for APLA prevail against other adaptation methods
that target the same layer? Using ViT-B pretrained with DINOV2, we apply LORA Hu et al. (2021),
FACT Jie & Deng (2023), and ADAPTFORMER Chen et al. (2022) on WO and compare on Birds,
Cars, AID, ISIC, and VTAB-1k.

Table 10 in the Appendix shows that applying other adaptation methods to WO generally improves
performance, solidifying the importance of the WO layer. Critically, APLA still outperforms other
leading approaches when they are applied to WO, suggesting there is an advantage to our simple
low-rank adaptation strategy using random partial gradients.

Computational cost We analyze the computational costs of adaptation methods by measuring
GPU memory footprint, parameter count, and throughput during training and inference in Appendix
B. APLA demonstrates significant efficiency improvements, reducing memory usage and boosting
training throughput, with no extra inference cost. Figure 1 further illustrates that APLA’s memory
savings increase with model size, even surpassing BitFit, which tunes only bias parameters. Figure
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4 in the Appendix reports parameter count, showing that APLA appears more costly than many
methods according to this metric. However, as noted by prior work Dehghani et al. (2021); Cai
et al. (2020), parameter count is misleading in assessing computational efficiency. In practice, APLA
remains the most efficient method, consistently outperforming others in GPU memory usage and
throughput during both training and inference. Further, Appendix B.4 shows that APLA maintains
near-constant efficiency as the rank r increases, unlike other low-rank methods.

6 DISCUSSION

APLA establishes a new state-of-the-art for efficient model adaptation across a wide range of classi-
fication, segmentation, and detection tasks, showing resilience in low-data and out-of-distribution
scenarios. It achieved top performance across model types, capacities, and pretraining methods
– a level of versatility that no other adaptation method maintained across such varied conditions.
Moreover, APLA excels in computational efficiency, significantly reducing memory and processing
requirements.

APLA offers several practical advantages in addition to its exceptional performance. It is simple
to implement, requiring no architectural changes or added parameters which may be sensitive to
initialization. It eliminates the need to search for which parameters to update. APLA’s simplicity
makes it easy to work with. APLA also supports flexible layer adaptation, allowing partial or full layer
updates depending on the need, all with minimal computational overhead. Finally, as demonstrated
in Section 5.2, APLA’s core insights can be used to enhance other adaptation methods, e.g. applying
ADAPTFORMER solely on WO gives a 1% boost in performance.

What makes APLA so effective? Although we don’t have a definitive answer, we offer two possible
explanations. One is the targeting of WO. Foundation models encode a rich set of features robust
to various tasks. However, each task benefits from a unique composition of these features, making
feature re-weighting essential. This is precisely the role of WO, which re-weights the contribution of
features across all attention heads. Figure 2 reveals that other top-performing ViT components serve
similar functions: WV re-weights the attention output within each head, while WO operates across
all heads. Given this, one might expect WFC1

and WFC2
in the MLP block to play a more critical

role, but they are positioned further downstream, with WO and normalization layers modifying the
features before they reach the MLP block.

A second explanation for APLA’s effectiveness lies in the simplicity of its low-rank adaptation
using randomly selected gradient updates. Other approaches to use heuristics to select parameters,
e.g. based on large weights, activations, or gradients may be suboptimal for foundation models, which
are highly over-parameterized and exhibit feature redundancy. Selection based on large gradients
or weights may not capture the most relevant features, could bias adaptation toward redundant or
overly specific features, and lead to overfitting. By re-weighting a broader range of features, random
selection makes APLA equally or even more effective in contexts of high feature redundancy, as
shown in Table 2.
Limitations & future work While our experiments are extensive, certain aspects remain unex-
plored. Our study focuses on identifying the single most important ViT component for adaptation
rather than multiple components. An exhaustive search would be computationally prohibitive, and
a constrained search, resembling a NAS, may yield undesirable task-specific combinations Zhang
et al. (2022). We also did not examine how the choice of r might vary with data availability or
information density; richer data may support a larger r and enhance adaptability. Lastly, APLA ’s
susceptibility to catastrophic forgetting remains untested –unlike adapter-based methods, which can
be stored separately, APLA directly modifies the foundation model, potentially impacting retention
of prior knowledge.

7 CONCLUSION

We introduced APLA, a simple yet effective method for adapting ViTs by tuning only a randomly
selected subset of projection layer columns. Extensive experiments show that APLA achieves state-
of-the-art performance while reducing computational costs, making it highly practical. Our results
highlight that in over-parameterized models, efficiency doesn’t require added complexity – a simple
targeted re-weighting of existing features can be even more powerful.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In 2009 IEEE conference on
computer vision and pattern recognition, pp. 413–420. IEEE, 2009.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 806–813, 2014.

Jan-Martin O Steitz and Stefan Roth. Adapters strike back. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 23449–23459, 2024.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
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Appendix

We provide additional experimental details and results.

• A includes additional experimental details.

– In Section A.1 we provide implementation details for classification tasks.
– In A.2 we provide experimental details for semantic segmentation tasks.
– In A.3 we provide experimental details for object detection and instance segmentation

tasks.

• Section B includes additional experimental results.

– In B.1, we show the result of applying other low-rank methods on WO.
– In B.2 we report additional results as the model’s capacity increases, including both

classification performance and computational cost.
– In B.3 we report additional results on the computational costs of APLA and other

adaptation methods during training and inference.
– In B.4 We examine the effect of rank r on computational requirements for different

low-rank methods when applied solely to WO during training.
– In B.5 we investigate the impact of applying APLA to an increasing number of ViT

blocks.
– In B.6 we discuss the best r values for APLA.
– In B.7 we visualize and discuss the quality of output features produced by different

adaptation methods.

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 IMAGE CLASSIFICATION

To ensure fair comparison against other adaptation methods, we closely follow the implementations
in Jia et al. (2022); Dong et al. (2024a;b); Jie & Deng (2023); Han et al. (2023); Chen et al. (2022);
Hu et al. (2021). For each dataset in the general classification tasks, either the official train/val/test
splits were used, or we used the splits from Jia et al. (2022). For VTAB, the train/val/test splits are
provided. Similar to Jia et al. (2022), we adopt standard image augmentations, including random
resized crop to 224 × 224, random horizontal flip, and normalization with mean and std. For VTAB,
we resize all images to 224 × 224. All models were developed in PyTorch Paszke et al. (2019)
and trained on Nvidia A100 GPUs using AdamW Loshchilov & Hutter (2017) optimizer. Unless
stated otherwise, models were trained for 100 epochs using a cosine decay learning rate schedule
with a 10-epoch warm-up, following previous works Jia et al. (2022); Dong et al. (2024a;b); Jie &
Deng (2023); Han et al. (2023). We perform grid-search to determine the hyper-parameters using the
validation set of each dataset. We also perform a grid search to determine the appropriate r value
in APLA for each dataset. For ViT-S, we search over r ∈ {8, 16, 128, 256, 384}. For ViT-B, we
search over r ∈ {8, 16, 128, 512, 768}. For ViT-L, we search over r ∈ {8, 16, 128, 512, 1024}. For
ViT-g, we search over r ∈ {8, 16, 128, 1024, 1536}.

A.2 SEMANTIC SEGMENTATION

For semantic segmentation we follow Jia et al. (2022); He et al. (2023) and conduct experiments on
the ADE20K dataset Zhou et al. (2019; 2017) using the SETR-PUP framework Zheng et al. (2021)
with a ViT-Large Dosovitskiy (2020) model pre-trained on IMAGENET-21K Deng et al. (2009).
We report mean Intersection over Union (mIoU) scores for both single-scale (SS) and multi-scale
(MS), following Jia et al. (2022); He et al. (2023). Our implementation uses the mmsegmentation
Contributors (2020) library. We merely apply APLA on the default models of the library. All training
configurations are kept unchanged.
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Figure 3: Performance vs. compute cost. We compare each method’s performance against GPU
memory (left) and latency (right) during training across different model capacities.
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Figure 4: Computational costs. We report memory footprint and latency of various adaptation
methods during training (top) and inference (middle) for ViT-B with a batch size of 64. Additionally,
we provide the number of tunable parameter count for each method (bottom), averaged across all the
datasets.

A.3 OBJECT DETECTION & INSTANCE SEGMENTATION

For object detection and instance segmentation tasks we follow Lian et al. (2022); Liu et al. (2021) and
conduct experiments on the MS COCO dataset Lin et al. (2014) using the Mask R-CNN framework
He et al. (2017) with a Swin-Tiny Liu et al. (2021) model pre-trained on IMAGENET-1K Deng
et al. (2009). We report mean Average Precision (AP) for both bounding boxes (APbb) and masks
(APm) across multiple IoU thresholds and individual thresholds, following Lin et al. (2014); Lian
et al. (2022); Liu et al. (2021). Our implementation uses the mmdetection Chen et al. (2019) library.
We merely apply APLA on the default models of the library. All training configurations are kept
unchanged.
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Table 9: Classification performance across different model sizes. The best and second best results
are highlighted.

ViT-S ViT-B ViT-L ViT-g

Birds Cars AID ISIC Average Birds Cars AID ISIC Average Birds Cars AID ISIC Average Birds Cars AID ISIC Average

FINETUNE 77.5 91.9 91.7 83.8 86.2 85.2 94.4 95.4 87.7 90.7 88.2 94.9 95.9 89.2 92.1 90.0 95.2 96.5 88.8 92.6

LINEAR 81.3 83.1 88.5 51.5 76.1 86.6 88.4 91.2 55.3 80.4 89.1 89.8 93.4 62.1 83.6 90.2 91.0 93.6 67.3 85.5
MLP 80.6 83.1 88.8 71.1 80.9 86.4 88.3 91.6 71.9 84.6 88.9 89.9 92.9 73.0 86.2 89.9 91.0 93.1 77.1 87.8
PARTIAL 81.1 83.1 88.3 50.6 75.8 86.5 88.1 90.9 56.1 80.4 89.1 89.8 93.3 62.0 83.6 90.3 91.0 93.6 65.7 85.2

BITFIT 83.1 89.7 93.1 73.2 84.8 87.9 92.5 95.2 79.0 88.7 90.4 93.8 95.8 80.1 90.0 90.8 94.5 95.9 85.8 91.8
ADAPTER 83.2 91.3 93.3 83.8 87.9 88.4 93.5 95.0 84.3 90.3 90.4 94.8 95.8 86.4 91.9 91.1 95.1 96.3 86.8 92.3
ADAPTFORMER 83.6 90.6 92.8 81.9 87.2 88.4 93.1 95.4 85.6 90.6 90.8 94.2 95.8 86.0 91.7 91.5 94.9 96.0 88.9 92.8
VPT-SHALLOW 81.7 86.3 91.3 72.0 82.8 86.7 90.6 91.6 76.5 86.4 89.0 91.6 93.0 79.7 88.3 89.8 92.1 95.1 78.7 88.9
VPT-DEEP 80.1 86.8 92.5 76.7 84.0 87.3 91.5 94.4 79.6 88.2 89.1 93.4 95.7 82.6 90.2 91.1 94.5 96.2 85.9 91.9
E2 VPT 80.0 87.6 91.9 77.3 84.2 86.6 91.2 93.7 80.9 88.1 89.5 93.8 95.8 84.3 90.9 91.2 94.5 95.9 85.3 91.7
SSF 81.7 89.5 92.7 74.9 84.7 88.1 92.7 95.3 80.7 89.2 90.6 94.0 95.9 83.5 91.0 91.0 94.5 95.9 86.3 91.9
LORA 80.8 91.0 93.3 83.2 87.1 87.9 93.4 95.4 86.5 90.8 89.9 94.8 95.9 87.9 92.1 89.8 94.8 96.7 88.9 92.6
SPT-ADAPTER 83.0 91.0 93.3 81.4 87.2 88.1 93.1 95.6 82.1 89.7 90.6 93.4 95.6 80.5 90.0 90.7 93.2 95.0 79.0 89.5
SPT-LORA 82.8 91.1 93.2 83.2 87.6 87.9 92.8 95.4 82.2 89.6 89.6 93.8 95.5 82.9 90.5 90.3 93.5 95.2 78.5 89.4
FACT-TK 82.5 90.6 92.9 81.7 86.9 87.8 93.0 95.4 85.1 90.3 90.6 94.5 96.3 84.4 91.5 91.6 95.1 96.1 85.3 92.0
FACT-TT 82.3 89.7 91.6 78.0 85.4 87.6 92.9 94.5 81.5 89.1 90.5 94.6 96.3 83.7 91.3 91.4 94.7 96.0 84.1 91.6
ARC 82.9 89.4 93.2 78.5 86.0 88.2 92.6 95.6 82.5 89.7 90.6 94.3 95.5 83.9 91.1 91.5 94.7 95.7 85.5 91.9
RLRR 82.4 89.5 93.3 72.2 84.4 87.9 92.4 95.0 81.7 89.3 90.6 94.0 95.7 86.7 91.8 91.6 94.6 95.7 87.2 92.3

APLA 82.4 91.4 93.5 84.5 88.0 88.0 94.0 96.0 88.2 91.6 90.6 95.1 96.5 89.2 92.9 91.7 95.4 96.8 89.5 93.4

Table 10: Applying other adaptation methods on WO. Competing methods are applied to WO,
isolating the effect of APLA’s low-rank adaptation strategy. Notably, LORA and ADAPTFORMER
would be improved if they were placed at WO rather than their default locations.

Method Adaptation Birds Cars AID ISIC Natrl. Spec. Struc. Average

LORA Default 87.5 93.4 95.4 86.5 83.4 86.5 63.1 78.2
On WO 87.7 93.5 95.1 87.9 83.7 87.6 62.6 78.3

ADAPTF. Default 88.4 93.1 95.4 85.6 84.0 87.2 59.8 77.3
On WO 88.4 93.6 95.3 87.1 84.2 87.2 61.6 78.1

FACT Default 87.8 93.0 95.4 85.1 84.7 87.4 64.5 79.1
On WO 88.0 93.8 95.3 86.5 84.4 87.2 63.8 78.8

APLA On WO 88.0 94.0 96.0 88.2 85.0 88.2 63.9 79.4

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 APPLYING OTHER ADAPTATION METHODS ON WO

We evaluate LORA Hu et al. (2021), FACT Jie & Deng (2023), and ADAPTFORMER Chen et al. (2022)
on WO using ViT-B pretrained with DINOV2, and compare results across Birds, Cars, AID, ISIC,
and VTAB-1k. Table 10 shows that adapting WO with these methods improves their performance
compared to their original location, reinforcing the critical role of this WO. APLA consistently
outperforms them, highlighting the effectiveness of our simple low-rank strategy with random partial
gradients.

B.2 DETAILED RESULTS OF DIFFERENT MODEL SCALES

To examine if APLA scales well with model size, we utilize ViT models of varying sizes (ViT-S,
ViT-B, ViT-L, and ViT-g), pre-trained with DINOV2 Oquab et al. (2023). Table 8 in the main
text shows the average results of different adaptation methods across model scales, while Table
9 provides detailed per-dataset results. APLA appears to benefit from increased model capacity,
performing exceptionally well with larger models. We further present a performance-efficiency
trade-off comparison in terms of GPU memory consumption and latency during training across
different model sizes in Figure 3. As the model size increases, APLA outperforms all other methods
both in terms of predictive performance and costs during training.

B.3 COMPUTATIONAL COSTS OF ADAPTATION METHODS

We analyze the computational costs of adaptation methods by measuring GPU memory footprint
and latency during training and inference. Results are shown in Figure 4. During training, APLA is
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Figure 5: Computational requirements of different adaptation methods during training for varying r
values. For LoRA and FacT, r denotes the rank, for APLA the number of tuned columns, and for
AdaptFormer, the size of the bottleneck dimension.

the most efficient method in terms of GPU memory usage and latency and does not add any extra
costs during inference. While APLA appears to tune more parameters than other adaptation methods,
one should note that parameter count alone does not necessarily reflect the true computational costs.
This inconsistency has been previously emphasized by other studies Dehghani et al. (2021); Cai et al.
(2020)

B.4 COMPUTATIONAL COSTS OF LOW-RANK ADAPTATION METHODS WHEN INCREASING r

In Table 10 in the main text, we investigated the impact of applying other low-rank adaptation
methods on WO, isolating the impact of the low-rank adaptation strategy. Using the same setup,
here we analyze their computational costs with respect to the choice of rank r, considering GPU
memory and latency during training. As shown in Figure 5, APLA is the only method that only
minimally impacts memory and latency during, whereas other methods are affected to a larger extent
as r grows (e.g. FACT). Essentially, for any given rank r, APLA outperforms all other low-rank
adaptation methods in terms of efficiency, requiring less GPU memory and enabling faster training.
This advantage is due to APLA’s more efficient low-rank strategy and its avoidance of introducing
additional trainable parameters. This provides APLA a distinct advantage, allowing the rank to be
freely adjusted for optimal results without any extra computational concerns.

B.5 APLA ON INCREASING NUMBER OF VIT BLOCKS

We investigate the impact of applying APLA to increasing number of ViT blocks, when starting from
the first layer and moving towards the last layers (“Bottom → Top”) and the opposite direction (“Top
→ Bottom”), and present the results in Figure 6. Applying APLA to more blocks monotonically
improves performance. As expected, applying APLA to later transformer blocks leads to greater
performance improvements than applying it to the early ViT layers.

B.6 THE EFFECT OF CHOICE OF r

In APLA, the hyperparameter r is used to specify how many columns of the weight matrix WO are
tuned. In Figure 7, we present the selected values of r for general classification tasks (left), datasets
with limited data (middle), and all datasets together (right).
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Figure 6: Classification performance when applying APLA to an increasing number of attention
blocks. “Top-bottom” means applying APLA starting from the last ViT block and moving toward the
first layer, while “”bottom-top” refers to applying it in the opposite direction.
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Figure 7: Selected r values across different datasets. We report the optimal r values, determined
by grid searches, for general classification tasks (left), datasets with limited data (middle), and all
datasets (right).

B.7 FEATURE VISUALIZATION

As a last sanity check, we evaluate the quality of learned representations when using APLA and
compare them with those obtained from other adaptation methods, similarly to Jia et al. (2022); Lian
et al. (2022); Chen et al. (2022). In Figure 8 we use t-SNE Van der Maaten & Hinton (2008) to
visualize the final representations derived from the [CLS] token of the last ViT block for various
datasets from VTAB. Similar to other adaptation methods, APLA generates well-separated clusters
for different classes, with data points from the same class positioned closely together.
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Figure 8: t-SNE visualizations. We plot the t-SNE visualizations of the output [CLS] embeddings
on VTAB using ViT-B models pre-trained with DINOV2. All models have been adapted for each
task. The numbers in parentheses indicate each adaptation method’s classification performance for
the task.
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